V 1200 V DS CAB760M12HM3 IDS 1200 V, 760 A All-Silicon ...

CAB760M12HM3

1200 V, 760 A, Silicon Carbide, Half-Bridge Module

VDS

1200 V

IDS

760 A

5

4

3

2

1

Technical Features

? Low Inductance, Low Profile 62 mm Footprint ? High Junction Temperature (175 ?C) Operation ? Implements Switching Optimized Third Generation

SiC MOSFET Technology

? Light Weight AlSiC Baseplate ? High Reliability Silicon Nitride Insulator

D

V+

G1 K1

Mid

NTC1

G2 K2

-t?

C

NTC2

V-

Applications

? Railway & Traction ? Solar ? EV Chargers ? Industrial Automation & Testing

System Benefits

1

? Lightweight, Compact Form Factor with 62 mm

Compatible Baseplate Enables System Retrofit

?

Increased System Efficiency, B

Conduction Losses of SiC

due

to

L45 ow

Switching

&

2

? High Reliability Material Selection

8

6 7

-t?

9 3

Key Parameters

Parameter

A

Symbol Min. Typ. Max. Unit Conditions

Note

Drain-Source Voltage

VDS

1200

TC = 25 ?C

Gate-Source Voltage, Maximum Value Gate-Source Voltage, Recommended

VGS(max) VGS(op)

-8

+19

-4/+15

V T5ransient 4 Static

3

Note2 1

1

Fig. 32

DC Continuous Drain Current DC Source-Drain Current (Body Diode) Pulsed Drain-Source Current Power Dissipation

ID ISD(BD) IDM

PD

1015 765 515 1530

2206

VGS = 15 V, TC = 25 ?C, TVJ 175 ?C

VGS = 15 V, TC = 90 ?C, TVJ 175 ?C Notes

A

VGS = -4 V, TC = 25 ?C, TVJ 175 ?C

2, 3 Fig. 20

tPmax limited by TVJmax VGS = 15 V, TC = 25 ?C

W TC = 25 ?C, TVJ 175 ?C

Note 4 Fig. 20

Virtual Junction Temperature

TVJ(op)

-40

175 ?C

Note (1): Recommended turn-on gate voltage is 15 V with ?5 % regulation tolerance Note (2): Current limit at TC = 90 ?C calculated by ID(max) = (PD/RDS(typ)(TVJ(max),ID(max))) Note (3): Verified by design Note (4): PD = (TVJ - TC)/RTH(JC,typ)

Rev. 2, January 2024

4600 Silicon Drive | Durham, NC 27703 | Tel: +1.919.313.5300 | power

? 2024 Wolfspeed, Inc. All rights reserved. Wolfspeed? and the Wolfstreak logo are registered trademarks and the Wolfspeed logo is a trademark of Wolfspeed, Inc. The information in this document is subject to change without notice.

CAB760M12HM3

2

MOSFET Characteristics (Per Position) (TVJ = 25 ?C Unless Otherwise Specified)

Parameter

Symbol Min. Typ. Max. Unit Conditions

Note

Drain-Source Breakdown Voltage

Gate Threshold Voltage

Zero Gate Voltage Drain Current Gate-Source Leakage Current

Drain-Source On-State Resistance (Devices Only)

Transconductance

Turn-On Switching Energy, TVJ = 25 ?C TVJ = 125 ?C TVJ = 175 ?C Turn-Off Switching Energy, TVJ = 25 ?C TVJ = 125 ?C TVJ = 175 ?C Internal Gate Resistance Input Capacitance Output Capacitance Reverse Transfer Capacitance Gate to Source Charge Gate to Drain Charge Total Gate Charge FET Thermal Resistance, Junction to Case

V(BR)DSS VGS(th) IDSS IGSS RDS(on)

gfs

EON

EOFF RG(int) Ciss Coss Crss QGS QGD QG Rth JC

1200 1.8

2.5 2.0 15 0.12 1.33 2.13 548 585 20.3 20.7 23.7 17.9 17.5 17.8 0.47 79.4 2.9 90 768 924 2724 0.068

3.6 400 3 1.73

0.073

VGS = 0 V, TVJ = -40 ?C

V VDS = VGS, ID = 280 mA

VDS = VGS, ID = 280 mA, TVJ = 175 ?C

VGS = 0 V, VDS = 1200 V A

VGS = 15 V, VDS = 0 V

VGS = 15 V, ID = 760 A m

VGS = 15 V, ID = 760 A, TVJ = 175 ?C

Fig. 2 Fig. 3

VDS = 20 V, IDS = 760 A

S

Fig. 4

VDS = 20 V, IDS = 760 A, TVJ = 175 ?C

VDS = 600 V, ID = 760 A, mJ VGS = -4 V/15 V, RG(ext) = 1.0 , L = 13.7 H

Fig. 11 Fig. 13

VAC = 25 mV, f = 100 kHz

nF VGS = 0 V, VDS = 800 V, VAC = 25 mV, f = 100 kHz

pF

Fig. 9

VDS = 800 V, VGS = -4 V/15 V nC ID = 760 A

Per IEC60747-8-4 pg 21

?C/W

Fig. 17

Diode Characteristics (Per Position) (TVJ = 25 ?C Unless Otherwise Specified)

Parameter

Symbol Min. Typ. Max. Unit Conditions

Note

Body Diode Forward Voltage

VSD

Reverse Recovery Time

tRR

Reverse Recovery Charge

QRR

Peak Reverse Recovery Current

IRRM

Reverse Recovery Energy TVJ = 25 ?C

TVJ = 125 ?C

ERR

TVJ = 175 ?C

5.4

VGS = -4 V, ISD = 760 A

V

Fig. 7

4.7

VGS = -4 V, ISD = 760 A, TVJ = 175 ?C

49

ns

17.0

C

VGS = -4 V, ISD = 760 A , VR = 600 V di/dt = 20 A/ns, TVJ = 175 ?C

Fig. 32

540

A

1.3

VDS = 600 V, ID = 760 A,

3.5

mJ VGS = -4 V/15 V, RG(ext) = 1.0 ,

Fig. 14

5.5

L = 13.7 H

Rev. 2, January 2024

4600 Silicon Drive | Durham, NC 27703 | Tel: +1.919.313.5300 | power

? 2024 Wolfspeed, Inc. All rights reserved. Wolfspeed? and the Wolfstreak logo are registered trademarks and the Wolfspeed logo is a trademark of Wolfspeed, Inc. The information in this document is subject to change without notice.

CAB760M12HM3

3

Module Physical Characteristics

Parameter

Symbol Min. Typ. Max. Unit Conditions

Package Resistance, M1 Package Resistance, M2

R1-2

106.5

TC = 125 ?C, Note 5

R2-3

126.3

TC = 125 ?C, Note 5

Stray Inductance

LStray

4.9

nH Between Terminals 1 and 3

Case Temperature

TC

-40

125 ?C

Weight

W

179

g

Mounting Torque

3

4.5

5

Baseplate, M4 Bolts

MS

N-m

0.9 1.1 1.3

Power Terminals, M6 Bolts

Case Isolation Voltage

Visol

4

kV AC, 50 Hz, 1 min

Comparative Tracking Index

CTI

600

Clearance Distance Creepage Distance

13.07 6.00 14.27 12.34

Terminal to Terminal

Terminal to Baseplate mm

Terminal to Terminal

Terminal to Baseplate

Note (5): Total Effective Resistance (Per Switch Position) = MOSFET RDS(on) + Switch Position Package Resistance

Temperature Sensor (NTC) Characteristics

Parameter Resistance at 25 ?C Tolerance of R25 Beta Value for 25 ?C to 85 ?C Beta Value for 0 ?C to 100 ?C Tolerance of B25/85 Maximum Power Dissipation

Symbol Min. R25

B25/85 B0/100

P25

Typ. 4700 ?1 3435 3399 ?1 50

Max.

Unit Conditions TNTC = 25 ?C % K K % mW

Steinhart & Hart Coefficients for NTC Resistance & NTC Temperature Computation (T in K) +

A

B

C

D

-1.289E+01 4.245E+03 -8.749E+04 -9.588E+06

A1 3.354E-03

B1 3.001E-04

C1 5.085E-06

D1 2.188E-07

Rev. 2, January 2024

4600 Silicon Drive | Durham, NC 27703 | Tel: +1.919.313.5300 | power

? 2024 Wolfspeed, Inc. All rights reserved. Wolfspeed? and the Wolfstreak logo are registered trademarks and the Wolfspeed logo is a trademark of Wolfspeed, Inc. The information in this document is subject to change without notice.

CAB760M12HM3

4

Typical Performance

Drain-Source Current, IDS (A)

1200 1000

tp < 300 s VGS = 15 V

800 25 ?C -40 ?C

600

400

100 ?C 125 ?C

150 ?C

175 ?C

200

0

0

0.5

1

1.5

2

2.5

3

3.5

Drain-Source Voltage, VDS (V)

Figure 1. Output Characteristics for Various Junction Temperatures

Normalized On-resistance (p.u.)

2.0 tp < 300 s

1.8 VGS = 15 V

175 ?C

1.6

150 ?C

125 ?C 1.4

100 ?C

1.2

25 ?C 1.0

-25 ?C

0.8 0

200

400

600

800

1000

1200

Drain-Source Current, IDS (A)

Figure 2. Normalized On-State Resistance vs. Drain Current for Various Junction Temperatures

Normalized On-resistance (p.u.)

2.0

tp < 300 s 1.8 VGS = 15 V 1.6 ID = 760 A

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0 -50

0

50

100

150

200

Virtual Junction Temperature, TVJ (?C)

Figure 3. Normalized On-State Resistance vs. Junction Temperature

Drain-Source Current, IDS (A)

1000 900 800

tp < 300 s VDS = 20 V

700

175 ?C

600

150 ?C 125 ?C

100 ?C

500

400

300 200 100

0 0

25 ?C 0 ?C -25 ?C -40 ?C

2

4

6

8

10

12

Gate-Source Voltage, VGS (V)

Figure 4. Transfer Characteristic for Various Junction Temperatures

Source-Drain Current, ISD (A)

1200 1000

tp < 300 s VGS = 15 V

800

-40 ?C 25 ?C

600

100 ?C

400

125 ?C 150 ?C

175 ?C

200

0

0

0.5

1

1.5

2

2.5

3

3.5

Source-Drain Voltage, VSD (V)

Figure 5. 3rd Quadrant Characteristic vs. Junction Temperatures at VGS = 15 V

Source-Drain Current, ISD (A)

1200 1000

tp < 300 s VGS = 0 V

800

600

400

200

175 ?C 150 ?C 125 ?C 100 ?C 25 ?C 0 ?C -25 ?C -40 ?C

0

0

1

2

3

4

5

6

Source-Drain Voltage, VSD (V)

Figure 6. 3rd Quadrant Characteristic vs. Junction Temperatures at VGS = 0 V (Body Diode)

Rev. 2, January 2024

4600 Silicon Drive | Durham, NC 27703 | Tel: +1.919.313.5300 | power

? 2024 Wolfspeed, Inc. All rights reserved. Wolfspeed? and the Wolfstreak logo are registered trademarks and the Wolfspeed logo is a trademark of Wolfspeed, Inc. The information in this document is subject to change without notice.

CAB760M12HM3

5

Typical Performance

Source-Drain Current, ISD (A)

1200 1000

tp < 300 s VGS = -4 V

800

175 ?C

115205?C?C

600

100 ?C

400

25 ?C

0 ?C

200

-25 ?C -40 ?C

0

0

1

2

3

4

5

6

7

Source-Drain Voltage, VSD (V)

Figure 7. 3rd Quadrant Characteristic vs. Junction Temperatures at VGS = -4 V (Body Diode)

1000 100 10 1

TJ = 25 ?C VAC = 25 mV f = 100 kHz Ciss

Coss

0.1 Crss

0.01 0

200

400

600

800

1,000

Drain-Source Voltage, VDS (V)

1,200

Figure 9. Typical Capacitances vs. Drain to Source Voltage (0 - 1200 V)

Threshold Voltage, Vth (V)

Capacitance (nF)

1000 100 10 1

TJ = 25 ?C VAC = 25 mV f = 100 kHz Ciss

Coss

0.1

Crss

0.01 0

50

100

150

200

Drain-Source Voltage, VDS (V)

Figure 8. Typical Capacitances vs. Drain to Source Voltage (0 - 200 V)

3.5

Conditions:

3.0

VGS = VDS

IDS = 276 mA

2.5

2.0

1.5

1.0

0.5

0.0 -50

0

50

100

150

200

Virtual Junction Temperature, TVJ (?C)

Figure 10. Threshold Voltage vs. Junction Temperature

Capacitance (nF)

Switching Energy (mJ)

90

Conditions:

80 TVJ = 25?C

70

VDD = 600 V RG(ext) = 1.0

60 VGS = -4/+15 V L = 13.7 ?H

50

40

30

EOff + EOn

EOn EOff

20

10

0 0

ERR

200 400 600 800 1000 1200 1400 1600

Source Current, IS (A)

Figure 11. Switching Energy vs. Drain Current (VDS = 600 V)

Switching Energy (mJ)

140 Conditions:

120 TVJ = 25?C VDD = 800 V

100

RG(ext) = 1.0 VGS = -4/+15 V

L = 13.7 ?H

80

60

40

EOff + EOn

EOn EOff

20

0

ERR

0 200 400 600 800 1000 1200 1400 1600

Source Current, IS (A)

Figure 12. Switching Energy vs. Drain Current (VDS = 800 V)

Rev. 2, January 2024

4600 Silicon Drive | Durham, NC 27703 | Tel: +1.919.313.5300 | power

? 2024 Wolfspeed, Inc. All rights reserved. Wolfspeed? and the Wolfstreak logo are registered trademarks and the Wolfspeed logo is a trademark of Wolfspeed, Inc. The information in this document is subject to change without notice.

................
................

In order to avoid copyright disputes, this page is only a partial summary.

Google Online Preview   Download