Unit 5. Integration techniques - MIT Mathematics
Unit 5. Integration techniques
5A. Inverse trigonometric functions; Hyperbolic functions
5A-1
a)
tan-1
3
=
b) sin-1( 3 ) =
3
23
c)tan = 5 implies sin = 5/ 26, cos = 1/ 26, cot = 1/5, csc = 26/5,
sec = 26 (from triangle)
d) sin-1 cos( ) = sin-1( 3 ) =
6
23
e) tan-1 tan( ) = 33
f)
tan-1
tan(
2 3
)
=
tan-1
tan(
- 3
)
=
- 3
g)
lim tan-1
x-
x
=
- 2
.
5A-2 a)
2 1
dx x2 +
1
=
tan-1
x
2 1
=
tan-1 2 -
4
b)
2b b
dx x2 + b2
=
2b b
d(by) (by)2 + b2
(put
x = by)
=
c)
1 -1
dx 1 - x2
=
sin-1 x
1 -1
=
2
-
- 2
=
2 1
dy b(y2 +
1)
=
1 (tan-1 b
2
-
4
)
5A-3 a) y = x - 1 , so 1 - y2 = 4x/(x + 1)2, and 1 = (x + 1) . Hence
x+1
1 - y2 2 x
dy
2
dx = (x + 1)2
d dx
sin-1
y
=
dy/dx 1 - y2
=
2 (x + 1)2
?
(x + 1) 2x
=
(x
1 + 1) x
b) sech2x = 1/ cosh2 x = 4/(ex + e-x)2
c) y = x + x2 + 1, dy/dx = 1 + x/ x2 + 1.
d ln y = dy/dx = 1 + x/ x2 + 1 = 1
dx
y
x + x2 + 1
x2 + 1
d) cos y = x = (- sin y)(dy/dx) = 1
dy dx
=
-1 sin y
=
-1 1 - x2
e) Chain rule:
d sin-1(x/a) = dx
1
?1= 1
1 - (x/a)2 a
a2 - x2
S. SOLUTIONS TO 18.01 EXERCISES
f) Chain rule:
d dx
sin-1(a/x)
=
1 1 - (a/x)2
?
-a x2
=
-a x x2 -
a2
g)
y
=
x/ 1 - x2,
dy/dx
=
(1 - x2)-3/2,
1 + y2
= 1/(1 - x2).
Thus
d dx
tan-1 y
=
dy/dx 1 + y2
=
(1 -
x2 )-3/2 (1
- x2)
=
1 1 - x2
Why is this the same as the derivative of sin-1 x?
h)
y
=
1
- x,
dy/dx
=
-1/2 1 -
x,
1-
y2
=
x.
Thus,
d dx
sin-1
y
=
dy/dx =
1 - y2 2
-1 x(1 - x)
5A-4 a) y = sinh x. A tangent line through the origin has the equation y = mx. If it meets the graph at x = a, then ma = cosh(a) and m = sinh(a). Therefore, a sinh(a) = cosh(a) .
b) Take the difference:
F (a) = a sinh(a) - cosh(a)
Newton's method for finding F (a) = 0, is the iteration
an+1 = an - F (an)/F (an) = an - tanh(an) + 1/an With a1 = 1, a2 = 1.2384, a3 = 1.2009, a4 = 1.19968. A serviceable approximation is
a 1.2
(The slope is m = sinh(a) 1.5.) The functions F and y are even. By symmetry, there is another solution -a with slope - sinh a.
5A-5 a)
y = sinh x = ex - e-x 2
y = cosh x = ex + e-x 2
y = sinh x
y is never zero, so no critical points. Inflection point x = 0; slope of y is 1 there. y is an odd function, like ex/2 for x >> 0.
b) y = sinh-1 x x = sinh y. Domain is the whole x-axis.
c) Differentiate x = sinh y implicitly with respect to x:
1
=
cosh y
?
dy dx
dy = 1 =
1
dx cosh y
sinh2 y + 1
d sinh-1 x = 1
dx
x2 + 1
y = sinh x
y = sinh 1x
5. INTEGRATION TECHNIQUES
d)
dx = x2 + a2
dx a x2 + a2/a2
d(x/a) =
(x/a)2 + 1
= sinh-1(x/a) + c
5A-6 a) 1
sin d = 2/
0
b) y = 1 - x2
=
y = -x/ 1 - x2
=
1 + (y)2 = 1/(1 - x2).
Thus
ds = w(x)dx = dx/ 1 - x2.
Therefore the average is
1 1 - x2 dx
-1
1 - x2
1 dx -1 1 - x2
1
The numerator is dx = 2. To see that these integrals are the same as the ones in part
-1
(a), take x = cos (as in polar coordinates). Then dx = - sin d and the limits of integral
are from = to = 0. Reversing the limits changes the minus back to plus:
1 1 - x2 dx
= sin d
-1
1 - x2 0
1 dx
= d =
-1 1 - x2
0
(The substitution x = sin t works similarly, but the limits of integration are -/2 and /2.) c) (x = sin t, dx = cos tdt)
11 2 -1
1
-
x2dx
=
1 2
/2
cos2 tdt =
-/2
/2 1 + cos 2t
=
dt
0
2
= /4
/2
cos2 tdt
0
5B. Integration by direct substitution
Do these by guessing and correcting the factor out front. The substitution used implicitly is given alongside the answer.
5B-1
x
x2
-
1dx
=
1 (x2
-
3
1) 2
+c
(u
=
x2
-
1,
du
=
2xdx)
3
S. SOLUTIONS TO 18.01 EXERCISES
5B-2
e8xdx = 1 e8x + c (u = 8x, du = 8dx) 8
5B-3
ln xdx x
=
1 2
(ln
x)2
+
c
(u
=
ln x,
du
=
dx/x)
5B-4
cos xdx 2 + 3 sin x
=
ln(2
+ 3 sin x) 3
+
c
(u
=
2
+
3 sin x,
du
=
3
cos xdx)
5B-5
sin2
x cos xdx
=
sin x3 3
+
c
(u
=
sin x,
du
=
cos xdx)
5B-6
sin 7xdx
=
- cos 7x 7
+
c
(u
=
7x,
du
=
7dx)
5B-7
6xdx = 6 x2 + 4 + c (u = x2 + 4, du = 2xdx) x2 + 4
5B-8 Use u = cos(4x), du = -4 sin(4x)dx,
tan 4xdx =
sin(4x)dx cos(4x)
=
-du 4u
=
-
ln u 4
+
c
=
-
ln(cos 4
4x)
+
c
5B-9
ex(1
+
ex)-1/3dx
=
3 2
(1
+
ex)2/3
+
c
(u
=
1
+
ex,
du
=
exdx)
5B-10
sec
9xdx
=
1 9
ln(sec(9x)
+
tan(9x))
+
c
(u
=
9x,
du
=
9dx)
5B-11
sec2
9xdx
=
tan 9x 9
+
c
(u
=
9x,
du
=
9dx)
5B-12
xe-x2 dx = -e-x2 + c (u = x2, du = 2xdx) 2
5B-13 u = x3, du = 3x2dx implies
x2dx 1 + x6
=
du 3(1 + u2)
=
tan-1 3
u
+
c
= tan-1(x3) + c 3
/3
sin /3
5B-14
sin3 x cos xdx =
u3du (u = sin x, du = cos xdx)
0
sin 0
3/2
3/2
=
u3du = u4/4
=
9 64
0
0
5B-15
e (ln x)3/2dx
1
= x
ln e
u3/2du (u = ln x, du = dx/x)
ln 1
5. INTEGRATION TECHNIQUES
= 1 y3/2dy = (2/5)y5/2 1 = 2
0
05
5B-16
1 -1
tan-1 xdx 1 + x2
=
tan-1 1
udu (u = tan-1 x, du = dx/(1 + x2)
tan-1 (-1)
/4
u2 /4
=
udu =
-/4
2
=0
-/4
(tan x is odd and hence tan-1 x is also odd, so the integral had better be 0)
5C. Trigonometric integrals
5C-1 sin2 xdx = 1 - cos 2x dx = x - sin 2x + c
2
24
5C-2 sin3(x/2)dx = (1 - cos2(x/2)) sin(x/2)dx = -2(1 - u2)du
(put u = cos(x/2), du = (-1/2) sin(x/2)dx)
= -2u + 2u3 + c = -2 cos(x/2) + 2cos(x/2)3 + c
3
3
5C-3 sin4 xdx = cos2(2x) dx = 4
(
1
-
cos 2
2x
)2dx
=
1 - 2 cos 2x + cos2 2x
4
dx
1
+
cos 8
4x
dx
=
x 8
+
sin 4x 32
+
c
Adding together all terms:
sin4 xdx = 3x - 1 sin(2x) + 1 sin(4x) + c
84
32
5C-4 cos3(3x)dx = (1 - sin2(3x)) cos(3x)dx = 3 cos(3x)dx)
1 - u2 3 du (u = sin(3x), du =
= u - u3 + c = sin(3x) - sin(3x)3 + c
39
3
9
5C-5 sin3 x cos2 xdx = (1 - cos2 x) cos2 x sin xdx =
du = - sin xdx)
= - u3 + u5 + c = - cos x3 + cos x5 + c
35
3
5
-(1 - u2)u2dy (u = cos x,
5C-6 sec4 xdx = (1 + tan2 x) sec2 xdx = (1 + u2)du (u = tan x, du = sec2 xdx)
= u + u3 + c = tan x + tan3 x + c
3
3
5C-7
sin2(4x) cos2(4x)dx = sin2 8xdx = 4
(1 - cos 16x)dx = 1 - sin 16x + c
8
8 128
................
................
In order to avoid copyright disputes, this page is only a partial summary.
To fulfill the demand for quickly locating and searching documents.
It is intelligent file search solution for home and business.
Related download
- useful trigonometric identities the university of adelaide
- c2 trigonometry trigonometric identities physicsandmathstutor
- 1 anti differentiation university of kentucky
- trigonometric integrals solutions university of california berkeley
- chapter 1 trigonometry 1 trigonometry cimt
- ap calculus bc 2009 scoring guidelines form b college board
- antiderivatives cornell university
- math 113 hw 11 solutions colorado state university
- step support programme step 2 trigonometry questions solutions maths
- chapter 6 using trig identities review mr guillen s mathematics
Related searches
- american government unit 5 quizlet
- unit 5 ap psychology test
- ap chemistry unit 5 frq
- english 12b unit 5 exam
- english 12a unit 5 exam
- integration techniques worksheet pdf
- grade 5 unit 5 week 4
- ap psychology unit 5 test
- ap bio unit 5 frq
- ap human geography unit 5 frq
- ap biology unit 5 frq
- biology unit 5 test quizlet