Integrating an Absolute Value
[Pages:1]Integrating an Absolute Value
4
|x3 - 5x2 + 6x| dx
0
There is no anti-derivative for an absolute value; however, we know it's definition.
|x| =
x -x
if x 0 elsewise
Thus we can split up our integral depending on where x3 - 5x2 + 6x is non-negative.
x3 - 5x2 + 6x 0. x(x2 - 5x + 6) 0.
x(x - 2)(x - 3) 0.
After testing the intervals (-, 0), (0, 2), (2, 3), and (3, ) we discover x3 - 5x2 + 6x 0 when x (0, 2) (3, ). Now we can integrate.
4
|x3 - 5x2 + 6x| dx = applying the definition of absolute value
0
2
x3 - 5x2 + 6x dx +
0
3
-(x3 - 5x2 + 6x) dx +
2
4
x3 - 5x2 + 6x dx = using anti-derivative
3
1 x4 - 5 x3 + 3x2 2 +
43
0
- 1 x4 + 5 x3 - 3x2 3 +
43
2
1 x4 - 5 x3 + 3x2 4
=
8 5 37 ++
43
3
3 12 12
74 =.
12
................
................
In order to avoid copyright disputes, this page is only a partial summary.
To fulfill the demand for quickly locating and searching documents.
It is intelligent file search solution for home and business.
Related download
- absolute value functions
- integrating an absolute value
- packet 2 graphing absolute value functions
- graphing absolute value functions date period
- 1 2 transformations of linear and absolute value functions
- student lesson absolute value functions
- solving absolute value equations and inequalities
- absolute value graphing absolute value functions
Related searches
- absolute value functions
- transilations absolute value functions
- algebra1 absolute value functions
- absolute value functions worksheet answers
- absolute value functions and translations quizlet
- absolute value function example
- absolute value function worksheet
- graphing absolute value functions
- graphing absolute value equations pdf
- graphing absolute value functions pdf
- graphing absolute value equations worksheet
- absolute value function equation