Www.wjahr.com



COLLEGE OF VETERINARY MEDICINE AND ANIMAL SCIENCESDEPARTEMENT OF PARACLINICAL STUDIESREVIEW ON IMPACT OF CLIMATE CHANGE ON PARASITIC DISEASESA paper Presented for the Course Senior Seminar Paper on Current Topics in Veterinary Parasitology (VPP-642)ByMoges Maru AdvisorDr. Abrham Ayele (DVM, MSc, Assi. Prof.) November, 2018 Gondar, Ethiopia Approval sheet-------------------------------------------------------------------------------Name of advisor: Dr. Abreham Ayele-------------------------------------------------Signature------------------------------------------------------------------------------------- ACKNOWLEDGMENTSI would like to thank Dr. Abrham Ayele for his guidance, provision of valuable materials and meticulous correction of this review. Special thanks go to my brother Abiy Maru for his holistic support, to my friend Ato Nega Yismaw for his incalculable care during our stay in the didactic journey.TABLE OF CONTENTS PAGE TOC \o "1-3" \h \z \u ACKNOWLEDGMENTS PAGEREF _Toc530316267 \h iLIST OF ABBREVIATIONS PAGEREF _Toc530316268 \h iiiLIST OF FIGURE PAGEREF _Toc530316269 \h ivSUMMARY PAGEREF _Toc530316270 \h v1. INTRODUCTION PAGEREF _Toc530316271 \h 12. CLIMATE CHANGE PAGEREF _Toc530316272 \h 32.1. Causes of Climate Change and Its Indicators PAGEREF _Toc530316273 \h 33. IMPACTS OF CLIMATE CHANGE ON PARASITIC DISEASES PAGEREF _Toc530316274 \h 43.1. Climatic Factors that Affect Parasite Life Cycle PAGEREF _Toc530316275 \h 63.2. Impact of Climatic Change on Vector-Borne Parasitic Diseases PAGEREF _Toc530316276 \h 83.2.1. Vector borne protozoan diseases PAGEREF _Toc530316277 \h 83.2.2. Arthropod and gastropod borne helminth diseases PAGEREF _Toc530316278 \h 103.3. Impact of Climatic Change on Non Vector-Borne Parasitoses PAGEREF _Toc530316279 \h 123.4. Impact of Climate Change on Parasitic Diseases in East Africa PAGEREF _Toc530316280 \h 153.5. Impact of Climate Change on Parasitic Diseases in Ethiopia PAGEREF _Toc530316281 \h 173.6. Economic Impacts of climate change PAGEREF _Toc530316282 \h 174. CONTROL PROGRAMMES IN A CHANGING WORLD PAGEREF _Toc530316283 \h 205. CONCLUSION AND RECOMMENDATIONS PAGEREF _Toc530316284 \h 216. REFERENCES PAGEREF _Toc530316285 \h 22LIST OF ABBREVIATIONSECF East coast feverENSOEl Ni?o-Southern OscillationGHGGreenhouse GasesIEA International Energy AgencyIPCCIntergovermental Panel on Climate ChangeRVFRift Valley FeverPPR Prepatent periodUNFCCCUnited Nation Framework Convention on Climate ChangeWHOWorld Health OrganizationLIST OF FIGUREPageFigure 1: Life cycles of the main helminth groups under climate change---------------6SUMMARY Climate change is a result of an average increase in air and ocean temperatures, and rising average sea levels. It has become the main issue affecting global and regional natural ecosystems. The important climate factors influencing the transmission cycles include temperature, precipitation and humidity, as well as the transmission components which include pathogen, vectors, intermediate hosts and the parasite itself. Therefore, the objective of this paper is to highlight the effect of climate change on different parasites life cycle and to review its dynamic impacts on parasitic diseases. The ongoing climate change especially warm winters and increased humidity is providing favorable environment for hatching of more parasite eggs, since infection is dependent on the number of eggs available to hatch per acre. Even with a small egg number, high hatch and development success rate of many infective larvae and parasite will be more of a problem. Moreover, the winters are not cold enough to kill worms and cannot slow down hatching and development rates of parasites. Survival of free living larval stages shed from the previous year through the winter on pasture increases the high infection rate in livestock. Extended survival period will enable insects to complete a greater number of reproductive cycles during spring, summer and autumn. These all increase chances of parasitic infection in livestock leading to poor health and decreased production which affect the economy of the pretentious country. It may be concluded that parasitic diseases should be listed among the infectious diseases with which special care should be taken because of climate change in the future. Early warning systems, preparedness and improved public and private veterinary services should be strengthened so as to lower the adverse effect of climate change. Besides, adaptation and mitigation approaches should be practiced to minimize the effects. Keywords: Climate change, Early warning systems, Intermediate hosts, Vector, parasitic diseases1. INTRODUCTIONClimate change and global warming are important phenomena and do not mean the same thing as it is wrongly conceived by some individuals. However, the link between the two is strong and one, global warming is strictly an average increase in the temperature of the atmosphere near the earth’s surface and in the troposphere, while the other, climate change is more diverse and refers to any significant change in measures of climate lasting for a long period of time usually several years ADDIN EN.CITE <EndNote><Cite><Author>National Research</Author><Year>2011</Year><RecNum>220</RecNum><DisplayText>(National Research, 2011)</DisplayText><record><rec-number>220</rec-number><foreign-keys><key app="EN" db-id="0p9z9txwmeetx2efvr0pxt9oearef0a59a9a">220</key></foreign-keys><ref-type name="Book">6</ref-type><contributors><authors><author>National Research, Council</author></authors></contributors><titles><title>America&amp;#039;s Climate Choices</title></titles><keywords><keyword>Environment and Environmental Studies</keyword><keyword>Earth Sciences</keyword></keywords><dates><year>2011</year></dates><pub-location>Washington, DC</pub-location><publisher>The National Academies Press</publisher><isbn>978-0-309-14585-5</isbn><urls><related-urls><url>;(National Research, 2011). It has become the main issue affecting global and regional natural ecosystems ADDIN EN.CITE <EndNote><Cite><Author>Hansen</Author><Year>2005</Year><RecNum>224</RecNum><DisplayText>(Hansen et al., 2005)</DisplayText><record><rec-number>224</rec-number><foreign-keys><key app="EN" db-id="0p9z9txwmeetx2efvr0pxt9oearef0a59a9a">224</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Hansen, James</author><author>Nazarenko, Larissa</author><author>Ruedy, Reto</author><author>Sato, Makiko</author><author>Willis, Josh</author><author>Del Genio, Anthony</author><author>Koch, Dorothy</author><author>Lacis, Andrew</author><author>Lo, Ken</author><author>Menon, Surabi</author></authors></contributors><titles><title>Earth&apos;s energy imbalance: Confirmation and implications</title><secondary-title>science</secondary-title></titles><periodical><full-title>science</full-title></periodical><pages>1431-1435</pages><volume>308</volume><number>5727</number><dates><year>2005</year></dates><isbn>0036-8075</isbn><urls></urls></record></Cite></EndNote>(Hansen et al., 2005). Climate change is a naturally occurring event, but human activities have significantly contributed to changes in atmospheric conditions, resulting in an accelerated change in this process, the current precarious state ADDIN EN.CITE <EndNote><Cite><Author>Semenza</Author><Year>2009</Year><RecNum>288</RecNum><DisplayText>(Semenza and Menne, 2009)</DisplayText><record><rec-number>288</rec-number><foreign-keys><key app="EN" db-id="0p9z9txwmeetx2efvr0pxt9oearef0a59a9a">288</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Semenza, Jan C</author><author>Menne, Bettina</author></authors></contributors><titles><title>Climate change and infectious diseases in Europe</title><secondary-title>The Lancet infectious diseases</secondary-title></titles><periodical><full-title>The Lancet infectious diseases</full-title></periodical><pages>365-375</pages><volume>9</volume><number>6</number><dates><year>2009</year></dates><isbn>1473-3099</isbn><urls></urls></record></Cite></EndNote>(Semenza and Menne, 2009). Climate change is increasingly threatening as we continue to realize its potential impacts on global health and security. Global climate experts agree that anthropogenic activities have significantly contributed to the increasing concentration of atmospheric greenhouse gases destruction of ecosystems ADDIN EN.CITE <EndNote><Cite><Author>Solomon</Author><Year>2009</Year><RecNum>292</RecNum><DisplayText>(Solomon et al., 2009)</DisplayText><record><rec-number>292</rec-number><foreign-keys><key app="EN" db-id="0p9z9txwmeetx2efvr0pxt9oearef0a59a9a">292</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Solomon, Susan</author><author>Plattner, Gian-Kasper</author><author>Knutti, Reto</author><author>Friedlingstein, Pierre</author></authors></contributors><titles><title>Irreversible climate change due to carbon dioxide emissions</title><secondary-title>Proceedings of the national academy of sciences</secondary-title></titles><periodical><full-title>Proceedings of the national academy of sciences</full-title></periodical><pages>1704-1709</pages><volume>106</volume><number>6</number><dates><year>2009</year></dates><isbn>0027-8424</isbn><urls></urls></record></Cite></EndNote>(Solomon et al., 2009).According to the prediction of Intergovernmental Panel on Climate Change (IPCC) report, global changes in temperature and precipitation patterns in different regions may affect the incidence range of several infectious diseases within endemic areas and their introduction to free areas ADDIN EN.CITE <EndNote><Cite><Author>Mouritsen</Author><Year>2005</Year><RecNum>269</RecNum><DisplayText>(Mouritsen et al., 2005)</DisplayText><record><rec-number>269</rec-number><foreign-keys><key app="EN" db-id="0p9z9txwmeetx2efvr0pxt9oearef0a59a9a">269</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Mouritsen, Kim N</author><author>Tompkins, Daniel M</author><author>Poulin, Robert</author></authors></contributors><titles><title>Climate warming may cause a parasite-induced collapse in coastal amphipod populations</title><secondary-title>Oecologia</secondary-title></titles><periodical><full-title>Oecologia</full-title></periodical><pages>476-483</pages><volume>146</volume><number>3</number><dates><year>2005</year></dates><isbn>0029-8549</isbn><urls></urls></record></Cite></EndNote>(Mouritsen et al., 2005). An increase or change in the endemic range of parasitic diseases as a result of climate change will have very serious consequences. Increases in temperature facilitate the development of arthropod vectors that carry many parasitic organisms and the parasites themselves ADDIN EN.CITE <EndNote><Cite><Author>Moore</Author><Year>2012</Year><RecNum>268</RecNum><DisplayText>(Moore et al., 2012)</DisplayText><record><rec-number>268</rec-number><foreign-keys><key app="EN" db-id="0p9z9txwmeetx2efvr0pxt9oearef0a59a9a">268</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Moore, Sean</author><author>Shrestha, Sourya</author><author>Tomlinson, Kyle W</author><author>Vuong, Holly</author></authors></contributors><titles><title>Predicting the effect of climate change on African trypanosomiasis: integrating epidemiology with parasite and vector biology</title><secondary-title>Journal of the Royal Society Interface</secondary-title></titles><periodical><full-title>Journal of the Royal Society Interface</full-title></periodical><pages>817-830</pages><volume>9</volume><number>70</number><dates><year>2012</year></dates><isbn>1742-5689</isbn><urls></urls></record></Cite></EndNote>(Moore et al., 2012). A warm climate also increases the range of reservoir hosts, vector abundance, biting rates and overall survival, and parasitic transmission rates of vectors such as mosquitoes, ticks, and tsetse flies ADDIN EN.CITE <EndNote><Cite><Author>Ostfeld</Author><Year>2009</Year><RecNum>274</RecNum><DisplayText>(Ostfeld, 2009)</DisplayText><record><rec-number>274</rec-number><foreign-keys><key app="EN" db-id="0p9z9txwmeetx2efvr0pxt9oearef0a59a9a">274</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Ostfeld, Richard S</author></authors></contributors><titles><title>Climate change and the distribution and intensity of infectious diseases</title><secondary-title>Ecology</secondary-title></titles><periodical><full-title>Ecology</full-title></periodical><pages>903-905</pages><volume>90</volume><number>4</number><dates><year>2009</year></dates><isbn>1939-9170</isbn><urls></urls></record></Cite></EndNote>(Ostfeld, 2009).Parasitic diseases are often the burden of tropical and subtropical communities because those climates promote species richness ADDIN EN.CITE <EndNote><Cite><Author>Schipper</Author><Year>2008</Year><RecNum>286</RecNum><DisplayText>(Schipper et al., 2008, Dunn et al., 2010)</DisplayText><record><rec-number>286</rec-number><foreign-keys><key app="EN" db-id="0p9z9txwmeetx2efvr0pxt9oearef0a59a9a">286</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Schipper, Jan</author><author>Chanson, Janice S</author><author>Chiozza, Federica</author><author>Cox, Neil A</author><author>Hoffmann, Michael</author><author>Katariya, Vineet</author><author>Lamoreux, John</author><author>Rodrigues, Ana SL</author><author>Stuart, Simon N</author><author>Temple, Helen J</author></authors></contributors><titles><title>The status of the world&apos;s land and marine mammals: diversity, threat, and knowledge</title><secondary-title>Science</secondary-title></titles><periodical><full-title>science</full-title></periodical><pages>225-230</pages><volume>322</volume><number>5899</number><dates><year>2008</year></dates><isbn>0036-8075</isbn><urls></urls></record></Cite><Cite><Author>Dunn</Author><Year>2010</Year><RecNum>214</RecNum><record><rec-number>214</rec-number><foreign-keys><key app="EN" db-id="0p9z9txwmeetx2efvr0pxt9oearef0a59a9a">214</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Dunn, Robert R</author><author>Davies, T Jonathan</author><author>Harris, Nyeema C</author><author>Gavin, Michael C</author></authors></contributors><titles><title>Global drivers of human pathogen richness and prevalence</title><secondary-title>Proceedings of the Royal Society of London B: Biological Sciences</secondary-title></titles><periodical><full-title>Proceedings of the Royal Society of London B: Biological Sciences</full-title></periodical><pages>2587-2595</pages><volume>277</volume><number>1694</number><dates><year>2010</year></dates><isbn>0962-8452</isbn><urls></urls></record></Cite></EndNote>(Schipper et al., 2008, Dunn et al., 2010) and therefore can support a multitude of potential hosts to sustain parasitic disease. Complex host interactions are key to survivability and enhancement of parasites, and these complex interactions can be altered by a changing climate to promote infectious diseases ADDIN EN.CITE <EndNote><Cite><Author>Daszak</Author><Year>2000</Year><RecNum>212</RecNum><DisplayText>(Daszak et al., 2000)</DisplayText><record><rec-number>212</rec-number><foreign-keys><key app="EN" db-id="0p9z9txwmeetx2efvr0pxt9oearef0a59a9a">212</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Daszak, Peter</author><author>Cunningham, Andrew A</author><author>Hyatt, Alex D</author></authors></contributors><titles><title>Emerging infectious diseases of wildlife--threats to biodiversity and human health</title><secondary-title>science</secondary-title></titles><periodical><full-title>science</full-title></periodical><pages>443-449</pages><volume>287</volume><number>5452</number><dates><year>2000</year></dates><isbn>0036-8075</isbn><urls></urls></record></Cite></EndNote>(Daszak et al., 2000). Increases in temperature affect the life cycles of parasites, which can directly affect how prevalent the organism is within the area, considering many parasitic organisms have a temperature-dependent developmental baseline, either within their host or in the environment ADDIN EN.CITE <EndNote><Cite><Author>Lafferty</Author><Year>2009</Year><RecNum>254</RecNum><DisplayText>(Lafferty, 2009)</DisplayText><record><rec-number>254</rec-number><foreign-keys><key app="EN" db-id="0p9z9txwmeetx2efvr0pxt9oearef0a59a9a">254</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Lafferty, Kevin D</author></authors></contributors><titles><title>The ecology of climate change and infectious diseases</title><secondary-title>Ecology</secondary-title></titles><periodical><full-title>Ecology</full-title></periodical><pages>888-900</pages><volume>90</volume><number>4</number><dates><year>2009</year></dates><isbn>1939-9170</isbn><urls></urls></record></Cite></EndNote>(Lafferty, 2009). The confirmation about the impact of climate change on helminthiases has been reached only very recently ADDIN EN.CITE <EndNote><Cite><Author>Mas-Coma</Author><Year>2008</Year><RecNum>264</RecNum><DisplayText>(Mas-Coma et al., 2008)</DisplayText><record><rec-number>264</rec-number><foreign-keys><key app="EN" db-id="0p9z9txwmeetx2efvr0pxt9oearef0a59a9a">264</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Mas-Coma, S</author><author>Valero, MA</author><author>Bargues, MD</author></authors></contributors><titles><title>Effects of climate change on animal and zoonotic helminthiases</title><secondary-title>Rev Sci Tech</secondary-title></titles><periodical><full-title>Rev Sci Tech</full-title></periodical><pages>443-57</pages><volume>27</volume><number>2</number><dates><year>2008</year></dates><urls></urls></record></Cite></EndNote>(Mas-Coma et al., 2008).Although less recognized than some other climate change consequences, parasitic diseases are very concerning. Therefore, the objective of this paper is:To highlight the effect of climate change on different parasites life cycle and to review its dynamic impacts on parasitic diseases. 2. CLIMATE CHANGE Climate change and global warming are important phenomena and do not mean the same thing as it is wrongly conceived by some individuals. However, the link between the two is strong and one, global warming is strictly an average increase in the temperature of the atmosphere near the earth’s surface and in the troposphere, while the other, climate change is more diverse and refers to any significant change in measures of climate lasting for a long period of time usually several years ADDIN EN.CITE <EndNote><Cite><Author>National Research</Author><Year>2011</Year><RecNum>221</RecNum><DisplayText>(National Research, 2011)</DisplayText><record><rec-number>221</rec-number><foreign-keys><key app="EN" db-id="0p9z9txwmeetx2efvr0pxt9oearef0a59a9a">221</key></foreign-keys><ref-type name="Book">6</ref-type><contributors><authors><author>National Research, Council</author></authors></contributors><titles><title>America&amp;#039;s Climate Choices</title></titles><keywords><keyword>Environment and Environmental Studies</keyword><keyword>Earth Sciences</keyword></keywords><dates><year>2011</year></dates><pub-location>Washington, DC</pub-location><publisher>The National Academies Press</publisher><isbn>978-0-309-14585-5</isbn><urls><related-urls><url>;(National Research, 2011). It has become the main issue affecting global and regional natural ecosystems ADDIN EN.CITE <EndNote><Cite><Author>Hansen</Author><Year>2005</Year><RecNum>224</RecNum><DisplayText>(Hansen et al., 2005)</DisplayText><record><rec-number>224</rec-number><foreign-keys><key app="EN" db-id="0p9z9txwmeetx2efvr0pxt9oearef0a59a9a">224</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Hansen, James</author><author>Nazarenko, Larissa</author><author>Ruedy, Reto</author><author>Sato, Makiko</author><author>Willis, Josh</author><author>Del Genio, Anthony</author><author>Koch, Dorothy</author><author>Lacis, Andrew</author><author>Lo, Ken</author><author>Menon, Surabi</author></authors></contributors><titles><title>Earth&apos;s energy imbalance: Confirmation and implications</title><secondary-title>science</secondary-title></titles><periodical><full-title>science</full-title></periodical><pages>1431-1435</pages><volume>308</volume><number>5727</number><dates><year>2005</year></dates><isbn>0036-8075</isbn><urls></urls></record></Cite></EndNote>(Hansen et al., 2005).2.1. Causes of Climate Change and Its IndicatorsIncreased greenhouse gas (GHG) emissions are the main causes of climate change. Some of the GHGs are naturally present in the atmosphere, while others are anthropogenic (human related activities) in origins ADDIN EN.CITE <EndNote><Cite><Author>Parry</Author><Year>2007</Year><RecNum>240</RecNum><DisplayText>(Parry et al., 2007)</DisplayText><record><rec-number>240</rec-number><foreign-keys><key app="EN" db-id="0p9z9txwmeetx2efvr0pxt9oearef0a59a9a">240</key></foreign-keys><ref-type name="Book">6</ref-type><contributors><authors><author>Parry, Martin</author><author>Parry, Martin L</author><author>Canziani, Osvaldo</author><author>Palutikof, Jean</author><author>Van der Linden, Paul</author><author>Hanson, Clair</author></authors></contributors><titles><title>Climate change 2007-impacts, adaptation and vulnerability: Working group II contribution to the fourth assessment report of the IPCC</title></titles><volume>4</volume><dates><year>2007</year></dates><publisher>Cambridge University Press</publisher><isbn>0521880106</isbn><urls></urls></record></Cite></EndNote>(Parry et al., 2007). Anthropogenic activities are the major factors that may contribute to the increasing global warming, as CO2 levels in the atmosphere have been shown to be increasing rapidly over time. This is as a result of increased use of fossil fuels deforestation ADDIN EN.CITE <EndNote><Cite><Author>Steinfeld</Author><Year>2006</Year><RecNum>293</RecNum><DisplayText>(Steinfeld et al., 2006)</DisplayText><record><rec-number>293</rec-number><foreign-keys><key app="EN" db-id="0p9z9txwmeetx2efvr0pxt9oearef0a59a9a">293</key></foreign-keys><ref-type name="Book">6</ref-type><contributors><authors><author>Steinfeld, Henning</author><author>Gerber, Pierre</author><author>Wassenaar, TD</author><author>Castel, Vincent</author><author>Rosales, Mauricio</author><author>Rosales, Mauricio</author><author>de Haan, Cees</author></authors></contributors><titles><title>Livestock&apos;s long shadow: environmental issues and options</title></titles><dates><year>2006</year></dates><publisher>Food &amp; Agriculture Org.</publisher><isbn>9251055718</isbn><urls></urls></record></Cite></EndNote>(Steinfeld et al., 2006). Some of the indications of climate change are frequent and more violent cyclones in the Caribean, floods in Africa, in the Philippines, the gradual sinking of ice in the Pacific, heat waves in Europe and the melting of glaciers. More evidence to enhance the appreciation of climate change include increases in global average air and ocean temperatures, widespread melting of snow, ocean acidification and rising global average sea level ADDIN EN.CITE <EndNote><Cite><Author>Harvell</Author><Year>2002</Year><RecNum>225</RecNum><DisplayText>(Harvell et al., 2002)</DisplayText><record><rec-number>225</rec-number><foreign-keys><key app="EN" db-id="0p9z9txwmeetx2efvr0pxt9oearef0a59a9a">225</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Harvell, C Drew</author><author>Mitchell, Charles E</author><author>Ward, Jessica R</author><author>Altizer, Sonia</author><author>Dobson, Andrew P</author><author>Ostfeld, Richard S</author><author>Samuel, Michael D</author></authors></contributors><titles><title>Climate warming and disease risks for terrestrial and marine biota</title><secondary-title>Science</secondary-title></titles><periodical><full-title>science</full-title></periodical><pages>2158-2162</pages><volume>296</volume><number>5576</number><dates><year>2002</year></dates><isbn>0036-8075</isbn><urls></urls></record></Cite></EndNote>(Harvell et al., 2002).3. IMPACTS OF CLIMATE CHANGE ON PARASITIC DISEASESThe host-parasite interaction depends on the prevalence and abundance of parasites, rate and mode of transmission, effects of parasites on fecundity and mortality of hosts and the level of anti-parasite defence by hosts ADDIN EN.CITE <EndNote><Cite><Author>Combes</Author><Year>2001</Year><RecNum>188</RecNum><DisplayText>(Combes, 2001)</DisplayText><record><rec-number>188</rec-number><foreign-keys><key app="EN" db-id="0p9z9txwmeetx2efvr0pxt9oearef0a59a9a">188</key></foreign-keys><ref-type name="Book">6</ref-type><contributors><authors><author>Combes, Claude</author></authors></contributors><titles><title>Parasitism: the ecology and evolution of intimate interactions</title></titles><dates><year>2001</year></dates><publisher>University of Chicago Press</publisher><isbn>0226114465</isbn><urls></urls></record></Cite></EndNote>(Combes, 2001). Each of these different steps in the interaction can potentially be affected by environmental conditions including climatic conditions ADDIN EN.CITE <EndNote><Cite><Author>Brommer</Author><Year>2010</Year><RecNum>187</RecNum><DisplayText>(Brommer and M?ller, 2010)</DisplayText><record><rec-number>187</rec-number><foreign-keys><key app="EN" db-id="0p9z9txwmeetx2efvr0pxt9oearef0a59a9a">187</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Brommer, Jon E</author><author>M?ller, Anders Pape</author></authors></contributors><titles><title>Range margins, climate change, and ecology</title><secondary-title>Effects of climate change on birds</secondary-title></titles><periodical><full-title>Effects of climate change on birds</full-title></periodical><pages>275-294</pages><dates><year>2010</year></dates><urls></urls></record></Cite></EndNote>(Brommer and M?ller, 2010). The climate in the world is changing, with a general trend towards warmer average temperatures. The resultant effects of global warming include the emergence and re-emergence of some parasitic infections and diseases ADDIN EN.CITE <EndNote><Cite><Author>Fischlin</Author><Year>2007</Year><RecNum>211</RecNum><DisplayText>(Fischlin, 2007)</DisplayText><record><rec-number>211</rec-number><foreign-keys><key app="EN" db-id="0p9z9txwmeetx2efvr0pxt9oearef0a59a9a">211</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Fischlin, E</author></authors></contributors><titles><title>Chapter 4: Ecosystem, their properties, goods and Services</title><secondary-title>Executive Summary</secondary-title></titles><periodical><full-title>Executive Summary</full-title></periodical><pages>213</pages><dates><year>2007</year></dates><urls></urls></record></Cite></EndNote>(Fischlin, 2007). Increasing temperature is the main factor linked to climate change effects on living organisms although changing precipitation and wind may also play a role. Many parasites are advancing their date of emergence PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5Ccm9tbWVyPC9BdXRob3I+PFllYXI+MjAxMDwvWWVhcj48

UmVjTnVtPjE4NzwvUmVjTnVtPjxEaXNwbGF5VGV4dD4oQnJvbW1lciBhbmQgTcO4bGxlciwgMjAx

MCwgUG91bGluIGFuZCBNb3VyaXRzZW4sIDIwMDYsIENhbGVyb+KAkFRvcnJhbGJvIGV0IGFsLiwg

MjAxMyk8L0Rpc3BsYXlUZXh0PjxyZWNvcmQ+PHJlYy1udW1iZXI+MTg3PC9yZWMtbnVtYmVyPjxm

b3JlaWduLWtleXM+PGtleSBhcHA9IkVOIiBkYi1pZD0iMHA5ejl0eHdtZWV0eDJlZnZyMHB4dDlv

ZWFyZWYwYTU5YTlhIj4xODc8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iSm91

cm5hbCBBcnRpY2xlIj4xNzwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9y

PkJyb21tZXIsIEpvbiBFPC9hdXRob3I+PGF1dGhvcj5Nw7hsbGVyLCBBbmRlcnMgUGFwZTwvYXV0

aG9yPjwvYXV0aG9ycz48L2NvbnRyaWJ1dG9ycz48dGl0bGVzPjx0aXRsZT5SYW5nZSBtYXJnaW5z

LCBjbGltYXRlIGNoYW5nZSwgYW5kIGVjb2xvZ3k8L3RpdGxlPjxzZWNvbmRhcnktdGl0bGU+RWZm

ZWN0cyBvZiBjbGltYXRlIGNoYW5nZSBvbiBiaXJkczwvc2Vjb25kYXJ5LXRpdGxlPjwvdGl0bGVz

PjxwZXJpb2RpY2FsPjxmdWxsLXRpdGxlPkVmZmVjdHMgb2YgY2xpbWF0ZSBjaGFuZ2Ugb24gYmly

ZHM8L2Z1bGwtdGl0bGU+PC9wZXJpb2RpY2FsPjxwYWdlcz4yNzUtMjk0PC9wYWdlcz48ZGF0ZXM+

PHllYXI+MjAxMDwveWVhcj48L2RhdGVzPjx1cmxzPjwvdXJscz48L3JlY29yZD48L0NpdGU+PENp

dGU+PEF1dGhvcj5Qb3VsaW48L0F1dGhvcj48WWVhcj4yMDA2PC9ZZWFyPjxSZWNOdW0+MTkwPC9S

ZWNOdW0+PHJlY29yZD48cmVjLW51bWJlcj4xOTA8L3JlYy1udW1iZXI+PGZvcmVpZ24ta2V5cz48

a2V5IGFwcD0iRU4iIGRiLWlkPSIwcDl6OXR4d21lZXR4MmVmdnIwcHh0OW9lYXJlZjBhNTlhOWEi

PjE5MDwva2V5PjwvZm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJKb3VybmFsIEFydGljbGUi

PjE3PC9yZWYtdHlwZT48Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+UG91bGluLCBSPC9h

dXRob3I+PGF1dGhvcj5Nb3VyaXRzZW4sIEtpbSBOw7hyZ2FhcmQ8L2F1dGhvcj48L2F1dGhvcnM+

PC9jb250cmlidXRvcnM+PHRpdGxlcz48dGl0bGU+Q2xpbWF0ZSBjaGFuZ2UsIHBhcmFzaXRpc20g

YW5kIHRoZSBzdHJ1Y3R1cmUgb2YgaW50ZXJ0aWRhbCBlY29zeXN0ZW1zPC90aXRsZT48c2Vjb25k

YXJ5LXRpdGxlPkpvdXJuYWwgb2YgSGVsbWludGhvbG9neTwvc2Vjb25kYXJ5LXRpdGxlPjwvdGl0

bGVzPjxwZXJpb2RpY2FsPjxmdWxsLXRpdGxlPkpvdXJuYWwgb2YgSGVsbWludGhvbG9neTwvZnVs

bC10aXRsZT48L3BlcmlvZGljYWw+PHBhZ2VzPjE4My0xOTE8L3BhZ2VzPjx2b2x1bWU+ODA8L3Zv

bHVtZT48bnVtYmVyPjI8L251bWJlcj48ZGF0ZXM+PHllYXI+MjAwNjwveWVhcj48L2RhdGVzPjxp

c2JuPjE0NzUtMjY5NzwvaXNibj48dXJscz48L3VybHM+PC9yZWNvcmQ+PC9DaXRlPjxDaXRlPjxB

dXRob3I+Q2FsZXJv4oCQVG9ycmFsYm88L0F1dGhvcj48WWVhcj4yMDEzPC9ZZWFyPjxSZWNOdW0+

MTkxPC9SZWNOdW0+PHJlY29yZD48cmVjLW51bWJlcj4xOTE8L3JlYy1udW1iZXI+PGZvcmVpZ24t

a2V5cz48a2V5IGFwcD0iRU4iIGRiLWlkPSIwcDl6OXR4d21lZXR4MmVmdnIwcHh0OW9lYXJlZjBh

NTlhOWEiPjE5MTwva2V5PjwvZm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJKb3VybmFsIEFy

dGljbGUiPjE3PC9yZWYtdHlwZT48Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+Q2FsZXJv

4oCQVG9ycmFsYm8sIE1pZ3VlbCBBPC9hdXRob3I+PGF1dGhvcj5Ww6FjbGF2LCBSYWRvdmFuPC9h

dXRob3I+PGF1dGhvcj5WYWxlcmEsIEZyYW5jaXNjbzwvYXV0aG9yPjwvYXV0aG9ycz48L2NvbnRy

aWJ1dG9ycz48dGl0bGVzPjx0aXRsZT5JbnRyYeKAkHNwZWNpZmljIHZhcmlhYmlsaXR5IGluIGxp

ZmXigJBjeWNsZSBzeW5jaHJvbml6YXRpb24gb2YgYW4gZWN0b3BhcmFzaXRpYyBmbHkgdG8gaXRz

IGF2aWFuIGhvc3Q8L3RpdGxlPjxzZWNvbmRhcnktdGl0bGU+T2lrb3M8L3NlY29uZGFyeS10aXRs

ZT48L3RpdGxlcz48cGVyaW9kaWNhbD48ZnVsbC10aXRsZT5PaWtvczwvZnVsbC10aXRsZT48L3Bl

cmlvZGljYWw+PHBhZ2VzPjI3NC0yODQ8L3BhZ2VzPjx2b2x1bWU+MTIyPC92b2x1bWU+PG51bWJl

cj4yPC9udW1iZXI+PGRhdGVzPjx5ZWFyPjIwMTM8L3llYXI+PC9kYXRlcz48aXNibj4wMDMwLTEy

OTk8L2lzYm4+PHVybHM+PC91cmxzPjwvcmVjb3JkPjwvQ2l0ZT48L0VuZE5vdGU+

ADDIN EN.CITE PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5Ccm9tbWVyPC9BdXRob3I+PFllYXI+MjAxMDwvWWVhcj48

UmVjTnVtPjE4NzwvUmVjTnVtPjxEaXNwbGF5VGV4dD4oQnJvbW1lciBhbmQgTcO4bGxlciwgMjAx

MCwgUG91bGluIGFuZCBNb3VyaXRzZW4sIDIwMDYsIENhbGVyb+KAkFRvcnJhbGJvIGV0IGFsLiwg

MjAxMyk8L0Rpc3BsYXlUZXh0PjxyZWNvcmQ+PHJlYy1udW1iZXI+MTg3PC9yZWMtbnVtYmVyPjxm

b3JlaWduLWtleXM+PGtleSBhcHA9IkVOIiBkYi1pZD0iMHA5ejl0eHdtZWV0eDJlZnZyMHB4dDlv

ZWFyZWYwYTU5YTlhIj4xODc8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iSm91

cm5hbCBBcnRpY2xlIj4xNzwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9y

PkJyb21tZXIsIEpvbiBFPC9hdXRob3I+PGF1dGhvcj5Nw7hsbGVyLCBBbmRlcnMgUGFwZTwvYXV0

aG9yPjwvYXV0aG9ycz48L2NvbnRyaWJ1dG9ycz48dGl0bGVzPjx0aXRsZT5SYW5nZSBtYXJnaW5z

LCBjbGltYXRlIGNoYW5nZSwgYW5kIGVjb2xvZ3k8L3RpdGxlPjxzZWNvbmRhcnktdGl0bGU+RWZm

ZWN0cyBvZiBjbGltYXRlIGNoYW5nZSBvbiBiaXJkczwvc2Vjb25kYXJ5LXRpdGxlPjwvdGl0bGVz

PjxwZXJpb2RpY2FsPjxmdWxsLXRpdGxlPkVmZmVjdHMgb2YgY2xpbWF0ZSBjaGFuZ2Ugb24gYmly

ZHM8L2Z1bGwtdGl0bGU+PC9wZXJpb2RpY2FsPjxwYWdlcz4yNzUtMjk0PC9wYWdlcz48ZGF0ZXM+

PHllYXI+MjAxMDwveWVhcj48L2RhdGVzPjx1cmxzPjwvdXJscz48L3JlY29yZD48L0NpdGU+PENp

dGU+PEF1dGhvcj5Qb3VsaW48L0F1dGhvcj48WWVhcj4yMDA2PC9ZZWFyPjxSZWNOdW0+MTkwPC9S

ZWNOdW0+PHJlY29yZD48cmVjLW51bWJlcj4xOTA8L3JlYy1udW1iZXI+PGZvcmVpZ24ta2V5cz48

a2V5IGFwcD0iRU4iIGRiLWlkPSIwcDl6OXR4d21lZXR4MmVmdnIwcHh0OW9lYXJlZjBhNTlhOWEi

PjE5MDwva2V5PjwvZm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJKb3VybmFsIEFydGljbGUi

PjE3PC9yZWYtdHlwZT48Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+UG91bGluLCBSPC9h

dXRob3I+PGF1dGhvcj5Nb3VyaXRzZW4sIEtpbSBOw7hyZ2FhcmQ8L2F1dGhvcj48L2F1dGhvcnM+

PC9jb250cmlidXRvcnM+PHRpdGxlcz48dGl0bGU+Q2xpbWF0ZSBjaGFuZ2UsIHBhcmFzaXRpc20g

YW5kIHRoZSBzdHJ1Y3R1cmUgb2YgaW50ZXJ0aWRhbCBlY29zeXN0ZW1zPC90aXRsZT48c2Vjb25k

YXJ5LXRpdGxlPkpvdXJuYWwgb2YgSGVsbWludGhvbG9neTwvc2Vjb25kYXJ5LXRpdGxlPjwvdGl0

bGVzPjxwZXJpb2RpY2FsPjxmdWxsLXRpdGxlPkpvdXJuYWwgb2YgSGVsbWludGhvbG9neTwvZnVs

bC10aXRsZT48L3BlcmlvZGljYWw+PHBhZ2VzPjE4My0xOTE8L3BhZ2VzPjx2b2x1bWU+ODA8L3Zv

bHVtZT48bnVtYmVyPjI8L251bWJlcj48ZGF0ZXM+PHllYXI+MjAwNjwveWVhcj48L2RhdGVzPjxp

c2JuPjE0NzUtMjY5NzwvaXNibj48dXJscz48L3VybHM+PC9yZWNvcmQ+PC9DaXRlPjxDaXRlPjxB

dXRob3I+Q2FsZXJv4oCQVG9ycmFsYm88L0F1dGhvcj48WWVhcj4yMDEzPC9ZZWFyPjxSZWNOdW0+

MTkxPC9SZWNOdW0+PHJlY29yZD48cmVjLW51bWJlcj4xOTE8L3JlYy1udW1iZXI+PGZvcmVpZ24t

a2V5cz48a2V5IGFwcD0iRU4iIGRiLWlkPSIwcDl6OXR4d21lZXR4MmVmdnIwcHh0OW9lYXJlZjBh

NTlhOWEiPjE5MTwva2V5PjwvZm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJKb3VybmFsIEFy

dGljbGUiPjE3PC9yZWYtdHlwZT48Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+Q2FsZXJv

4oCQVG9ycmFsYm8sIE1pZ3VlbCBBPC9hdXRob3I+PGF1dGhvcj5Ww6FjbGF2LCBSYWRvdmFuPC9h

dXRob3I+PGF1dGhvcj5WYWxlcmEsIEZyYW5jaXNjbzwvYXV0aG9yPjwvYXV0aG9ycz48L2NvbnRy

aWJ1dG9ycz48dGl0bGVzPjx0aXRsZT5JbnRyYeKAkHNwZWNpZmljIHZhcmlhYmlsaXR5IGluIGxp

ZmXigJBjeWNsZSBzeW5jaHJvbml6YXRpb24gb2YgYW4gZWN0b3BhcmFzaXRpYyBmbHkgdG8gaXRz

IGF2aWFuIGhvc3Q8L3RpdGxlPjxzZWNvbmRhcnktdGl0bGU+T2lrb3M8L3NlY29uZGFyeS10aXRs

ZT48L3RpdGxlcz48cGVyaW9kaWNhbD48ZnVsbC10aXRsZT5PaWtvczwvZnVsbC10aXRsZT48L3Bl

cmlvZGljYWw+PHBhZ2VzPjI3NC0yODQ8L3BhZ2VzPjx2b2x1bWU+MTIyPC92b2x1bWU+PG51bWJl

cj4yPC9udW1iZXI+PGRhdGVzPjx5ZWFyPjIwMTM8L3llYXI+PC9kYXRlcz48aXNibj4wMDMwLTEy

OTk8L2lzYm4+PHVybHM+PC91cmxzPjwvcmVjb3JkPjwvQ2l0ZT48L0VuZE5vdGU+

ADDIN EN.CITE.DATA (Brommer and M?ller, 2010, Poulin and Mouritsen, 2006, Calero‐Torralbo et al., 2013) and some that were previously active only in the summer are now active year-round PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5PZ2RlbjwvQXV0aG9yPjxZZWFyPjIwMDY8L1llYXI+PFJl

Y051bT4xOTI8L1JlY051bT48RGlzcGxheVRleHQ+KE9nZGVuIGV0IGFsLiwgMjAwNiwgQ2FkZW5h

cyBldCBhbC4sIDIwMDcpPC9EaXNwbGF5VGV4dD48cmVjb3JkPjxyZWMtbnVtYmVyPjE5MjwvcmVj

LW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9IjBwOXo5dHh3bWVldHgy

ZWZ2cjBweHQ5b2VhcmVmMGE1OWE5YSI+MTkyPC9rZXk+PC9mb3JlaWduLWtleXM+PHJlZi10eXBl

IG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBlPjxjb250cmlidXRvcnM+PGF1dGhv

cnM+PGF1dGhvcj5PZ2RlbiwgTkg8L2F1dGhvcj48YXV0aG9yPk1hYXJvdWYsIEE8L2F1dGhvcj48

YXV0aG9yPkJhcmtlciwgSUs8L2F1dGhvcj48YXV0aG9yPkJpZ3Jhcy1Qb3VsaW4sIE08L2F1dGhv

cj48YXV0aG9yPkxpbmRzYXksIExSPC9hdXRob3I+PGF1dGhvcj5Nb3JzaGVkLCBNRzwvYXV0aG9y

PjxhdXRob3I+TyZhcG9zO2NhbGxhZ2hhbiwgQ0o8L2F1dGhvcj48YXV0aG9yPlJhbWF5LCBGPC9h

dXRob3I+PGF1dGhvcj5XYWx0bmVyLVRvZXdzLCBEPC9hdXRob3I+PGF1dGhvcj5DaGFycm9uLCBE

RjwvYXV0aG9yPjwvYXV0aG9ycz48L2NvbnRyaWJ1dG9ycz48dGl0bGVzPjx0aXRsZT5DbGltYXRl

IGNoYW5nZSBhbmQgdGhlIHBvdGVudGlhbCBmb3IgcmFuZ2UgZXhwYW5zaW9uIG9mIHRoZSBMeW1l

IGRpc2Vhc2UgdmVjdG9yIEl4b2RlcyBzY2FwdWxhcmlzIGluIENhbmFkYTwvdGl0bGU+PHNlY29u

ZGFyeS10aXRsZT5JbnRlcm5hdGlvbmFsIGpvdXJuYWwgZm9yIHBhcmFzaXRvbG9neTwvc2Vjb25k

YXJ5LXRpdGxlPjwvdGl0bGVzPjxwZXJpb2RpY2FsPjxmdWxsLXRpdGxlPkludGVybmF0aW9uYWwg

am91cm5hbCBmb3IgcGFyYXNpdG9sb2d5PC9mdWxsLXRpdGxlPjwvcGVyaW9kaWNhbD48cGFnZXM+

NjMtNzA8L3BhZ2VzPjx2b2x1bWU+MzY8L3ZvbHVtZT48bnVtYmVyPjE8L251bWJlcj48ZGF0ZXM+

PHllYXI+MjAwNjwveWVhcj48L2RhdGVzPjxpc2JuPjAwMjAtNzUxOTwvaXNibj48dXJscz48L3Vy

bHM+PC9yZWNvcmQ+PC9DaXRlPjxDaXRlPjxBdXRob3I+Q2FkZW5hczwvQXV0aG9yPjxZZWFyPjIw

MDc8L1llYXI+PFJlY051bT4xOTM8L1JlY051bT48cmVjb3JkPjxyZWMtbnVtYmVyPjE5MzwvcmVj

LW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9IjBwOXo5dHh3bWVldHgy

ZWZ2cjBweHQ5b2VhcmVmMGE1OWE5YSI+MTkzPC9rZXk+PC9mb3JlaWduLWtleXM+PHJlZi10eXBl

IG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBlPjxjb250cmlidXRvcnM+PGF1dGhv

cnM+PGF1dGhvcj5DYWRlbmFzLCBGcmFuY2lzY2EgTW9yw6FuPC9hdXRob3I+PGF1dGhvcj5SYWlz

LCBPbGl2aWVyPC9hdXRob3I+PGF1dGhvcj5Kb3VkYSwgRmF0aW1hPC9hdXRob3I+PGF1dGhvcj5E

b3VldCwgVsOpcm9uaXF1ZTwvYXV0aG9yPjxhdXRob3I+SHVtYWlyLCBQaWVycmUtZnJhbsOnb2lz

PC9hdXRob3I+PGF1dGhvcj5Nb3JldCwgSmFjcXVlbGluZTwvYXV0aG9yPjxhdXRob3I+R2Vybiwg

TGlzZTwvYXV0aG9yPjwvYXV0aG9ycz48L2NvbnRyaWJ1dG9ycz48dGl0bGVzPjx0aXRsZT5QaGVu

b2xvZ3kgb2YgSXhvZGVzIHJpY2ludXMgYW5kIGluZmVjdGlvbiB3aXRoIEJvcnJlbGlhIGJ1cmdk

b3JmZXJpIHNlbnN1IGxhdG8gYWxvbmcgYSBub3J0aC1hbmQgc291dGgtZmFjaW5nIGFsdGl0dWRp

bmFsIGdyYWRpZW50IG9uIENoYXVtb250IE1vdW50YWluLCBTd2l0emVybGFuZDwvdGl0bGU+PHNl

Y29uZGFyeS10aXRsZT5Kb3VybmFsIG9mIG1lZGljYWwgZW50b21vbG9neTwvc2Vjb25kYXJ5LXRp

dGxlPjwvdGl0bGVzPjxwZXJpb2RpY2FsPjxmdWxsLXRpdGxlPkpvdXJuYWwgb2YgbWVkaWNhbCBl

bnRvbW9sb2d5PC9mdWxsLXRpdGxlPjwvcGVyaW9kaWNhbD48cGFnZXM+NjgzLTY5MzwvcGFnZXM+

PHZvbHVtZT40NDwvdm9sdW1lPjxudW1iZXI+NDwvbnVtYmVyPjxkYXRlcz48eWVhcj4yMDA3PC95

ZWFyPjwvZGF0ZXM+PGlzYm4+MTkzOC0yOTI4PC9pc2JuPjx1cmxzPjwvdXJscz48L3JlY29yZD48

L0NpdGU+PC9FbmROb3RlPgB=

ADDIN EN.CITE PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5PZ2RlbjwvQXV0aG9yPjxZZWFyPjIwMDY8L1llYXI+PFJl

Y051bT4xOTI8L1JlY051bT48RGlzcGxheVRleHQ+KE9nZGVuIGV0IGFsLiwgMjAwNiwgQ2FkZW5h

cyBldCBhbC4sIDIwMDcpPC9EaXNwbGF5VGV4dD48cmVjb3JkPjxyZWMtbnVtYmVyPjE5MjwvcmVj

LW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9IjBwOXo5dHh3bWVldHgy

ZWZ2cjBweHQ5b2VhcmVmMGE1OWE5YSI+MTkyPC9rZXk+PC9mb3JlaWduLWtleXM+PHJlZi10eXBl

IG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBlPjxjb250cmlidXRvcnM+PGF1dGhv

cnM+PGF1dGhvcj5PZ2RlbiwgTkg8L2F1dGhvcj48YXV0aG9yPk1hYXJvdWYsIEE8L2F1dGhvcj48

YXV0aG9yPkJhcmtlciwgSUs8L2F1dGhvcj48YXV0aG9yPkJpZ3Jhcy1Qb3VsaW4sIE08L2F1dGhv

cj48YXV0aG9yPkxpbmRzYXksIExSPC9hdXRob3I+PGF1dGhvcj5Nb3JzaGVkLCBNRzwvYXV0aG9y

PjxhdXRob3I+TyZhcG9zO2NhbGxhZ2hhbiwgQ0o8L2F1dGhvcj48YXV0aG9yPlJhbWF5LCBGPC9h

dXRob3I+PGF1dGhvcj5XYWx0bmVyLVRvZXdzLCBEPC9hdXRob3I+PGF1dGhvcj5DaGFycm9uLCBE

RjwvYXV0aG9yPjwvYXV0aG9ycz48L2NvbnRyaWJ1dG9ycz48dGl0bGVzPjx0aXRsZT5DbGltYXRl

IGNoYW5nZSBhbmQgdGhlIHBvdGVudGlhbCBmb3IgcmFuZ2UgZXhwYW5zaW9uIG9mIHRoZSBMeW1l

IGRpc2Vhc2UgdmVjdG9yIEl4b2RlcyBzY2FwdWxhcmlzIGluIENhbmFkYTwvdGl0bGU+PHNlY29u

ZGFyeS10aXRsZT5JbnRlcm5hdGlvbmFsIGpvdXJuYWwgZm9yIHBhcmFzaXRvbG9neTwvc2Vjb25k

YXJ5LXRpdGxlPjwvdGl0bGVzPjxwZXJpb2RpY2FsPjxmdWxsLXRpdGxlPkludGVybmF0aW9uYWwg

am91cm5hbCBmb3IgcGFyYXNpdG9sb2d5PC9mdWxsLXRpdGxlPjwvcGVyaW9kaWNhbD48cGFnZXM+

NjMtNzA8L3BhZ2VzPjx2b2x1bWU+MzY8L3ZvbHVtZT48bnVtYmVyPjE8L251bWJlcj48ZGF0ZXM+

PHllYXI+MjAwNjwveWVhcj48L2RhdGVzPjxpc2JuPjAwMjAtNzUxOTwvaXNibj48dXJscz48L3Vy

bHM+PC9yZWNvcmQ+PC9DaXRlPjxDaXRlPjxBdXRob3I+Q2FkZW5hczwvQXV0aG9yPjxZZWFyPjIw

MDc8L1llYXI+PFJlY051bT4xOTM8L1JlY051bT48cmVjb3JkPjxyZWMtbnVtYmVyPjE5MzwvcmVj

LW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9IjBwOXo5dHh3bWVldHgy

ZWZ2cjBweHQ5b2VhcmVmMGE1OWE5YSI+MTkzPC9rZXk+PC9mb3JlaWduLWtleXM+PHJlZi10eXBl

IG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBlPjxjb250cmlidXRvcnM+PGF1dGhv

cnM+PGF1dGhvcj5DYWRlbmFzLCBGcmFuY2lzY2EgTW9yw6FuPC9hdXRob3I+PGF1dGhvcj5SYWlz

LCBPbGl2aWVyPC9hdXRob3I+PGF1dGhvcj5Kb3VkYSwgRmF0aW1hPC9hdXRob3I+PGF1dGhvcj5E

b3VldCwgVsOpcm9uaXF1ZTwvYXV0aG9yPjxhdXRob3I+SHVtYWlyLCBQaWVycmUtZnJhbsOnb2lz

PC9hdXRob3I+PGF1dGhvcj5Nb3JldCwgSmFjcXVlbGluZTwvYXV0aG9yPjxhdXRob3I+R2Vybiwg

TGlzZTwvYXV0aG9yPjwvYXV0aG9ycz48L2NvbnRyaWJ1dG9ycz48dGl0bGVzPjx0aXRsZT5QaGVu

b2xvZ3kgb2YgSXhvZGVzIHJpY2ludXMgYW5kIGluZmVjdGlvbiB3aXRoIEJvcnJlbGlhIGJ1cmdk

b3JmZXJpIHNlbnN1IGxhdG8gYWxvbmcgYSBub3J0aC1hbmQgc291dGgtZmFjaW5nIGFsdGl0dWRp

bmFsIGdyYWRpZW50IG9uIENoYXVtb250IE1vdW50YWluLCBTd2l0emVybGFuZDwvdGl0bGU+PHNl

Y29uZGFyeS10aXRsZT5Kb3VybmFsIG9mIG1lZGljYWwgZW50b21vbG9neTwvc2Vjb25kYXJ5LXRp

dGxlPjwvdGl0bGVzPjxwZXJpb2RpY2FsPjxmdWxsLXRpdGxlPkpvdXJuYWwgb2YgbWVkaWNhbCBl

bnRvbW9sb2d5PC9mdWxsLXRpdGxlPjwvcGVyaW9kaWNhbD48cGFnZXM+NjgzLTY5MzwvcGFnZXM+

PHZvbHVtZT40NDwvdm9sdW1lPjxudW1iZXI+NDwvbnVtYmVyPjxkYXRlcz48eWVhcj4yMDA3PC95

ZWFyPjwvZGF0ZXM+PGlzYm4+MTkzOC0yOTI4PC9pc2JuPjx1cmxzPjwvdXJscz48L3JlY29yZD48

L0NpdGU+PC9FbmROb3RlPgB=

ADDIN EN.CITE.DATA (Ogden et al., 2006, Cadenas et al., 2007). A longer and earlier period of reproduction by parasites may increase the number of parasite generations per year, as a longer breeding season of the host provides parasites with a selective advantage ADDIN EN.CITE <EndNote><Cite><Author>Dunn</Author><Year>2010</Year><RecNum>194</RecNum><DisplayText>(Dunn and Winkler, 2010, M?ller et al., 2010)</DisplayText><record><rec-number>194</rec-number><foreign-keys><key app="EN" db-id="0p9z9txwmeetx2efvr0pxt9oearef0a59a9a">194</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Dunn, Peter O</author><author>Winkler, David W</author></authors></contributors><titles><title>Effects of climate change on timing of breeding and reproductive success in birds</title><secondary-title>Effects of climate change on birds</secondary-title></titles><periodical><full-title>Effects of climate change on birds</full-title></periodical><pages>113-128</pages><dates><year>2010</year></dates><urls></urls></record></Cite><Cite><Author>M?ller</Author><Year>2010</Year><RecNum>195</RecNum><record><rec-number>195</rec-number><foreign-keys><key app="EN" db-id="0p9z9txwmeetx2efvr0pxt9oearef0a59a9a">195</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>M?ller, AP</author><author>Flensted‐Jensen, E</author><author>Klarborg, K</author><author>Mardal, W</author><author>Nielsen, JT</author></authors></contributors><titles><title>Climate change affects the duration of the reproductive season in birds</title><secondary-title>Journal of Animal Ecology</secondary-title></titles><periodical><full-title>Journal of Animal Ecology</full-title></periodical><pages>777-784</pages><volume>79</volume><number>4</number><dates><year>2010</year></dates><isbn>1365-2656</isbn><urls></urls></record></Cite></EndNote>(Dunn and Winkler, 2010, M?ller et al., 2010). However, a longer reproductive season may also allow hosts to better defend themselves against parasites and hence achieve higher reproductive success because timing of reproduction is less constrained by migration ADDIN EN.CITE <EndNote><Cite><Author>M?ller</Author><Year>2006</Year><RecNum>196</RecNum><DisplayText>(M?ller, 2006)</DisplayText><record><rec-number>196</rec-number><foreign-keys><key app="EN" db-id="0p9z9txwmeetx2efvr0pxt9oearef0a59a9a">196</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>M?ller, Anders Pape</author></authors></contributors><titles><title>Interval between clutches, fitness, and climate change</title><secondary-title>Behavioral Ecology</secondary-title></titles><periodical><full-title>Behavioral Ecology</full-title></periodical><pages>62-70</pages><volume>18</volume><number>1</number><dates><year>2006</year></dates><isbn>1465-7279</isbn><urls></urls></record></Cite></EndNote>(M?ller, 2006). A good example is presented by the fact that livestock diseases transmitted by insect vectors in Africa have recently spread to new areas farther from the equator and shifting patterns of abundance and distribution of pathogens, including metazoan and protozoan parasites, and the emergence of infectious diseases in people, livestock and wildlife, as among the most important impacts of climate change ADDIN EN.CITE <EndNote><Cite><Author>Parmesan</Author><Year>2003</Year><RecNum>276</RecNum><DisplayText>(Parmesan and Yohe, 2003)</DisplayText><record><rec-number>276</rec-number><foreign-keys><key app="EN" db-id="0p9z9txwmeetx2efvr0pxt9oearef0a59a9a">276</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Parmesan, Camille</author><author>Yohe, Gary</author></authors></contributors><titles><title>A globally coherent fingerprint of climate change impacts across natural systems</title><secondary-title>Nature</secondary-title></titles><periodical><full-title>Nature</full-title></periodical><pages>37</pages><volume>421</volume><number>6918</number><dates><year>2003</year></dates><isbn>1476-4687</isbn><urls></urls></record></Cite></EndNote>(Parmesan and Yohe, 2003). There are economically important helminth parasites which are influenced by climate change such as Nematodirus battus, Teladorsagia circumcincta, Haemonchus contortus, Fasciola hepatica, and Paramphistomum cervi ADDIN EN.CITE <EndNote><Cite><Author>Kenyon</Author><Year>2009</Year><RecNum>243</RecNum><DisplayText>(Kenyon et al., 2009)</DisplayText><record><rec-number>243</rec-number><foreign-keys><key app="EN" db-id="0p9z9txwmeetx2efvr0pxt9oearef0a59a9a">243</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Kenyon, F</author><author>Sargison, ND</author><author>Skuce, PJ</author><author>Jackson, F</author></authors></contributors><titles><title>Sheep helminth parasitic disease in south eastern Scotland arising as a possible consequence of climate change</title><secondary-title>Veterinary parasitology</secondary-title></titles><periodical><full-title>Veterinary parasitology</full-title></periodical><pages>293-297</pages><volume>163</volume><number>4</number><dates><year>2009</year></dates><isbn>0304-4017</isbn><urls></urls></record></Cite></EndNote>(Kenyon et al., 2009). Faecal parasites from livestock and wild animals complete their life cycle after hatching in the pasture at favorable conditions followed by subsequent incubation and reinfection in the animals. The ongoing climate change especially warm winters and increased humidity is providing favorable environment for hatching of more parasite eggs, since infection is dependent on the number of eggs available to hatch per acre. Even with a small egg number, high hatch and development success rate of many infective larvae and parasite will be more of a problem ADDIN EN.CITE <EndNote><Cite><Author>Birks</Author><Year>2015</Year><RecNum>329</RecNum><DisplayText>(Birks, 2015)</DisplayText><record><rec-number>329</rec-number><foreign-keys><key app="EN" db-id="0p9z9txwmeetx2efvr0pxt9oearef0a59a9a">329</key></foreign-keys><ref-type name="Conference Proceedings">10</ref-type><contributors><authors><author>Birks, HJB</author></authors></contributors><titles><title>Biodiversity, livelihood and climate change in the Himalayan region</title><secondary-title>Proceedings of International Conference on Biodiversity, Livelihood and Climate Change in the Himalayas</secondary-title></titles><pages>1-39</pages><dates><year>2015</year></dates><isbn>9937292875</isbn><urls></urls></record></Cite></EndNote>(Birks, 2015).In general, and according to the life-cycle pattern of each helminth species, climate variables are able to affect the prevalence, intensity and geographical distribution of helminthes by directly influencing free-living larval stages as well as indirectly influencing mainly the invertebrate, but also the vertebrate, hosts. In trematode; climate conditions either directly influence free larval stages (eggs faecally shed by the vertebrate host, miracidium development inside the egg, snail-released cercariae, or non-parasitic metacercariae) or indirectly affect the parasitic stages (sporocysts, rediae, cercariae in the snail; metacercariae in invertebrates) ADDIN EN.CITE <EndNote><Cite><Author>Mas-Coma</Author><Year>2008</Year><RecNum>264</RecNum><DisplayText>(Mas-Coma et al., 2008)</DisplayText><record><rec-number>264</rec-number><foreign-keys><key app="EN" db-id="0p9z9txwmeetx2efvr0pxt9oearef0a59a9a">264</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Mas-Coma, S</author><author>Valero, MA</author><author>Bargues, MD</author></authors></contributors><titles><title>Effects of climate change on animal and zoonotic helminthiases</title><secondary-title>Rev Sci Tech</secondary-title></titles><periodical><full-title>Rev Sci Tech</full-title></periodical><pages>443-57</pages><volume>27</volume><number>2</number><dates><year>2008</year></dates><urls></urls></record></Cite></EndNote>(Mas-Coma et al., 2008). Ancylostomatids and Strongyloides are also monoxenous but present active free-living larval stages that are highly dependent on abiotic factors (geohelminths). Other nematodes have a two-host life cycle; these include vector borne parasites transmitted by biting dipteran insects (filarids). Diheteroxenous protostrongylidae are transmitted by strongly climate-dependent snails (Fig. 1) ADDIN EN.CITE <EndNote><Cite><Author>Mas-Coma</Author><Year>2008</Year><RecNum>264</RecNum><DisplayText>(Mas-Coma et al., 2008)</DisplayText><record><rec-number>264</rec-number><foreign-keys><key app="EN" db-id="0p9z9txwmeetx2efvr0pxt9oearef0a59a9a">264</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Mas-Coma, S</author><author>Valero, MA</author><author>Bargues, MD</author></authors></contributors><titles><title>Effects of climate change on animal and zoonotic helminthiases</title><secondary-title>Rev Sci Tech</secondary-title></titles><periodical><full-title>Rev Sci Tech</full-title></periodical><pages>443-57</pages><volume>27</volume><number>2</number><dates><year>2008</year></dates><urls></urls></record></Cite></EndNote>(Mas-Coma et al., 2008).Figure 1:- Life cycles of the main helminth groups under climate change. Source: ADDIN EN.CITE <EndNote><Cite><Author>Mas-Coma</Author><Year>2008</Year><RecNum>264</RecNum><DisplayText>(Mas-Coma et al., 2008)</DisplayText><record><rec-number>264</rec-number><foreign-keys><key app="EN" db-id="0p9z9txwmeetx2efvr0pxt9oearef0a59a9a">264</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Mas-Coma, S</author><author>Valero, MA</author><author>Bargues, MD</author></authors></contributors><titles><title>Effects of climate change on animal and zoonotic helminthiases</title><secondary-title>Rev Sci Tech</secondary-title></titles><periodical><full-title>Rev Sci Tech</full-title></periodical><pages>443-57</pages><volume>27</volume><number>2</number><dates><year>2008</year></dates><urls></urls></record></Cite></EndNote>(Mas-Coma et al., 2008).In general the impact of climate change on the transmission and geographical distribution of animal diseases shows that this has been associated with changes in the replication rate, dissemination of pathogens, vector and animal host populations, which are sensitive to changing temperature and rainfall ADDIN EN.CITE <EndNote><Cite><Author>Kimaro</Author><Year>2013</Year><RecNum>229</RecNum><DisplayText>(Kimaro and Chibinga, 2013)</DisplayText><record><rec-number>229</rec-number><foreign-keys><key app="EN" db-id="0p9z9txwmeetx2efvr0pxt9oearef0a59a9a">229</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Kimaro, EG</author><author>Chibinga, OC</author></authors></contributors><titles><title>Potential impact of climate change on livestock production and health in East Africa: A review</title><secondary-title>Livestock Research for Rural Development</secondary-title></titles><periodical><full-title>Livestock Research for Rural Development</full-title></periodical><pages>5</pages><volume>25</volume><number>7</number><dates><year>2013</year></dates><urls></urls></record></Cite></EndNote>(Kimaro and Chibinga, 2013).3.1. Climatic Factors that Affect Parasite Life Cycle The temporal and spatial changes in temperature, precipitation and humidity that are expected to occur under different climate change scenarios will affect the biology and ecology of vectors and intermediate hosts and consequently the risk of disease transmission ADDIN EN.CITE <EndNote><Cite><Author>Lindsay</Author><Year>1996</Year><RecNum>322</RecNum><DisplayText>(Lindsay and Birley, 1996)</DisplayText><record><rec-number>322</rec-number><foreign-keys><key app="EN" db-id="0p9z9txwmeetx2efvr0pxt9oearef0a59a9a">322</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Lindsay, SW</author><author>Birley, MH</author></authors></contributors><titles><title>Climate change and malaria transmission</title><secondary-title>Annals of Tropical Medicine &amp; Parasitology</secondary-title></titles><periodical><full-title>Annals of Tropical Medicine &amp; Parasitology</full-title></periodical><pages>573-588</pages><volume>90</volume><number>5</number><dates><year>1996</year></dates><isbn>0003-4983</isbn><urls></urls></record></Cite></EndNote>(Lindsay and Birley, 1996). Increases in temperature affect the life cycles of parasites, which can directly affect how prevalent the organism is within the area, considering many parasitic organisms have a temperature-dependent developmental baseline, either within their host or in the environment ADDIN EN.CITE <EndNote><Cite><Author>Alawieh</Author><Year>2014</Year><RecNum>323</RecNum><DisplayText>(Alawieh et al., 2014)</DisplayText><record><rec-number>323</rec-number><foreign-keys><key app="EN" db-id="0p9z9txwmeetx2efvr0pxt9oearef0a59a9a">323</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Alawieh, Ali</author><author>Musharrafieh, Umayya</author><author>Jaber, Amani</author><author>Berry, Atika</author><author>Ghosn, Nada</author><author>Bizri, Abdul Rahman</author></authors></contributors><titles><title>Revisiting leishmaniasis in the time of war: the Syrian conflict and the Lebanese outbreak</title><secondary-title>International Journal of Infectious Diseases</secondary-title></titles><periodical><full-title>International Journal of Infectious Diseases</full-title></periodical><pages>115-119</pages><volume>29</volume><dates><year>2014</year></dates><isbn>1201-9712</isbn><urls></urls></record></Cite></EndNote>(Alawieh et al., 2014). This reduce their generation time and hence have more generations per year resulting into higher number of pathogens/parasites which predicts more infections ADDIN EN.CITE <EndNote><Cite><Author>Fried</Author><Year>2003</Year><RecNum>315</RecNum><DisplayText>(Fried and Ponder, 2003)</DisplayText><record><rec-number>315</rec-number><foreign-keys><key app="EN" db-id="0p9z9txwmeetx2efvr0pxt9oearef0a59a9a">315</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Fried, B</author><author>Ponder, EL</author></authors></contributors><titles><title>Effects of temperature on survival, infectivity and in vitro encystment of the cercariae of Echinostoma caproni</title><secondary-title>Journal of Helminthology</secondary-title></titles><periodical><full-title>Journal of Helminthology</full-title></periodical><pages>235-238</pages><volume>77</volume><number>3</number><dates><year>2003</year></dates><isbn>1475-2697</isbn><urls></urls></record></Cite></EndNote>(Fried and Ponder, 2003). However, there are some pathogens/parasites that are sensitive to higher temperature and will affect their survival ADDIN EN.CITE <EndNote><Cite><Author>Kimaro</Author><Year>2013</Year><RecNum>229</RecNum><DisplayText>(Kimaro and Chibinga, 2013, Laisser et al., 2017)</DisplayText><record><rec-number>229</rec-number><foreign-keys><key app="EN" db-id="0p9z9txwmeetx2efvr0pxt9oearef0a59a9a">229</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Kimaro, EG</author><author>Chibinga, OC</author></authors></contributors><titles><title>Potential impact of climate change on livestock production and health in East Africa: A review</title><secondary-title>Livestock Research for Rural Development</secondary-title></titles><periodical><full-title>Livestock Research for Rural Development</full-title></periodical><pages>5</pages><volume>25</volume><number>7</number><dates><year>2013</year></dates><urls></urls></record></Cite><Cite><Author>Laisser</Author><Year>2017</Year><RecNum>244</RecNum><record><rec-number>244</rec-number><foreign-keys><key app="EN" db-id="0p9z9txwmeetx2efvr0pxt9oearef0a59a9a">244</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Laisser, ELK</author><author>Chenyambuga, SW</author><author>Karimuribo, ED</author><author>Msalya, G</author><author>Kipanyula, MJ</author><author>Mwilawa, AJ</author><author>Mdegela, RH</author><author>Kusiluka, LJM</author></authors></contributors><titles><title>A review on prevalence, control measure, and tolerance of Tanzania Shorthorn Zebu cattle to East Coast fever in Tanzania</title><secondary-title>Tropical animal health and production</secondary-title></titles><periodical><full-title>Tropical Animal Health and Production</full-title></periodical><pages>813-822</pages><volume>49</volume><number>4</number><dates><year>2017</year></dates><isbn>0049-4747</isbn><urls></urls></record></Cite></EndNote>(Kimaro and Chibinga, 2013, Laisser et al., 2017). The feeding frequency of arthropod vectors may also increase with temperature increase. Many vectors must feed twice on suitable hosts before transmission is possible ADDIN EN.CITE <EndNote><Cite><Author>Englund</Author><Year>2011</Year><RecNum>325</RecNum><DisplayText>(Englund et al., 2011)</DisplayText><record><rec-number>325</rec-number><foreign-keys><key app="EN" db-id="0p9z9txwmeetx2efvr0pxt9oearef0a59a9a">325</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Englund, G?ran</author><author>?hlund, Gunnar</author><author>Hein, Catherine L</author><author>Diehl, Sebastian</author></authors></contributors><titles><title>Temperature dependence of the functional response</title><secondary-title>Ecology Letters</secondary-title></titles><periodical><full-title>Ecology Letters</full-title></periodical><pages>914-921</pages><volume>14</volume><number>9</number><dates><year>2011</year></dates><isbn>1461-023X</isbn><urls></urls></record></Cite></EndNote>(Englund et al., 2011). For many blood-feeding arthropods, feeding frequency is determined by the time required for egg development. For example, Culicoides sonorensis females feed every three days at 30 °C but only every 14 days at 13°C ADDIN EN.CITE <EndNote><Cite><Author>Wittmann</Author><Year>2000</Year><RecNum>233</RecNum><DisplayText>(Wittmann and Baylis, 2000)</DisplayText><record><rec-number>233</rec-number><foreign-keys><key app="EN" db-id="0p9z9txwmeetx2efvr0pxt9oearef0a59a9a">233</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Wittmann, EJ</author><author>Baylis, M</author></authors></contributors><titles><title>Climate change: effects on Culicoides-transmitted viruses and implications for the UK</title><secondary-title>The Veterinary Journal</secondary-title></titles><periodical><full-title>The Veterinary Journal</full-title></periodical><pages>107-117</pages><volume>160</volume><number>2</number><dates><year>2000</year></dates><isbn>1090-0233</isbn><urls></urls></record></Cite></EndNote>(Wittmann and Baylis, 2000). Increased precipitation levels could prevent desiccation of eggs or larvae thus allowing greater survival rates of these parasites. Increased precipitation has the potential to increase the number and quality of breeding sites for vectors such as mosquitoes, ticks and snails, and the density of vegetation, affecting the availability of resting sites ADDIN EN.CITE <EndNote><Cite><Author>Weaver</Author><Year>2010</Year><RecNum>303</RecNum><DisplayText>(Weaver et al., 2010)</DisplayText><record><rec-number>303</rec-number><foreign-keys><key app="EN" db-id="0p9z9txwmeetx2efvr0pxt9oearef0a59a9a">303</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Weaver, Haylee J</author><author>Hawdon, John M</author><author>Hoberg, Eric P</author></authors></contributors><titles><title>Soil-transmitted helminthiases: implications of climate change and human behavior</title><secondary-title>Trends in parasitology</secondary-title></titles><periodical><full-title>Trends in Parasitology</full-title></periodical><pages>574-581</pages><volume>26</volume><number>12</number><dates><year>2010</year></dates><isbn>1471-4922</isbn><urls></urls></record></Cite></EndNote>(Weaver et al., 2010). The ongoing climate change especially warm winters and increased humidity is providing favorable environment for hatching of more parasite eggs, since infection is dependent on the number of eggs available to hatch per acre. Similarly, increased humidity levels would increase larval survival in soil, especially for hookworms as their larvae are at a greater risk of desiccation compared with other helminth species ADDIN EN.CITE <EndNote><Cite><Author>Genchi</Author><Year>2009</Year><RecNum>327</RecNum><DisplayText>(Genchi et al., 2009)</DisplayText><record><rec-number>327</rec-number><foreign-keys><key app="EN" db-id="0p9z9txwmeetx2efvr0pxt9oearef0a59a9a">327</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Genchi, Claudio</author><author>Rinaldi, Laura</author><author>Mortarino, Michele</author><author>Genchi, Marco</author><author>Cringoli, Giuseppe</author></authors></contributors><titles><title>Climate and Dirofilaria infection in Europe</title><secondary-title>Veterinary parasitology</secondary-title></titles><periodical><full-title>Veterinary parasitology</full-title></periodical><pages>286-292</pages><volume>163</volume><number>4</number><dates><year>2009</year></dates><isbn>0304-4017</isbn><urls></urls></record></Cite></EndNote>(Genchi et al., 2009). Pathogens and parasites that are sensitive to moist or dry conditions may be affected by changes to precipitation, soil moisture and the frequency of floods. Changes to winds could affect the spread of certain pathogens as well ADDIN EN.CITE <EndNote><Cite><Author>Wittmann</Author><Year>2000</Year><RecNum>233</RecNum><DisplayText>(Wittmann and Baylis, 2000)</DisplayText><record><rec-number>233</rec-number><foreign-keys><key app="EN" db-id="0p9z9txwmeetx2efvr0pxt9oearef0a59a9a">233</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Wittmann, EJ</author><author>Baylis, M</author></authors></contributors><titles><title>Climate change: effects on Culicoides-transmitted viruses and implications for the UK</title><secondary-title>The Veterinary Journal</secondary-title></titles><periodical><full-title>The Veterinary Journal</full-title></periodical><pages>107-117</pages><volume>160</volume><number>2</number><dates><year>2000</year></dates><isbn>1090-0233</isbn><urls></urls></record></Cite></EndNote>(Wittmann and Baylis, 2000).Another effect on vectors worthy of consideration is wind movement and there may be important effects of climate change on vector dispersal, particularly when there are changes in wind patterns. Reports show that there is an association between wind movements and the spread of epidemics of many culicoides and mosquito borne diseases, a possible good example being the British blue tongue outbreak in 1998 ADDIN EN.CITE <EndNote><Cite><Author>Kimaro</Author><Year>2013</Year><RecNum>229</RecNum><DisplayText>(Kimaro and Chibinga, 2013)</DisplayText><record><rec-number>229</rec-number><foreign-keys><key app="EN" db-id="0p9z9txwmeetx2efvr0pxt9oearef0a59a9a">229</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Kimaro, EG</author><author>Chibinga, OC</author></authors></contributors><titles><title>Potential impact of climate change on livestock production and health in East Africa: A review</title><secondary-title>Livestock Research for Rural Development</secondary-title></titles><periodical><full-title>Livestock Research for Rural Development</full-title></periodical><pages>5</pages><volume>25</volume><number>7</number><dates><year>2013</year></dates><urls></urls></record></Cite></EndNote>(Kimaro and Chibinga, 2013).3.2. Impact of Climatic Change on Vector-Borne Parasitic DiseasesGlobal warming and changes in precipitation affect the quantity and spread of vector-borne pests such as flies, ticks, and mosquitoes ADDIN EN.CITE <EndNote><Cite><Author>Thornton</Author><Year>2010</Year><RecNum>297</RecNum><DisplayText>(Thornton and Gerber, 2010)</DisplayText><record><rec-number>297</rec-number><foreign-keys><key app="EN" db-id="0p9z9txwmeetx2efvr0pxt9oearef0a59a9a">297</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Thornton, Philip K</author><author>Gerber, Pierre J</author></authors></contributors><titles><title>Climate change and the growth of the livestock sector in developing countries</title><secondary-title>Mitigation and adaptation strategies for global change</secondary-title></titles><periodical><full-title>Mitigation and adaptation strategies for global change</full-title></periodical><pages>169-184</pages><volume>15</volume><number>2</number><dates><year>2010</year></dates><isbn>1381-2386</isbn><urls></urls></record></Cite></EndNote>(Thornton and Gerber, 2010). Global warming could lead to the spread of infectious diseases such as malaria, schistosomiasis and yellow fever ADDIN EN.CITE <EndNote><Cite><Author>Bosello</Author><Year>2006</Year><RecNum>201</RecNum><DisplayText>(Bosello et al., 2006)</DisplayText><record><rec-number>201</rec-number><foreign-keys><key app="EN" db-id="0p9z9txwmeetx2efvr0pxt9oearef0a59a9a">201</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Bosello, Francesco</author><author>Roson, Roberto</author><author>Tol, Richard SJ</author></authors></contributors><titles><title>Economy-wide estimates of the implications of climate change: Human health</title><secondary-title>Ecological Economics</secondary-title></titles><periodical><full-title>Ecological Economics</full-title></periodical><pages>579-591</pages><volume>58</volume><number>3</number><dates><year>2006</year></dates><isbn>0921-8009</isbn><urls></urls></record></Cite></EndNote>(Bosello et al., 2006). According to World health organization (WHO, 1990) the occurrence of vector-borne disease is determined by (i)-abundance of the vector, and intermediate or reservoir host(s), (ii)-prevalence of disease-causing parasites (other pathogens, viruses included) suitably adapted to those vectors, the human (or animal) host, and local environmental conditions (especially temperature and humidity), and (iii)-the resilience and behaviour of the human population, which is in dynamic equilibrium with vector-borne parasites and pathogens.3.2.1. Vector borne protozoan diseasesLeishmaniases: - It is responsible for significant morbidity and gross domestic product loss in many countries ADDIN EN.CITE <EndNote><Cite><Author>McHugh</Author><Year>1996</Year><RecNum>266</RecNum><DisplayText>(McHugh et al., 1996)</DisplayText><record><rec-number>266</rec-number><foreign-keys><key app="EN" db-id="0p9z9txwmeetx2efvr0pxt9oearef0a59a9a">266</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>McHugh, Chad P</author><author>Melby, Peter C</author><author>LaFon, Sandra G</author></authors></contributors><titles><title>Leishmaniasis in Texas: epidemiology and clinical aspects of human cases</title><secondary-title>The American journal of tropical medicine and hygiene</secondary-title></titles><periodical><full-title>The American journal of tropical medicine and hygiene</full-title></periodical><pages>547-555</pages><volume>55</volume><number>5</number><dates><year>1996</year></dates><isbn>0002-9637</isbn><urls></urls></record></Cite></EndNote>(McHugh et al., 1996). With the effect of climate change contributing to an increased range for flies, flies being found in new localities, in addition to service men/women who served in the Middle East may have been exposed to infection returning home, the opportunity for leishmaniasis in North America to exposure both substantially dramatically is now becoming a reality ADDIN EN.CITE <EndNote><Cite><Author>Reuss</Author><Year>2012</Year><RecNum>279</RecNum><DisplayText>(Reuss et al., 2012)</DisplayText><record><rec-number>279</rec-number><foreign-keys><key app="EN" db-id="0p9z9txwmeetx2efvr0pxt9oearef0a59a9a">279</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Reuss, Sarah M</author><author>Dunbar, Mark D</author><author>Mays, Maron B Calderwood</author><author>Owen, Jennifer L</author><author>Mallicote, Martha F</author><author>Archer, Linda L</author><author>Wellehan Jr, James FX</author></authors></contributors><titles><title>Autochthonous Leishmania siamensis in horse, Florida, USA</title><secondary-title>Emerging infectious diseases</secondary-title></titles><periodical><full-title>Emerging infectious diseases</full-title></periodical><pages>1545</pages><volume>18</volume><number>9</number><dates><year>2012</year></dates><urls></urls></record></Cite></EndNote>(Reuss et al., 2012). It has been recognized that in certain areas of the world, Leishmania infection rates are associated with seasonal variation. Ecological niche models also predicted the expansion of suitable habitat for fly vectors, further increasing the risk of leishmaniasis in areas currently not endemic ADDIN EN.CITE <EndNote><Cite><Author>Tiwary</Author><Year>2013</Year><RecNum>298</RecNum><DisplayText>(Tiwary et al., 2013)</DisplayText><record><rec-number>298</rec-number><foreign-keys><key app="EN" db-id="0p9z9txwmeetx2efvr0pxt9oearef0a59a9a">298</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Tiwary, Puja</author><author>Kumar, Dinesh</author><author>Mishra, Mukesh</author><author>Singh, Rudra Pratap</author><author>Rai, Madhukar</author><author>Sundar, Shyam</author></authors></contributors><titles><title>Seasonal variation in the prevalence of sand flies infected with Leishmania donovani</title><secondary-title>PloS one</secondary-title></titles><periodical><full-title>PLoS One</full-title></periodical><pages>e61370</pages><volume>8</volume><number>4</number><dates><year>2013</year></dates><isbn>1932-6203</isbn><urls></urls></record></Cite></EndNote>(Tiwary et al., 2013).Leishmaniasis is climate sensitive and affect the epidemiology of it in a number of ways ADDIN EN.CITE <EndNote><Cite><Author>Dobson</Author><Year>2009</Year><RecNum>318</RecNum><DisplayText>(Dobson, 2009, Ramezankhani et al., 2018)</DisplayText><record><rec-number>318</rec-number><foreign-keys><key app="EN" db-id="0p9z9txwmeetx2efvr0pxt9oearef0a59a9a">318</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Dobson, Andy</author></authors></contributors><titles><title>Climate variability, global change, immunity, and the dynamics of infectious diseases</title><secondary-title>Ecology</secondary-title></titles><periodical><full-title>Ecology</full-title></periodical><pages>920-927</pages><volume>90</volume><number>4</number><dates><year>2009</year></dates><isbn>1939-9170</isbn><urls></urls></record></Cite><Cite><Author>Ramezankhani</Author><Year>2018</Year><RecNum>319</RecNum><record><rec-number>319</rec-number><foreign-keys><key app="EN" db-id="0p9z9txwmeetx2efvr0pxt9oearef0a59a9a">319</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Ramezankhani, Roghieh</author><author>Sajjadi, Nooshin</author><author>Jozi, Seyed Ali</author><author>Shirzadi, Mohammad Reza</author></authors></contributors><titles><title>Climate and environmental factors affecting the incidence of cutaneous leishmaniasis in Isfahan, Iran</title><secondary-title>Environmental Science and Pollution Research</secondary-title></titles><periodical><full-title>Environmental Science and Pollution Research</full-title></periodical><pages>11516-11526</pages><volume>25</volume><number>12</number><dates><year>2018</year></dates><isbn>0944-1344</isbn><urls></urls></record></Cite></EndNote>(Dobson, 2009, Ramezankhani et al., 2018):- (1)-changes in temperature, rainfall and humidity can have strong effects on vectors and reservoir hosts by altering their distribution and influencing their survival and population sizes; (2)-small fluctuation in temperature can have a profound effects on the developmental cycle of Leishmania promastigotes in flies, allowing the transmission of the parasite in areas not previously endemic for the disease; (3)-drought, famine and flood can lead to massive displacement and migration of people to areas with transmission of Leishmania, and poor nutrition could compromise their immunity.Trypanosomosis: - Mean temperatures are important since they affect the general metabolic rate thus influence such factors as the rate at which tsetse need to feed, the frequency with which they deposit their larvae, the time spent in the pupal phase. Since the act of feeding also involves increased risk for adult tsetse it may also be expected that adult mortality will increase with mean temperature ADDIN EN.CITE <EndNote><Cite><Author>Mweempwa</Author><Year>2015</Year><RecNum>270</RecNum><DisplayText>(Mweempwa et al., 2015)</DisplayText><record><rec-number>270</rec-number><foreign-keys><key app="EN" db-id="0p9z9txwmeetx2efvr0pxt9oearef0a59a9a">270</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Mweempwa, Cornelius</author><author>Marcotty, Tanguy</author><author>De Pus, Claudia</author><author>Penzhorn, Barend Louis</author><author>Dicko, Ahmadou Hamady</author><author>Bouyer, Jérémy</author><author>De Deken, Reginald</author></authors></contributors><titles><title>Impact of habitat fragmentation on tsetse populations and trypanosomosis risk in Eastern Zambia</title><secondary-title>Parasites &amp; vectors</secondary-title></titles><periodical><full-title>Parasites &amp; vectors</full-title></periodical><pages>406</pages><volume>8</volume><number>1</number><dates><year>2015</year></dates><isbn>1756-3305</isbn><urls></urls></record></Cite></EndNote>(Mweempwa et al., 2015). Tsetse fly ranges were modelled under climate change scenarios, and although these ranges are not expected to expand excessively, they are expected to shift significantly, negatively affected by climate change. These range shifts could result in a larger population being at risk of contracting Trypanosoma brucei or human African trypanosomosis ADDIN EN.CITE <EndNote><Cite><Author>Moore</Author><Year>2012</Year><RecNum>268</RecNum><DisplayText>(Moore et al., 2012)</DisplayText><record><rec-number>268</rec-number><foreign-keys><key app="EN" db-id="0p9z9txwmeetx2efvr0pxt9oearef0a59a9a">268</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Moore, Sean</author><author>Shrestha, Sourya</author><author>Tomlinson, Kyle W</author><author>Vuong, Holly</author></authors></contributors><titles><title>Predicting the effect of climate change on African trypanosomiasis: integrating epidemiology with parasite and vector biology</title><secondary-title>Journal of the Royal Society Interface</secondary-title></titles><periodical><full-title>Journal of the Royal Society Interface</full-title></periodical><pages>817-830</pages><volume>9</volume><number>70</number><dates><year>2012</year></dates><isbn>1742-5689</isbn><urls></urls></record></Cite></EndNote>(Moore et al., 2012). An increase of mean ambient temperature in central Africa by 2°C would result in the tsetse fly which transmits Trypanosoma brucei infection to man disappearing from the tsetse endemic middle belt of Africa South wards ADDIN EN.CITE <EndNote><Cite><Author>Fischlin</Author><Year>2007</Year><RecNum>211</RecNum><DisplayText>(Fischlin, 2007)</DisplayText><record><rec-number>211</rec-number><foreign-keys><key app="EN" db-id="0p9z9txwmeetx2efvr0pxt9oearef0a59a9a">211</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Fischlin, E</author></authors></contributors><titles><title>Chapter 4: Ecosystem, their properties, goods and Services</title><secondary-title>Executive Summary</secondary-title></titles><periodical><full-title>Executive Summary</full-title></periodical><pages>213</pages><dates><year>2007</year></dates><urls></urls></record></Cite></EndNote>(Fischlin, 2007). The tsetse fly would breed more efficiently in the forest belt where rainfall would be greater ADDIN EN.CITE <EndNote><Cite><Author>Fischlin</Author><Year>2007</Year><RecNum>211</RecNum><DisplayText>(Fischlin, 2007)</DisplayText><record><rec-number>211</rec-number><foreign-keys><key app="EN" db-id="0p9z9txwmeetx2efvr0pxt9oearef0a59a9a">211</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Fischlin, E</author></authors></contributors><titles><title>Chapter 4: Ecosystem, their properties, goods and Services</title><secondary-title>Executive Summary</secondary-title></titles><periodical><full-title>Executive Summary</full-title></periodical><pages>213</pages><dates><year>2007</year></dates><urls></urls></record></Cite></EndNote>(Fischlin, 2007). In Zimbabwe, for example, tsetse fly abundance is decreasing due to a combination of vector control and too high temperatures that might negatively affect their survival, however habitat fragmentation, although creating conditions leading to higher populations of older flies, still increases the rate of infection risk of disease ADDIN EN.CITE <EndNote><Cite><Author>Mweempwa</Author><Year>2015</Year><RecNum>270</RecNum><DisplayText>(Mweempwa et al., 2015)</DisplayText><record><rec-number>270</rec-number><foreign-keys><key app="EN" db-id="0p9z9txwmeetx2efvr0pxt9oearef0a59a9a">270</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Mweempwa, Cornelius</author><author>Marcotty, Tanguy</author><author>De Pus, Claudia</author><author>Penzhorn, Barend Louis</author><author>Dicko, Ahmadou Hamady</author><author>Bouyer, Jérémy</author><author>De Deken, Reginald</author></authors></contributors><titles><title>Impact of habitat fragmentation on tsetse populations and trypanosomosis risk in Eastern Zambia</title><secondary-title>Parasites &amp; vectors</secondary-title></titles><periodical><full-title>Parasites &amp; vectors</full-title></periodical><pages>406</pages><volume>8</volume><number>1</number><dates><year>2015</year></dates><isbn>1756-3305</isbn><urls></urls></record></Cite></EndNote>(Mweempwa et al., 2015).Babesiosis: - Warmer climates have also been associated with better synchrony between larval and nymph stage of ticks, this allows faster disease transmission and more virulent strains of disease to persist in tick vectors ADDIN EN.CITE <EndNote><Cite><Author>Altizer</Author><Year>2013</Year><RecNum>197</RecNum><DisplayText>(Altizer et al., 2013)</DisplayText><record><rec-number>197</rec-number><foreign-keys><key app="EN" db-id="0p9z9txwmeetx2efvr0pxt9oearef0a59a9a">197</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Altizer, Sonia</author><author>Ostfeld, Richard S</author><author>Johnson, Pieter TJ</author><author>Kutz, Susan</author><author>Harvell, C Drew</author></authors></contributors><titles><title>Climate change and infectious diseases: from evidence to a predictive framework</title><secondary-title>science</secondary-title></titles><periodical><full-title>science</full-title></periodical><pages>514-519</pages><volume>341</volume><number>6145</number><dates><year>2013</year></dates><isbn>0036-8075</isbn><urls></urls></record></Cite></EndNote>(Altizer et al., 2013). Climate change may, therefore, exert a major influence on both tick abundance and disease prevalence by affecting faunal diversity ADDIN EN.CITE <EndNote><Cite><Author>Fischlin</Author><Year>2007</Year><RecNum>211</RecNum><DisplayText>(Fischlin, 2007)</DisplayText><record><rec-number>211</rec-number><foreign-keys><key app="EN" db-id="0p9z9txwmeetx2efvr0pxt9oearef0a59a9a">211</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Fischlin, E</author></authors></contributors><titles><title>Chapter 4: Ecosystem, their properties, goods and Services</title><secondary-title>Executive Summary</secondary-title></titles><periodical><full-title>Executive Summary</full-title></periodical><pages>213</pages><dates><year>2007</year></dates><urls></urls></record></Cite></EndNote>(Fischlin, 2007). For example, canine babesiosis cases have occurred under certain local climate constraints, such as a necessary temperature increase to 12o C to initiate soil defrosting and termination with temperature drops, concurrent rainfall, or intense drought ADDIN EN.CITE <EndNote><Cite><Author>Leschnik</Author><Year>2008</Year><RecNum>256</RecNum><DisplayText>(Leschnik et al., 2008)</DisplayText><record><rec-number>256</rec-number><foreign-keys><key app="EN" db-id="0p9z9txwmeetx2efvr0pxt9oearef0a59a9a">256</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Leschnik, Michael</author><author>Kirtz, Georges</author><author>Tichy, Alexander</author><author>Leidinger, Ernst</author></authors></contributors><titles><title>Seasonal occurrence of canine babesiosis is influenced by local climate conditions</title><secondary-title>International Journal of Medical Microbiology</secondary-title></titles><periodical><full-title>International Journal of Medical Microbiology</full-title></periodical><pages>243-248</pages><volume>298</volume><dates><year>2008</year></dates><isbn>1438-4221</isbn><urls></urls></record></Cite></EndNote>(Leschnik et al., 2008). Indirectly, weather conditions change people’s behavior and put them at greater exposure to ticks. Combined with land use alterations, climate change is permitting ticks to increase their distribution farther North and pose a threat to new communities previously unexposed to diseases such as babesiosis PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5Sb2JpbnNvbjwvQXV0aG9yPjxZZWFyPjIwMTU8L1llYXI+

PFJlY051bT4yODA8L1JlY051bT48RGlzcGxheVRleHQ+KFJvYmluc29uIGV0IGFsLiwgMjAxNSwg

U2ltb24gZXQgYWwuLCAyMDE0KTwvRGlzcGxheVRleHQ+PHJlY29yZD48cmVjLW51bWJlcj4yODA8

L3JlYy1udW1iZXI+PGZvcmVpZ24ta2V5cz48a2V5IGFwcD0iRU4iIGRiLWlkPSIwcDl6OXR4d21l

ZXR4MmVmdnIwcHh0OW9lYXJlZjBhNTlhOWEiPjI4MDwva2V5PjwvZm9yZWlnbi1rZXlzPjxyZWYt

dHlwZSBuYW1lPSJKb3VybmFsIEFydGljbGUiPjE3PC9yZWYtdHlwZT48Y29udHJpYnV0b3JzPjxh

dXRob3JzPjxhdXRob3I+Um9iaW5zb24sIFN0YWNpZSBKPC9hdXRob3I+PGF1dGhvcj5OZWl0emVs

LCBEYXZpZCBGPC9hdXRob3I+PGF1dGhvcj5Nb2VuLCBSb25hbGQgQTwvYXV0aG9yPjxhdXRob3I+

Q3JhZnQsIE1lZ2dhbiBFPC9hdXRob3I+PGF1dGhvcj5IYW1pbHRvbiwgS2FyaW4gRTwvYXV0aG9y

PjxhdXRob3I+Sm9obnNvbiwgTHVjaW5kYSBCPC9hdXRob3I+PGF1dGhvcj5NdWxsYSwgRGF2aWQg

SjwvYXV0aG9yPjxhdXRob3I+TXVuZGVybG9oLCBVbHJpa2UgRzwvYXV0aG9yPjxhdXRob3I+UmVk

aWcsIFBhdHJpY2sgVDwvYXV0aG9yPjxhdXRob3I+U21pdGgsIEtpcmsgRTwvYXV0aG9yPjwvYXV0

aG9ycz48L2NvbnRyaWJ1dG9ycz48dGl0bGVzPjx0aXRsZT5EaXNlYXNlIHJpc2sgaW4gYSBkeW5h

bWljIGVudmlyb25tZW50OiB0aGUgc3ByZWFkIG9mIHRpY2stYm9ybmUgcGF0aG9nZW5zIGluIE1p

bm5lc290YSwgVVNBPC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPkVjb0hlYWx0aDwvc2Vjb25kYXJ5

LXRpdGxlPjwvdGl0bGVzPjxwZXJpb2RpY2FsPjxmdWxsLXRpdGxlPkVjb0hlYWx0aDwvZnVsbC10

aXRsZT48L3BlcmlvZGljYWw+PHBhZ2VzPjE1Mi0xNjM8L3BhZ2VzPjx2b2x1bWU+MTI8L3ZvbHVt

ZT48bnVtYmVyPjE8L251bWJlcj48ZGF0ZXM+PHllYXI+MjAxNTwveWVhcj48L2RhdGVzPjxpc2Ju

PjE2MTItOTIwMjwvaXNibj48dXJscz48L3VybHM+PC9yZWNvcmQ+PC9DaXRlPjxDaXRlPjxBdXRo

b3I+U2ltb248L0F1dGhvcj48WWVhcj4yMDE0PC9ZZWFyPjxSZWNOdW0+Mjg5PC9SZWNOdW0+PHJl

Y29yZD48cmVjLW51bWJlcj4yODk8L3JlYy1udW1iZXI+PGZvcmVpZ24ta2V5cz48a2V5IGFwcD0i

RU4iIGRiLWlkPSIwcDl6OXR4d21lZXR4MmVmdnIwcHh0OW9lYXJlZjBhNTlhOWEiPjI4OTwva2V5

PjwvZm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJKb3VybmFsIEFydGljbGUiPjE3PC9yZWYt

dHlwZT48Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+U2ltb24sIEp1bGllIEE8L2F1dGhv

cj48YXV0aG9yPk1hcnJvdHRlLCBSb2JieSBSPC9hdXRob3I+PGF1dGhvcj5EZXNyb3NpZXJzLCBO

YXRoYWxpZTwvYXV0aG9yPjxhdXRob3I+RmlzZXQsIEplc3NpY2E8L2F1dGhvcj48YXV0aG9yPkdh

aXRhbiwgSm9yZ2U8L2F1dGhvcj48YXV0aG9yPkdvbnphbGV6LCBBbmRyZXc8L2F1dGhvcj48YXV0

aG9yPktvZmZpLCBKdWxlcyBLPC9hdXRob3I+PGF1dGhvcj5MYXBvaW50ZSwgRnJhbmNvaXPigJBK

b3NlcGg8L2F1dGhvcj48YXV0aG9yPkxlaWdodG9uLCBQYXRyaWNrIEE8L2F1dGhvcj48YXV0aG9y

PkxpbmRzYXksIExpbmRzYXkgUjwvYXV0aG9yPjwvYXV0aG9ycz48L2NvbnRyaWJ1dG9ycz48dGl0

bGVzPjx0aXRsZT5DbGltYXRlIGNoYW5nZSBhbmQgaGFiaXRhdCBmcmFnbWVudGF0aW9uIGRyaXZl

IHRoZSBvY2N1cnJlbmNlIG9mIEIgb3JyZWxpYSBidXJnZG9yZmVyaSwgdGhlIGFnZW50IG9mIEx5

bWUgZGlzZWFzZSwgYXQgdGhlIG5vcnRoZWFzdGVybiBsaW1pdCBvZiBpdHMgZGlzdHJpYnV0aW9u

PC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPkV2b2x1dGlvbmFyeSBBcHBsaWNhdGlvbnM8L3NlY29u

ZGFyeS10aXRsZT48L3RpdGxlcz48cGVyaW9kaWNhbD48ZnVsbC10aXRsZT5Fdm9sdXRpb25hcnkg

QXBwbGljYXRpb25zPC9mdWxsLXRpdGxlPjwvcGVyaW9kaWNhbD48cGFnZXM+NzUwLTc2NDwvcGFn

ZXM+PHZvbHVtZT43PC92b2x1bWU+PG51bWJlcj43PC9udW1iZXI+PGRhdGVzPjx5ZWFyPjIwMTQ8

L3llYXI+PC9kYXRlcz48aXNibj4xNzUyLTQ1NzE8L2lzYm4+PHVybHM+PC91cmxzPjwvcmVjb3Jk

PjwvQ2l0ZT48L0VuZE5vdGU+

ADDIN EN.CITE PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5Sb2JpbnNvbjwvQXV0aG9yPjxZZWFyPjIwMTU8L1llYXI+

PFJlY051bT4yODA8L1JlY051bT48RGlzcGxheVRleHQ+KFJvYmluc29uIGV0IGFsLiwgMjAxNSwg

U2ltb24gZXQgYWwuLCAyMDE0KTwvRGlzcGxheVRleHQ+PHJlY29yZD48cmVjLW51bWJlcj4yODA8

L3JlYy1udW1iZXI+PGZvcmVpZ24ta2V5cz48a2V5IGFwcD0iRU4iIGRiLWlkPSIwcDl6OXR4d21l

ZXR4MmVmdnIwcHh0OW9lYXJlZjBhNTlhOWEiPjI4MDwva2V5PjwvZm9yZWlnbi1rZXlzPjxyZWYt

dHlwZSBuYW1lPSJKb3VybmFsIEFydGljbGUiPjE3PC9yZWYtdHlwZT48Y29udHJpYnV0b3JzPjxh

dXRob3JzPjxhdXRob3I+Um9iaW5zb24sIFN0YWNpZSBKPC9hdXRob3I+PGF1dGhvcj5OZWl0emVs

LCBEYXZpZCBGPC9hdXRob3I+PGF1dGhvcj5Nb2VuLCBSb25hbGQgQTwvYXV0aG9yPjxhdXRob3I+

Q3JhZnQsIE1lZ2dhbiBFPC9hdXRob3I+PGF1dGhvcj5IYW1pbHRvbiwgS2FyaW4gRTwvYXV0aG9y

PjxhdXRob3I+Sm9obnNvbiwgTHVjaW5kYSBCPC9hdXRob3I+PGF1dGhvcj5NdWxsYSwgRGF2aWQg

SjwvYXV0aG9yPjxhdXRob3I+TXVuZGVybG9oLCBVbHJpa2UgRzwvYXV0aG9yPjxhdXRob3I+UmVk

aWcsIFBhdHJpY2sgVDwvYXV0aG9yPjxhdXRob3I+U21pdGgsIEtpcmsgRTwvYXV0aG9yPjwvYXV0

aG9ycz48L2NvbnRyaWJ1dG9ycz48dGl0bGVzPjx0aXRsZT5EaXNlYXNlIHJpc2sgaW4gYSBkeW5h

bWljIGVudmlyb25tZW50OiB0aGUgc3ByZWFkIG9mIHRpY2stYm9ybmUgcGF0aG9nZW5zIGluIE1p

bm5lc290YSwgVVNBPC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPkVjb0hlYWx0aDwvc2Vjb25kYXJ5

LXRpdGxlPjwvdGl0bGVzPjxwZXJpb2RpY2FsPjxmdWxsLXRpdGxlPkVjb0hlYWx0aDwvZnVsbC10

aXRsZT48L3BlcmlvZGljYWw+PHBhZ2VzPjE1Mi0xNjM8L3BhZ2VzPjx2b2x1bWU+MTI8L3ZvbHVt

ZT48bnVtYmVyPjE8L251bWJlcj48ZGF0ZXM+PHllYXI+MjAxNTwveWVhcj48L2RhdGVzPjxpc2Ju

PjE2MTItOTIwMjwvaXNibj48dXJscz48L3VybHM+PC9yZWNvcmQ+PC9DaXRlPjxDaXRlPjxBdXRo

b3I+U2ltb248L0F1dGhvcj48WWVhcj4yMDE0PC9ZZWFyPjxSZWNOdW0+Mjg5PC9SZWNOdW0+PHJl

Y29yZD48cmVjLW51bWJlcj4yODk8L3JlYy1udW1iZXI+PGZvcmVpZ24ta2V5cz48a2V5IGFwcD0i

RU4iIGRiLWlkPSIwcDl6OXR4d21lZXR4MmVmdnIwcHh0OW9lYXJlZjBhNTlhOWEiPjI4OTwva2V5

PjwvZm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJKb3VybmFsIEFydGljbGUiPjE3PC9yZWYt

dHlwZT48Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+U2ltb24sIEp1bGllIEE8L2F1dGhv

cj48YXV0aG9yPk1hcnJvdHRlLCBSb2JieSBSPC9hdXRob3I+PGF1dGhvcj5EZXNyb3NpZXJzLCBO

YXRoYWxpZTwvYXV0aG9yPjxhdXRob3I+RmlzZXQsIEplc3NpY2E8L2F1dGhvcj48YXV0aG9yPkdh

aXRhbiwgSm9yZ2U8L2F1dGhvcj48YXV0aG9yPkdvbnphbGV6LCBBbmRyZXc8L2F1dGhvcj48YXV0

aG9yPktvZmZpLCBKdWxlcyBLPC9hdXRob3I+PGF1dGhvcj5MYXBvaW50ZSwgRnJhbmNvaXPigJBK

b3NlcGg8L2F1dGhvcj48YXV0aG9yPkxlaWdodG9uLCBQYXRyaWNrIEE8L2F1dGhvcj48YXV0aG9y

PkxpbmRzYXksIExpbmRzYXkgUjwvYXV0aG9yPjwvYXV0aG9ycz48L2NvbnRyaWJ1dG9ycz48dGl0

bGVzPjx0aXRsZT5DbGltYXRlIGNoYW5nZSBhbmQgaGFiaXRhdCBmcmFnbWVudGF0aW9uIGRyaXZl

IHRoZSBvY2N1cnJlbmNlIG9mIEIgb3JyZWxpYSBidXJnZG9yZmVyaSwgdGhlIGFnZW50IG9mIEx5

bWUgZGlzZWFzZSwgYXQgdGhlIG5vcnRoZWFzdGVybiBsaW1pdCBvZiBpdHMgZGlzdHJpYnV0aW9u

PC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPkV2b2x1dGlvbmFyeSBBcHBsaWNhdGlvbnM8L3NlY29u

ZGFyeS10aXRsZT48L3RpdGxlcz48cGVyaW9kaWNhbD48ZnVsbC10aXRsZT5Fdm9sdXRpb25hcnkg

QXBwbGljYXRpb25zPC9mdWxsLXRpdGxlPjwvcGVyaW9kaWNhbD48cGFnZXM+NzUwLTc2NDwvcGFn

ZXM+PHZvbHVtZT43PC92b2x1bWU+PG51bWJlcj43PC9udW1iZXI+PGRhdGVzPjx5ZWFyPjIwMTQ8

L3llYXI+PC9kYXRlcz48aXNibj4xNzUyLTQ1NzE8L2lzYm4+PHVybHM+PC91cmxzPjwvcmVjb3Jk

PjwvQ2l0ZT48L0VuZE5vdGU+

ADDIN EN.CITE.DATA (Robinson et al., 2015, Simon et al., 2014). Malaria: - Conditions favouring mosquito capacity to transmit malaria other infections are prevalent in sub-Saharan Africa and other endemic regions of the world and are attributed to the high rates of morbidity and mortality from these infections ADDIN EN.CITE <EndNote><Cite><Author>Thomas</Author><Year>2012</Year><RecNum>295</RecNum><DisplayText>(Thomas et al., 2012, Duru and Thomas, 2014)</DisplayText><record><rec-number>295</rec-number><foreign-keys><key app="EN" db-id="0p9z9txwmeetx2efvr0pxt9oearef0a59a9a">295</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Thomas, Bolaji N</author><author>Diallo, Dapa A</author><author>Noumsi, Ghislain T</author><author>Moulds, Joann M</author></authors></contributors><titles><title>Circulating immune complex levels are associated with disease severity and seasonality in children with malaria from Mali</title><secondary-title>Biomarker insights</secondary-title></titles><periodical><full-title>Biomarker insights</full-title></periodical><pages>BMI. S9624</pages><volume>7</volume><dates><year>2012</year></dates><isbn>1177-2719</isbn><urls></urls></record></Cite><Cite><Author>Duru</Author><Year>2014</Year><RecNum>215</RecNum><record><rec-number>215</rec-number><foreign-keys><key app="EN" db-id="0p9z9txwmeetx2efvr0pxt9oearef0a59a9a">215</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Duru, Kimberley C</author><author>Thomas, Bolaji N</author></authors></contributors><titles><title>Genetic diversity and allelic frequency of glutamate-rich protein (GLURP) in Plasmodium falciparum isolates from sub-Saharan Africa</title><secondary-title>Microbiology insights</secondary-title></titles><periodical><full-title>Microbiology insights</full-title></periodical><pages>MBI. S20618</pages><volume>7</volume><dates><year>2014</year></dates><isbn>1178-6361</isbn><urls></urls></record></Cite></EndNote>(Thomas et al., 2012, Duru and Thomas, 2014). However, these factors can fluctuate as the climate changes in areas bordering regions where parasitic diseases are endemic and put the communities there at risk ADDIN EN.CITE <EndNote><Cite><Author>Martens</Author><Year>1997</Year><RecNum>261</RecNum><DisplayText>(Martens et al., 1997)</DisplayText><record><rec-number>261</rec-number><foreign-keys><key app="EN" db-id="0p9z9txwmeetx2efvr0pxt9oearef0a59a9a">261</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Martens, Willem JM</author><author>Jetten, Theo H</author><author>Focks, Dana A</author></authors></contributors><titles><title>Sensitivity of malaria, schistosomiasis and dengue to global warming</title><secondary-title>Climatic change</secondary-title></titles><periodical><full-title>Climatic change</full-title></periodical><pages>145-156</pages><volume>35</volume><number>2</number><dates><year>1997</year></dates><isbn>0165-0009</isbn><urls></urls></record></Cite></EndNote>(Martens et al., 1997). The Anhui Province in China, for example, has recently seen a dramatic re-emergence of malaria cases since 2000, prior to which there was low-level endemicity. The sudden increase in malaria cases was highly associated with temperature, rainfall, relative humidity, and multivariate Southern Oscillation Index ADDIN EN.CITE <EndNote><Cite><Author>Gao</Author><Year>2012</Year><RecNum>218</RecNum><DisplayText>(Gao et al., 2012)</DisplayText><record><rec-number>218</rec-number><foreign-keys><key app="EN" db-id="0p9z9txwmeetx2efvr0pxt9oearef0a59a9a">218</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Gao, Hong-Wei</author><author>Wang, Li-Ping</author><author>Liang, Song</author><author>Liu, Yong-Xiao</author><author>Tong, Shi-Lu</author><author>Wang, Jian-Jun</author><author>Li, Ya-Pin</author><author>Wang, Xiao-Feng</author><author>Yang, Hong</author><author>Ma, Jia-Qi</author></authors></contributors><titles><title>Change in rainfall drives malaria re-emergence in Anhui Province, China</title><secondary-title>PLoS One</secondary-title></titles><periodical><full-title>PLoS One</full-title></periodical><pages>e43686</pages><volume>7</volume><number>8</number><dates><year>2012</year></dates><isbn>1932-6203</isbn><urls></urls></record></Cite></EndNote>(Gao et al., 2012). 3.2.2. Arthropod and gastropod borne helminth diseasesIn helminthology, the traditional use of experimental models has pronouncedly helped in understanding helminth ecology, epidemiology and transmission in the nature. Among the numerous environmental modifications giving rise to changes in helminth infections, climate variables appear as those showing a greater influence ADDIN EN.CITE <EndNote><Cite><Author>Kutz</Author><Year>2004</Year><RecNum>252</RecNum><DisplayText>(Kutz et al., 2004, Altizer et al., 2013)</DisplayText><record><rec-number>252</rec-number><foreign-keys><key app="EN" db-id="0p9z9txwmeetx2efvr0pxt9oearef0a59a9a">252</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Kutz, Susan J</author><author>Hoberg, Eric P</author><author>Nagy, John</author><author>Polley, Lydden</author><author>Elkin, Brett</author></authors></contributors><titles><title>“Emerging” parasitic infections in arctic ungulates</title><secondary-title>Integrative and Comparative Biology</secondary-title></titles><periodical><full-title>Integrative and Comparative Biology</full-title></periodical><pages>109-118</pages><volume>44</volume><number>2</number><dates><year>2004</year></dates><isbn>1557-7023</isbn><urls></urls></record></Cite><Cite><Author>Altizer</Author><Year>2013</Year><RecNum>197</RecNum><record><rec-number>197</rec-number><foreign-keys><key app="EN" db-id="0p9z9txwmeetx2efvr0pxt9oearef0a59a9a">197</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Altizer, Sonia</author><author>Ostfeld, Richard S</author><author>Johnson, Pieter TJ</author><author>Kutz, Susan</author><author>Harvell, C Drew</author></authors></contributors><titles><title>Climate change and infectious diseases: from evidence to a predictive framework</title><secondary-title>science</secondary-title></titles><periodical><full-title>science</full-title></periodical><pages>514-519</pages><volume>341</volume><number>6145</number><dates><year>2013</year></dates><isbn>0036-8075</isbn><urls></urls></record></Cite></EndNote>(Kutz et al., 2004, Altizer et al., 2013). Thus, climate change may be expected to have an important impact on helminthiases. Trematodiases: - Global warming has been predicted to alter the geographical distributions of many trematode species ADDIN EN.CITE <EndNote><Cite><Author>Moodley</Author><Year>2003</Year><RecNum>267</RecNum><DisplayText>(Moodley et al., 2003)</DisplayText><record><rec-number>267</rec-number><foreign-keys><key app="EN" db-id="0p9z9txwmeetx2efvr0pxt9oearef0a59a9a">267</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Moodley, I</author><author>Kleinschmidt, I</author><author>Sharp, B</author><author>Craig, M</author><author>Appleton, C</author></authors></contributors><titles><title>Temperature-suitability maps for schistosomiasis in South Africa</title><secondary-title>Annals of Tropical Medicine &amp; Parasitology</secondary-title></titles><periodical><full-title>Annals of Tropical Medicine &amp; Parasitology</full-title></periodical><pages>617-627</pages><volume>97</volume><number>6</number><dates><year>2003</year></dates><isbn>0003-4983</isbn><urls></urls></record></Cite></EndNote>(Moodley et al., 2003). Moreover, it may also enhance the local impact of trematode. Analyses suggest a common scenario in which a temperature increase should lead to marked increases in cercariae, by accelerating their production and triggering their emergence from snails. Any temperature mediated increase in the extent of trematode infections may have measurable impacts. The impact may be very important; trematode parasitism is not only a major veterinary human health problem worldwide, but it also plays a major role in the structuring of animal communities ADDIN EN.CITE <EndNote><Cite><Author>Poulin</Author><Year>2006</Year><RecNum>278</RecNum><DisplayText>(Poulin, 2006)</DisplayText><record><rec-number>278</rec-number><foreign-keys><key app="EN" db-id="0p9z9txwmeetx2efvr0pxt9oearef0a59a9a">278</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Poulin, R</author></authors></contributors><titles><title>Global warming and temperature-mediated increases in cercarial emergence in trematode parasites</title><secondary-title>Parasitology</secondary-title></titles><periodical><full-title>Parasitology</full-title></periodical><pages>143-151</pages><volume>132</volume><number>1</number><dates><year>2006</year></dates><isbn>1469-8161</isbn><urls></urls></record></Cite></EndNote>(Poulin, 2006).Snails are key intermediate hosts for Fasciola and Schistosoma parasites, with the local freshwater snail proportion typically directly related to that of the parasites ADDIN EN.CITE <EndNote><Cite><Author>Mas-Coma</Author><Year>2005</Year><RecNum>263</RecNum><DisplayText>(Mas-Coma et al., 2005, Short et al., 2017)</DisplayText><record><rec-number>263</rec-number><foreign-keys><key app="EN" db-id="0p9z9txwmeetx2efvr0pxt9oearef0a59a9a">263</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Mas-Coma, S</author><author>Bargues, M Dolores</author><author>Valero, MA</author></authors></contributors><titles><title>Fascioliasis and other plant-borne trematode zoonoses</title><secondary-title>International journal for parasitology</secondary-title></titles><periodical><full-title>International journal for parasitology</full-title></periodical><pages>1255-1278</pages><volume>35</volume><number>11-12</number><dates><year>2005</year></dates><isbn>0020-7519</isbn><urls></urls></record></Cite><Cite><Author>Short</Author><Year>2017</Year><RecNum>272</RecNum><record><rec-number>272</rec-number><foreign-keys><key app="EN" db-id="0p9z9txwmeetx2efvr0pxt9oearef0a59a9a">272</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Short, Erica E</author><author>Caminade, Cyril</author><author>Thomas, Bolaji N</author></authors></contributors><titles><title>Climate Change Contribution to the Emergence or Re-Emergence of Parasitic Diseases</title><secondary-title>Infectious Diseases: Research and Treatment</secondary-title></titles><periodical><full-title>Infectious Diseases: Research and Treatment</full-title></periodical><pages>1178633617732296</pages><volume>10</volume><dates><year>2017</year></dates><isbn>1178-6337</isbn><urls></urls></record></Cite></EndNote>(Mas-Coma et al., 2005, Short et al., 2017). The ability to maintain viable snail populations is dependent on water velocity, rainfall, and temperature ADDIN EN.CITE <EndNote><Cite><Author>Short</Author><Year>2017</Year><RecNum>272</RecNum><DisplayText>(Short et al., 2017)</DisplayText><record><rec-number>272</rec-number><foreign-keys><key app="EN" db-id="0p9z9txwmeetx2efvr0pxt9oearef0a59a9a">272</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Short, Erica E</author><author>Caminade, Cyril</author><author>Thomas, Bolaji N</author></authors></contributors><titles><title>Climate Change Contribution to the Emergence or Re-Emergence of Parasitic Diseases</title><secondary-title>Infectious Diseases: Research and Treatment</secondary-title></titles><periodical><full-title>Infectious Diseases: Research and Treatment</full-title></periodical><pages>1178633617732296</pages><volume>10</volume><dates><year>2017</year></dates><isbn>1178-6337</isbn><urls></urls></record></Cite></EndNote>(Short et al., 2017). It is expected that climate change will cause water stress in some areas which could increase freshwater snail populations and disease incidence. Farther from the equator, lymnaeid snails, intermediate hosts for Fasciola hepatica, also seem to be benefiting from a changing climate. The abundance of these snails is related to air and water temperature as well as soil evapotranspiration ADDIN EN.CITE <EndNote><Cite><Author>Van Dijk</Author><Year>2010</Year><RecNum>302</RecNum><DisplayText>(Van Dijk et al., 2010)</DisplayText><record><rec-number>302</rec-number><foreign-keys><key app="EN" db-id="0p9z9txwmeetx2efvr0pxt9oearef0a59a9a">302</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Van Dijk, J</author><author>Sargison, ND</author><author>Kenyon, F</author><author>Skuce, PJ</author></authors></contributors><titles><title>Climate change and infectious disease: helminthological challenges to farmed ruminants in temperate regions</title><secondary-title>Animal</secondary-title></titles><periodical><full-title>animal</full-title></periodical><pages>377-392</pages><volume>4</volume><number>3</number><dates><year>2010</year></dates><isbn>1751-732X</isbn><urls></urls></record></Cite></EndNote>(Van Dijk et al., 2010). The prevalence of fasciola infections may increase in areas where rainfall increases and create water bodies for snail’s survival as intermediate host of F.hepatica ADDIN EN.CITE <EndNote><Cite><Author>Van den Bossche</Author><Year>2008</Year><RecNum>234</RecNum><DisplayText>(Van den Bossche and Coetzer, 2008)</DisplayText><record><rec-number>234</rec-number><foreign-keys><key app="EN" db-id="0p9z9txwmeetx2efvr0pxt9oearef0a59a9a">234</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Van den Bossche, P</author><author>Coetzer, JA</author></authors></contributors><titles><title>Climate change and animal health in Africa</title><secondary-title>Rev Sci Tech</secondary-title></titles><periodical><full-title>Rev Sci Tech</full-title></periodical><pages>551-562</pages><volume>27</volume><number>2</number><dates><year>2008</year></dates><urls></urls></record></Cite></EndNote>(Van den Bossche and Coetzer, 2008).Filariasis: - Another parasitic disease with mosquito vector at a similar risk of spreading with a changing climate is lymphatic filariasis. The distribution of lymphatic filariasis can be determined by looking at soil and plant canopy moisture levels because these can indicate the presence of mosquito larvae breeding sites ADDIN EN.CITE <EndNote><Cite><Author>Thompson</Author><Year>1996</Year><RecNum>296</RecNum><DisplayText>(Thompson et al., 1996)</DisplayText><record><rec-number>296</rec-number><foreign-keys><key app="EN" db-id="0p9z9txwmeetx2efvr0pxt9oearef0a59a9a">296</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Thompson, Donald F</author><author>Malone, John B</author><author>Harb, Mustafa</author><author>Faris, Rifki</author><author>Huh, Oscar K</author><author>Buck, Alfred A</author><author>Cline, Barnett L</author></authors></contributors><titles><title>Bancroftian filariasis distribution and diurnal temperature differences in the southern Nile delta</title><secondary-title>Emerging infectious diseases</secondary-title></titles><periodical><full-title>Emerging infectious diseases</full-title></periodical><pages>234</pages><volume>2</volume><number>3</number><dates><year>1996</year></dates><urls></urls></record></Cite></EndNote>(Thompson et al., 1996). Global warming would extend the areas populated by the mosquito vector(s) of lymphatic filariasis; however, resultant socioeconomic factors are likely to be more important as disease determinants worldwide ADDIN EN.CITE <EndNote><Cite><Author>Fischlin</Author><Year>2007</Year><RecNum>211</RecNum><DisplayText>(Fischlin, 2007)</DisplayText><record><rec-number>211</rec-number><foreign-keys><key app="EN" db-id="0p9z9txwmeetx2efvr0pxt9oearef0a59a9a">211</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Fischlin, E</author></authors></contributors><titles><title>Chapter 4: Ecosystem, their properties, goods and Services</title><secondary-title>Executive Summary</secondary-title></titles><periodical><full-title>Executive Summary</full-title></periodical><pages>213</pages><dates><year>2007</year></dates><urls></urls></record></Cite></EndNote>(Fischlin, 2007). The specific vector (Simulium spp) for onchocerciasis is not at present invading certain areas which are climatically suitable ADDIN EN.CITE <EndNote><Cite><Author>Ottersen</Author><Year>2001</Year><RecNum>275</RecNum><DisplayText>(Ottersen et al., 2001)</DisplayText><record><rec-number>275</rec-number><foreign-keys><key app="EN" db-id="0p9z9txwmeetx2efvr0pxt9oearef0a59a9a">275</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Ottersen, Geir</author><author>Planque, Benjamin</author><author>Belgrano, Andrea</author><author>Post, Eric</author><author>Reid, Philip C</author><author>Stenseth, Nils C</author></authors></contributors><titles><title>Ecological effects of the North Atlantic oscillation</title><secondary-title>Oecologia</secondary-title></titles><periodical><full-title>Oecologia</full-title></periodical><pages>1-14</pages><volume>128</volume><number>1</number><dates><year>2001</year></dates><isbn>0029-8549</isbn><urls></urls></record></Cite></EndNote>(Ottersen et al., 2001), therefore, although minor shifts in this disease -might result from climatic change, major ones seem unlikely.Dirofilariases: - Several filarid species infect dogs and cats worldwide. Dirofilaria immitis and D. repens are the most prevalent species and are the agents of cardiopulmonary and subcutaneous dirofilariasis, respectively. Furthermore, where this disease is endemic, humans are at risk of developing pulmonary and subcutaneous lesions, mainly caused by D. immitis ADDIN EN.CITE <EndNote><Cite><Author>Genchi</Author><Year>2001</Year><RecNum>222</RecNum><DisplayText>(Genchi et al., 2001)</DisplayText><record><rec-number>222</rec-number><foreign-keys><key app="EN" db-id="0p9z9txwmeetx2efvr0pxt9oearef0a59a9a">222</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Genchi, C</author><author>Kramer, LH</author><author>Prieto, G</author></authors></contributors><titles><title>Epidemiology of canine and feline dirofilariasis: a global view</title><secondary-title>Heartworm infection in humans and animals</secondary-title></titles><periodical><full-title>Heartworm infection in humans and animals</full-title></periodical><pages>121-133</pages><dates><year>2001</year></dates><urls></urls></record></Cite></EndNote>(Genchi et al., 2001). Mosquito species of the genera Culex, Culiseta, Aedes, Anopheles and Coquilletidia have been incriminated in transmission. These filarids show very low mosquito specificity ADDIN EN.CITE <EndNote><Cite><Author>Cancrini</Author><Year>2001</Year><RecNum>203</RecNum><DisplayText>(Cancrini and Kramer, 2001)</DisplayText><record><rec-number>203</rec-number><foreign-keys><key app="EN" db-id="0p9z9txwmeetx2efvr0pxt9oearef0a59a9a">203</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Cancrini, G</author><author>Kramer, LH</author></authors></contributors><titles><title>Insect vectors of Dirofilaria spp</title><secondary-title>Heartworm infection in humans and animals</secondary-title></titles><periodical><full-title>Heartworm infection in humans and animals</full-title></periodical><pages>63</pages><volume>78</volume><dates><year>2001</year></dates><isbn>8478008616</isbn><urls></urls></record></Cite></EndNote>(Cancrini and Kramer, 2001) very low prevalences at vector level (0.3% to 8.6% in D. immitis) ADDIN EN.CITE <EndNote><Cite><Author>Bargues</Author><Year>2006</Year><RecNum>199</RecNum><DisplayText>(Bargues et al., 2006)</DisplayText><record><rec-number>199</rec-number><foreign-keys><key app="EN" db-id="0p9z9txwmeetx2efvr0pxt9oearef0a59a9a">199</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Bargues, MD</author><author>Morchon, R</author><author>Latorre, JM</author><author>Cancrini, G</author><author>Mas-Coma, S</author><author>Simón, F</author></authors></contributors><titles><title>Ribosomal DNA second internal transcribed spacer sequence studies of Culicid vectors from an endemic area of Dirofilaria immitis in Spain</title><secondary-title>Parasitology research</secondary-title></titles><periodical><full-title>Parasitology research</full-title></periodical><pages>205</pages><volume>99</volume><number>3</number><dates><year>2006</year></dates><isbn>0932-0113</isbn><urls></urls></record></Cite></EndNote>(Bargues et al., 2006). The existence of appropriate climatic conditions to support abundant mosquito populations and filarid larval development are key factors in the spread of these organisms ADDIN EN.CITE <EndNote><Cite><Author>Genchi</Author><Year>2001</Year><RecNum>222</RecNum><DisplayText>(Genchi et al., 2001)</DisplayText><record><rec-number>222</rec-number><foreign-keys><key app="EN" db-id="0p9z9txwmeetx2efvr0pxt9oearef0a59a9a">222</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Genchi, C</author><author>Kramer, LH</author><author>Prieto, G</author></authors></contributors><titles><title>Epidemiology of canine and feline dirofilariasis: a global view</title><secondary-title>Heartworm infection in humans and animals</secondary-title></titles><periodical><full-title>Heartworm infection in humans and animals</full-title></periodical><pages>121-133</pages><dates><year>2001</year></dates><urls></urls></record></Cite></EndNote>(Genchi et al., 2001). Culex species are able to adapt to widely differing environments, including urbanisation and polluted habitats. Moreover, the filarids can adapt to species that have been recently introduced, such as Aedes albopictus in southern Europe ADDIN EN.CITE <EndNote><Cite><Author>Cancrini</Author><Year>2001</Year><RecNum>203</RecNum><DisplayText>(Cancrini and Kramer, 2001)</DisplayText><record><rec-number>203</rec-number><foreign-keys><key app="EN" db-id="0p9z9txwmeetx2efvr0pxt9oearef0a59a9a">203</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Cancrini, G</author><author>Kramer, LH</author></authors></contributors><titles><title>Insect vectors of Dirofilaria spp</title><secondary-title>Heartworm infection in humans and animals</secondary-title></titles><periodical><full-title>Heartworm infection in humans and animals</full-title></periodical><pages>63</pages><volume>78</volume><dates><year>2001</year></dates><isbn>8478008616</isbn><urls></urls></record></Cite></EndNote>(Cancrini and Kramer, 2001). Therefore, the introduction of new competent vector species into an endemic area as a consequence of climatic change could increase the risk of infection ADDIN EN.CITE <EndNote><Cite><Author>Romi</Author><Year>2001</Year><RecNum>281</RecNum><DisplayText>(Romi, 2001)</DisplayText><record><rec-number>281</rec-number><foreign-keys><key app="EN" db-id="0p9z9txwmeetx2efvr0pxt9oearef0a59a9a">281</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Romi, R</author></authors></contributors><titles><title>Aedes albopictus in Italy: an underestimated health problem</title><secondary-title>Annali dell&apos;Istituto superiore di sanit?</secondary-title></titles><periodical><full-title>Annali dell&apos;Istituto superiore di sanit?</full-title></periodical><pages>241-247</pages><volume>37</volume><number>2</number><dates><year>2001</year></dates><isbn>0021-2571</isbn><urls></urls></record></Cite></EndNote>(Romi, 2001).Protostrongyliases: - Protostrongylids have indirect life cycles, in which first stage larvae are shed in the faeces of the mammalian definitive host, invade an intermediate gastropod host, and develop to infective third-stage larvae. This larval development within the poikilothermic mollusc is temperature dependent. Additionally, alterations in temperature, precipitation or vegetation could modify the geographical distribution, density or survival of mammalian or gastropod hosts, and larval survival, thus amplifying parasite populations and ultimately influencing host population health ADDIN EN.CITE <EndNote><Cite><Author>Kutz</Author><Year>2001</Year><RecNum>251</RecNum><DisplayText>(Kutz et al., 2001)</DisplayText><record><rec-number>251</rec-number><foreign-keys><key app="EN" db-id="0p9z9txwmeetx2efvr0pxt9oearef0a59a9a">251</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Kutz, Susan J</author><author>Hoberg, Eric P</author><author>Polley, Lydden</author></authors></contributors><titles><title>Umingmakstrongylus pallikuukensis (Nematoda: Protostrongylidae) in gastropods: larval morphology, morphometrics, and development rates</title><secondary-title>Journal of Parasitology</secondary-title></titles><periodical><full-title>Journal of Parasitology</full-title></periodical><pages>527-535</pages><volume>87</volume><number>3</number><dates><year>2001</year></dates><isbn>0022-3395</isbn><urls></urls></record></Cite></EndNote>(Kutz et al., 2001). Moreover, climate warming may increase the number of years when development within one summer is possible, facilitating a shift from a multi- to a one-year cycle ADDIN EN.CITE <EndNote><Cite><Author>Kutz</Author><Year>2005</Year><RecNum>253</RecNum><DisplayText>(Kutz et al., 2005)</DisplayText><record><rec-number>253</rec-number><foreign-keys><key app="EN" db-id="0p9z9txwmeetx2efvr0pxt9oearef0a59a9a">253</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Kutz, SJ</author><author>Hoberg, Eric P</author><author>Polley, Lydden</author><author>Jenkins, EJ</author></authors></contributors><titles><title>Global warming is changing the dynamics of Arctic host–parasite systems</title><secondary-title>Proceedings of the Royal Society of London B: Biological Sciences</secondary-title></titles><periodical><full-title>Proceedings of the Royal Society of London B: Biological Sciences</full-title></periodical><pages>2571-2576</pages><volume>272</volume><number>1581</number><dates><year>2005</year></dates><isbn>0962-8452</isbn><urls></urls></record></Cite></EndNote>(Kutz et al., 2005).Echinococcosis is a disease caused by Echinococcus granulosus, with a life cycle requiring no arthropod vectors. However, this parasite does not have a specific intermediate host, rather it uses a variety of organisms such as the fox, cat, dog ADDIN EN.CITE <EndNote><Cite><Author>Polley</Author><Year>2009</Year><RecNum>277</RecNum><DisplayText>(Polley and Thompson, 2009)</DisplayText><record><rec-number>277</rec-number><foreign-keys><key app="EN" db-id="0p9z9txwmeetx2efvr0pxt9oearef0a59a9a">277</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Polley, Lydden</author><author>Thompson, RC Andrew</author></authors></contributors><titles><title>Parasite zoonoses and climate change: molecular tools for tracking shifting boundaries</title><secondary-title>Trends in Parasitology</secondary-title></titles><periodical><full-title>Trends in Parasitology</full-title></periodical><pages>285-291</pages><volume>25</volume><number>6</number><dates><year>2009</year></dates><isbn>1471-4922</isbn><urls></urls></record></Cite></EndNote>(Polley and Thompson, 2009). Unfortunately, this parasite has been able to use the raccoon dog as a definitive host, allowing it to expand its geographical range, thus further expanding the range of Echinococcus as well. Even without a host, some parasites can survive in resistant, dormant stages until a suitable host is found, and a warmer climate will definitely assist to perpetuate those stages ADDIN EN.CITE <EndNote><Cite><Author>Polley</Author><Year>2009</Year><RecNum>277</RecNum><DisplayText>(Polley and Thompson, 2009)</DisplayText><record><rec-number>277</rec-number><foreign-keys><key app="EN" db-id="0p9z9txwmeetx2efvr0pxt9oearef0a59a9a">277</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Polley, Lydden</author><author>Thompson, RC Andrew</author></authors></contributors><titles><title>Parasite zoonoses and climate change: molecular tools for tracking shifting boundaries</title><secondary-title>Trends in Parasitology</secondary-title></titles><periodical><full-title>Trends in Parasitology</full-title></periodical><pages>285-291</pages><volume>25</volume><number>6</number><dates><year>2009</year></dates><isbn>1471-4922</isbn><urls></urls></record></Cite></EndNote>(Polley and Thompson, 2009). 3.3. Impact of Climatic Change on Non Vector-Borne Parasitoses The effect of climate change on the distribution and prevalence of non-vector borne diseases varies greatly ADDIN EN.CITE <EndNote><Cite><Author>Van den Bossche</Author><Year>2008</Year><RecNum>234</RecNum><DisplayText>(Van den Bossche and Coetzer, 2008)</DisplayText><record><rec-number>234</rec-number><foreign-keys><key app="EN" db-id="0p9z9txwmeetx2efvr0pxt9oearef0a59a9a">234</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Van den Bossche, P</author><author>Coetzer, JA</author></authors></contributors><titles><title>Climate change and animal health in Africa</title><secondary-title>Rev Sci Tech</secondary-title></titles><periodical><full-title>Rev Sci Tech</full-title></periodical><pages>551-562</pages><volume>27</volume><number>2</number><dates><year>2008</year></dates><urls></urls></record></Cite></EndNote>(Van den Bossche and Coetzer, 2008). Changes in the environmental condition resulted directly or indirectly by the climatic change can increase or reduce the survival of the pathogen agent in the environment or predispose the susceptible animal to the infection. These environmental changes could also increase or reduce contact between infected and susceptible animals. Pathogens which spend a period outside the host are sensitive to changes in temperature and humidity ADDIN EN.CITE <EndNote><Cite><Author>Van den Bossche</Author><Year>2008</Year><RecNum>234</RecNum><DisplayText>(Van den Bossche and Coetzer, 2008)</DisplayText><record><rec-number>234</rec-number><foreign-keys><key app="EN" db-id="0p9z9txwmeetx2efvr0pxt9oearef0a59a9a">234</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Van den Bossche, P</author><author>Coetzer, JA</author></authors></contributors><titles><title>Climate change and animal health in Africa</title><secondary-title>Rev Sci Tech</secondary-title></titles><periodical><full-title>Rev Sci Tech</full-title></periodical><pages>551-562</pages><volume>27</volume><number>2</number><dates><year>2008</year></dates><urls></urls></record></Cite></EndNote>(Van den Bossche and Coetzer, 2008).Various reports indicate that the impact of climate change on helminthes is more patent in temperate and colder areas as well as in high altitude. The influence of climate change is manifested directly to free-living larval stages and indirectly mainly on invertebrate, but also vertebrate hosts ADDIN EN.CITE <EndNote><Cite><Author>Mas-Coma</Author><Year>2008</Year><RecNum>264</RecNum><DisplayText>(Mas-Coma et al., 2008)</DisplayText><record><rec-number>264</rec-number><foreign-keys><key app="EN" db-id="0p9z9txwmeetx2efvr0pxt9oearef0a59a9a">264</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Mas-Coma, S</author><author>Valero, MA</author><author>Bargues, MD</author></authors></contributors><titles><title>Effects of climate change on animal and zoonotic helminthiases</title><secondary-title>Rev Sci Tech</secondary-title></titles><periodical><full-title>Rev Sci Tech</full-title></periodical><pages>443-57</pages><volume>27</volume><number>2</number><dates><year>2008</year></dates><urls></urls></record></Cite></EndNote>(Mas-Coma et al., 2008). Macroscopic parasites directly interact with their environments when part of their life cycle occurs outside of a host. Helminthes such as hookworms, are present in soils before infecting a host, and certain soil components may be fundamentally altered by a changing climate ADDIN EN.CITE <EndNote><Cite><Author>Weaver</Author><Year>2010</Year><RecNum>303</RecNum><DisplayText>(Weaver et al., 2010)</DisplayText><record><rec-number>303</rec-number><foreign-keys><key app="EN" db-id="0p9z9txwmeetx2efvr0pxt9oearef0a59a9a">303</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Weaver, Haylee J</author><author>Hawdon, John M</author><author>Hoberg, Eric P</author></authors></contributors><titles><title>Soil-transmitted helminthiases: implications of climate change and human behavior</title><secondary-title>Trends in parasitology</secondary-title></titles><periodical><full-title>Trends in Parasitology</full-title></periodical><pages>574-581</pages><volume>26</volume><number>12</number><dates><year>2010</year></dates><isbn>1471-4922</isbn><urls></urls></record></Cite></EndNote>(Weaver et al., 2010).Heterakiasis:- Heterakis gallinarum is a caecal pseudogeohelminth parasite of chickens and related bird species. This nematode is transmitted by eggs that become infective for a new definitive host after larval development inside the egg in the external environment. In a study of the egg development rates of this parasite, a temperature increase resulted in a linear increase in the development rate ADDIN EN.CITE <EndNote><Cite><Author>Saunders</Author><Year>2002</Year><RecNum>285</RecNum><DisplayText>(Saunders et al., 2002)</DisplayText><record><rec-number>285</rec-number><foreign-keys><key app="EN" db-id="0p9z9txwmeetx2efvr0pxt9oearef0a59a9a">285</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Saunders, LM</author><author>Tompkins, DM</author><author>Hudson, PJ</author></authors></contributors><titles><title>Stochasticity accelerates nematode egg development</title><secondary-title>Journal of Parasitology</secondary-title></titles><periodical><full-title>Journal of Parasitology</full-title></periodical><pages>1271-1272</pages><volume>88</volume><number>6</number><dates><year>2002</year></dates><isbn>0022-3395</isbn><urls></urls></record></Cite></EndNote>(Saunders et al., 2002). However, when the parasite was subjected to a daily temperature cycle, development started significantly earlier than that expected from the model. Moreover, the development time of eggs placed in stochastic temperature fluctuations with the same thermal energy as the cycle was also significantly reduced, indicating that fluctuations in temperature, particularly increased variation, can accelerate parasite development rates ADDIN EN.CITE <EndNote><Cite><Author>Saunders</Author><Year>2002</Year><RecNum>285</RecNum><DisplayText>(Saunders et al., 2002)</DisplayText><record><rec-number>285</rec-number><foreign-keys><key app="EN" db-id="0p9z9txwmeetx2efvr0pxt9oearef0a59a9a">285</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Saunders, LM</author><author>Tompkins, DM</author><author>Hudson, PJ</author></authors></contributors><titles><title>Stochasticity accelerates nematode egg development</title><secondary-title>Journal of Parasitology</secondary-title></titles><periodical><full-title>Journal of Parasitology</full-title></periodical><pages>1271-1272</pages><volume>88</volume><number>6</number><dates><year>2002</year></dates><isbn>0022-3395</isbn><urls></urls></record></Cite></EndNote>(Saunders et al., 2002).Trichostrongyliases:- Trichostrongylids are soil-transmitted geohelminths that are excellent models for studies on the effects of climate change. Studies suggest that mean parasite intensities will increase with climate warming for parasites that affect host species lacking a strong acquired immune response, e.g. the rabbit stomach trichostrongylid Graphidium strigosum and the red grouse caecal Trichostrongylus tenuis, but there will be only minor effects on species that stimulate an acquired response, e.g. the rabbit small intestinal Trichostrongylus retortaeformis ADDIN EN.CITE <EndNote><Cite><Author>Hudson</Author><Year>2006</Year><RecNum>227</RecNum><DisplayText>(Hudson et al., 2006)</DisplayText><record><rec-number>227</rec-number><foreign-keys><key app="EN" db-id="0p9z9txwmeetx2efvr0pxt9oearef0a59a9a">227</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Hudson, PJ</author><author>Cattadori, IM</author><author>Boag, B</author><author>Dobson, AP</author></authors></contributors><titles><title>Climate disruption and parasite–host dynamics: patterns and processes associated with warming and the frequency of extreme climatic events</title><secondary-title>Journal of helminthology</secondary-title></titles><periodical><full-title>Journal of Helminthology</full-title></periodical><pages>175-182</pages><volume>80</volume><number>2</number><dates><year>2006</year></dates><isbn>1475-2697</isbn><urls></urls></record></Cite></EndNote>(Hudson et al., 2006).Ancylostomiases:- Climate change may have a considerable impact on ancylostomid species of cats and dogs that are transmitted by free-living larvae. Ancylostoma braziliense, A. caninum, A. ceylanicum , more sporadically, Uncinaria stenocephala cause cutaneous larva migrans in humans ADDIN EN.CITE <EndNote><Cite><Author>Astrup</Author><Year>1945</Year><RecNum>309</RecNum><DisplayText>(Astrup, 1945)</DisplayText><record><rec-number>309</rec-number><foreign-keys><key app="EN" db-id="0p9z9txwmeetx2efvr0pxt9oearef0a59a9a">309</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Astrup, A</author></authors></contributors><titles><title>Uncinaria Stenocephala as a Cause of Skin Disease in Man</title><secondary-title>Acta Dermato-Venereologica</secondary-title></titles><periodical><full-title>Acta Dermato-Venereologica</full-title></periodical><pages>389-92</pages><volume>25</volume><number>5</number><dates><year>1945</year></dates><isbn>0001-5555</isbn><urls></urls></record></Cite></EndNote>(Astrup, 1945).Other helminthess such as hookworms, Ascaris lumbricoides, and Trichuris trichuria are present in soils before infecting a host, and certain soil components may be fundamentally altered by a changing climate ADDIN EN.CITE <EndNote><Cite><Author>Weaver</Author><Year>2010</Year><RecNum>303</RecNum><DisplayText>(Weaver et al., 2010)</DisplayText><record><rec-number>303</rec-number><foreign-keys><key app="EN" db-id="0p9z9txwmeetx2efvr0pxt9oearef0a59a9a">303</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Weaver, Haylee J</author><author>Hawdon, John M</author><author>Hoberg, Eric P</author></authors></contributors><titles><title>Soil-transmitted helminthiases: implications of climate change and human behavior</title><secondary-title>Trends in parasitology</secondary-title></titles><periodical><full-title>Trends in Parasitology</full-title></periodical><pages>574-581</pages><volume>26</volume><number>12</number><dates><year>2010</year></dates><isbn>1471-4922</isbn><urls></urls></record></Cite></EndNote>(Weaver et al., 2010). According to the study by Weaver et al. higher temperatures, precipitation and humidity are positively associated with development of hookworm. Higher temperature can cause faster larvae development and development within eggs for hookworms, which ultimately decreases their time to infectivity. Increased precipitation levels could prevent desiccation of eggs/larvae thus allowing greater survival rates of these parasites. Similarly, increased humidity levels would increase larval survival in soil, especially for hookworms as their larvae are at a greater risk of desiccation compared with other helminth species ADDIN EN.CITE <EndNote><Cite><Author>Weaver</Author><Year>2010</Year><RecNum>303</RecNum><DisplayText>(Weaver et al., 2010)</DisplayText><record><rec-number>303</rec-number><foreign-keys><key app="EN" db-id="0p9z9txwmeetx2efvr0pxt9oearef0a59a9a">303</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Weaver, Haylee J</author><author>Hawdon, John M</author><author>Hoberg, Eric P</author></authors></contributors><titles><title>Soil-transmitted helminthiases: implications of climate change and human behavior</title><secondary-title>Trends in parasitology</secondary-title></titles><periodical><full-title>Trends in Parasitology</full-title></periodical><pages>574-581</pages><volume>26</volume><number>12</number><dates><year>2010</year></dates><isbn>1471-4922</isbn><urls></urls></record></Cite></EndNote>(Weaver et al., 2010).A good number of non-vector-borne diseases are related either directly or indirectly, to the quality and quantity of the water supply. In developing countries, global warming will inevitably expand to areas where sanitation is substandard; water availability would be reduced ADDIN EN.CITE <EndNote><Cite><Author>Stenseth</Author><Year>2002</Year><RecNum>294</RecNum><DisplayText>(Stenseth et al., 2002)</DisplayText><record><rec-number>294</rec-number><foreign-keys><key app="EN" db-id="0p9z9txwmeetx2efvr0pxt9oearef0a59a9a">294</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Stenseth, Nils C</author><author>Mysterud, Atle</author><author>Ottersen, Geir</author><author>Hurrell, James W</author><author>Chan, Kung-Sik</author><author>Lima, Mauricio</author></authors></contributors><titles><title>Ecological effects of climate fluctuations</title><secondary-title>Science</secondary-title></titles><periodical><full-title>science</full-title></periodical><pages>1292-1296</pages><volume>297</volume><number>5585</number><dates><year>2002</year></dates><isbn>0036-8075</isbn><urls></urls></record></Cite></EndNote>(Stenseth et al., 2002). Protozoa that are exposed directly to the environment undergo a cyst or oocysts stage as a part of their life cycle, these stages providing varying degrees of resilience for the parasite and allowing its viability outside of a host species. Giardiasis, cryptosporidiosis, amebiasis, and toxoplasmosis can all be transmitted through contaminated drinking water ADDIN EN.CITE <EndNote><Cite><Author>Hunter</Author><Year>2003</Year><RecNum>228</RecNum><DisplayText>(Hunter, 2003)</DisplayText><record><rec-number>228</rec-number><foreign-keys><key app="EN" db-id="0p9z9txwmeetx2efvr0pxt9oearef0a59a9a">228</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Hunter, PR</author></authors></contributors><titles><title>Climate change and waterborne and vector‐borne disease</title><secondary-title>Journal of applied microbiology</secondary-title></titles><periodical><full-title>Journal of applied microbiology</full-title></periodical><pages>37-46</pages><volume>94</volume><dates><year>2003</year></dates><isbn>1364-5072</isbn><urls></urls></record></Cite></EndNote>(Hunter, 2003). For instance, animal fertilizers, as well as human biosolids used as fertilizers, have the potential to contain parasitic cysts and oocysts. Heavy rainfall events, which may increase in frequency and intensity due to climate change, will more often wash fertilizers into local waterways ADDIN EN.CITE <EndNote><Cite><Author>Joseph</Author><Year>1991</Year><RecNum>241</RecNum><DisplayText>(Joseph et al., 1991)</DisplayText><record><rec-number>241</rec-number><foreign-keys><key app="EN" db-id="0p9z9txwmeetx2efvr0pxt9oearef0a59a9a">241</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Joseph, C</author><author>Hamilton, G</author><author>O&apos;Connors, M</author><author>Nicholas, S</author><author>Marshall, R</author><author>Stanwell-Smith, R</author><author>Sims, R</author><author>Ndawula, E</author><author>Casemore, U</author><author>Gallagher, P</author></authors></contributors><titles><title>Cryptosporidiosis in the Isle of Thanet; an outbreak associated with local drinking water</title><secondary-title>Epidemiology &amp; Infection</secondary-title></titles><periodical><full-title>Epidemiology &amp; Infection</full-title></periodical><pages>509-519</pages><volume>107</volume><number>3</number><dates><year>1991</year></dates><isbn>1469-4409</isbn><urls></urls></record></Cite></EndNote>(Joseph et al., 1991). Heavy rainfall events can also simply extract cysts and oocysts from soil and grass ADDIN EN.CITE <EndNote><Cite><Author>Smith</Author><Year>1989</Year><RecNum>291</RecNum><DisplayText>(Smith et al., 1989)</DisplayText><record><rec-number>291</rec-number><foreign-keys><key app="EN" db-id="0p9z9txwmeetx2efvr0pxt9oearef0a59a9a">291</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Smith, HV</author><author>Patterson, WJ</author><author>Hardie, R</author><author>Greene, LA</author><author>Benton, C</author><author>Tulloch, W</author><author>Gilmour, RA</author><author>Girdwood, RWA</author><author>Sharp, JCM</author><author>Forbes, GI</author></authors></contributors><titles><title>An outbreak of waterborne cryptosporidiosis caused by post-treatment contamination</title><secondary-title>Epidemiology &amp; Infection</secondary-title></titles><periodical><full-title>Epidemiology &amp; Infection</full-title></periodical><pages>703-715</pages><volume>103</volume><number>3</number><dates><year>1989</year></dates><isbn>1469-4409</isbn><urls></urls></record></Cite></EndNote>(Smith et al., 1989) and these events have been associated with outbreaks of cryptosporidiosis and giardiasis ADDIN EN.CITE <EndNote><Cite><Author>Hunter</Author><Year>2003</Year><RecNum>228</RecNum><DisplayText>(Hunter, 2003, Joseph et al., 1991)</DisplayText><record><rec-number>228</rec-number><foreign-keys><key app="EN" db-id="0p9z9txwmeetx2efvr0pxt9oearef0a59a9a">228</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Hunter, PR</author></authors></contributors><titles><title>Climate change and waterborne and vector‐borne disease</title><secondary-title>Journal of applied microbiology</secondary-title></titles><periodical><full-title>Journal of applied microbiology</full-title></periodical><pages>37-46</pages><volume>94</volume><dates><year>2003</year></dates><isbn>1364-5072</isbn><urls></urls></record></Cite><Cite><Author>Joseph</Author><Year>1991</Year><RecNum>241</RecNum><record><rec-number>241</rec-number><foreign-keys><key app="EN" db-id="0p9z9txwmeetx2efvr0pxt9oearef0a59a9a">241</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Joseph, C</author><author>Hamilton, G</author><author>O&apos;Connors, M</author><author>Nicholas, S</author><author>Marshall, R</author><author>Stanwell-Smith, R</author><author>Sims, R</author><author>Ndawula, E</author><author>Casemore, U</author><author>Gallagher, P</author></authors></contributors><titles><title>Cryptosporidiosis in the Isle of Thanet; an outbreak associated with local drinking water</title><secondary-title>Epidemiology &amp; Infection</secondary-title></titles><periodical><full-title>Epidemiology &amp; Infection</full-title></periodical><pages>509-519</pages><volume>107</volume><number>3</number><dates><year>1991</year></dates><isbn>1469-4409</isbn><urls></urls></record></Cite></EndNote>(Hunter, 2003, Joseph et al., 1991). Insufficient water-availability also favours transmission (inadequate hand washing and personal hygiene) ADDIN EN.CITE <EndNote><Cite><Author>Weaver</Author><Year>2010</Year><RecNum>303</RecNum><DisplayText>(Weaver et al., 2010)</DisplayText><record><rec-number>303</rec-number><foreign-keys><key app="EN" db-id="0p9z9txwmeetx2efvr0pxt9oearef0a59a9a">303</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Weaver, Haylee J</author><author>Hawdon, John M</author><author>Hoberg, Eric P</author></authors></contributors><titles><title>Soil-transmitted helminthiases: implications of climate change and human behavior</title><secondary-title>Trends in parasitology</secondary-title></titles><periodical><full-title>Trends in Parasitology</full-title></periodical><pages>574-581</pages><volume>26</volume><number>12</number><dates><year>2010</year></dates><isbn>1471-4922</isbn><urls></urls></record></Cite></EndNote>(Weaver et al., 2010).3.4. Impact of Climate Change on Parasitic Diseases in East AfricaDiseases in livestock result in severe effects on livestock survival, marketability, animal health livelihoods ADDIN EN.CITE <EndNote><Cite><Author>Kimaro</Author><Year>2013</Year><RecNum>229</RecNum><DisplayText>(Kimaro and Chibinga, 2013)</DisplayText><record><rec-number>229</rec-number><foreign-keys><key app="EN" db-id="0p9z9txwmeetx2efvr0pxt9oearef0a59a9a">229</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Kimaro, EG</author><author>Chibinga, OC</author></authors></contributors><titles><title>Potential impact of climate change on livestock production and health in East Africa: A review</title><secondary-title>Livestock Research for Rural Development</secondary-title></titles><periodical><full-title>Livestock Research for Rural Development</full-title></periodical><pages>5</pages><volume>25</volume><number>7</number><dates><year>2013</year></dates><urls></urls></record></Cite></EndNote>(Kimaro and Chibinga, 2013). The impact of climate change on the transmission geographical distribution of animal diseases shows that this has been associated with changes in the replication rate, dissemination of pathogens, vector animal host populations, which are sensitive to changing temperature rainfall ADDIN EN.CITE <EndNote><Cite><Author>Laisser</Author><Year>2017</Year><RecNum>244</RecNum><DisplayText>(Laisser et al., 2017)</DisplayText><record><rec-number>244</rec-number><foreign-keys><key app="EN" db-id="0p9z9txwmeetx2efvr0pxt9oearef0a59a9a">244</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Laisser, ELK</author><author>Chenyambuga, SW</author><author>Karimuribo, ED</author><author>Msalya, G</author><author>Kipanyula, MJ</author><author>Mwilawa, AJ</author><author>Mdegela, RH</author><author>Kusiluka, LJM</author></authors></contributors><titles><title>A review on prevalence, control measure, and tolerance of Tanzania Shorthorn Zebu cattle to East Coast fever in Tanzania</title><secondary-title>Tropical animal health and production</secondary-title></titles><periodical><full-title>Tropical Animal Health and Production</full-title></periodical><pages>813-822</pages><volume>49</volume><number>4</number><dates><year>2017</year></dates><isbn>0049-4747</isbn><urls></urls></record></Cite></EndNote>(Laisser et al., 2017).The tropical African climate is favourable to most major vector-borne diseases, including malaria, schistosomiasis, onchocerciasis, trypanosomosis, filariasis, leishmaniasis, plague, Rift Valley fever, yellow fever and tick-borne haemorrhagic fevers. These organisms have different sensitivities to temperature and precipitation. Precipitation appears to be increasing in east Africa but decreasing in west and North Africa ADDIN EN.CITE <EndNote><Cite><Author>Carter</Author><Year>1999</Year><RecNum>206</RecNum><DisplayText>(Carter and Hulme, 1999)</DisplayText><record><rec-number>206</rec-number><foreign-keys><key app="EN" db-id="0p9z9txwmeetx2efvr0pxt9oearef0a59a9a">206</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Carter, TR</author><author>Hulme, M</author></authors></contributors><titles><title>Interim characterizations of regional climate and related changes up to 2100 associated with the provisional SRES emissions scenarios: guidance for lead authors of the IPCC Working Group II Third Assessment Report</title><secondary-title>Washington, DC, IPCC Working Group II Technical Support Unit</secondary-title></titles><periodical><full-title>Washington, DC, IPCC Working Group II Technical Support Unit</full-title></periodical><dates><year>1999</year></dates><urls></urls></record></Cite></EndNote>(Carter and Hulme, 1999). Climate change will have short- and long-term impacts on disease transmission. For example, a short-term increase in temperature and rainfall, as was seen in the 1997–98 El Nino an example of inter-annual climate variability caused Plasmodium falciparum malaria epidemics ADDIN EN.CITE <EndNote><Cite><Author>Kovats</Author><Year>2000</Year><RecNum>232</RecNum><DisplayText>(Kovats, 2000)</DisplayText><record><rec-number>232</rec-number><foreign-keys><key app="EN" db-id="0p9z9txwmeetx2efvr0pxt9oearef0a59a9a">232</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Kovats, R Sari</author></authors></contributors><titles><title>El Ni?o and human health</title><secondary-title>Bulletin of the World Health Organization</secondary-title></titles><periodical><full-title>Bulletin of the World Health Organization</full-title></periodical><pages>1127-1135</pages><volume>78</volume><dates><year>2000</year></dates><isbn>0042-9686</isbn><urls></urls></record></Cite></EndNote>(Kovats, 2000) and Rift Valley fever ADDIN EN.CITE <EndNote><Cite><Author>Linthicum</Author><Year>1999</Year><RecNum>258</RecNum><DisplayText>(Linthicum et al., 1999)</DisplayText><record><rec-number>258</rec-number><foreign-keys><key app="EN" db-id="0p9z9txwmeetx2efvr0pxt9oearef0a59a9a">258</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Linthicum, Kenneth J</author><author>Anyamba, Assaf</author><author>Tucker, Compton J</author><author>Kelley, Patrick W</author><author>Myers, Monica F</author><author>Peters, Clarence J</author></authors></contributors><titles><title>Climate and satellite indicators to forecast Rift Valley fever epidemics in Kenya</title><secondary-title>Science</secondary-title></titles><periodical><full-title>science</full-title></periodical><pages>397-400</pages><volume>285</volume><number>5426</number><dates><year>1999</year></dates><isbn>0036-8075</isbn><urls></urls></record></Cite></EndNote>(Linthicum et al., 1999) in Kenya. Rift Valley fever (RVF) virus may survive in mosquito eggs for years, until a prolonged heavy rainfall facilitates an awakening of Aedes mosquitoes, feeding on ruminants and thus kick-starting a RVF outbreak ADDIN EN.CITE <EndNote><Cite><Author>Anyamba</Author><Year>2002</Year><RecNum>230</RecNum><DisplayText>(Anyamba et al., 2002)</DisplayText><record><rec-number>230</rec-number><foreign-keys><key app="EN" db-id="0p9z9txwmeetx2efvr0pxt9oearef0a59a9a">230</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Anyamba, Assaf</author><author>Linthicum, Kenneth J</author><author>Mahoney, Robert</author><author>Tucker, Compton J</author><author>Kelley, Patrick W</author></authors></contributors><titles><title>Mapping potential risk of Rift Valley fever outbreaks in African savannas using vegetation index time series data</title><secondary-title>Photogrammetric engineering and remote sensing</secondary-title></titles><periodical><full-title>Photogrammetric engineering and remote sensing</full-title></periodical><pages>137-145</pages><volume>68</volume><number>2</number><dates><year>2002</year></dates><isbn>0099-1112</isbn><urls></urls></record></Cite></EndNote>(Anyamba et al., 2002). Infected ruminants that end up in densely populated irrigation schemes may also attract mosquitoes feeding on humans and thus contribute to the transmission of RVF among humans. This may have been due to accelerated parasite development and an explosion of vector populations. However, these same changes reduced malaria transmission in the United Republic of Tanzania ADDIN EN.CITE <EndNote><Cite><Author>Lindsay</Author><Year>2000</Year><RecNum>257</RecNum><DisplayText>(Lindsay et al., 2000)</DisplayText><record><rec-number>257</rec-number><foreign-keys><key app="EN" db-id="0p9z9txwmeetx2efvr0pxt9oearef0a59a9a">257</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Lindsay, Steven W</author><author>B?dker, René</author><author>Malima, Robert</author><author>Msangeni, Hamisi A</author><author>Kisinza, Wiliam</author></authors></contributors><titles><title>Effect of 1997–98 EI Ni?o on highland malaria in Tanzania</title><secondary-title>The Lancet</secondary-title></titles><periodical><full-title>The Lancet</full-title></periodical><pages>989-990</pages><volume>355</volume><number>9208</number><dates><year>2000</year></dates><isbn>0140-6736</isbn><urls></urls></record></Cite></EndNote>(Lindsay et al., 2000). There is emerging evidence that, in addition to seasonal extreme climatic events, there is a general elevation of mean temperatures and, in some cases, precipitation ADDIN EN.CITE <EndNote><Cite><Author>Lindsay</Author><Year>2000</Year><RecNum>257</RecNum><DisplayText>(Lindsay et al., 2000)</DisplayText><record><rec-number>257</rec-number><foreign-keys><key app="EN" db-id="0p9z9txwmeetx2efvr0pxt9oearef0a59a9a">257</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Lindsay, Steven W</author><author>B?dker, René</author><author>Malima, Robert</author><author>Msangeni, Hamisi A</author><author>Kisinza, Wiliam</author></authors></contributors><titles><title>Effect of 1997–98 EI Ni?o on highland malaria in Tanzania</title><secondary-title>The Lancet</secondary-title></titles><periodical><full-title>The Lancet</full-title></periodical><pages>989-990</pages><volume>355</volume><number>9208</number><dates><year>2000</year></dates><isbn>0140-6736</isbn><urls></urls></record></Cite></EndNote>(Lindsay et al., 2000).Tsetse transmitted trypanasomiasis is one of the greatest diseases of economic importance in the region. This is a vector borne disease caused by a parasite called trypanosomes through vector know as tsetse flies. There are three major groups of vector depending on their habitats. It is predicted by 2050 a decline in all three groups’ habitats in their northern and southern fronts. However, in East Africa there is an increase in habitats. In addition, there is predicted to be an extended distribution of habitat suitability for the morsitans group in other places across Africa ADDIN EN.CITE <EndNote><Cite><Author>Laisser</Author><Year>2017</Year><RecNum>244</RecNum><DisplayText>(Laisser et al., 2017)</DisplayText><record><rec-number>244</rec-number><foreign-keys><key app="EN" db-id="0p9z9txwmeetx2efvr0pxt9oearef0a59a9a">244</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Laisser, ELK</author><author>Chenyambuga, SW</author><author>Karimuribo, ED</author><author>Msalya, G</author><author>Kipanyula, MJ</author><author>Mwilawa, AJ</author><author>Mdegela, RH</author><author>Kusiluka, LJM</author></authors></contributors><titles><title>A review on prevalence, control measure, and tolerance of Tanzania Shorthorn Zebu cattle to East Coast fever in Tanzania</title><secondary-title>Tropical animal health and production</secondary-title></titles><periodical><full-title>Tropical Animal Health and Production</full-title></periodical><pages>813-822</pages><volume>49</volume><number>4</number><dates><year>2017</year></dates><isbn>0049-4747</isbn><urls></urls></record></Cite></EndNote>(Laisser et al., 2017). The vectors are sensitive to warming because temperature can alter vector development rates, shifts their geographical distribution and alter transmission dynamics ADDIN EN.CITE <EndNote><Cite><Author>Moore</Author><Year>2012</Year><RecNum>268</RecNum><DisplayText>(Moore et al., 2012)</DisplayText><record><rec-number>268</rec-number><foreign-keys><key app="EN" db-id="0p9z9txwmeetx2efvr0pxt9oearef0a59a9a">268</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Moore, Sean</author><author>Shrestha, Sourya</author><author>Tomlinson, Kyle W</author><author>Vuong, Holly</author></authors></contributors><titles><title>Predicting the effect of climate change on African trypanosomiasis: integrating epidemiology with parasite and vector biology</title><secondary-title>Journal of the Royal Society Interface</secondary-title></titles><periodical><full-title>Journal of the Royal Society Interface</full-title></periodical><pages>817-830</pages><volume>9</volume><number>70</number><dates><year>2012</year></dates><isbn>1742-5689</isbn><urls></urls></record></Cite></EndNote>(Moore et al., 2012). Predicted model findings shows that increases in mean annual temperatures over the next 50–100 years are likely to significantly shift the distribution of T. b. rhodesiense to eastern and southern Africa and these shifts in distribution may lead to an increase in the risk of public health infection ADDIN EN.CITE <EndNote><Cite><Author>Moore</Author><Year>2012</Year><RecNum>268</RecNum><DisplayText>(Moore et al., 2012)</DisplayText><record><rec-number>268</rec-number><foreign-keys><key app="EN" db-id="0p9z9txwmeetx2efvr0pxt9oearef0a59a9a">268</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Moore, Sean</author><author>Shrestha, Sourya</author><author>Tomlinson, Kyle W</author><author>Vuong, Holly</author></authors></contributors><titles><title>Predicting the effect of climate change on African trypanosomiasis: integrating epidemiology with parasite and vector biology</title><secondary-title>Journal of the Royal Society Interface</secondary-title></titles><periodical><full-title>Journal of the Royal Society Interface</full-title></periodical><pages>817-830</pages><volume>9</volume><number>70</number><dates><year>2012</year></dates><isbn>1742-5689</isbn><urls></urls></record></Cite></EndNote>(Moore et al., 2012). Ticks transmit many important livestock diseases in Africa such as East Coast Fever (ECF), Babesiosis, Cowdriosis and heart water like tsetse; ticks inflict significant constraints on productivity. A model on Tick Borne Encephalitis a European case, was applied to tropical and sub-tropical ticks, in that it took into account changes in both temperature and moisture conditions from a variety of climate models. This has suggested that some species may expand their ranges in the future and others may contract ADDIN EN.CITE <EndNote><Cite><Author>Estrada-Pe?a</Author><Year>2001</Year><RecNum>235</RecNum><DisplayText>(Estrada-Pe?a, 2001)</DisplayText><record><rec-number>235</rec-number><foreign-keys><key app="EN" db-id="0p9z9txwmeetx2efvr0pxt9oearef0a59a9a">235</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Estrada-Pe?a, Agustín</author></authors></contributors><titles><title>Climate warming and changes in habitat suitability for Boophilus microplus (Acari: Ixodidae) in Central America</title><secondary-title>Journal of Parasitology</secondary-title></titles><periodical><full-title>Journal of Parasitology</full-title></periodical><pages>978-987</pages><volume>87</volume><number>5</number><dates><year>2001</year></dates><isbn>0022-3395</isbn><urls></urls></record></Cite></EndNote>(Estrada-Pe?a, 2001). Specifically, a detailed study on 30 species of Rhipicephalus ticks a primary vector of ECF in Eastern and southern Africa concluded that 54% of species may spread into new regions, while the ranges of 46% may contract ADDIN EN.CITE <EndNote><Cite><Author>Olwoch</Author><Year>2007</Year><RecNum>237</RecNum><DisplayText>(Olwoch et al., 2007)</DisplayText><record><rec-number>237</rec-number><foreign-keys><key app="EN" db-id="0p9z9txwmeetx2efvr0pxt9oearef0a59a9a">237</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Olwoch, Jane Mukarugwiza</author><author>Van Jaarsveld, AS</author><author>Scholtz, Clarke H</author><author>Horak, Ivan Gerard</author></authors></contributors><titles><title>Climate change and the genus Rhipicephalus (Acari: Ixodidae) in Africa</title><secondary-title>Onderstepoort Journal of Veterinary Research</secondary-title></titles><periodical><full-title>Onderstepoort Journal of Veterinary Research</full-title></periodical><pages>45-72</pages><volume>74</volume><number>1</number><dates><year>2007</year></dates><isbn>0030-2465</isbn><urls></urls></record></Cite></EndNote>(Olwoch et al., 2007), the difference lying, not surprisingly, in the sensitivity of each species to ‘harsh’ conditions of high temperature and dryness. Still there is a challenge to determine if ticks abundance is contributed by climate change or host variability ADDIN EN.CITE <EndNote><Cite><Author>Olwoch</Author><Year>2007</Year><RecNum>237</RecNum><DisplayText>(Olwoch et al., 2007)</DisplayText><record><rec-number>237</rec-number><foreign-keys><key app="EN" db-id="0p9z9txwmeetx2efvr0pxt9oearef0a59a9a">237</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Olwoch, Jane Mukarugwiza</author><author>Van Jaarsveld, AS</author><author>Scholtz, Clarke H</author><author>Horak, Ivan Gerard</author></authors></contributors><titles><title>Climate change and the genus Rhipicephalus (Acari: Ixodidae) in Africa</title><secondary-title>Onderstepoort Journal of Veterinary Research</secondary-title></titles><periodical><full-title>Onderstepoort Journal of Veterinary Research</full-title></periodical><pages>45-72</pages><volume>74</volume><number>1</number><dates><year>2007</year></dates><isbn>0030-2465</isbn><urls></urls></record></Cite></EndNote>(Olwoch et al., 2007) .In the United Republic of Tanzania, rainfall patterns have a distinct influence on Bulinus globosus densities, ADDIN EN.CITE <EndNote><Cite><Author>Marti</Author><Year>1985</Year><RecNum>262</RecNum><DisplayText>(Marti et al., 1985)</DisplayText><record><rec-number>262</rec-number><foreign-keys><key app="EN" db-id="0p9z9txwmeetx2efvr0pxt9oearef0a59a9a">262</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Marti, HP</author><author>Tanner, M</author><author>Degremont, AA</author><author>Freyvogel, TA</author></authors></contributors><titles><title>Studies on the ecology of Bulinus globosus, the intermediate host of Schistosoma haematobium in the Ifakara area, Tanzania</title><secondary-title>Acta tropica</secondary-title></titles><periodical><full-title>Acta tropica</full-title></periodical><pages>171-187</pages><volume>42</volume><number>2</number><dates><year>1985</year></dates><isbn>0001-706X</isbn><urls></urls></record></Cite></EndNote>(Marti et al., 1985) whereas, in Senegal Bulinus globosus is responsible for transmission of S. haematobium during the dry season ADDIN EN.CITE <EndNote><Cite><Author>Ernould</Author><Year>1999</Year><RecNum>217</RecNum><DisplayText>(Ernould et al., 1999, Southgate et al., 2000)</DisplayText><record><rec-number>217</rec-number><foreign-keys><key app="EN" db-id="0p9z9txwmeetx2efvr0pxt9oearef0a59a9a">217</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Ernould, Jean-Christophe</author><author>Ba, K</author><author>Sellin, Bertrand</author></authors></contributors><titles><title>The impact of the local water-development programme on the abundance of the intermediate hosts of schistosomiasis in three villages of the Senegal River delta</title><secondary-title>Annals of Tropical Medicine and Parasitology</secondary-title></titles><periodical><full-title>Annals of Tropical Medicine and Parasitology</full-title></periodical><pages>135-145</pages><volume>93</volume><number>2</number><dates><year>1999</year></dates><isbn>0003-4983</isbn><urls></urls></record></Cite><Cite><Author>Southgate</Author><Year>2000</Year><RecNum>216</RecNum><record><rec-number>216</rec-number><foreign-keys><key app="EN" db-id="0p9z9txwmeetx2efvr0pxt9oearef0a59a9a">216</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Southgate, VR</author><author>De Clercq, Dick</author><author>Sène, Mariama</author><author>Rollinson, D</author><author>Ly, A</author><author>Vercruysse, Jozef</author></authors></contributors><titles><title>Observations on the compatibility between Bulinus spp. and Schistosoma haematobium in the Senegal River basin</title><secondary-title>Annals of Tropical Medicine &amp; Parasitology</secondary-title></titles><periodical><full-title>Annals of Tropical Medicine &amp; Parasitology</full-title></periodical><pages>157-164</pages><volume>94</volume><number>2</number><dates><year>2000</year></dates><isbn>0003-4983</isbn><urls></urls></record></Cite></EndNote>(Ernould et al., 1999, Southgate et al., 2000). Adaptation strategies to climate change, such as irrigation, can increase the risk of malaria ADDIN EN.CITE <EndNote><Cite><Author>Ghebreyesus</Author><Year>1999</Year><RecNum>223</RecNum><DisplayText>(Ghebreyesus et al., 1999)</DisplayText><record><rec-number>223</rec-number><foreign-keys><key app="EN" db-id="0p9z9txwmeetx2efvr0pxt9oearef0a59a9a">223</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Ghebreyesus, Tedros A</author><author>Haile, Mitiku</author><author>Witten, Karen H</author><author>Getachew, Asefaw</author><author>Yohannes, Ambachew M</author><author>Yohannes, Mekonnen</author><author>Teklehaimanot, Hailay D</author><author>Lindsay, Steven W</author><author>Byass, Peter</author></authors></contributors><titles><title>Incidence of malaria among children living near dams in northern Ethiopia: community based incidence survey</title><secondary-title>Bmj</secondary-title></titles><periodical><full-title>Bmj</full-title></periodical><pages>663-666</pages><volume>319</volume><number>7211</number><dates><year>1999</year></dates><isbn>0959-8138</isbn><urls></urls></record></Cite></EndNote>(Ghebreyesus et al., 1999) and schistosomiasis ADDIN EN.CITE <EndNote><Cite><Author>Ollivier</Author><Year>1999</Year><RecNum>273</RecNum><DisplayText>(Ollivier et al., 1999)</DisplayText><record><rec-number>273</rec-number><foreign-keys><key app="EN" db-id="0p9z9txwmeetx2efvr0pxt9oearef0a59a9a">273</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Ollivier, G</author><author>Brutus, L</author><author>Cot, M</author></authors></contributors><titles><title>Intestinal schistosomiasis from Schistosoma mansoni in Madagascar: extent and center of the endemic</title><secondary-title>Bulletin de la Societe de pathologie exotique (1990)</secondary-title></titles><periodical><full-title>Bulletin de la Societe de pathologie exotique (1990)</full-title></periodical><pages>99-103</pages><volume>92</volume><number>2</number><dates><year>1999</year></dates><isbn>0037-9085</isbn><urls></urls></record></Cite></EndNote>(Ollivier et al., 1999) transmission. Factors such as social economics, health seeking behaviour, geographical location, and population growth will determine the vulnerability of populations to climate change ADDIN EN.CITE <EndNote><Cite><Author>Sutherst</Author><Year>2004</Year><RecNum>313</RecNum><DisplayText>(Sutherst, 2004)</DisplayText><record><rec-number>313</rec-number><foreign-keys><key app="EN" db-id="0p9z9txwmeetx2efvr0pxt9oearef0a59a9a">313</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Sutherst, Robert W</author></authors></contributors><titles><title>Global change and human vulnerability to vector-borne diseases</title><secondary-title>Clinical microbiology reviews</secondary-title></titles><periodical><full-title>Clinical microbiology reviews</full-title></periodical><pages>136-173</pages><volume>17</volume><number>1</number><dates><year>2004</year></dates><isbn>0893-8512</isbn><urls></urls></record></Cite></EndNote>(Sutherst, 2004).3.5. Impact of Climate Change on Parasitic Diseases in EthiopiaAccording to the Ethiopian Climate Resilient Green Economy document, the health impacts of climate change will be manifested through morbidity and mortality caused due to extreme temperature. Mashaly et al. (2004) also reported increased in temperatures and humidity due to climate change, increase the rate of parasites and pathogens developments life cycle. Conversely, Yatoo et al. (2012) clearly noted that some pathogens, parasites and vectors experience significant mortality during cold winter conditions. On the other hand, the study made from the Borana Pastoral community in Southern Ethiopia by Harvell et al. (2002) demonstrated that 26% of cattle population died due to the climate change effects which had occurred in 2010-2011. An increase in vector-borne diseases such as malaria and bilharzias and weather condition-related diseases are also mentioned in the document as other examples of impacts of climate change (CRGE, 2011). Recently, world health organization has confirmed that malaria, dengue fever, and yellow fever are the main vector-borne disease concerns of Ethiopia. It was also noted that there is a complicated relationship between climate change and climate-sensitive diseases, given climate variability between regions within Africa over time, and the impacts of the variability at the community level (WHO, 2014). Increased ambient temperatures are often correlated with waterborne disease outbreaks (Hashizume et al., 2007). Climate change-induced flood results in the disruption of drinking water sources. This leads to pollution, which in turn, increases the risk of exposure to water-borne pathogens (Weinstein, 2005; Richardson et al., 2009). Adaptation strategies to climate change, such as irrigation, can increase the risk of malaria ADDIN EN.CITE <EndNote><Cite><Author>Ghebreyesus</Author><Year>1999</Year><RecNum>223</RecNum><DisplayText>(Ghebreyesus et al., 1999)</DisplayText><record><rec-number>223</rec-number><foreign-keys><key app="EN" db-id="0p9z9txwmeetx2efvr0pxt9oearef0a59a9a">223</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Ghebreyesus, Tedros A</author><author>Haile, Mitiku</author><author>Witten, Karen H</author><author>Getachew, Asefaw</author><author>Yohannes, Ambachew M</author><author>Yohannes, Mekonnen</author><author>Teklehaimanot, Hailay D</author><author>Lindsay, Steven W</author><author>Byass, Peter</author></authors></contributors><titles><title>Incidence of malaria among children living near dams in northern Ethiopia: community based incidence survey</title><secondary-title>Bmj</secondary-title></titles><periodical><full-title>Bmj</full-title></periodical><pages>663-666</pages><volume>319</volume><number>7211</number><dates><year>1999</year></dates><isbn>0959-8138</isbn><urls></urls></record></Cite></EndNote>(Ghebreyesus et al., 1999).3.6. Economic Impacts of climate changeEmerging and re-emerging parasitic diseases have the potential to affect local and global economies. Generally speaking, the debilitating nature of parasitic diseases prevents productivity and advancement. Neglected tropical diseases, such as those caused by parasites, have resulted in losses of millions of working days and subsequently billions of dollars in economic growth each year ADDIN EN.CITE <EndNote><Cite><Author>Conteh</Author><Year>2010</Year><RecNum>210</RecNum><DisplayText>(Conteh et al., 2010)</DisplayText><record><rec-number>210</rec-number><foreign-keys><key app="EN" db-id="0p9z9txwmeetx2efvr0pxt9oearef0a59a9a">210</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Conteh, Lesong</author><author>Engels, Thomas</author><author>Molyneux, David H</author></authors></contributors><titles><title>Socioeconomic aspects of neglected tropical diseases</title><secondary-title>The Lancet</secondary-title></titles><periodical><full-title>The Lancet</full-title></periodical><pages>239-247</pages><volume>375</volume><number>9710</number><dates><year>2010</year></dates><isbn>0140-6736</isbn><urls></urls></record></Cite></EndNote>(Conteh et al., 2010). The United Kingdom has seen a 20% increase in annual rainfall, fewer ground thaws, warmer winters compared with 50 years ago, and there is a concern that these climate characteristics are beginning to negatively affect the sheep farming industry ADDIN EN.CITE <EndNote><Cite><Author>Kenyon</Author><Year>2009</Year><RecNum>243</RecNum><DisplayText>(Kenyon et al., 2009)</DisplayText><record><rec-number>243</rec-number><foreign-keys><key app="EN" db-id="0p9z9txwmeetx2efvr0pxt9oearef0a59a9a">243</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Kenyon, F</author><author>Sargison, ND</author><author>Skuce, PJ</author><author>Jackson, F</author></authors></contributors><titles><title>Sheep helminth parasitic disease in south eastern Scotland arising as a possible consequence of climate change</title><secondary-title>Veterinary parasitology</secondary-title></titles><periodical><full-title>Veterinary parasitology</full-title></periodical><pages>293-297</pages><volume>163</volume><number>4</number><dates><year>2009</year></dates><isbn>0304-4017</isbn><urls></urls></record></Cite></EndNote>(Kenyon et al., 2009). Unpredicted parasitic disease outbreaks caused by Haemonchus contortus, Nematodirus battus, Teladorsagia circumcincta, and Fasciola hepatica have been occurring in the United Kingdom ADDIN EN.CITE <EndNote><Cite><Author>Kenyon</Author><Year>2009</Year><RecNum>243</RecNum><DisplayText>(Kenyon et al., 2009)</DisplayText><record><rec-number>243</rec-number><foreign-keys><key app="EN" db-id="0p9z9txwmeetx2efvr0pxt9oearef0a59a9a">243</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Kenyon, F</author><author>Sargison, ND</author><author>Skuce, PJ</author><author>Jackson, F</author></authors></contributors><titles><title>Sheep helminth parasitic disease in south eastern Scotland arising as a possible consequence of climate change</title><secondary-title>Veterinary parasitology</secondary-title></titles><periodical><full-title>Veterinary parasitology</full-title></periodical><pages>293-297</pages><volume>163</volume><number>4</number><dates><year>2009</year></dates><isbn>0304-4017</isbn><urls></urls></record></Cite></EndNote>(Kenyon et al., 2009). Such outbreaks have indicated that these parasites are able to exploit the changing climate, and models have shown that Wales and Scotland are at particular risk with outbreaks occurring earlier in the year ADDIN EN.CITE <EndNote><Cite><Author>Kenyon</Author><Year>2009</Year><RecNum>243</RecNum><DisplayText>(Kenyon et al., 2009)</DisplayText><record><rec-number>243</rec-number><foreign-keys><key app="EN" db-id="0p9z9txwmeetx2efvr0pxt9oearef0a59a9a">243</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Kenyon, F</author><author>Sargison, ND</author><author>Skuce, PJ</author><author>Jackson, F</author></authors></contributors><titles><title>Sheep helminth parasitic disease in south eastern Scotland arising as a possible consequence of climate change</title><secondary-title>Veterinary parasitology</secondary-title></titles><periodical><full-title>Veterinary parasitology</full-title></periodical><pages>293-297</pages><volume>163</volume><number>4</number><dates><year>2009</year></dates><isbn>0304-4017</isbn><urls></urls></record></Cite></EndNote>(Kenyon et al., 2009). Haemonchus contortus is now able to complete its life cycle and expand farther north, exerting infection pressure in a bimodal fashion ADDIN EN.CITE <EndNote><Cite><Author>Sargison</Author><Year>2007</Year><RecNum>283</RecNum><DisplayText>(Sargison et al., 2007)</DisplayText><record><rec-number>283</rec-number><foreign-keys><key app="EN" db-id="0p9z9txwmeetx2efvr0pxt9oearef0a59a9a">283</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Sargison, ND</author><author>Wilson, DJ</author><author>Bartley, DJ</author><author>Penny, CD</author><author>Jackson, F</author></authors></contributors><titles><title>Haemonchosis and teladorsagiosis in a Scottish sheep flock putatively associated with the overwintering of hypobiotic fourth stage larvae</title><secondary-title>Veterinary parasitology</secondary-title></titles><periodical><full-title>Veterinary parasitology</full-title></periodical><pages>326-331</pages><volume>147</volume><number>3-4</number><dates><year>2007</year></dates><isbn>0304-4017</isbn><urls></urls></record></Cite></EndNote>(Sargison et al., 2007). It has been estimated that climate change could extend the season of F.hepatica development by up to 4 months in north-western regions of the United Kingdom and allow fascioliasis transmission to occur during winter months in southern regions ADDIN EN.CITE <EndNote><Cite><Author>Caminade</Author><Year>2015</Year><RecNum>202</RecNum><DisplayText>(Caminade et al., 2015)</DisplayText><record><rec-number>202</rec-number><foreign-keys><key app="EN" db-id="0p9z9txwmeetx2efvr0pxt9oearef0a59a9a">202</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Caminade, Cyril</author><author>van Dijk, Jan</author><author>Baylis, Matthew</author><author>Williams, Diana</author></authors></contributors><titles><title>Modelling recent and future climatic suitability for fasciolosis in Europe</title><secondary-title>Geospat Health</secondary-title></titles><periodical><full-title>Geospat Health</full-title></periodical><pages>301-8</pages><volume>9</volume><number>2</number><dates><year>2015</year></dates><urls></urls></record></Cite></EndNote>(Caminade et al., 2015). Although some areas may experience above optimal temperatures and droughts, it is unfortunately those areas predicted to have changes favorable to parasite development that overlap with high densities of cattle and sheep ADDIN EN.CITE <EndNote><Cite><Author>Caminade</Author><Year>2015</Year><RecNum>202</RecNum><DisplayText>(Caminade et al., 2015)</DisplayText><record><rec-number>202</rec-number><foreign-keys><key app="EN" db-id="0p9z9txwmeetx2efvr0pxt9oearef0a59a9a">202</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Caminade, Cyril</author><author>van Dijk, Jan</author><author>Baylis, Matthew</author><author>Williams, Diana</author></authors></contributors><titles><title>Modelling recent and future climatic suitability for fasciolosis in Europe</title><secondary-title>Geospat Health</secondary-title></titles><periodical><full-title>Geospat Health</full-title></periodical><pages>301-8</pages><volume>9</volume><number>2</number><dates><year>2015</year></dates><urls></urls></record></Cite></EndNote>(Caminade et al., 2015). Growing degree-day modeling for New Zealand showed risk of infection in some regions may rise over 100% by 2090 ADDIN EN.CITE <EndNote><Cite><Author>Haydock</Author><Year>2016</Year><RecNum>226</RecNum><DisplayText>(Haydock et al., 2016)</DisplayText><record><rec-number>226</rec-number><foreign-keys><key app="EN" db-id="0p9z9txwmeetx2efvr0pxt9oearef0a59a9a">226</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Haydock, LAJ</author><author>Pomroy, WE</author><author>Stevenson, MA</author><author>Lawrence, KE</author></authors></contributors><titles><title>A growing degree-day model for determination of Fasciola hepatica infection risk in New Zealand with future predictions using climate change models</title><secondary-title>Veterinary parasitology</secondary-title></titles><periodical><full-title>Veterinary parasitology</full-title></periodical><pages>52-59</pages><volume>228</volume><dates><year>2016</year></dates><isbn>0304-4017</isbn><urls></urls></record></Cite></EndNote>(Haydock et al., 2016).Cattle and sheep production is severely inhibited by parasitic diseases, and they easily spread throughout a flock without proper management ADDIN EN.CITE <EndNote><Cite><Author>Kenyon</Author><Year>2009</Year><RecNum>243</RecNum><DisplayText>(Kenyon et al., 2009)</DisplayText><record><rec-number>243</rec-number><foreign-keys><key app="EN" db-id="0p9z9txwmeetx2efvr0pxt9oearef0a59a9a">243</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Kenyon, F</author><author>Sargison, ND</author><author>Skuce, PJ</author><author>Jackson, F</author></authors></contributors><titles><title>Sheep helminth parasitic disease in south eastern Scotland arising as a possible consequence of climate change</title><secondary-title>Veterinary parasitology</secondary-title></titles><periodical><full-title>Veterinary parasitology</full-title></periodical><pages>293-297</pages><volume>163</volume><number>4</number><dates><year>2009</year></dates><isbn>0304-4017</isbn><urls></urls></record></Cite></EndNote>(Kenyon et al., 2009). These infections would significantly hinder the export potential of countries such as Scotland and New Zealand with serious adverse effect on their economy and gross domestic product. It is easy to see how climate change favouring these parasites has the potential to cause serious damage to the Scottish economy. White et al simulated the impacts of climate change on Australian livestock, finding that livestock lost about 18% of their weight due to increased tick infestations ADDIN EN.CITE <EndNote><Cite><Author>White</Author><Year>2003</Year><RecNum>304</RecNum><DisplayText>(White et al., 2003)</DisplayText><record><rec-number>304</rec-number><foreign-keys><key app="EN" db-id="0p9z9txwmeetx2efvr0pxt9oearef0a59a9a">304</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>White, Neil</author><author>Sutherst, Robert W</author><author>Hall, Nigel</author><author>Whish-Wilson, Patrick</author></authors></contributors><titles><title>The vulnerability of the Australian beef industry to impacts of the cattle tick (Boophilus microplus) under climate change</title><secondary-title>Climatic Change</secondary-title></titles><periodical><full-title>Climatic change</full-title></periodical><pages>157-190</pages><volume>61</volume><number>1-2</number><dates><year>2003</year></dates><isbn>0165-0009</isbn><urls></urls></record></Cite></EndNote>(White et al., 2003).Parasites can be just as damaging to an economy in water as they are on land. Diphyllobothrium nihonkaiense, tapeworm larvae were found in wild pink salmon off the coast of Alaska ADDIN EN.CITE <EndNote><Cite><Author>Kuchta</Author><Year>2017</Year><RecNum>245</RecNum><DisplayText>(Kuchta et al., 2017)</DisplayText><record><rec-number>245</rec-number><foreign-keys><key app="EN" db-id="0p9z9txwmeetx2efvr0pxt9oearef0a59a9a">245</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Kuchta, Roman</author><author>Oros, Mikulá?</author><author>Ferguson, Jayde</author><author>Scholz, Tomá?</author></authors></contributors><titles><title>Diphyllobothrium nihonkaiense tapeworm larvae in salmon from North America</title><secondary-title>Emerging infectious diseases</secondary-title></titles><periodical><full-title>Emerging infectious diseases</full-title></periodical><pages>351</pages><volume>23</volume><number>2</number><dates><year>2017</year></dates><urls></urls></record></Cite></EndNote>(Kuchta et al., 2017). The possibility that climate change and corresponding ocean current events facilitated the parasite’s presence in the Alaskan region cannot be ruled out. This is concerning because it means both wild-caught and farm-raised salmon are at risk of contracting this parasite, which certainly has a negative impact on the species’ health but could have a negative impact on the salmon fishing industry as well. Parasitic diseases, vector-borne helminthic alike, can seriously deteriorate livestock health production prove detrimental to local global economies while also posing a significant threat to future food security ADDIN EN.CITE <EndNote><Cite><Author>Short</Author><Year>2017</Year><RecNum>272</RecNum><DisplayText>(Short et al., 2017)</DisplayText><record><rec-number>272</rec-number><foreign-keys><key app="EN" db-id="0p9z9txwmeetx2efvr0pxt9oearef0a59a9a">272</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Short, Erica E</author><author>Caminade, Cyril</author><author>Thomas, Bolaji N</author></authors></contributors><titles><title>Climate Change Contribution to the Emergence or Re-Emergence of Parasitic Diseases</title><secondary-title>Infectious Diseases: Research and Treatment</secondary-title></titles><periodical><full-title>Infectious Diseases: Research and Treatment</full-title></periodical><pages>1178633617732296</pages><volume>10</volume><dates><year>2017</year></dates><isbn>1178-6337</isbn><urls></urls></record></Cite></EndNote>(Short et al., 2017). The economic costs of parasitic disease are currently difficult to quantify; however, some estimates exist within the scientific literature. For example, studies in the United Kingdom estimated the cost of parasitic nematodes of sheep to be on the order of 99 million € per year ADDIN EN.CITE <EndNote><Cite><Author>Nieuwhof</Author><Year>2005</Year><RecNum>330</RecNum><DisplayText>(Nieuwhof and Bishop, 2005)</DisplayText><record><rec-number>330</rec-number><foreign-keys><key app="EN" db-id="0p9z9txwmeetx2efvr0pxt9oearef0a59a9a">330</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Nieuwhof, Gert J</author><author>Bishop, SC</author></authors></contributors><titles><title>Costs of the major endemic diseases of sheep in Great Britain and the potential benefits of reduction in disease impact</title><secondary-title>Animal Science</secondary-title></titles><periodical><full-title>Animal Science</full-title></periodical><pages>23-29</pages><volume>81</volume><number>1</number><dates><year>2005</year></dates><isbn>1748-748X</isbn><urls></urls></record></Cite></EndNote>(Nieuwhof and Bishop, 2005), in Switzerland, the cost of liver fluke disease has been estimated at 52 million € per year in cattle alone ADDIN EN.CITE <EndNote><Cite><Author>Schweizer</Author><Year>2005</Year><RecNum>321</RecNum><DisplayText>(Schweizer, 2005)</DisplayText><record><rec-number>321</rec-number><foreign-keys><key app="EN" db-id="0p9z9txwmeetx2efvr0pxt9oearef0a59a9a">321</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Schweizer</author></authors></contributors><titles><title>The economic effects of bovine fasciolosis in Switzerland</title><secondary-title>Vet. Rec. </secondary-title></titles><periodical><full-title>Vet. Rec.</full-title></periodical><pages> 188–193</pages><volume>157</volume><number>-</number><section>188</section><dates><year>2005</year></dates><urls></urls></record></Cite></EndNote>(Schweizer, 2005).4. CONTROL PROGRAMMES IN A CHANGING WORLDThe reduction of the amount of future climate change termed as mitigation of climate change is very necessary. The IPCC has defined mitigation as activities that reduce greenhouse gas (GHG) emissions, or enhance the capacity of carbon sinks to absorb GHGs from the atmosphere ADDIN EN.CITE <EndNote><Cite><Author>Pachauri</Author><Year>2014</Year><RecNum>314</RecNum><DisplayText>(Pachauri et al., 2014)</DisplayText><record><rec-number>314</rec-number><foreign-keys><key app="EN" db-id="0p9z9txwmeetx2efvr0pxt9oearef0a59a9a">314</key></foreign-keys><ref-type name="Book">6</ref-type><contributors><authors><author>Pachauri, Rajendra K</author><author>Allen, Myles R</author><author>Barros, Vicente R</author><author>Broome, John</author><author>Cramer, Wolfgang</author><author>Christ, Renate</author><author>Church, John A</author><author>Clarke, Leon</author><author>Dahe, Qin</author><author>Dasgupta, Purnamita</author></authors></contributors><titles><title>Climate change 2014: synthesis report. Contribution of Working Groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change</title></titles><dates><year>2014</year></dates><publisher>IPCC</publisher><isbn>9291691437</isbn><urls></urls></record></Cite></EndNote>(Pachauri et al., 2014). Many countries, both developing and developed, are aiming to use cleaner and less polluting technologies as a way of reducing CO2 emissions ADDIN EN.CITE <EndNote><Cite><Author>Smit</Author><Year>2001</Year><RecNum>290</RecNum><DisplayText>(Smit, 2001)</DisplayText><record><rec-number>290</rec-number><foreign-keys><key app="EN" db-id="0p9z9txwmeetx2efvr0pxt9oearef0a59a9a">290</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Smit, E</author></authors></contributors><titles><title>Chapter 18: Adaptation to Climate Change in the Context of Sustainable Development and Equity, Section 18: 2.3</title><secondary-title>Adaptation Types and Forms</secondary-title></titles><periodical><full-title>Adaptation Types and Forms</full-title></periodical><dates><year>2001</year></dates><urls></urls></record></Cite></EndNote>(Smit, 2001). For great success to be achieved the policies to be adopted should include targets for emissions reduction, increased use of renewable energy, and increased energy efficiency. Since even in the most optimistic scenario, fossil fuels are going to be used for years to come, mitigation may also involve carbon capture and storage, a process that traps CO2 produced by factories and gas or coal power stations and then stores it, usually underground ADDIN EN.CITE <EndNote><Cite><Author>Yadav</Author><Year>2013</Year><RecNum>300</RecNum><DisplayText>(Yadav and Mishra, 2013)</DisplayText><record><rec-number>300</rec-number><foreign-keys><key app="EN" db-id="0p9z9txwmeetx2efvr0pxt9oearef0a59a9a">300</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Yadav, Surendra Kumar</author><author>Mishra, Govind Chandra</author></authors></contributors><titles><title>Global Energy Demand Consequences Versus Greenhouse Gases Emission</title><secondary-title>International Journal of Engineering</secondary-title></titles><periodical><full-title>International Journal of Engineering</full-title></periodical><pages>781-788</pages><volume>6</volume><number>6</number><dates><year>2013</year></dates><isbn>0974-3154</isbn><urls></urls></record></Cite></EndNote>(Yadav and Mishra, 2013). Most countries are parties to the United Nations Framework Convention on Climate Change (UNFCCC) who have adopted a range of policies designed to reduce greenhouse gas emissions ADDIN EN.CITE <EndNote><Cite><Author>Manzano-Agugliaro</Author><Year>2013</Year><RecNum>238</RecNum><DisplayText>(Manzano-Agugliaro et al., 2013)</DisplayText><record><rec-number>238</rec-number><foreign-keys><key app="EN" db-id="0p9z9txwmeetx2efvr0pxt9oearef0a59a9a">238</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Manzano-Agugliaro, F</author><author>Alcayde, A</author><author>Montoya, FG</author><author>Zapata-Sierra, A</author><author>Gil, C</author></authors></contributors><titles><title>Scientific production of renewable energies worldwide: an overview</title><secondary-title>Renewable and Sustainable Energy Reviews</secondary-title></titles><periodical><full-title>Renewable and Sustainable Energy Reviews</full-title></periodical><pages>134-143</pages><volume>18</volume><dates><year>2013</year></dates><isbn>1364-0321</isbn><urls></urls></record></Cite></EndNote>(Manzano-Agugliaro et al., 2013) and to assist in adaptation to global warming ADDIN EN.CITE <EndNote><Cite><Author>Etterson</Author><Year>2001</Year><RecNum>316</RecNum><DisplayText>(Etterson and Shaw, 2001)</DisplayText><record><rec-number>316</rec-number><foreign-keys><key app="EN" db-id="0p9z9txwmeetx2efvr0pxt9oearef0a59a9a">316</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Etterson, Julie R</author><author>Shaw, Ruth G</author></authors></contributors><titles><title>Constraint to adaptive evolution in response to global warming</title><secondary-title>Science</secondary-title></titles><periodical><full-title>science</full-title></periodical><pages>151-154</pages><volume>294</volume><number>5540</number><dates><year>2001</year></dates><isbn>0036-8075</isbn><urls></urls></record></Cite></EndNote>(Etterson and Shaw, 2001). Climate change is a reality, and in order to combat emerging infectious diseases in the face of ongoing climate change, a trans-disciplinary approach among veterinarians, physicians, biologists, climatologists, and anthropologists is required, but not limited to these disciplines. Indeed, a strong political commitment is needed to secure federal funding to continue interdisciplinary research that will expand our scientific understanding of the role of climate on the emergence and spread of infectious diseases. Moreover, improved and efficient methods of disease surveillance will afford timely anticipatory measures by the medical community and ultimately support optimized preventive strategies in the future ADDIN EN.CITE <EndNote><Cite><Author>Luks</Author><Year>2007</Year><RecNum>259</RecNum><DisplayText>(Luks and Siebenhüner, 2007)</DisplayText><record><rec-number>259</rec-number><foreign-keys><key app="EN" db-id="0p9z9txwmeetx2efvr0pxt9oearef0a59a9a">259</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Luks, Fred</author><author>Siebenhüner, Bernd</author></authors></contributors><titles><title>Transdisciplinarity for social learning? The contribution of the German socio-ecological research initiative to sustainability governance</title><secondary-title>Ecological economics</secondary-title></titles><periodical><full-title>Ecological Economics</full-title></periodical><pages>418-426</pages><volume>63</volume><number>2-3</number><dates><year>2007</year></dates><isbn>0921-8009</isbn><urls></urls></record></Cite></EndNote>(Luks and Siebenhüner, 2007). Carbon sequestration can be achieved through decreasing deforestation rates, reversing of deforestation by replanting ADDIN EN.CITE <EndNote><Cite><Author>Carvalho</Author><Year>2004</Year><RecNum>208</RecNum><DisplayText>(Carvalho et al., 2004)</DisplayText><record><rec-number>208</rec-number><foreign-keys><key app="EN" db-id="0p9z9txwmeetx2efvr0pxt9oearef0a59a9a">208</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Carvalho, Georgia</author><author>Moutinho, Paulo</author><author>Nepstad, Daniel</author><author>Mattos, Luciano</author><author>Santilli, Márcio</author></authors></contributors><titles><title>An amazon perspective on the forest-climate connection: opportunity for climate mitigation, conservation and development?</title><secondary-title>Environment, development and sustainability</secondary-title></titles><periodical><full-title>Environment, development and sustainability</full-title></periodical><pages>163</pages><volume>6</volume><number>1-2</number><dates><year>2004</year></dates><isbn>1387-585X</isbn><urls></urls></record></Cite></EndNote>(Carvalho et al., 2004), targeting for higher-yielding crops with better climate change adapted varieties, and improvement of land and water management ADDIN EN.CITE <EndNote><Cite><Author>Steinfeld</Author><Year>2006</Year><RecNum>293</RecNum><DisplayText>(Steinfeld et al., 2006)</DisplayText><record><rec-number>293</rec-number><foreign-keys><key app="EN" db-id="0p9z9txwmeetx2efvr0pxt9oearef0a59a9a">293</key></foreign-keys><ref-type name="Book">6</ref-type><contributors><authors><author>Steinfeld, Henning</author><author>Gerber, Pierre</author><author>Wassenaar, TD</author><author>Castel, Vincent</author><author>Rosales, Mauricio</author><author>Rosales, Mauricio</author><author>de Haan, Cees</author></authors></contributors><titles><title>Livestock&apos;s long shadow: environmental issues and options</title></titles><dates><year>2006</year></dates><publisher>Food &amp; Agriculture Org.</publisher><isbn>9251055718</isbn><urls></urls></record></Cite></EndNote>(Steinfeld et al., 2006).5. CONCLUSION AND RECOMMENDATIONS A concise coverage has been made on the impact of climate change on parasites and parasitic diseases. In this review to have better understanding of climate change impacts, the causes and indicators of climate change have been highlighted briefly. More importantly, the effect of climate change on vector borne and non-vector borne protozoan and helminth parasites along with their vectors, intermediate hosts and predisposing climatic factors has been addressed succinctly. Researchers had stated that global climate change predictions suggest that far-ranging effects might occur in population dynamics and distributions of livestock parasites, provoking fears of widespread increases in disease incidence and production loss. Parasites and parasitic disease will do well on a warming earth. Those species of parasite that are already common will be able to spread and perhaps colonize new susceptible hosts that may have no prior genetic resistance to them. These effects are likely to be worse in the temperate zone, where parasites from the tropics can colonize new hosts, than in the tropics, where parasites will have to adapt or evolve. Rare parasites that are adapted to extreme temperature, however, may become common; changes in the ranges and sizes of some host populations may allow some unimportant pathogens to become more widespread. Thus, there is an urgent need of improved surveillance, diagnosis and systematic study of parasitic diseases brought about by climate change for efficient disease preventive strategies.Based on the above conclusion the following recommendations are forwarded:Early warning systems, preparedness and improved public and private veterinary services should be strengthened so as to lower the adverse effect of climate change. New research trends should be initiated and promoted which can absorb the surrounding heat in a large amount to cause cooling.Targeted disease monitoring and surveillance at appropriate spatio-temporal resolution are necessary at least for the moment.Activities that reduce GHG emissions, or enhance the capacity of carbon sinks to absorb GHGs from the atmosphere should be strengthened.6. REFERENCES ADDIN EN.REFLIST Alawieh, A., Musharrafieh, U., Jaber, A., Berry, A., Ghosn, N. and Bizri, A. R. (2014): Revisiting leishmaniasis in the time of war: the Syrian conflict and the Lebanese outbreak. International Journal of Infectious Diseases, 29: 115-119.Altizer, S., Ostfeld, R. S., Johnson, P. T., Kutz, S. and Harvell, C. D. (2013): Climate change and infectious diseases: from evidence to a predictive framework. science, 341: 514-519.Anyamba, A., Linthicum, K. J., Mahoney, R., Tucker, C. J. and Kelley, P. W. (2002): Mapping potential risk of Rift Valley fever outbreaks in African savannas using vegetation index time series data. Photogrammetric engineering and remote sensing, 68: 137-145.Astrup, A. (1945): Uncinaria Stenocephala as a Cause of Skin Disease in Man. Acta Dermato-Venereologica, 25: 389-92.Bargues, M., Morchon, R., Latorre, J., Cancrini, G., Mas-Coma, S. and Simón, F. (2006): Ribosomal DNA second internal transcribed spacer sequence studies of Culicid vectors from an endemic area of Dirofilaria immitis in Spain. Parasitology research, 99: 205.Birks, H. (2015): Biodiversity, livelihood and climate change in the Himalayan region. Proceedings of International Conference on Biodiversity, Livelihood and Climate Change in the Himalayas, Pp.1-39.Bosello, F., Roson, R. and Tol, R. S. (2006): Economy-wide estimates of the implications of climate change: Human health. Ecological Economics, 58: 579-591.Brommer, J. E. and M?ller, A. P. (2010): Range margins, climate change, and ecology. Effects of climate change on birds, 275-294.Cadenas, F. M., Rais, O., Jouda, F., Douet, V., Humair, P.-F., Moret, J. and Gern, L. (2007): Phenology of Ixodes ricinus and infection with Borrelia burgdorferi sensu lato along a north-and south-facing altitudinal gradient on Chaumont Mountain, Switzerland. Journal of medical entomology, 44: 683-693.Calero‐Torralbo, M. A., Václav, R. and Valera, F. (2013): Intra‐specific variability in life‐cycle synchronization of an ectoparasitic fly to its avian host. Oikos, 122: 274-284.Caminade, C., Van Dijk, J., Baylis, M. and Williams, D. (2015): Modelling recent and future climatic suitability for fasciolosis in Europe. Geospat Health, 9: 301-8.Cancrini, G. and Kramer, L. 2001. Insect vectors of Dirofilaria spp. Heartworm infection in humans and animals, 78: 63.Carter, T. and Hulme, M. (1999): Interim characterizations of regional climate and related changes up to 2100 associated with the provisional SRES emissions scenarios: guidance for lead authors of the IPCC Working Group II Third Assessment Report. Washington, DC, IPCC Working Group II Technical Support Unit.Carvalho, G., Moutinho, P., Nepstad, D., Mattos, L. and Santilli, M. (2004): An amazon perspective on the forest-climate connection: opportunity for climate mitigation, conservation and development? Environment, development and sustainability, 6: bes, C. (2001): Parasitism: the ecology and evolution of intimate interactions, University of Chicago Press.Conteh, L., Engels, T. and Molyneux, D. H. (2010): Socioeconomic aspects of neglected tropical diseases. The Lancet, 375: 239-247.CRGE (2011): Ethiopia’s Climate-Resilient Green Economy Green economy strategy. Addis Ababa: 2011. Dec.2012 Report No.Daszak, P., Cunningham, A. A. and Hyatt, A. D. (2000): Emerging infectious diseases of wildlife--threats to biodiversity and human health. science, 287: 443-449.Dobson, A. (2009): Climate variability, global change, immunity, and the dynamics of infectious diseases. Ecology, 90: 920-927.Dunn, P. O. and Winkler, D. W. (2010): Effects of climate change on timing of breeding and reproductive success in birds. Effects of climate change on birds, 113-128.Dunn, R. R., Davies, T. J., Harris, N. C. and Gavin, M. C. (2010): Global drivers of human pathogen richness and prevalence. Proceedings of the Royal Society of London B: Biological Sciences, 277: 2587-2595.Duru, K. C. and Thomas, B. N. (2014): Genetic diversity and allelic frequency of glutamate-rich protein (GLURP) in Plasmodium falciparum isolates from sub-Saharan Africa. Microbiology insights, 7, MBI. S20618.Englund, G., ?hlund, G., Hein, C. L. and Diehl, S. (2011): Temperature dependence of the functional response. Ecology Letters, 14: 914-921.Ernould, J.-C., Ba, K. and Sellin, B. (1999): The impact of the local water-development programme on the abundance of the intermediate hosts of schistosomiasis in three villages of the Senegal River delta. Annals of Tropical Medicine and Parasitology, 93: 135-145.Estrada-Pe?a, A. (2001): Climate warming and changes in habitat suitability for Boophilus microplus (Acari: Ixodidae) in Central America. Journal of Parasitology, 87: 978-987.Etterson, J. R. and Shaw, R. G. (2001): Constraint to adaptive evolution in response to global warming. Science, 294: 151-154.Fischlin, E. (2007): Chapter 4: Ecosystem, their properties, goods and Services. Executive Summary, 213.Fried, B. and Ponder, E. (2003): Effects of temperature on survival, infectivity and in vitro encystment of the cercariae of Echinostoma caproni. Journal of Helminthology, 77: 235-238.Gao, H.-W., Wang, L.-P., Liang, S., Liu, Y.-X., Tong, S.-L., Wang, J.-J., Li, Y.-P., Wang, X.-F., Yang, H. and Ma, J.-Q. (2012): Change in rainfall drives malaria re-emergence in Anhui Province, China. PLoS One, 7: e43686.Genchi, C., Kramer, L. and Prieto, G. (2001): Epidemiology of canine and feline dirofilariasis: a global view. Heartworm infection in humans and animals, 121-133.Genchi, C., Rinaldi, L., Mortarino, M., Genchi, M. and Cringoli, G. (2009): Climate and Dirofilaria infection in Europe. Veterinary parasitology, 163: 286-292.Ghebreyesus, T. A., Haile, M., Witten, K. H., Getachew, A., Yohannes, A. M., Yohannes, M., Teklehaimanot, H. D., Lindsay, S. W. and Byass, P. (1999): Incidence of malaria among children living near dams in northern Ethiopia: community based incidence survey. Bmj, 319: 663-666.Gill, M., Smith, P. and Wilkinson, J. (2010): Mitigating climate change: the role of domestic livestock. animal, 4: 323-333.Hansen, J., Nazarenko, L., Ruedy, R., Sato, M., Willis, J., Del Genio, A., Koch, D., Lacis, A., Lo, K. and Menon, S. (2005): Earth's energy imbalance: Confirmation and implications. science, 308:1431-1435.Hashizume M, Armstrong B, Hajat S, Wagatsuma Y, Faruque A, Hayashi (2007): Association between climate variability and hospital visits for non-cholera diarrhoea in Bangladesh: effects and vulnerable groups. Int J Epidemiol. 36:1030, 7.Harvell, C. D., Mitchell, C. E., Ward, J. R., Altizer, S., Dobson, A. P., Ostfeld, R. S. and Samuel, M. D. (2002): Climate warming and disease risks for terrestrial and marine biota. Science, 296: 2158-2162.Haydock, L., Pomroy, W., Stevenson, M. and Lawrence, K. (2016): A growing degree-day model for determination of Fasciola hepatica infection risk in New Zealand with future predictions using climate change models. Veterinary parasitology, 228: 52-59.Hudson, P., Cattadori, I., Boag, B. and Dobson, A. (2006): Climate disruption and parasite–host dynamics: patterns and processes associated with warming and the frequency of extreme climatic events. Journal of helminthology, 80: 175-182.Hunter, P. (2003): Climate change and waterborne and vector‐borne disease. Journal of applied microbiology, 94: 37-46.Joseph, C., Hamilton, G., O'connors, M., Nicholas, S., Marshall, R., Stanwell-Smith, R., Sims, R., Ndawula, E., Casemore, U. and Gallagher, P. (1991): Cryptosporidiosis in the Isle of Thanet; an outbreak associated with local drinking water. Epidemiology and Infection, 107: 509-519.Kenyon, F., Sargison, N., Skuce, P. and Jackson, F. (2009): Sheep helminth parasitic disease in south eastern Scotland arising as a possible consequence of climate change. Veterinary parasitology, 163: 293-297.Kimaro, E. and Chibinga, O. (2013): Potential impact of climate change on livestock production and health in East Africa: A review. Livestock Research for Rural Development, 25: 5.Kovats, R. S. (2000): El Ni?o and human health. Bulletin of the World Health Organization, 78: 1127-1135.Kuchta, R., Oros, M., Ferguson, J. and Scholz, T. (2017): Diphyllobothrium nihonkaiense tapeworm larvae in salmon from North America. Emerging infectious diseases, 23: 351.Kutz, S., Hoberg, E. P., Polley, L. and Jenkins, E. (2005): Global warming is changing the dynamics of Arctic host–parasite systems. Proceedings of the Royal Society of London B: Biological Sciences, 272: 2571-2576.Kutz, S. J., Hoberg, E. P., Nagy, J., Polley, L. and Elkin, B. (2004): “Emerging” parasitic infections in arctic ungulates. Integrative and Comparative Biology, 44: 109-118.Kutz, S. J., Hoberg, E. P. and Polley, L. (2001): Umingmakstrongylus pallikuukensis (Nematoda: Protostrongylidae) in gastropods: larval morphology, morphometrics, and development rates. Journal of Parasitology, 87: 527-535.Lafferty, K. D. (2009): The ecology of climate change and infectious diseases. Ecology, 90: 888-900.Laisser, E., Chenyambuga, S., Karimuribo, E., Msalya, G., Kipanyula, M., Mwilawa, A., Mdegela, R. and Kusiluka, L. (2017): A review on prevalence, control measure, and tolerance of Tanzania Shorthorn Zebu cattle to East Coast fever in Tanzania. Tropical animal health and production, 49: 813-822.Leschnik, M., Kirtz, G., Tichy, A. and Leidinger, E. (2008): Seasonal occurrence of canine babesiosis is influenced by local climate conditions. International Journal of Medical Microbiology, 298: 243-248.Lindsay, S. and Birley, M. (1996): Climate change and malaria transmission. Annals of Tropical Medicine and Parasitology, 90: 573-588.Lindsay, S. W., B?dker, R., Malima, R., Msangeni, H. A. and Kisinza, W. (2000): Effect of 1997–98 EI Ni?o on highland malaria in Tanzania. The Lancet, 355: 989-990.Linthicum, K. J., Anyamba, A., Tucker, C. J., Kelley, P. W., Myers, M. F. and Peters, C. J. (1999): Climate and satellite indicators to forecast Rift Valley fever epidemics in Kenya. Science, 285: 397-400.Luks, F. and Siebenhüner, B. (2007): Transdisciplinarity for social learning? The contribution of the German socio-ecological research initiative to sustainability governance. Ecological economics, 63: 418-426.Manzano-Agugliaro, F., Alcayde, A., Montoya, F., Zapata-Sierra, A. and Gil, C. (2013): Scientific production of renewable energies worldwide: an overview. Renewable and Sustainable Energy Reviews, 18: 134-143.Martens, W. J., Jetten, T. H. and Focks, D. A. (1997): Sensitivity of malaria, schistosomiasis and dengue to global warming. Climatic change, 35: 145-156.Marti, H., Tanner, M., Degremont, A. and Freyvogel, T. (1985): Studies on the ecology of Bulinus globosus, the intermediate host of Schistosoma haematobium in the Ifakara area, Tanzania. Acta tropica, 42: 171-187.Mas-Coma, S., Bargues, M. D. and Valero, M. (2005): Fascioliasis and other plant-borne trematode zoonoses. International journal for parasitology, 35: 1255-1278.Mas-Coma, S., Valero, M. and Bargues, M. (2008): Effects of climate change on animal and zoonotic helminthiases. Rev Sci Tech, 27: 443-57.Mashaly MM, Hendricks GL, Kalama MA (2004) Effect of Heat Stress on Production Parameters and Immune Responses of Commercial Laying Hens. Poultry Science 83: 889-894. Mchugh, C. P., Melby, P. C. and Lafon, S. G. (1996): Leishmaniasis in Texas: epidemiology and clinical aspects of human cases. The American journal of tropical medicine and hygiene, 55: 547-555.M?ller, A., Flensted‐Jensen, E., Klarborg, K., Mardal, W. and Nielsen, J. (2010): Climate change affects the duration of the reproductive season in birds. Journal of Animal Ecology, 79: 777-784.M?ller, A. P. (2006): Interval between clutches, fitness, and climate change. Behavioral Ecology, 18: 62-70.Moodley, I., Kleinschmidt, I., Sharp, B., Craig, M. and Appleton, C. (2003): Temperature-suitability maps for schistosomiasis in South Africa. Annals of Tropical Medicine and Parasitology, 97: 617-627.Moore, S., Shrestha, S., Tomlinson, K. W. and Vuong, H. (2012): Predicting the effect of climate change on African trypanosomiasis: integrating epidemiology with parasite and vector biology. Journal of the Royal Society Interface, 9: 817-830.Mouritsen, K. N., Tompkins, D. M. and Poulin, R. (2005): Climate warming may cause a parasite-induced collapse in coastal amphipod populations. Oecologia, 146: 476-483.Mweempwa, C., Marcotty, T., De Pus, C., Penzhorn, B. L., Dicko, A. H., Bouyer, J. and De Deken, R. (2015): Impact of habitat fragmentation on tsetse populations and trypanosomosis risk in Eastern Zambia. Parasites and vectors, 8: 406.National Research, C. (2011): American Climate Choices, Washington, DC, The National Academies Press.Nieuwhof, G. J. and Bishop, S. (2005): Costs of the major endemic diseases of sheep in Great Britain and the potential benefits of reduction in disease impact. Animal Science, 81: 23-29.Ogden, N., Maarouf, A., Barker, I., Bigras-Poulin, M., Lindsay, L., Morshed, M., O'callaghan, C., Ramay, F., Waltner-Toews, D. and Charron, D. (2006): Climate change and the potential for range expansion of the Lyme disease vector Ixodes scapularis in Canada. International journal for parasitology, 36: 63-70.Ollivier, G., Brutus, L. and Cot, M. (1999): Intestinal schistosomiasis from Schistosoma mansoni in Madagascar: extent and center of the endemic. Bulletin de la Societe de pathologie exotique, 92: 99-103.Olwoch, J. M., Van Jaarsveld, A., Scholtz, C. H. and Horak, I. G. (2007): Climate change and the genus Rhipicephalus (Acari: Ixodidae) in Africa. Onderstepoort Journal of Veterinary Research, 74: 45-72.Ostfeld, R. S. (2009): Climate change and the distribution and intensity of infectious diseases. Ecology, 90: 903-905.Ottersen, G., Planque, B., Belgrano, A., Post, E., Reid, P. C. and Stenseth, N. C. (2001): Ecological effects of the North Atlantic oscillation. Oecologia, 128: 1-14.Pachauri, R. K., Allen, M. R., Barros, V. R., Broome, J., Cramer, W., Christ, R., Church, J. A., Clarke, L., Dahe, Q. and Dasgupta, P. (2014): Climate change 2014: synthesis report. Contribution of Working Groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change, IPCC.Parmesan, C. and Yohe, G. (2003): A globally coherent fingerprint of climate change impacts across natural systems. Nature, 421: 37.Parry, M., Parry, M. L., Canziani, O., Palutikof, J., Van Der Linden, P. and Hanson, C. (2007): Climate change 2007-impacts, adaptation and vulnerability: Working group II contribution to the fourth assessment report of the IPCC, Cambridge University Press.Polley, L. and Thompson, R. A. (2009): Parasite zoonoses and climate change: molecular tools for tracking shifting boundaries. Trends in Parasitology, 25: 285-291.Poulin, R. (2006): Global warming and temperature-mediated increases in cercarial emergence in trematode parasites. Parasitology, 132: 143-151.Poulin, R. and Mouritsen, K. N. (2006): Climate change, parasitism and the structure of intertidal ecosystems. Journal of Helminthology, 80: 183-191.Ramezankhani, R., Sajjadi, N., Jozi, S. A. and Shirzadi, M. R. (2018): Climate and environmental factors affecting the incidence of cutaneous leishmaniasis in Isfahan, Iran. Environmental Science and Pollution Research, 25: 11516-11526.Reuss, S. M., Dunbar, M. D., Mays, M. B. C., Owen, J. L., Mallicote, M. F., Archer, L. L. and Wellehan Jr, J. F. (2012): Autochthonous Leishmania siamensis in horse, Florida, USA. Emerging infectious diseases, 18: 1545.Richardson H, Nichols G, Lane C, Lain RL and Hunter PR (2009): Microbiological surveillance of private water supplies in England – The impact of environmental and climate factors on water quality. Water research. 43:2159–68Robinson, S. J., Neitzel, D. F., Moen, R. A., Craft, M. E., Hamilton, K. E., Johnson, L. B., Mulla, D. J., Munderloh, U. G., Redig, P. T. and Smith, K. E. (2015): Disease risk in a dynamic environment: the spread of tick-borne pathogens in Minnesota, USA. EcoHealth, 12: 152-163.Romi, R. (2001): Aedes albopictus in Italy: an underestimated health problem. Annali dell'Istituto superiore di sanit?, 37: 241-247.Sargison, N., Wilson, D., Bartley, D., Penny, C. and Jackson, F. (2007): Haemonchosis and teladorsagiosis in a Scottish sheep flock putatively associated with the overwintering of hypobiotic fourth stage larvae. Veterinary parasitology, 147: 326-331.Saunders, L., Tompkins, D. and Hudson, P. (2002): Stochasticity accelerates nematode egg development. Journal of Parasitology, 88: 1271-1272.Schipper, J., Chanson, J. S., Chiozza, F., Cox, N. A., Hoffmann, M., Katariya, V., Lamoreux, J., Rodrigues, A. S., Stuart, S. N. and Temple, H. J. (2008): The status of the world's land and marine mammals: diversity, threat, and knowledge. Science, 322: 225-230.Schweizer (2005): The economic effects of bovine fasciolosis in Switzerland. Vet. Rec. , 157: 188–193.Semenza, J. C. and Menne, B. (2009): Climate change and infectious diseases in Europe. The Lancet infectious diseases, 9, 365-375.Short, E. E., Caminade, C. and Thomas, B. N. (2017): Climate Change Contribution to the Emergence or Re-Emergence of Parasitic Diseases. Infectious Diseases: Research and Treatment, 10: 1178633617732296.Simon, J. A., Marrotte, R. R., Desrosiers, N., Fiset, J., Gaitan, J., Gonzalez, A., Koffi, J. K., Lapointe, F. J., Leighton, P. A. and Lindsay, L. R. (2014): Climate change and habitat fragmentation drive the occurrence of B orrelia burgdorferi, the agent of Lyme disease, at the northeastern limit of its distribution. Evolutionary Applications, 7: 750-764.Smit, E. (2001): Chapter 18: Adaptation to Climate Change in the Context of Sustainable Development and Equity, Section 18: 2.3. Adaptation Types and Forms.Smith, H., Patterson, W., Hardie, R., Greene, L., Benton, C., Tulloch, W., Gilmour, R., Girdwood, R., Sharp, J. and Forbes, G. (1989): An outbreak of waterborne cryptosporidiosis caused by post-treatment contamination. Epidemiology and Infection, 103: 703-715.Solomon, S., Plattner, G.-K., Knutti, R. and Friedlingstein, P. (2009): Irreversible climate change due to carbon dioxide emissions. Proceedings of the national academy of sciences, 106: 1704-1709.Southgate, V., De Clercq, D., Sène, M., Rollinson, D., Ly, A. and Vercruysse, J. (2000): Observations on the compatibility between Bulinus spp. and Schistosoma haematobium in the Senegal River basin. Annals of Tropical Medicine and Parasitology, 94: 157-164.Steinfeld, H., Gerber, P., Wassenaar, T., Castel, V., Rosales, M., Rosales, M. and De Haan, C. (2006): Livestock's long shadow: environmental issues and options, Food and Agriculture Org.Stenseth, N. C., Mysterud, A., Ottersen, G., Hurrell, J. W., Chan, K.-S. and Lima, M. (2002): Ecological effects of climate fluctuations. Science, 297: 1292-1296.Sutherst, R. W. (2004): Global change and human vulnerability to vector-borne diseases. Clinical microbiology reviews, 17: 136-173.Thomas, B. N., Diallo, D. A., Noumsi, G. T. and Moulds, J. M. (2012): Circulating immune complex levels are associated with disease severity and seasonality in children with malaria from Mali. Biomarker insights, 7, BMI. S9624.Thompson, D. F., Malone, J. B., Harb, M., Faris, R., Huh, O. K., Buck, A. A. and Cline, B. L. (1996): Bancroftian filariasis distribution and diurnal temperature differences in the southern Nile delta. Emerging infectious diseases, 2: 234.Thornton, P. K. and Gerber, P. J. (2010): Climate change and the growth of the livestock sector in developing countries. Mitigation and adaptation strategies for global change, 15: 169-184.Tiwary, P., Kumar, D., Mishra, M., Singh, R. P., Rai, M. and Sundar, S. (2013): Seasonal variation in the prevalence of sand flies infected with Leishmania donovani. PloS one, 8, e61370.Van Den Bossche, P. and Coetzer, J. (2008): Climate change and animal health in Africa. Rev Sci Tech, 27: 551-562.Van Dijk, J., Sargison, N., Kenyon, F. and Skuce, P. 2010. Climate change and infectious disease: helminthological challenges to farmed ruminants in temperate regions. Animal, 4: 377-392.Weaver, H. J., Hawdon, J. M. and Hoberg, E. P. (2010): Soil-transmitted helminthiases: implications of climate change and human behavior. Trends in parasitology, 26: 574-581.Weinstein, PWA (2005): Integration of public health with adaptation to climate change. In: Ebi, KSJ., Burton, editors. Ecology, climate, and campylobacteriosis in New Zealand. Vol. 61. London: Taylor & Francis; Pp. 72.White, N., Sutherst, R. W., Hall, N. and Whish-Wilson, P. (2003): The vulnerability of the Australian beef industry to impacts of the cattle tick (Boophilus microplus) under climate change. Climatic Change, 61: 157-190.WHO. (1990): Potential health effects of climatic change: report of a WHO task group.WHO (2014): Health And Climate. Geneva, Swizerland: World Health Organization; 2014. Summary of the World Health Organization (WHO) Conference on Health and Climate: 27–29 August 2014. Wittmann, E. and Baylis, M. (2000): Climate change: effects on Culicoides-transmitted viruses and implications for the UK. The Veterinary Journal, 160: 107-117.Yadav, S. K. and Mishra, G. C. (2013): Global Energy Demand Consequences Versus Greenhouse Gases Emission. International Journal of Engineering, 6: 781-788.Yatoo MI, Kumar P, Dimri U, Sharma MC (2012) Effects of climate change on animal health and diseases. International Journal of Livestock Research 2: 15-24. ................
................

In order to avoid copyright disputes, this page is only a partial summary.

Google Online Preview   Download