Www.earlmortimer.org.uk
Binary Addition and Binary ShiftsFollow this link – you start this task, follow the link above and read the information on Bitesize. Then, answer the following questions.----------------------------------------------------------------------------------------------------------------------------------------------Theory Questions – Everybody should complete!What are the four arithmetic rules for adding binary numbers?Describe what the term “binary shift” means:Describe how you multiply a binary number:Describe how you divide a binary number:----------------------------------------------------------------------------------------------------------------------------------------------Challenging Theory Questions – Complete if you can!Explain “overflow”, using an example:Explanation:Example:Explain why overflow can cause problems for binary arithmetic?Binary Addition Practice – Everybody should complete!Attempt the following binary addition questions. Show your working using the carry column.4857750182880Answer in decimal:00Answer in decimal:Question 1:Number01010101Number10101010Answer--------Carry????????4857750182880Answer in decimal:00Answer in decimal:Question 2:Number00101011Number01001010Answer--------Carry????????4857750182880Answer in decimal:00Answer in decimal:Question 3:Number00110110Number01100010Answer--------Carry????????4857750182880Answer in decimal:00Answer in decimal:Question 4:Number01010110Number00010110Answer--------Carry????????4857750182880Answer in decimal:00Answer in decimal:Question 5:Number00111011Number01111100Answer--------Carry????????4857750182880Answer in decimal:00Answer in decimal:Question 6:Number01011101Number01011101Answer--------Carry????????Continue to the next page!Challenging Binary Addition Questions – Complete if you can!Now you need to record any overflows, too. Good luck!4857750182880Answer in decimal:00Answer in decimal:Question 7:Number10101000Number10110000Answer--------Overflow-Carry????????4857750182880Answer in decimal:00Answer in decimal:Question 8:Number11011000Number11111000Answer--------Overflow-Carry????????4857750182880Answer in decimal:00Answer in decimal:Question 9:Number10010010Number10010110Answer--------Overflow-Carry????????4857750182880Answer in decimal:00Answer in decimal:Question 10:Number01011111Number11011110Answer--------Overflow-Carry????????Continue to the next page!Binary Addition Practice – Everybody should complete!Attempt the following binary shift questions. Be sure to show any under/overflow which occurs!Question 1:Number00000100Right shift2????????Answer--------????????-Underflow----------------------------------------------------------------------------------------------------------------------------------------------Question 2:Number00001100Right shift1????????Answer--------????????-Underflow----------------------------------------------------------------------------------------------------------------------------------------------Question 3:Number10100000Right shift2????????Answer--------????????-Underflow----------------------------------------------------------------------------------------------------------------------------------------------Question 4:Number00000001Left shift4????????Answer--------????????-Underflow----------------------------------------------------------------------------------------------------------------------------------------------Question 5:Number00000101Left shift2????????Answer--------????????-UnderflowWell done for completing this week’s tasks! ................
................
In order to avoid copyright disputes, this page is only a partial summary.
To fulfill the demand for quickly locating and searching documents.
It is intelligent file search solution for home and business.
Related download
- an 8 bit 2 s complement number can represent values from
- dear student pk
- iq
- digital systems
- lecture 4 binary and hexadecimal number systems
- chapter 7 expressions and assignment statements
- binary matrix operations general engineering
- chapter 2 primitive data types and operations
- notes on computer arithmetic carleton
- code conversion