Binary Placement Chart
Binary Placement Chart
2 10
2
2
1024
512
256
2
2
2 2 2 3 2 2 2 1 2
128 64 32 16 8 4 2 1
Octal Placement Chart
8
8
8
8
8 3
8 2
8 1
8
2097152 262144 32768 4096 512
64
8
1
Hexadecimal Placement Chart
16
16
16 3
16 2
16 1
16
1048576 65536 4096 256
16
1
Steps to convert Decimal-to-Binary 1. Find the highest value that is your number. 2. Turn the switch on. (Mark a 1) 3. Subtract the value from your number. 4. If the remainder is zero, turn all other switches off. (Mark a 0) 5. If the remainder is NOT zero, then repeat steps 1-4. Example
2 10
2
1024
512
49 - 32
17 - 16
1 - 1
0 stop
2
2
2
256
128 64
Answer: 4910= 1100012
2 2 2 3 2 2 2 1 2 32 16 8 4 2 1 1 1 0 0 01
Steps to convert Binary-to-Decimal 1. Starting from right to left, plug your numbers into the placement chart. 2. Add all values where the switch is on. (Where there is a 1) Example
2 10
2
2
1024
512
256
32 + 16 + 1 = 49 Answer: 1100012 = 4910
2
2
2 2 2 3 2 2 2 1 2
128 64 32 16 8 4 2 1 1 1 0 0 01
Steps to convert Binary-to-Octal 1. Break the binary number into 3-bit sections (starting from right to left). If there are digits left over,
add additional zeroes in order to create a 3 digit group. 2. Then, determine what octal number (0-7) each 3-digit code represents. Example 100101010 100 | 101 | 010
2 2 2 1 2 4 2 1 10 0
=
4
2 2 2 1 2 4 2 1 10 1
=
5
2 2 2 1 2 4 2 1 01 0
=
2
Answer: 1001010102 = 4528
Steps to convert Octal-to-Binary Determine the 3-digit group (binary number) that corresponds to each octal number.
6
=
2 2 2 1 2 4 2 1 1 10
0
=
2 2 2 1 2 4 2 1 0 0 0
3
=
Answer: 6038 = 1100000112
2 2 2 1 2 4 2 1 0 11
Steps to convert Octal-to-Decimal 1. Starting from right to left, plug your numbers into the placement chart. 2. Multiply each octal number by the value above it. 3. Add all those values up.
8
8
8
8
8 3
8 2
8 1
8
2097152 262144 32768 4096 512
64
8
1
6
0
3
(64*6) + (8*0) + (1*3) = 384 + 0 + 3 = 387
Answer: 6038 = 38710
Steps to convert Hexadecimal-to-Binary Find the 4-digit group that corresponds to each hexadecimal number.
Decimal
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Hexadecimal
0 1 2 3 4 5 6 7 8 9 A B C D E F
Binary
0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111
7
=
0111
5
=
0101
C
=
1100
E
=
1110
Answer: 75CE16 = 01110101110011102 = 1110101110011102
(NOTE: You can leave off any leading zeroes.)
Steps to convert Binary-to-Hexadecimal
1. Break the binary number into 4-bit sections (starting from right to left). If there are digits left over, add additional zeroes in order to create a 4-digit group.
2. Then, determine what hexadecimal number (0-F) each 4-digit code represents.
100101010 0001 | 0010 | 1010
1 2 A
Answer: 1001010102 = 0001001010102 = 12A16
................
................
In order to avoid copyright disputes, this page is only a partial summary.
To fulfill the demand for quickly locating and searching documents.
It is intelligent file search solution for home and business.
Related download
- decimal binary hexadecimal conversion chart
- decimal octal hexadecimal binary conversion chart table
- decimal binary and hexadecimal university of washington
- binary decimal octal and hexadecimal number systems
- binary to hexadecimal conversion pdf chart template printable
- chapter 1 binary octal and hexadecimal numbers trinity college dublin
- conversion of binary octal and hexadecimal numbers
- ascii conversion chart university of delaware
- hexadecimal numbers decimal binary hexadecimal decimal binary hexadecimal
- conversion table decimal hexidecimal octol binary securitywizardry
Related searches
- kindergarten placement test pdf
- college english placement test practice
- english placement test sample questions
- first grade placement test printable
- placement english test free
- english placement test practice
- free college placement practice tests
- esl placement test for college
- free english placement test practice
- free college math placement practice tests
- tens electrode placement for ed
- english 101 placement test practice