1



AME 415 Syllabus

• Course Title: Turbine Design and Analysis

• No prerequisite courses. Familiarity with Matlab is necessary for project assignments.

• Instructor: Bogdan Marcu

o Office: TBD. Office Hours: TBD.

o Phone TBD. Email: bogdan.marcu@

Introduction and Purposes

AME 415 is an introductory course focusing on the hands-on design and analysis of industrial equipment. Using axial turbines as the work example, the course is introducing the mechanical and aerospace engineering students to the typical approaches used in the industry. After laying the fundamental principles derived from thermodynamics, the course introduces techniques of performance modeling based on empirical test data correlations, design parameterization, and advanced Computational Fluid Dynamics analysis. All concepts and techniques learned are applied to the design of an axial turbine conforming to industry standards.

Utilized in propulsion, power generation and other applications, turbines of various configurations constitute a type of machinery essential for modern industrial economies. In a straightforward and applied manner, the class project allows the student to understand the physics associated with turbine operation and train into the complete chain of design and analysis tasks associated with the development of turbine hardware. Starting with writing design code, continuing with conceptual design, and advancing through detailed geometry definition and advanced CFD analysis, the class project addresses every segment of typical development processes currently employed in the industry.

Given the special format of the course, a detailed description of the home work and project work is provided below.

Homework

A series of five homework assignments will be given before the actual project is started. Each homework is a small project designed to introduce and familiarize the student with the science, and algorithms and the work methodology to be later used for the main project

1. Compressible flows and iterative calculations of thermodynamic parameters

2. Simple performance calculations, 1-D approximation of turbine flow physics and design reasoning

3. Working on NASA turbine reports: extraction of turbine performance from standard maps, understanding of similarity principles and scaling.

4. Three dimensional design concepts with verification of work distribution per radius.

5. Example Computational Fluid Dynamics analysis of a 2-D airfoil

Project

The structure of the class project mimics the development work performed in industry with equal emphasis on both academic understanding of the fundamental flow physics and the engineering rigor expected in the non-academic fast paced development programs. Tested on previous pilot courses, the project structure proved to be the most effective mean of learning how to integrate i)academic knowledge, ii)algorithm development and coding, iii)design reasoning, iv)design methodology and v)advanced analysis tools in order to define an engineering product in complete detail. The stages of the project progress as follows:

- Define the concept of the required product in the context of existing experience. Selection of main parameters

- 1-D analysis. Develop analysis algorithms, code, validate and apply to the design at hand. Turbine sizing.

- Generate 2-D airfoil geometry. Understand cascade flow physics, design criteria and utilization of design tools. Application of empirical loss correlations. Turbine geometry definition at mean diameter.

- Advanced CFD analysis of geometry generated. Interpretation of results, design iterations and successive improvement.

- Extend design to 3-D. Design reasoning, establish methodology and apply to the 2-D baseline design already developed.

- Advanced CFD analysis at 3-radial stages. Performance extraction from solution. Comparison to the 1-D analysis employing loss correlations.

- Communication: Conceptual, Detail and Final reviews. Chart package design, organization of information flow, verbal presentation, peer scrutiny and evaluation.

Course Requirements and Grades

• Text-book/Reading material: hand-out notes.

• Grading :

o 30% Homework

o 70% Project

Course Readings/Class Sessions

1. August 30th Lecture. General background for turbomachines. Turbine types and configurations. Thermodynamics associated with turbine analysis. Euler Equation. Fluid Properties.

• HW 1 Assignment. Compressible flows and iterative calculation of TD parameters

2. September 6th Lecture. Compressible flow physics. Isentropic relations. The normal and oblique shock. The Prandtl-Meyer expansion. Compressible channel flows.

• HW 2 Performance calculation, design reasoning, 1-D analysis

3. September 13th Lecture. Turbine Configurations. The axial-flow turbine. The radial in-flow turbine. Dimensional analysis.

• HW 3 – NASA turbine report analysis

4. September 20th The axial-flow turbine. Blade/Vane row geometry. Cascade performance. Degree of reaction. Three dimensional design.

• HW 4 – turbine 3-D profiling

5. September 27th 1-Dimmensional axial flow turbine sizing. Baseline turbine example: calculation of an axial turbine stage.

• HW 5 – CFD analysis of a cascade

• Class Project Assignment

6. October 4th Lecture. Baseline Airfoil Example – CAD modeling and CFD analysis using the StarCCM+ code.

• CFD Analysis assignment

7. October 11th Lecture. The axial-flow turbine loss system – part I. Turbine Empirical Performance. Detailed numerical calculations of the losses for the Baseline Turbine Example.

• Student project review and discussion – stage calculation

8. October 18th Lecture. The axial-flow turbine loss system – part II. Detailed numerical calculations of the losses for the Baseline Turbine Example. Stage calculations employing the Turbine Loss System and determination of realistic turbine performance.

• Student project review and discussion – Developing your own Loss System

9. October 25th Lecture. Airfoil Design for the Axial Turbine Stage. Subsonic cascade geometry. Airfoil parameterization. Supersonic Cascade geometry: nozzles and rotor blades.

• Student project review and discussion – Stage Performance

10. November 1st Lecture. Cascade of airfoils employed on axial turbines design. CFD cascade analysis training. Hands on case example using commercial CAD software and CFD analysis codes

• CFD analysis assignment

11. November 8th Lecture. Turbine cooling, unsteady flows, vibratory excitation and High Cycle Fatigue

• Final project discussion before Graded Reviews.

12. November 15th Lecture. Project Phase I – Turbine Stage Conceptual Design Review (Co-DR): 1-D sizing, and preliminary performance.

• Graded Review. Class presentation

13. Thanksgiving Holiday.

14. November 29th Lecture. Project Phase II – Detailed Design Review (PDR): Refined 1-D sizing and performance. Preliminary design of stators and rotors and associated CFD analysis.

• Graded Review. Class presentation

15. December 6th Lecture. Project Phase III – Critical Design Review (CDR). Finalized turbine stage performance. Finalized airfoil geometries for rotors and stators. Detailed CFD analysis.

• Graded Review. Class presentation, peer-review, discussion of results, wrap-up

• Late work policy: homework and project phase assignments must be completed in time, no late work accepted.

• Participation is not evaluated, however, the students are strongly encouraged to attend the lecture given the hands-on nature of the course work.

• Bibliography

o Ronald. H. Aungier, Turbine Aerodynamics, ASME Press 2009, ISBN 0-7918-0241-8

o David Japikse and Nicholas C. Baines, Introduction to Turbomachinery, Oxford University Press, 1997, ISBN 0-933283-10-5.

o J.H. Horlock, Axial Flow Turbines, Krieger Publishing 1985 (reprint), ISBN-10: 0882750976, ISBN-13: 978-0882750972

Students with Disabilities

Any student requesting academic accommodations based on a disability is required to register with Disability Services and Programs (DSP) each semester. A letter of verification for approved accommodations can be obtained from DSP. Please be sure the letter is delivered to me (or to TA) as early in the semester as possible. DSP is located in STU 301 and is open 8:30 a.m.–5:00 p.m., Monday through Friday. The phone number for DSP is (213) 740-0776.

Academic Integrity

USC seeks to maintain an optimal learning environment. General principles of academic honesty include the concept of respect for the intellectual property of others, the expectation that individual work will be submitted unless otherwise allowed by an instructor, and the obligations both to protect one’s own academic work from misuse by others as well as to avoid using another’s work as one’s own. All students are expected to understand and abide by these principles. Scampus, the Student Guidebook, contains the Student Conduct Code in Section 11.00, while the recommended sanctions are located in Appendix A: . Students will be referred to the Office of Student Judicial Affairs and Community Standards for further review, should there be any suspicion of academic dishonesty. The Review process can be found at: .

................
................

In order to avoid copyright disputes, this page is only a partial summary.

Google Online Preview   Download