ALEX | Alabama Learning Exchange



Composition of Function Notes:Composition of Functions is the process of combining two functions where one function is performed first and the result of which is substituted in place of each x in the other function.0-508000 Explain what happened: ____________________________________________ ____________________________________________ ____________________________________________ ____________________________________________0-444500Create a problem, explain how you found the answer:________________________________________________________________________________________________________________________________________________________________________________________ -47625295275Table of Values: 11525259525 Explain the process of finding (g ? f)(7) : ______________________________________ ______________________________________ ______________________________________ Find (g ? f)(7)f(7)=4g(4)= -3So (g ? f)(7)= -3Create your own problem, explain the process you used to find the answer:Graphs:00Explain how to find g(f(-1))_____________________________________________________________________________________________________________________________________________________________________ Use the graph above to find at least 2 other values for g(f(x)), explain your work:Function Rules: Explain what happened:Given g(x)=3x+2 and f(x) = x2 + x _____________________________________ Find g(f(x)) _____________________________________ g(f(x))= 3( x ) + 2 _____________________________________ g(f(x) = 3(x2 + x) + 2 _____________________________________ g(f(x) = 3x2 + 3x + 2 ______________________________________Create your own problem and find the solution for both g(f(x)) and f(g(x)).Explain how you found your answers and decide if the composition is commutative. ................
................

In order to avoid copyright disputes, this page is only a partial summary.

Google Online Preview   Download