Table of Integrals

Table of Integrals

Basic Forms

xndx = 1 xn+1

(1)

n+1

1 dx = ln |x|

(2)

x

udv = uv - vdu

(3)

1 dx = 1 ln |ax + b|

(4)

ax + b

a

Integrals of Rational Functions

1

1

(x + a)2 dx = - x + a

(5)

(x + a)ndx

=

(x + a)n+1 ,n

=

-1

(6)

n+1

x(x + a)ndx = (x + a)n+1((n + 1)x - a)

(7)

(n + 1)(n + 2)

x ax + bdx =

2 15a2

(-2b2

+

abx

+

3a2x2

) ax

+

b

(26)

1 x(ax + b)dx = 4a3/2 (2ax + b) ax(ax + b)

-b2 ln

a x+

a(ax + b)

(27)

x3(ax + b)dx =

b

b2

x

12a - 8a2x + 3

x3(ax + b)

b3

+ 8a5/2 ln a x + a(ax + b) (28)

x2 ? a2dx = 1 x x2 ? a2 ? 1 a2 ln x +

2

2

x2 ? a2 (29)

Integrals with Logarithms

ln axdx = x ln ax - x

(42)

ln ax dx = 1 (ln ax)2

(43)

x

2

ln(ax + b)dx = x + b ln(ax + b) - x, a = 0 (44) a

ln(x2 + a2) dx = x ln(x2 + a2) + 2a tan-1 x - 2x (45) a

ln(x2 - a2) dx = x ln(x2 - a2) + a ln x + a - 2x (46) x-a

ln

ax2 + bx + c

1 dx =

4ac - b2 tan-1 2ax + b

a

4ac - b2

- 2x + b + x ln ax2 + bx + c

(47)

2a

1

1 + x2

dx

=

tan-1

x

(8)

a2

1 + x2 dx

=

1 a

tan-1

x a

(9)

a2

x + x2 dx

=

1 2

ln |a2

+ x2|

(10)

x2 dx = x - a tan-1 x

(11)

a2 + x2

a

x3 a2 + x2 dx

=

1 x2 2

-

1 a2 2

ln |a2

+

x2|

(12)

ax2

1

dx

+ bx + c

=

2

4ac - b2

tan-1

2ax + b

4ac - b2

(13)

1

1 a+x

dx =

ln

, a = b (14)

(x + a)(x + b)

b-a b+x

x

a

dx =

+ ln |a + x|

(15)

(x + a)2

a+x

ax2

x dx

+ bx + c

=

1 2a

ln |ax2

+ bx + c|

-b

tan-1 2ax + b (16)

a 4ac - b2

4ac - b2

Integrals with Roots

x - adx

=

2 (x - a)3/2

(17)

3

1

dx = 2 x ? a

(18)

x?a

1

dx = -2 a - x

(19)

a-x

x x-

adx

=

2 a(x

-

a)3/2

+

2 (x

- a)5/2

(20)

3

5

2b 2x

ax + bdx = +

ax + b

(21)

3a 3

(ax + b)3/2dx = 2 (ax + b)5/2

(22)

5a

x

dx

=

2 (x

2a) x

?

a

(23)

x?a

3

x dx = - x(a - x) - a tan-1

x(a - x) (24)

a-x

x-a

a2 - x2dx = 1 x a2 - x2 + 1 a2 tan-1 x

2

2

a2 - x2

(30)

x x2 ? a2dx = 1 x2 ? a2 3/2 3

(31)

1

dx = ln x + x2 ? a2

(32)

x2 ? a2

1 dx = sin-1 x

(33)

a2 - x2

a

x dx = x2 ? a2

(34)

x2 ? a2

x dx = - a2 - x2

(35)

a2 - x2

x2

1 dx = x

x2 ? a2 1 a2 ln x +

x2 ? a2

2

2

x2 ? a2 (36)

ax2 + bx + cdx = b + 2ax ax2 + bx + c 4a

4ac - b2

+

ln 2ax + b + 2

a(ax2 + bx+c)

(37)

8a3/2

x ax2 + bx + c = 1

2 a ax2 + bx + c

48a5/2

? -3b2 + 2abx + 8a(c + ax2)

+3(b3 - 4abc) ln

b + 2ax + 2 a

ax2 + bx + c

(38)

1

dx = 1 ln 2ax + b + 2 a(ax2 + bx + c)

ax2 + bx + c

a

(39)

x

1 dx =

ax2 + bx + c

ax2 + bx + c

a

b - 2a3/2 ln 2ax + b + 2

a(ax2 + bx + c)

(40)

x ln(ax + b)dx = bx - 1 x2 2a 4

+ 1 x2 - b2 ln(ax + b)

(48)

2

a2

x ln a2 - b2x2 dx = - 1 x2+ 2

1 x2 - a2

2

b2

ln a2 - b2x2

(49)

Integrals with Exponentials

eaxdx = 1 eax a

(50)

xeaxdx

=

1 xeax a

+

i 2a3/2 erf

i ax

,

where erf(x) = 2 x e-t2 dt

(51)

0

xexdx = (x - 1)ex

(52)

xeaxdx =

x1 a - a2

eax

(53)

x2exdx = x2 - 2x + 2 ex

(54)

x2eaxdx =

x2 2x 2 -+

eax

a a2 a3

x3exdx = x3 - 3x2 + 6x - 6 ex

xneax dx = xneax - n aa

xn-1eax dx

(55) (56) (57)

xneax

dx

=

(-1)n an+1 [1

+

n, -ax],

where (a, x) =

ta-1e-t dt

x

eax2 dx = - i erf

ix a

2a

e-ax2 dx =

erf

xa

2a

xe-ax2 dx = - 1 e-ax2 2a

(58)

(59) (60) (61)

x

dx = x(a + x) - a ln x + x + a (25)

a+x

dx

x

=

(a2 + x2)3/2 a2 a2 + x2

(41)

x2e-ax2 dx = 1

erf(x a)

-

x e-ax2

4 a3

2a

(62)

2014. From , last revised June 14, 2014. This material is provided as is without warranty or representation about the accuracy, correctness or suitability of the material for any purpose, and is licensed under the Creative Commons Attribution-Noncommercial-ShareAlike 3.0 United States License. To view a copy of this license, visit or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA.

Integrals with Trigonometric Functions

sin axdx = - 1 cos ax

(63)

a

sin2 axdx = x - sin 2ax

(64)

2 4a

sinn axdx =

1

- cos ax a

2 F1

1 , 1 - n , 3 , cos2 ax 222

(65)

sin3

axdx

=

3 cos ax -

+

cos 3ax

(66)

4a

12a

cos axdx = 1 sin ax

(67)

a

cos2 axdx = x + sin 2ax

(68)

2 4a

cosp axdx = - 1 cos1+p ax? a(1 + p)

2 F1

1 + p , 1 , 3 + p , cos2 ax 222

(69)

cos3 axdx = 3 sin ax + sin 3ax

(70)

4a

12a

cos ax sin bxdx = cos[(a - b)x] - cos[(a + b)x] , a = b

2(a - b)

2(a + b)

(71)

sin2 ax cos bxdx = - sin[(2a - b)x] 4(2a - b)

+ sin bx - sin[(2a + b)x]

(72)

2b

4(2a + b)

sin2 x cos xdx = 1 sin3 x

(73)

3

cos2 ax sin bxdx = cos[(2a - b)x] - cos bx

4(2a - b)

2b

cos[(2a + b)x]

-

(74)

4(2a + b)

cos2 ax sin axdx = - 1 cos3 ax

(75)

3a

sin2 ax cos2 bxdx = x - sin 2ax - sin[2(a - b)x]

4 8a

16(a - b)

+ sin 2bx - sin[2(a + b)x]

(76)

8b

16(a + b)

sin2 ax cos2 axdx = x - sin 4ax

(77)

8 32a

tan axdx = - 1 ln cos ax

(78)

a

tan2 axdx = -x + 1 tan ax

(79)

a

tann axdx

=

tann+1 ax ?

a(1 + n)

2 F1

n + 1 , 1, n + 3 , - tan2 ax

2

2

(80)

tan3 axdx = 1 ln cos ax + 1 sec2 ax

(81)

a

2a

sec xdx = ln | sec x + tan x| = 2 tanh-1 tan x (82) 2

sec2 axdx = 1 tan ax

(83)

a

sec3 x dx = 1 sec x tan x + 1 ln | sec x + tan x| (84)

2

2

sec x tan xdx = sec x

(85)

sec2 x tan xdx = 1 sec2 x

(86)

2

secn x tan xdx = 1 secn x, n = 0

(87)

n

x csc xdx = ln tan = ln | csc x - cot x| + C (88)

2

csc2 axdx = - 1 cot ax

(89)

a

csc3 xdx = - 1 cot x csc x + 1 ln | csc x - cot x| (90)

2

2

cscn x cot xdx = - 1 cscn x, n = 0

(91)

n

sec x csc xdx = ln | tan x|

(92)

Products of Trigonometric Functions and Monomials

x cos xdx = cos x + x sin x

(93)

1

x

x cos axdx = a2 cos ax + a sin ax

(94)

x2 cos xdx = 2x cos x + x2 - 2 sin x

(95)

x2 cos axdx

=

2x cos ax a2

+

a2x2 - 2 a3

sin ax

(96)

xncosxdx = - 1 (i)n+1 [(n + 1, -ix) 2

+(-1)n(n + 1, ix)]

(97)

xncosaxdx = 1 (ia)1-n [(-1)n(n + 1, -iax) 2

-(n + 1, ixa)]

(98)

x sin xdx = -x cos x + sin x

x cos ax sin ax

x sin axdx = - a

+ a2

x2 sin xdx = 2 - x2 cos x + 2x sin x

(99) (100) (101)

x2 sin axdx = 2 - a2x2 cos ax + 2x sin ax

a3

a2

(102)

xn sin xdx = - 1 (i)n [(n + 1, -ix) - (-1)n(n + 1, -ix)] 2 (103)

Products of Trigonometric Functions and Exponentials

ex sin xdx = 1 ex(sin x - cos x) 2

(104)

ebx

sin axdx

=

a2

1 +

b2 ebx(b sin ax

-

a cos ax)

(105)

ex cos xdx = 1 ex(sin x + cos x) 2

(106)

ebx cos axdx = 1 ebx(a sin ax + b cos ax) (107) a2 + b2

xex sin xdx = 1 ex(cos x - x cos x + x sin x) (108) 2

xex cos xdx = 1 ex(x cos x - sin x + x sin x) (109) 2

Integrals of Hyperbolic Functions

cosh axdx = 1 sinh ax a

(110)

eax cosh bxdx =

eax

a2

-

b2

[a

cosh

bx

-

b

sinh

bx]

e2ax x

+

4a 2

a=b a=b

sinh axdx = 1 cosh ax a

(111) (112)

eax sinh bxdx =

eax

a2

-

b2

[-b

cosh

bx

+

a

sinh

bx]

e2ax x

-

4a 2

a=b a=b

(113)

eax tanh bxdx =

e(a+2b)x

(a

+

2b)

2

F1

1+

a , 1, 2 +

a , -e2bx

2b

2b

-

1 a

eax

2

F1

a , 1, 1E, -e2bx 2b

eax

-

2

tan-1[eax]

a

a = b (114) a=b

1 tanh ax dx = ln cosh ax

a

(115)

1 cos ax cosh bxdx = a2 + b2 [a sin ax cosh bx

+b cos ax sinh bx]

(116)

1 cos ax sinh bxdx = a2 + b2 [b cos ax cosh bx+

a sin ax sinh bx]

(117)

1

sin ax cosh bxdx =

[-a cos ax cosh bx+

a2 + b2

b sin ax sinh bx]

(118)

1

sin ax sinh bxdx =

[b cosh bx sin ax-

a2 + b2

a cos ax sinh bx]

(119)

1 sinh ax cosh axdx = [-2ax + sinh 2ax]

4a

(120)

1 sinh ax cosh bxdx = b2 - a2 [b cosh bx sinh ax

-a cosh ax sinh bx]

(121)

................
................

In order to avoid copyright disputes, this page is only a partial summary.

Google Online Preview   Download