Ars.els-cdn.com



Supplementary Information ForThe Thermal Stability of Metal-Organic FrameworksColm Healy,1,2 Komal Patil,1,2 Benjamin H. Wilson,1,2 Lily Hermanspahn,1,2 Nathan C. Harvey-Reid,1,2 Ben I. Howard,1,2 Carline Kleinjan,1,2 James Kolien,1,2 Fabian Payet,2 Shane G. Telfer,3 Paul E. Kruger,1,2* Thomas D. Bennett4*Email Addresses: Tdb35@cam.ac.uk paul.kruger@canterbury.ac.nz 1 MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Physical and Chemical Sciences, University of Canterbury, Private Bag 4800, Christchurch, New Zealand2 School of Physical and Chemical Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand3 MacDiarmid Institute for Advanced Materials and Nanotechnology, Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand4 Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, CB3 0FS, United KingdomContents:Page:List of Abbreviations2Supplementary Tables5Supplementary Figures42List of AbbreviationsAbbreviationLigand NameChemical FormulaABIm4-azabenzimidazolateC6H4N3?ADCAcetylenedicarboxylateC4O42?ADPC9,10-anthracenedi(4-phenylcarboxylate)C28H16O42?ADPC9,10-anthracenedi(4-phenylcarboxylate)C28H16O42?AZPY4,4′-azopyridineC10H8N4BDB4,4'-(1,3-Butadiyne-1,4-diyl)dibenzoateC18H8O42?BDCBenzene-1,4-dicarboxylateC8H4O42?BDPButene diphosphonateC4H8P2O64?BImbenzimidazolateC7H5N2?BPA1,2-Bis(4-pyridyl)ethene)C12H8N2BPB1,4-Bis(4-pyridyl)benzeneC16H12N2BPBP4,4'-Bis(4-pyridyl)biphenylC22H16N2BPD1,4-Bis(4-pyridyl)dureneC20H20N2BPDCBiphenyl dicarboxylateC14H8O42?BPE1,2-Bis(4-pyridyl)ethene)C12H10N2BPIN-(Pyidin-4-yl)isoniconamideC11H9N3OBPN4,4'-(2,6-Napthalene)-bipyC20H14N2BPNDIN,N′-di(4-pyridyl)-1,4,5,8-naphthalene diimideC24H12N4O4BPT4,7-bis(4-pyridyl)-1,1,3,3-tetramethylisoindolin-2-yloxylC23H23N2O·BPX1,4-bis(4-pyridyl)xyleneC18H16N2BPY4,4-bipyridineC10H8N2BPYDC2,2’-dipyridine-5,5’-dicarboxylic acidC12H6N2O42?BPYDC2,2’-dipyridine-5,5’-dicarboxylic acidC12H6N2O42?BPZ4-(3,5-dimethyl-1H-pyrazol-4-yl)pyridineC10H14N4BQDPC1,4-benzoquinone-2,5-di(4-phenylcarboxyate)C20H10O62?BQDPC1,4-benzoquinone-2,5-di(4-phenylcarboxyate)C20H10O62?BRBIm5-bromobenzimidazolateC7H4N2Br?BTB1,3,5-Benzene TribenzoateC27H15O63-BTC1,3,5 - Benzene TricarboxylateC9H3O63?BTTCbenzo-tris-thiophene carboxylateC15H3O6S33?C2PYN-ethylpyridiniumC7H10N+C4MPYRN-butyl-N-methylpyrrolidiniumC9H20N+CAIm2-carboxaldehydeimidazolateC4H3N2O?CBIm5-chlorobenzimidazolateC7H4N2Cl?CDCCubane-1,4-dicarboxylateC10H6O42?CNIm4-cyanoimidazolateC4H2N3?DABCO1,4-diazabicyclo[2.2.2]octaneC6H12N2DBFN,N’-dibutylformamideC9H19NODCIm4,5-dichloroimidazolateC3HN2Cl2?DEFN,N’-diethylformamideC5H11NODMAdimethylammoniumC2H7N+DMFN,N’-dimethylformamideC3H7NODMBIm4,5-dimethylbenzimidazolateC9H9N2?DNDCDinapthyldicarboxylateC22H12O42?DNDCDinapthyldicarboxylateC22H12O42?DOBPDC4,4'-dioxido-3,3'-biphenyldicarboxylateC14H6O64?DOT2,5-Dioxidobenzene-1,4-dicarboxylate(Extended analogues are indicated by roman numerals, e.g. DOT-II)C8H2O64?EDB4,4'-(1,2-Ethynediyl)dibenzoateC16H8O42?EDPEthyenediphosphonateC2H4P2O64?EIm2-ethylimidazolateC5H7N2?TPPPtetra(4-phosphonophenyl)porphyrinC44H24N4O12P48?HMIm2-methoxyimidazolateC4H5N2O?HPDC4,5,9,10-Tetrahydropyrene-2,7-dicarboxylateC18H12O42?ImImidazolateC3H3N2?MBIm5-methylbenzimidazolateC8H7N2?MDPMethyenediphosphonateCH2P2O64?MIm2-methylimidazolateC4H5N2?MTPPAtetraphenylmethane tetrakis-4-phosphonic acidC25H32O12P4NBIm5-nitrobenzimidazolateC7H4N3O2?NDCNaphthalene-2,6-dicarboxylateC12H6O42?NIm2-nitroimidazolateC3H2NO3?NMPN-methyl-2-pyrrolidoneC5H9NONTBnitrilotrisbenzoateC21H12NO63?NTC1,4,5,8-napthalenetetracarboxylic acidC14H4O84?PBDC5-phosphonobenzene-1,3-dicarboxylic acidC8H7O7P2PDMPPiperazinedi(methylenephosphonate)C6H12N2P2O64?PrDPPropylenediphosphonateC3H6P2O64?PtDPPentanediphosphonateC5H10P2O64?PurPurinateC5H3N4?PYPZ3,3′,5,5′-tetramethyl-1H,1′H-4,4′-bipyrazoleC10H11N3PYZPyrazineC4H4N2PZDC3,5-PyrazoledicarboxylateC5H2N2O42?TATB4,4',4''-s-triazine-2,4-6- triyltribenzoateC24H12N3O63?TAZB3,3',5,5' - azobenzene tetracarboxylic acidC16H6N2O84?TDBB1,3,5-tris(3,5'-dicarboxy[1,1'-biphenyl]-4-yl)benzeneC48H24O126?TPDCTriphenyldicarboxylateC20H12O42?TPPAH1,3,5,7-tetrakis(4-phosphonophenyl)adamantineC31H36O12P4TPPMH3tetrakis[4-(dihyroxyphosphoryl)phenyl]methaneC25H24O12P45?VBPYDC2,2’-dipyridine-5,5’-divinylcarboxylic acidC16H10O42?Supplementary TablesSupplementary Table 1. Thermal decomposition data for the MOF-5 family of materials.NameCompositionHeating Rate (°C/min)AtmosphereTd (°C)ReferenceNotesMOF-5[Zn4O(BDC)3]--4751MOF-5[Zn4O(BDC)3]--4002MOF-5[Zn4O(BDC)3]10Air4753MOF-5[Zn4O(BDC)3]5O24754MOF-5[Zn4O(BDC)3]10N25105MOF-5[Zn4O(BDC)3]--3506MOF-5[Zn4O(BDC)3]20N24507MOF-5[Zn4O(BDC)3]10N24008Cubic MOF-5(Zn4.28O12.8C24H11.3)10N25009Tetragonal MOF-5(Zn5.59O16.33C24H16.08)10N24509Ni-doped MOF-5[Zn4O(BDC)3]+ 42% Ni(0)--4002MOF-5 (Zn/Ni)[Zn3.48Ni0.52O(BDC)3]10N24805MOF-5 (Zn/Co)[Zn3.09Co0.91O(BDC)3]10N247510MOF-5 (Zn/Ni)[Zn3.64Ni0.36O(BDC)3]0.5N245011MOF-5 (Zn/Co)[Zn3.16Co0.84O(BDC)3]3Air44012MOF-5 (Zn/Co)[Zn3.68Co0.32O(BDC)3]3Air46212MOF-5(Be)[Be4O(BDC)3]0.2Ar5006IRMOF-61·2H2O[Zn4O(edb)3(H2O)2]--30013MOF-2[Zn2(BDC)2(H2O)2]--4001MOF-46[Zn(BDC(NH2))(DMF)]--350*15MOF-47[Zn2(BDC(CH3)4)2(DMF)0.5(H2O)1.5]--350*15IRMOF-6[Zn4O(BDC(C2H4))3]-N24001IRMOF-6[Zn4O(BDC(C2H4))3]--40016IRMOF-6[Zn4O(BDC(C2H4))3]5N240017MOF-5-allyloxy[Zn4O(BDC(CH2=CHCH2O)2)3]10N216018AIRMOF-3[Zn4O(BDC(NH2))3]--3751IRMOF-3[Zn4O(BDC(NH2))3]5N240017IRMOF-3-AM2 to AM-19[Zn4O(BDC(NH2))3-y(BDC(alkylamide))y]5N232519BMOF-5-dimethyl[Zn4O(BDC(CH3)2)3]10Air4253MOF-5-methyl[Zn4O(BDC(CH3))3]10Air4253LSK-11[Zn4O(BDC)2(BDC(PPh2))]10N250020IRMOF-3-BI-Pd[Zn4O(BDC(NH2))2.67(BDC(BI))0.03(BDC(BI)-PdOAc)0.30]-N225021DMTV-MOF-5-AB[Zn4O(BDC)1.92(BDC(NH2))1.08]5Air42522MTV-MOF-5-AC[Zn4O(BDC)1.86(BDC(Br))1.14]5Air35022MTV-MOF-5-AD[Zn4O(BDC)1.83(BDC(Cl)2)1.17]5Air30022MTV-MOF-5-AE[Zn4O(BDC)2.13(BDC(NO2))0.87]5Air30022MTV-MOF-5-AF[Zn4O(BDC)1.35(BDC(CH3)2)1.65]5Air42522MTV-MOF-5-AG[Zn4O(BDC)1.98(14ndc)1.02]5Air37522MTV-MOF-5-AH[Zn4O(BDC)2.04(BDC(CH2=CHCH2O)2)0.96]5Air20022MTV-MOF-5-AI[Zn4O(BDC)2.13(BDC(C7H7O)2)0.87]5Air22522MTV-MOF-5-EI[Zn4O(BDC(C7H7O)2)2.49(BDC(NO2))0.51]5Air22522MTV-MOF-5-AHI[Zn4O(BDC)1.52(BDC(CH2=CHCH2O)2)0.73(BDC(C7H7O)2)0.75]5Air20022MTV-MOF-5-EHI[Zn4O(BDC(NO2))1.19(BDC(CH2=CHCH2O)2)1.07(BDC(C7H7O)2)0.74]5Air20022MTV-MOF-5-ABCD[Zn4O(BDC)1.44(BDC(NH2))0.18(BDC(Br))0.81(BDC(Cl)2)0.57]5Air32522MTV-MOF-5-ACEF[Zn4O(BDC)1.29(BDC(Br))0.63(BDC(NO2))0.28(BDC(CH3)2)0.80]5Air30022MTV-MOF-5-ABCEFGHI[Zn4O(BDC)0.70(BDC(NH2))0.011(BDC(Br))0.39(BDC(NO2))0.21(BDC(CH3)2)0.46(14ndc)0.39(BDC(CH2=CHCH2O)2)0.35(BDC(C7H7O)2)0.39]5Air20022IRMOF-1-Dioxole[Zn4O(BDC(CH2O2))3]5N230023DIRMOF-1-Crownether1[Zn4O(BDC(12-crown-4))3]5N225024IRMOF-1-Crownether2[Zn4O(BDC(15-crown-5))3]5N225024IRMOF-1-thia-Crownether1[Zn4O(BDC(di-thia-12-crown-4))3]5N222524IRMOF-1-thia-Crownether2[Zn4O(BDC(tri-thia-15-crown-5))3]5N222524PCN-123[Zn4O(BDC(Azo))3]5N237525IRMOF-9[Zn4O(BPDC)3] Z = 25N242526IRMOF-9[Zn4O(BPDC)3]----37527IRMOF-9-UREA[Zn4O(BPDC-Urea)3]3N240028WUF-19[Zn4O(BPDC(CH2=CH))3]101:1 mixture of N2 and Air44029IRMOF-9-OH[Zn4O(BPDC(OH))3] Z=25N240031IRMOF-9-Methoxy[Zn4O(BPDC(OCH3))3]5N240031LSK-3[Zn4O(BPDC)2(BPDC(PPh2))]2N240032WUF-1[Zn4O(BPDC(dmcto))3]10N242533IRMOF-9-allyloxy[Zn4O(BPDC(CH2=CHCH2O))3]5 or 10N226034CIRMOF-10-NO2BnO[Zn4O(BPDC(NO2BnO))3]5N230031IRMOF-10-OH[Zn4O(BPDC(OH))3]5N235031IRMOF-10-Pro-Boc[Zn4O(S-BPDC(Pro-Boc))3]5N235035IRMOF-10-Pro[Zn4O(S-BPDC(Pro))3]5N235035CUB-5[Zn4O(cdc)3]5N2300*36IRMOF-61[Zn4O(edb)3]-N240014IRMOF-0Zn4O(adc)3(Et3N)6 Z = 2-N212037IRMOF-11[Zn4O(hpdc)3]--4001IRMOF-62[Zn4O(bdb)3]-N237514MOF-326[Zn4O(Et-PzDC)3]-N230014IRMOF-8[Zn4O(26ndc)3]10Air47538α-MUF-9[Zn4O(rac-BPDC(DA))3]Desolvated5N2-30[Zn4O(rac-BPDC(DA))3]Solv. = DBF5N237530[Zn4O(rac-BPDC(DA))3]Solv. = DBF5N239030PIP23-MUF-9[Zn4O(rac-BPDC(DA))3] Z=1.23, Desolvated5N240030β-MUF-9[Zn4O(rac-BPDC(DA))3] Z=2, Desolvated5N240030[Zn4O(rac-BPDC(DA))3] Z=2, Solv. = DEF5N240030[Zn4O(rac-BPDC(DA))3] Z=2, Solv. = DBF5N243030γ-MUF-9[Zn4O(rac-BPDC(DA))3]5N239030α-MUF-10[Zn4O(R or S-BPDC(DA))3]5N242530β-MUF-10[Zn4O(R or S-BPDC(DA))3] Z=25N245030γ-MUF-10[Zn4O(R or S-BPDC(DA))3]5N237530Notes:A) Claisen Rearrangement at 160 °C to reveal OH functionalities. The newly formed MOF is stable up to 325 °C.B) Loss of alkyl chains at 325 °C to reveal IRMOF-3.C) Claisen Rearrangement at 160 °C to reveal OH functionalities. The newly formed MOF is stable up to 380 °C.D) Loss of side-arms at the quoted temperatures.References:1A. R. Millward and O. M. Yaghi, J. Am. Chem. Soc., 2005, 127, 17998-17999.2W. Zhen, B. Li, G. Lu and J. Ma, Chem Commun., 2015, 51, 1728-1731.3J. Yang, A. Grzech, F. M. Mulder and T. J. Dingemans, Chem. Commun., 2011, 47, 5244-5246.4B. Chen, X. Wang, Q. Zhang, X. Xi, J. Cai, H. Qi, S. Shi, J. Wang, D. Yuan and M. Fang, J. Mater. Chem., 2010, 20, 3758-3767.5H. Li, W. Shi, K. Zhao, H. Li, Y. Bing and P. Cheng, Inorg. Chem., 2012, 51, 9200-9207.6S. Hausdorf, F. Baitalow, T. B?hle, D. Rafaja and F. O. R. L. Mertens, J. Am. Chem. Soc., 2010, 132, 10978-10981.7Y. Zhao, H. Ding and Q. Zhong, Appl. Surf. Sci., 2013, 284, 138-144.8L. Zhang and Y. H. Hu, J. Phys. Chem. C, 2010, 114, 2566-2572.9L. Zhang and Y. H. Hu, J. Mater. Sci. Eng. B, 2011, 176, 573-578.10J.-M. Yang, Q. Liu and W.-Y. Sun, J. Solid State Chem., 2014, 218, 50-55.11C. K. Brozek and M. Dinc?, Chem. Sci., 2012, 3, 2110-2113.12J. A. Botas, G. Calleja, M. Sánchez-Sánchez and M. G. Orcajo, Langmuir, 2010, 26, 5300-5303.13A. D. Burrows, L. C. Fisher, D. Hodgson, M. F. Mahon, N. F. Cessford, T. Düren, C. Richardson and S. P. Rigby, CrystEngComm, 2012, 14, 188-192.14D. J. Tranchemontagne, K. S. Park, H. Furukawa, J. Eckert, C. B. Knobler and O. M. Yaghi, J. Phys. Chem. C, 2012, 116, 13143-13151.15M. E. Braun, C. D. Steffek, J. Kim, P. G. Rasmussen and O. M. Yaghi, Chem Commun., 2001, 2532-2533.16M. Eddaoudi, J. Kim, N. Rosi, D. Vodak, J. Wachter, M. O'Keeffe and O. M. Yaghi, Science, 2002, 295, 469-472.17Yaghi, O M, Eddaoudi, M, Li, H, Kim, J, Rosi, N, (2002), WO2002088148A1.18L. Tshering, S. O. Hunter, A. Nikolich, E. Minato, C. M. Fitchett, D. M. D'Alessandro and C. Richardson, CrystEngComm, 2014, 16, 9158-9162.19K. K. Tanabe, Z. Wang and S. M. Cohen, J. Am. Chem. Soc., 2008, 130, 8508-8517.20F. L. Morel, M. Ranocchiari and J. A. van Bokhoven, Ind. Eng. Chem. Res., 2014, 53, 9120-9127.21F. Nouri, S. Rostamizadeh and M. Azad, Mol. Catal., 2017, 443, 286-293.22H. Deng, C. J. Doonan, H. Furukawa, R. B. Ferreira, J. Towne, C. B. Knobler, B. Wang and O. M. Yaghi, Science, 2010, 327, 846-850.23P. V. Dau, L. R. Polanco and S. M. Cohen, Dalton Trans., 2013, 42, 4013-4018.24T.-H. Chen, A. Schneemann, R. A. Fischer and S. M. Cohen, Dalton Trans., 2016, 45, 3063-3069.25J. Park, D. Yuan, K. T. Pham, J.-R. Li, A. Yakovenko and H.-C. Zhou, J. Am. Chem. Soc., 2012, 134, 99-102.26A. Noguera-Díaz, N. Bimbo, L. T. Holyfield, I. Y. Ahmet, V. P. Ting and T. J. Mays, Colloids Surf., A, 2016, 496, 77-85.27J.-Y. Chung, C.-W. Liao, Y.-W. Chang, B. K. Chang, H. Wang, J. Li and C.-Y. Wang, J. Phys. Chem. C, 2017, 121, 27369-27378.28S. Glomb, D. Woschko, G. Makhloufi and C. Janiak, ACS Appl. Mater. Interfaces, 2017, 9, 37419-37434.29M. R. Bryant, T. A. Ablott, S. G. Telfer, L. Liu and C. Richardson, CrystEngComm, 2019, 21, 60-64.30A. Ferguson, L. Liu, S. J. Tapperwijn, D. Perl, F.-X. Coudert, S. Van Cleuvenbergen, T. Verbiest, M. A. van der Veen and S. G. Telfer, Nat. Chem., 2016, 8, 250.31R. K. Deshpande, G. I. N. Waterhouse, G. B. Jameson and S. G. Telfer, Chem Commun., 2012, 48, 1574-1576.32X. Xu, S. M. Rummelt, F. L. Morel, M. Ranocchiari and J. A. van?Bokhoven, Chem. - Eur. J., 2014, 20, 15467-15472.33T. A. Ablott, M. Turzer, S. G. Telfer and C. Richardson, Cryst. Growth Des., 2016, 16, 7067-7073.34A. D. Burrows, S. O. Hunter, M. F. Mahon and C. Richardson, Chem Commun., 2013, 49, 990-992.35D. J. Lun, G. I. N. Waterhouse and S. G. Telfer, J. Am. Chem. Soc., 2011, 133, 5806-5809.36L. K. Macreadie, E. J. Mensforth, R. Babarao, K. Konstas, S. G. Telfer, C. M. Doherty, J. Tsanaktsidis, S. R. Batten and M. R. Hill, J. Am. Chem. Soc., 2019, 141, 3828-3832.37D. J. Tranchemontagne, J. R. Hunt and O. M. Yaghi, Tetrahedron, 2008, 64, 8553-8557.38L. T. L. Nguyen, C. V. Nguyen, G. H. Dang, K. K. A. Le and N. T. S. Phan, J. Mol. Catal. A: Chem., 2011, 349, 28-35.Supplementary Table 2. Thermal decomposition data for the UiO-66 family of materials.NameCompositionHeating Rate (°C/min)AtmosphereTd (°C)ReferenceNotesUiO-66Zr6O8H4(BDC)610O24001A?UiO-66Zr6O8H4(BDC)65N24252A?UiO-66Zr6O8H4(BDC)62O24253A?UiO-66Zr6O8H4(BDC)67N24504A?UiO-66Zr6O8H4(BDC)65N24505A?UiO-66Zr6O8H4(BDC)610O24756AEHU-30Zr6O8H4(BDC)65Air3757AUiO-66-(Nap)Zr6O8H4(1,4-NDC)610O23756AUiO-66-MeZr6O8H4(BDC-Me)62O23253BUiO-66-(Me)2Zr6O8H4(BDC-(Me)2)62O23253BUiO-66-(CF3)2Zr6O8H4(BDC-(CF3)2)62O23253BUiO-66-FZr6O8H4(BDC-F)65N24002BUiO-66-F4Zr6O8H4(BDC-(F)4)61.5Air3508BUiO-66-ClZr6O8H4(BDC-Cl)62O24003B?UiO-66-ClZr6O8H4(BDC-Cl)65N24252BUiO-66-BrZr6O8H4(BDC-Br)62O24003B?UiO-66-BrZr6O8H4(BDC-Br)65N24252BUiO-66-IZr6O8H4(BDC-I)65N23252BUiO-66-OHZr6O8H4(BDC-OH)67N2-4B?UiO-66-OHZr6O8H4(BDC-OH)610O23006BUiO-66-(OH)2Zr6O8H4(BDC-(OH)2)67N2-4B?UiO-66-(OH)2Zr6O8H4(BDC-(OH)2)62O22753BUiO-66-NH2Zr6O8H4(BDC-NH2)67N2-4B?UiO-66-NH2Zr6O8H4(BDC-NH2)610O23006B?UiO-66-NH2Zr6O8H4(BDC-NH2)62O23253B?UiO-66-NH2Zr6O8H4(BDC-NH2)6--3509BUiO-66-(NH2)2Zr6O8H4(BDC-(NH2)2)67N2-4BUiO-66-NO2Zr6O8H4(BDC-NO2)67N2-4B?UiO-66-NO2Zr6O8H4(BDC-NO2)62O22753B?UiO-66-NO2Zr6O8H4(BDC-NO2)610O23006B?UiO-66-NO2Zr6O8H4(BDC-NO2)61.5Air3258BUiO-67Zr6O8H4(BPDC)6530% O2/ N240010A?UiO-67Zr6O8H4(BPDC)610O24001A?UiO-67Zr6O8H4(BPDC)67N24504A?UiO-67Zr6O8H4(BPDC)65N24505A?UiO-67Zr6O8H4(BPDC)65Air50011AUiO-67-(Nap)2Zr6O8H4(DNDC)65Air42511AUiO-67-(Me)2Zr6O8H4(BPDC-(Me)2)65Air37511BPCN-700Zr6O16H16(BPDC-(Me)2)410N247512CUiO-67-F8Zr6O8H4(BPDC-F8)61.5Air3008BMOF-805Zr6O8H4(NDC-(OH)2)65Air-13BMOF-806Zr6O8H4(BPDC-(OH)2)65Air32513BUiO-67-NH2Zr6O8H4(BPDC-NH2)6530% O2/N235010BUiO-67-NH2Zr6O8H4(BPDC-NH2)67N24504CUiO-67-(NH2)2Zr6O8H4(BPDC-(NH2)2)6530% O2/N2-10C?UiO-67-(NH2)2Zr6O8H4(BPDC-(NH2)2)6--4009CUiO-67-(NO2)2Zr6O8H4(BPDC-(NO2)2)61.5Air3258BUiO-67-NO2Zr6O8H4(BPDC-NO2)67N2-4CUiO-67-ureaZr6O8H4(BPDC-N2H2CO)610Ar45014CUiO-67-bpyZr6O8H4(BPYDC)610N245015C?UiO-67-bpyZr6O8H4(BPYDC)610N250016CUiO-67-bpy-MeZr6O8H4(BPDC-Me)610N250015CUiO-67-vbpyZr6O8H4(VPBYDC)6-Air42517DUiO-67-(SMe)4Zr6O8H4(BPDC-(SMe)4)62N230018BUiO-67-SO2FZr6O8H4(BPDC-SO2F)6--35019CUiO-68-AnthraceneZr6O8H4(ADPDC)6--42520APCN-57Zr6O8H4(TPDC-(Me)4)610O23001CUiO-68-(OH)2Zr6O8H4(TPDC-(OH)2)65Air40021CUiO-68-(C=O)2Zr6O8H4(BQDPC)65Air40021CUiO-68-NH2Zr6O8H4(TPDC-NH2)65Air40022C?UiO-68-NH2Zr6O8H4(TPDC-NH2)610N245023C?UiO-68-NH2Zr6O8H4(TPDC-NH2)610N245024C"MOF-1"Zr6O8H4(TPDC-NC4O3H6)65Air40022C"MOF-2"Zr6O8H4(TPDC-NC4O3H4)65Air40022CSal-MOFZr6O8H4(TPDC-NC7OH6)65Air40025CUiO-68-(SH)2Zr6O8H4(TPDC-(SH)2)63N245026CUiO-68-AlkyneZr6O8H4(TPDC-C2H)65Air37527CUiO-68-Triazole1Zr6O8H4(TPDC-N3C3H4)65Air35027CUiO-68-Triazole2Zr6O8H4(TPDC-N3O2C5H6)65Air30027CUiO-68-Triazole3Zr6O8H4(TPDC-N3C8H6)65Air35027C"1"Zr6O8H4(TPDC-N2S)610Air35028CMOF-801Zr6O8H4(fumarate)65Air27513D?MOF-801Zr6O8H4(fumarate)65Air30029DZr-MuconateZr6O8H4(muconate)65O2-30DMOF-802Zr6O8H4(PZDC)65Air35013BDUT-67-ZrZr6O8H2(TDC)4(CH3COO)25Air30031BDUT-68-ZrZr6O8H2(TDC)4.5(CH3COO)1.55Air30031BDUT-69-ZrZr6O8H4(TDC)5(CH3COO)25Air30031BMOF-808Zr6O8H4(BTC)2(HCOO)65Air50013ANU-1000Zr6O16H16(TBAPy)210N250032ALMOFZr6O16H16(TCBPPy)25N250033AZr-CAU-24Zr6O16H16(TCPB)24Air40034ANotes:A) Unfunctionalised aromatic linkers.B) Aromatic linkers with functional groups (including CH3, CF3, OH, NH2, halides, etc.) in the ortho- position relative to the carboxylate functionalities. (Note : all functionalized derivatives of UiO-66 are in this category, as functional groups at any position on the BDC linker are positioned ortho- with respect to one carboxylate or the other).C) Aromatic linkers with functional groups (including CH3, CF3, OH, NH2, halides, etc.) in the meta- position relative to the carboxylate functionalities, or at a more remote position.D) Non-aromatic linkers.References:1R. C. Klet, Y. Liu, T. C. Wang, J. T. Hupp and O. K. Farha, J. Mater. Chem. A, 2016, 4, 1479-1485.2M. Kalaj, M. R. Momeni, K. C. Bentz, K. S. Barcus, J. M. Palomba, F. Paesani and S. M. Cohen, Chem. Commun., 2019, 55, 3481-3484.3D. Cunha, C. Gaudin, I. Colinet, P. Horcajada, G. Maurin and C. Serre, J. Mater. Chem. B, 2013, 1, 1101-1108.4M. J. Katz, Z. J. Brown, Y. J. Colon, P. W. Siu, K. A. Scheidt, R. Q. Snurr, J. T. Hupp and O. K. Farha, Chem. Commun., 2013, 49, 9449-9451.5J. H. Cavka, S. Jakobsen, U. Olsbye, N. Guillou, C. Lamberti, S. Bordiga and K. P. Lillerud, J. Am. Chem. Soc., 2008, 130, 13850-13851.6R. Wei, C. A. Gaggioli, G. Li, T. Islamoglu, Z. Zhang, P. Yu, O. K. Farha, C. J. Cramer, L. Gagliardi, D. Yang and B. C. Gates, Chem. Mater., 2019, 31, 1655-1663.7M. Perfecto-Irigaray, G. Beobide, O. Castillo, I. da Silva, D. García-Lojo, A. Luque, A. Mendia and S. Pérez-Yá?ez, Chem. Commun., DOI:10.1039/C9CC00802K.8P. Ji, T. Drake, A. Murakami, P. Oliveres, J. H. Skone and W. Lin, J. Am. Chem. Soc., 2018, 140, 10553-10561.9R. Gil-San-Millan, E. Lopez-Maya, M. G. Hall, N. M. Padial, G. W. Peterson, J. B. DeCoste, L. M. Rodriguez-Albelo, J. E. Oltra, E. Barea and J. A. R. Navarro, ACS Appl. Mater. Interfaces, 2017, 9, 23967-23973.10C. Tian, J. Zhao, X. Ou, J. Wan, Y. Cai, Z. Lin, Z. Dang and B. Xing, Environ. Sci. Technol., 2018, 52, 3466-3475.11S. ?ien-?degaard, B. Bouchevreau, K. Hylland, L. Wu, R. Blom, C. Grande, U. Olsbye, M. Tilset and K. P. Lillerud, Inorg. Chem., 2016, 55, 1986-1991.12C.-X. Chen, C.-C. Cao, M. Pan, H.-P. Wang, J.-J. Jiang, Z.-W. Wei, K. Zhu, G. Li and C.-Y. Su, Chem. Commun., 2017, 53, 11403-11406.13H. Furukawa, F. Gandara, Y.-B. Zhang, J. Jiang, W. L. Queen, M. R. Hudson and O. M. Yaghi, J. Am. Chem. Soc., 2014, 136, 4369-4381.14A. Das, N. Anbu, M. SK, A. Dhakshinamoorthy and S. Biswas, Inorg. Chem., 2019, 58, 5163-5172.15L. Xu, Y. Luo, L. Sun, S. Pu, M. Fang, R.-X. Yuan and H.-B. Du, Dalton Trans., 2016, 45, 8614-8621.16L. Li, S. Tang, C. Wang, X. Lv, M. Jiang, H. Wu and X. Zhao, Chem. Commun., 2014, 50, 2304-2307.17T. Zhang, K. Manna and W. Lin, J. Am. Chem. Soc., 2016, 138, 3241-3249.18Y.-L. Wong, K.-K. Yee, Y.-L. Hou, J. Li, Z. Wang, M. Zeller, A. D. Hunter and Z. Xu, Inorg. Chem., 2018, 57, 6198-6201.19S. Park, H. Song, N. Ko, C. Kim, K. Kim and E. Lee, ACS Appl. Mater. Interfaces, 2018, 10, 33785-33789.20C. Wang, O. Volotskova, K. Lu, M. Ahmad, C. Sun, L. Xing and W. Lin, J. Am. Chem. Soc., 2014, 136, 6171-6174.21B. Gui, X. Meng, Y. Chen, J. Tian, G. Liu, C. Shen, M. Zeller, D. Yuan and C. Wang, Chem. Mater., 2015, 27, 6426-6431.22M. Carboni, Z. Lin, C. W. Abney, T. Zhang and W. Lin, Chem. Eur. J., 2014, 20, 14965-14970.23Y.-A. Li, S. Yang, Q.-K. Liu, G.-J. Chen, J.-P. Ma and Y.-B. Dong, Chem. Commun., 2016, 52, 6517-6520.24S. S. Nagarkar, A. V Desai, P. Samanta and S. K. Ghosh, Dalton Trans., 2015, 44, 15175-15180.25K. Manna, T. Zhang, M. Carboni, C. W. Abney and W. Lin, J. Am. Chem. Soc., 2014, 136, 13182-13185.26B. Gui, K.-K. Yee, Y.-L. Wong, S.-M. Yiu, M. Zeller, C. Wang and Z. Xu, Chem. Commun., 2015, 51, 6917-6920.27B. Li, B. Gui, G. Hu, D. Yuan and C. Wang, Inorg. Chem., 2015, 54, 5139-5141.28M. SK and S. Biswas, CrystEngComm, 2016, 18, 3104-3113.29G. Wi?mann, A. Schaate, S. Lilienthal, I. Bremer, A. M. Schneider and P. Behrens, Microporous Mesoporous Mater., 2012, 152, 64-70.30V. Guillerm, S. Gross, C. Serre, T. Devic, M. Bauer and G. Ferey, Chem. Commun., 2010, 46, 767-769.31V. Bon, I. Senkovska, I. A. Baburin and S. Kaskel, Cryst. Growth Des., 2013, 13, 1231-1237.32P. Deria, W. Bury, J. T. Hupp and O. K. Farha, Chem. Commun., 2014, 50, 1965-1968.33R. Zou, X. Ren, F. Huang, Y. Zhao, J. Liu, X. Jing, F. Liao, Y. Wang, J. Lin, R. Zou and J. Sun, J. Mater. Chem. A, 2015, 3, 23493-23500.34M. Lammert, H. Reinsch, C. A. Murray, M. T. Wharmby, H. Terraschke and N. Stock, Dalton Trans., 2016, 45, 18822-18826.Supplementary Table 3. Thermal decomposition data for s-block carboxylate MOFs.NameCompositionHeating Rate (°C/min)AtmosphereTd (°C)ReferenceULMOF-1Li2(2,6-NDC)10N26101UL-MOF-2Li2(BPDC)10N2Air5755202-Li2(BDC)10Air5203UL-MOF-3Li2(C16H4O6S)10N2Air5005002Be12(OH)12(BTB)42N25004MIL-123(Mg)Mg12(H2O)12(μ2-H2O)6)(BTB)8(dioxane)6)·11 dioxane1O24005[H2N(CH3)2][Ca7(BTB)5(H2O)8(DMF)4]?4H2O10N25256[H2N(CH3)2]2[Sr5(BTB)4(H2O)6]10N25256[H2N(CH3)2][Ba(BTB)(H2O)]10N25006Mg3(BDC)3(DMA)410N25757Mg3(BDC)3(EtOH)210N25757Mg3(BPDC)3(DMA)410N25507Li(NDC-H)(H2O)2-N22508Na2(NDC)(DMF)-N24758Mg2(NDC)2(H2O)3-N25008Ca(NDC)(DMF)-N25008Sr(NDC)(DMF)-N25258References:1D. Banerjee, S. J. Kim and J. B. Parise, Cryst. Growth Des., 2009, 9, 2500-2503.2D. Banerjee, L. A. Borowski, S. J. Kim and J. B. Parise, Cryst. Growth Des., 2009, 9, 4922-4926.3Y.-Y. Liu, J. Zhang, L.-X. Sun, F. Xu, W.-S. You and Z. Yi, Inorg. Chem. Commun., 2008, 11, 396-399.4K. Sumida, M. R. Hill, S. Horike, A. Dailly and J. R. Long, J. Am. Chem. Soc., 2009, 131, 15120-15121.5C. Volkringer, T. Loiseau, J. Marrot and G. Férey, CrystEngComm, 2009, 11, 58-60.6K. S. Asha, M. Makkitaya, A. Sirohi, L. Yadav, G. Sheet and S. Mandal, CrystEngComm, 2016, 18, 1046-1053.7R. P. Davies, R. J. Less, P. D. Lickiss and A. J. P. White, Dalton Transactions, 2007, DOI: 10.1039/B705028C, 2528-2535.8D. S. Raja, J.-H. Luo, C.-T. Yeh, Y.-C. Jiang, K.-F. Hsu and C.-H. Lin, CrystEngComm, 2014, 16, 1985-1994.Supplementary Table 4. Thermal decomposition data for the HKUST-1 family of materials.NameCompositionHeating Rate (°C/min)AtmosphereTd (°C)ReferenceHKUST-1Cu3(BTC)210-27515N22751020Ar27511ZnHKUST-1Zn3(BTC)2-Air3252Mo3(BTC)21-3253Ni3(BTC)2(Me2NH)2(H2O)1-3253Ru3(BTC)21-4003UHM-31Cu3(F-BTC)25Ar2604Cu3(NO2-BTC)2-N22805Cu3(CONCH3-BTC)2-N22805Cu3(Br-BTC)2-N23005Cu3(Me-BTC)25N23256Cu3(Et-BTC)25N23256Cu3(MeOBTC)2-N22755PCN-6Cu3(TATB)2(H2O)310-3007PCN-6Cu3(TATB)2(H2O)3--2508PCN-6’Cu6(H2O)6(TATB)4·DMA·12H2O--2758NOTT-112Cu3(TDBB)22N23509PCN-6-NO2Cu3(TATB)210-2507References:1K.-S. Lin, A. K. Adhikari, C.-N. Ku, C.-L. Chiang and H. Kuo, Int. J. Hydrogen Energy, 2012, 37, 13865-13871.2M. K. Bhunia, J. T. Hughes, J. C. Fettinger and A. Navrotsky, Langmuir, 2013, 29, 8140-8145.3C. R. Wade and M. Dinc?, Dalt. Trans., 2012, 41, 7931-7938.4K. Peikert, F. Hoffmann and M. Fr?ba, CrystEngComm, 2015, 17, 353-360.5Y. Cai, A. R. Kulkarni, Y.-G. Huang, D. S. Sholl and K. S. Walton, Cryst. Growth Des., 2014, 14, 6122-6128.6Y. Cai, Y. Zhang, Y.-G. Huang, S. R. Marder and K. S. Walton, Cryst. Growth Des., 2012, 12, 3709-3713.7E. Mühlbauer, A. Klinkebiel, O. Beyer, F. Auras, S. Wuttke, U. Lüning and T. Bein, Microporous Mesoporous Mater., 2015, 216, 51-55.8S. Ma, D. Sun, M. Ambrogio, J. A. Fillinger, S. Parkin and H.-C. Zhou, J. Am. Chem. Soc., 2007, 129, 1858-1859.9Y. Yan, X. Lin, S. Yang, A. J. Blake, A. Sailly, N. R. Champness, P. Hubberstey and M. Schr?der, Chem. Commun., 2009, 1025-1027.10D. Mustafa, E. Breynaert, S. R. Bajpe, J. A. Martens, C. E. A. Kirschhock, Chem. Commun., 2011, 47, 8037-8039.11S. Abednatanzi, A. Abbasi, M. Masteri-Farahani, New J. Chem., 2015, 39, 5322-5328.Supplementary Table 5. Thermal decomposition data for the MIL-101 family of materials.NameCompositionHeating Rate (°C/min)AtmosphereTd (°C)ReferenceNotesMIL-100Fe3(BTC)3O22501Cr3(BTC)2O22502Al3(BTC)3O24003Fe3(BTC)10N23004MIL-101Cr3(1,4-BDC)2O22755Cr3(1,4-BDC)(Keggin)2O23255AMIL-96Ga3(BTC)--4006BAl3(BTC)2O23507Al3(BTC)10N22754In3(BTC)2O22508MIL-102Cr3(NTC)2O22259PCN-332Al3(BTTC)2N235010Fe3(BTTC)2N232510Sc3(BTTC)2N240010V3(BTTC)2N210010In3(BTTC)2N227510PCN-333Al3(TATB)2N242510Fe3(TATB)2N237510Sc3(TATB)2N245010MIL-127Fe3(TAZB)2O227511Fe3(TAZB)3O230012Fe2Mg(TAZB)3O230012CFe2Co(TAZB)3O230012CFe2Ni(TAZB)3O230012CNotes:A = Contains monolacunary phosphotungstate Keggin anions within MIL-101’s poresB = Heating rate and atmosphere not statedC = Mixed metal systems References:P. Horcajada, S. Surble, C. Serre, D.-Y. Hong, Y.-K. Seo, J.-S. Chang, J.-M. Greneche, I. Margiolaki and G. Ferey, Chem. Commun. (Cambridge, U. K.), 2007, 2820-2822G. Ferey, C. Serre, C. Mellot-Draznieks, F. Millange, S. Surble, J. Dutour and I. Margiolaki, Angew. Chem., Int. Ed., 2004, 43, 6296-6301C. Volkringer, D. Popov, T. Loiseau, G. Ferey, M. Burghammer, C. Riekel, M. Haouas and F. Taulelle, Chem. Mater., 2009, 21, 5695-5697V. Gargiulo, M. Alfe, F. Raganati, L. Lisi, R. Chirone and P. Ammendola, Fuel, 2018, 222, 319-326G. Ferey, C. Mellot-Draznieks, C. Serre, F. Millange, J. Dutour, S. Surble and I. Margiolaki, Science (Washington, DC, U. S.), 2005, 309, 2040-2042C. Volkringer, T. Loiseau, G. Ferey, C. M. Morais, F. Taulelle, V. Montouillout and D. Massiot, Microporous Mesoporous Mater., 2007, 105, 111-117.T. Loiseau, L. Lecroq, C. Volkringer, J. Marrot, G. Ferey, M. Haouas, F. Taulelle, S. Bourrelly, P. L. Llewellyn and M. Latroche, J. Am. Chem. Soc., 2006, 128, 10223-10230.C. Volkringer and T. Loiseau, Mater. Res. Bull., 2006, 41, 948-954.S. Surble, F. Millange, C. Serre, T. Dueren, M. Latroche, S. Bourrelly, P. L. Llewellyn and G. Ferey, J. Am. Chem. Soc., 2006, 128, 14889-14896.D. Feng, T.-F. Liu, J. Su, M. Bosch, Z. Wei, W. Wan, D. Yuan, Y.-P. Chen, X. Wang, K. Wang, X. Lian, Z.-Y. Gu, J. Park, X. Zou and H.-C. Zhou, Nat. Commun., 2015, 6, 5979/5971-5979/5978.A. Dhakshinamoorthy, M. Alvaro, H. Chevreau, P. Horcajada, T. Devic, C. Serre and H. Garcia, Catal. Sci. Technol., 2012, 2, 324-330.S. Wongsakulphasatch, F. Nouar, J. Rodriguez, L. Scott, C. Le Guillouzer, T. Devic, P. Horcajada, J. M. Greneche, P. L. Llewellyn, A. Vimont, G. Clet, M. Daturi and C. Serre, Chem. Commun. (Cambridge, U. K.), 2015, 51, 10194-10197.Supplementary Table 6. Thermal decomposition data for the MOF-74 family of materials.NameCompositionHeating Rate (°C/min)AtmosphereTd (°C)ReferenceMOF-74[Mg2(dot)(Solvent)2]--3751MOF-74[Mg2(dot)(Solvent)2]20Air5262MOF-74[Mg2(dot)(Solvent)2]2Air4003MOF-74[Mg2(dot)(Solvent)2]2N25203Zn-MOF-74[Zn2(dot)(Solvent)2] 20Air4084Zn-MOF-74[Zn2(dot)(Solvent)2] 20Air3972Zn-MOF-74[Zn2(dot)(Solvent)2] 2Air2803Zn-MOF-74[Zn2(dot)(Solvent)2] 2N24403Cd-MOF-74[Cd2(dot)(Solvent)2]20Air3504Co-MOF-74[Co2(dot)(Solvent)2]-Air2343,5Co-MOF-74[Co2(dot)(Solvent)2]2Air2203Co-MOF-74[Co2(dot)(Solvent)2]20Air3312Co-MOF-74[Co2(dot)(Solvent)2]-N23205Co-MOF-74[Co2(dot)(Solvent)2]2N24603Mn-MOF-74[Mn2(dot)(Solvent)2]2Air2603Mn-MOF-74[Mn2(dot)(Solvent)2]20Air3072Mn-MOF-74[Mn2(dot)(Solvent)2]2N24603Ni-MOF-74[Ni2(dot)(Solvent)2] 10Air2506Ni-MOF-74[Ni2(dot)(Solvent)2] 20Air3462Ni-MOF-74[Ni2(dot)(Solvent)2] 2Air2203Ni-MOF-74[Ni2(dot)(Solvent)2] 2N23403IRMOF-74-II[Mg2(dot-II)(Solvent)2] 5Air3508IRMOF-74-III[Mg2(dot-III)(Solvent)2] 5Air2758IRMOF-74-IV[Mg2(dot-IV)(Solvent)2] 5Air2008IRMOF-74-V[Mg2(dot-V)(Solvent)2] 5Air2758IRMOF-74-V-hex[Mg2(dot-V-hex)(Solvent)2] 5Air2258Zn-IRMOF-74-VI[Zn2(dot-VI)(Solvent)2] 5Air2508IRMOF-74-VII[Mg2(dot-VII)(Solvent)2] 5Air3008IRMOF-74-VII-oeg[Mg2(dot-VII-oeg)(Solvent)2] 5Air2258IRMOF-74-IX[Mg2(dot-IX)(Solvent)2] 5Air3008IRMOF-74-XI[Mg2(dot-XI)(Solvent)2] 5Air2258M2M-MOF-74[Mg0.428Co1.572(dot)(Solvent)2]5Air2509M4M-MOF-74[Mg0.190Co0.612Ni0.562Zn0.636(dot)(Solvent)2]5Air3259M6M-MOF-74[Mg0.124Sr0.004Mn0.212Co0.592Ni0.528Zn0.540(dot)(Solvent)2]5Air3009M8M-MOF-74[Mg0.268Ca0.034Sr0.048Mn0.258Fe0.314Co0.432Ni0.392Zn0.254(dot)(Solvent)2]5Air3009M10M-MOF-74[Mg0.269Ca0.022Sr0.030Ba0.075Mn0.234Fe0.422Co0.272Ni0.282Zn0.199Cd0.196(dot)(Solvent)2]5Air3009Ni-IRMOF-74-II[Ni2(dot-II)(Solvent)2] 10Air2506Ni-IRMOF-74-III[Ni2(dot-III)(Solvent)2] 10Air2506Ni-IRMOF-74-IV[Ni2(dot-IV)(Solvent)2] 10Air2756Ni-IRMOF-74-V[Ni2(dot-V)(Solvent)2] 10Air2506References:1A. R. Millward and O. M. Yaghi, J. Am. Chem. Soc., 2005, 127, 17998-17999.2M. Díaz-García, ?. Mayoral, I. Díaz and M. Sánchez-Sánchez, Cryst. Growth Des., 2014, 14, 2479-2487.3S. A. FitzGerald, B. Burkholder, M. Friedman, J. B. Hopkins, C. J. Pierce, J. M. Schloss, B. Thompson and J. L. C. Rowsell, J. Am. Chem. Soc., 2011, 133, 20310-20318.4M. Díaz-García and M. Sánchez-Sánchez, Microporous Mesoporous Mater., 2014, 190, 248-254.5P. D. C. Dietzel, Y. Morita, R. Blom and H. Fjellv?g, Angew. Chem, Int. Ed., 2005, 44, 6354-6358.6S. Peng, B. Bie, Y. Sun, M. Liu, H. Cong, W. Zhou, Y. Xia, H. Tang, H. Deng and X. Zhou, Nat. Commun., 2018, 9, 1293.7T. M. McDonald, W. R. Lee, J. A. Mason, B. M. Wiers, C. S. Hong and J. R. Long, J. Am. Chem. Soc., 2012, 134, 7056-7065.8H. Deng, S. Grunder, K. E. Cordova, C. Valente, H. Furukawa, M. Hmadeh, F. Gándara, A. C. Whalley, Z. Liu, S. Asahina, H. Kazumori, M. O’Keeffe, O. Terasaki, J. F. Stoddart and O. M. Yaghi, Science, 2012, 336, 1018-1023.9L. J. Wang, H. Deng, H. Furukawa, F. Gándara, K. E. Cordova, D. Peri and O. M. Yaghi, Inorg. Chem., 2014, 53, 5881-5883.Supplementary Table 7. Thermal decomposition data for the Pyrazolate family of materials.NameCompositionHeating Rate (°C/min)AtmosphereTd (°C)Reference-[Zn(BPZ)]5 to 10N24751-[Co(BPZ)]5 to 10N24001-[Cd(BPZ)(μ-DMF)]5 to 10N21751-[Cu(BPZ)(μ-MeCN)]5 to 10N22501-[Ni(BPZ)]5 to 10N23501CFA-10[Fe(BPZ)]-N23502-α-[Ag2(BPZ)]-N24003-α-[Cu2(BPZ)]-N25003-β-[Ag2(BPZ)]-N24003-β-[Cu2(BPZ)]-N25003-[Cu2(TMP)]10N23004CFA-2[Cu2(PhBPZ)]10N26005CFA-3[Ag2(PhBPZ)]10N24005CFA-9[Cu2(PhBPZ)]10N24506CFA-9[Cu2(PhBPZ)]10O23506Fe-CFA-6[Fe(μ-OH)(BPZ)]10N24007Ga-CFA-6[Ga(μ-OH)(BPZ)]10N24207-[Zn(NO2-BPZ)]5 to 10N23908-[Co(NO2-BPZ)]5 to 10N23408-[Zn(DMP)]5 to 10N25209-[Co(DMP)]5 to 10N23409-[Zn(TMP)]10N240010-[Co(TMP]10N242510-[Co(BDPB)]8N250011-[Cd(BDPB)]8N250011-[Zn(BDPB)]8N250011-[Zn(BDPP)]8N237511-[Co(BDPP)]8N230011-[Cd(BDPP)]8N240011MFU-2[Co(BDPB)]10N240012MFU-1[Co4O(BDPB)6]10N234013CFA-12[Co(NO2-BDPB)]10N230014-[Fe2(BDP)3]-Air28015-[Co(BDP)]1N245016-[Co(BDP)]10O229017-[Zn(BDP)]1N240018-[Zn(1,3-BDP)]1N250018-[Ni(BDP)]10N246019-[Ni(NH2-BDP)]10N250020-[Ni(OH-BDP)]10N245020-[Ni(NO2-BDP)]10N240020-[Ni(SO3H-BDP)]10N245020-[Zn(NH2-BDP)]10N250020-[Zn(OH-BDP)]10N245020-[Zn(NO2-BDP)]10N240020-[Ni8(OH)4(H2O)2(BDP)6]20Air38021-[Ni8(OH)4(H2O)2(DABP)6]20Air35021-[Ni8(OH)4(H2O)2(BDAP)6]20Air35021-[Ni8(OH)4(H2O)2(Me-BDAP)6]20Air32521-[Ni8(OH)4(H2O)2(CF3-BDAP)6]20Air37521-[Ni8(OH)4(H2O)2(TET)6]10N240022Cu(I)[CFA-4]Cu[Cu5(TFPB)3]10N240023K[CFA-4]K[Cu5(TFPB)3]10N240023-[Ni3(BTP)2]3N240024-[Cu3(BTP)2]3N237524-[Zn3(BTP)2]3N245024-[Ni3(BTPP)2]7N245025-[CuI2CuII(OH)(BTPP)]7N232525References:1.Pettinari, C.; T?b?caru, A.; Boldog, I.; Domasevitch, K. V.; Galli, S.; Masciocchi, N., Novel Coordination Frameworks Incorporating the 4,4′-Bipyrazolyl Ditopic Ligand. Inorg. Chem. 2012, 51 (9), 5235-5245.2.Spirkl, S.; Grzywa, M.; Reschke, S.; Fischer, J. K. H.; Sippel, P.; Demeshko, S.; Krug von Nidda, H.-A.; Volkmer, D., Single-Crystal to Single-Crystal Transformation of a Nonporous Fe(II) Metal-Organic Framework into a Porous Metal-Organic Framework via a Solid-State Reaction. Inorg. Chem. 2017, 56 (20), 12337-12347.3.Zhang, J.-P.; Kitagawa, S., Supramolecular Isomerism, Framework Flexibility, Unsaturated Metal Center, and Porous Property of Ag(I)/Cu(I) 3,3‘,5,5‘-Tetrametyl-4,4‘-Bipyrazolate. J. Am. Chem. Soc. 2008, 130 (3), 907-917.4.He, J.; Yin, Y.-G.; Wu, T.; Li, D.; Huang, X.-C., Design and solvothermal synthesis of luminescent copper(i)-pyrazolate coordination oligomer and polymer frameworks. Chem. Commun. 2006, (27), 2845-2847.5.Grzywa, M.; Ge?ner, C.; Denysenko, D.; Bredenk?tter, B.; Gschwind, F.; Fromm, K. M.; Nitek, W.; Klemm, E.; Volkmer, D., CFA-2 and CFA-3 (Coordination Framework Augsburg University-2 and -3); novel MOFs assembled from trinuclear Cu(i)/Ag(i) secondary building units and 3,3′,5,5′-tetraphenyl-bipyrazolate ligands. Dalton Transactions 2013, 42 (19), 6909-6921.6.Grzywa, M.; Denysenko, D.; Schaller, A.; Kalytta-Mewes, A.; Volkmer, D., Flexible chiral pyrazolate-based metal-organic framework containing saddle-type CuI4(pyrazolate)4 units. CrystEngComm 2016, 18 (40), 7883-7893.7.Spirkl, S.; Grzywa, M.; Zehe, C. S.; Senker, J.; Demeshko, S.; Meyer, F.; Riegg, S.; Volkmer, D., Fe/Ga-CFA-6 - metal organic frameworks featuring trivalent metal centers and the 4,4′-bipyrazolyl ligand. CrystEngComm 2015, 17 (2), 313-322.8.Mosca, N.; Vismara, R.; Fernandes, J. A.; Tuci, G.; Di Nicola, C.; Domasevitch, K. V.; Giacobbe, C.; Giambastiani, G.; Pettinari, C.; Aragones-Anglada, M.; Moghadam, P. Z.; Fairen-Jimenez, D.; Rossin, A.; Galli, S., Nitro-Functionalized Bis(pyrazolate) Metal-Organic Frameworks as Carbon Dioxide Capture Materials under Ambient Conditions. Chemistry - A European Journal 2018, 24 (50), 13170-13180.9.Mosca, N.; Vismara, R.; Fernandes, J. A.; Casassa, S.; Domasevitch, K. V.; Bailón-García, E.; Maldonado-Hódar, F. J.; Pettinari, C.; Galli, S., CH3-Tagged Bis(pyrazolato)-Based Coordination Polymers and Metal-Organic Frameworks: An Experimental and Theoretical Insight. Crystal Growth & Design 2017, 17 (7), 3854-3867.10.T?b?caru, A.; Pettinari, C.; Timokhin, I.; Marchetti, F.; Carrasco-Marín, F.; Maldonado-Hódar, F. J.; Galli, S.; Masciocchi, N., Enlarging an Isoreticular Family: 3,3′,5,5′-Tetramethyl-4,4′-bipyrazolato-Based Porous Coordination Polymers. Crystal Growth & Design 2013, 13 (7), 3087-3097.11.Timokhin, I.; Pettinari, C.; Marchetti, F.; Pettinari, R.; Condello, F.; Galli, S.; Alegria, E. C. B. A.; Martins, L. M. D. R. S.; Pombeiro, A. J. L., Novel Coordination Polymers with (Pyrazolato)-Based Tectons: Catalytic Activity in the Peroxidative Oxidation of Alcohols and Cyclohexane. Crystal Growth & Design 2015, 15 (5), 2303-2317.12.Tonigold, M.; Lu, Y.; Mavrandonakis, A.; Puls, A.; Staudt, R.; M?llmer, J.; Sauer, J.; Volkmer, D., Pyrazolate-Based Cobalt(II)-Containing Metal-Organic Frameworks in Heterogeneous Catalytic Oxidation Reactions: Elucidating the Role of Entatic States for Biomimetic Oxidation Processes. Chemistry - A European Journal 2011, 17 (31), 8671-8695.13.Tonigold, M.; Lu, Y.; Bredenk?tter, B.; Rieger, B.; Bahnmüller, S.; Hitzbleck, J.; Langstein, G.; Volkmer, D., Heterogeneous Catalytic Oxidation by MFU-1: A Cobalt(II)-Containing Metal-Organic Framework. Angew. Chem. Int. Ed. 2009, 48 (41), 7546-7550.14.Basu, T.; Jesche, A.; Bredenk?tter, B.; Grzywa, M.; Denysenko, D.; Volkmer, D.; Loidl, A.; Krohns, S., Magnetodielectric coupling in a non-perovskite metal-organic framework. Materials Horizons 2017, 4 (6), 1178-1184.15.Herm, Z. R.; Wiers, B. M.; Mason, J. A.; van Baten, J. M.; Hudson, M. R.; Zajdel, P.; Brown, C. M.; Masciocchi, N.; Krishna, R.; Long, J. R., Separation of Hexane Isomers in a Metal-Organic Framework with Triangular Channels. Science 2013, 340 (6135), 960.16.Choi, H. J.; Dinc?, M.; Long, J. R., Broadly Hysteretic H2 Adsorption in the Microporous Metal?Organic Framework Co(1,4-benzenedipyrazolate). J. Am. Chem. Soc. 2008, 130 (25), 7848-7850.17.Lu, Y.; Tonigold, M.; Bredenk?tter, B.; Volkmer, D.; Hitzbleck, J.; Langstein, G., A Cobalt(II)-containing Metal-Organic Framework Showing Catalytic Activity in Oxidation Reactions. Z. Anorg. Allg. Chem. 2008, 634 (12‐13), 2411-2417.18.Choi, H. J.; Dinc?, M.; Dailly, A.; Long, J. R., Hydrogen storage in water-stable metal-organic frameworks incorporating 1,3- and 1,4-benzenedipyrazolate. Energy & Environmental Science 2010, 3 (1), 117-123.19.Galli, S.; Masciocchi, N.; Colombo, V.; Maspero, A.; Palmisano, G.; López-Garzón, F. J.; Domingo-García, M.; Fernández-Morales, I.; Barea, E.; Navarro, J. A. R., Adsorption of Harmful Organic Vapors by Flexible Hydrophobic Bis-pyrazolate Based MOFs. Chem. Mater. 2010, 22 (5), 1664-1672.20.Colombo, V.; Montoro, C.; Maspero, A.; Palmisano, G.; Masciocchi, N.; Galli, S.; Barea, E.; Navarro, J. A. R., Tuning the Adsorption Properties of Isoreticular Pyrazolate-Based Metal-Organic Frameworks through Ligand Modification. J. Am. Chem. Soc. 2012, 134 (30), 12830-12843.21.Padial, N. M.; Quartapelle Procopio, E.; Montoro, C.; López, E.; Oltra, J. E.; Colombo, V.; Maspero, A.; Masciocchi, N.; Galli, S.; Senkovska, I.; Kaskel, S.; Barea, E.; Navarro, J. A. R., Highly Hydrophobic Isoreticular Porous Metal-Organic Frameworks for the Capture of Harmful Volatile Organic Compounds. Angew. Chem. Int. Ed. 2013, 52 (32), 8290-8294.22.Masciocchi, N.; Galli, S.; Colombo, V.; Maspero, A.; Palmisano, G.; Seyyedi, B.; Lamberti, C.; Bordiga, S., Cubic Octanuclear Ni(II) Clusters in Highly Porous Polypyrazolyl-Based Materials. J. Am. Chem. Soc. 2010, 132 (23), 7902-7904.23.Fritzsche, J.; Grzywa, M.; Denysenko, D.; Bon, V.; Senkovska, I.; Kaskel, S.; Volkmer, D., CFA-4 - a fluorinated metal-organic framework with exchangeable interchannel cations. Dalton Transactions 2017, 46 (20), 6745-6755.24.Colombo, V.; Galli, S.; Choi, H. J.; Han, G. D.; Maspero, A.; Palmisano, G.; Masciocchi, N.; Long, J. R., High thermal and chemical stability in pyrazolate-bridged metal-organic frameworks with exposed metal sites. Chemical Science 2011, 2 (7), 1311-1319.25.T?b?caru, A.; Galli, S.; Pettinari, C.; Masciocchi, N.; McDonald, T. M.; Long, J. R., Nickel(ii) and copper(i,ii)-based metal-organic frameworks incorporating an extended tris-pyrazolate linker. CrystEngComm 2015, 17 (27), 4992-5001.Supplementary Table 8. Thermal decomposition data for the ZIF family of materials.NameCompositionHeating Rate (°C/min)AtmosphereTd (°C)ReferenceTopologyNotesZIF-1Zn(Im)25N25251crbAZIF-3Zn(Im)210N24502dftAZIF-4Zn2(Im)410N23752cagAZIF-4Zn2(Im)410Ar6003cagAZIF-4(Co)Co(Im)210Ar5502cagBZIF-4-Co zniCo(Im)25N25004zniBIF-1-LiLiB(Im)45N24255zniZIF-8Zn(MIm)25N25756sodZIF-8Zn(MIm)25N24257sodZIF-8Zn(MIm)22Air3008sodZIF-67(Co-ZIF-8)Co(MIm)210N23009sodZIF-67(Co-ZIF-8)Co(MIm)25N23757sodZIF-67(Co-ZIF-8)Co(MIm)22Air28010sodCdIF-1Cd(MIm)25N23507sodCdIF-1Cd(MIm)22Air30010sodBIF-3-LiLiB(MIm)4. (solvent)x5N23005sodBIF-3-CuCuB(MIm)4 (solvent)x5N23005sodZIF-65Zn(NIm)25N230011sodZIF-65Zn(NIm)25Air34012sodZIF-65(Co)Co(NIm)25Air20012sodZIF-7Zn(BIm)25N247513sodZIF-7Zn(BIm)22Air47510sodZIF-9Co(BIm)210N247514sodZIF-9Co(BIm)25N250013sodZIF-11Zn(BIm)25N25001rhoZIF-11Zn(BIm)22Air47510rhoZIF-12Co(BIm)25N252513rhoCdIF-13Cd(BIm)21.5N240015sodBIF-40CuBH(BIm)310N240016*ZIF-21Co(Pur)25N230017ltaZIF-20Zn(Pur)25N235017ltaNotes:A) Compounds undergo solid state amorphization at ca 300 °C, before recrystallization to ZIF-zni, which then itself melts.B) Compound amorphizes at ca 300 °C, and subsequently recrystallizes to a dense framework at 300 °C.References:1K. S. Park, Z. Ni, A. P. C?té, J. Y. Choi, R. Huang, F. J. Uribe-Romo, H. K. Chae, M. O’Keeffe and O. M. Yaghi, Proc. Natl. Acad. Sci. U. S. A., 2006, 103, 10186-10191.2T. D. Bennett, D. A. Keen, J.-C. Tan, E. R. Barney, A. L. Goodwin and A. K. Cheetham, Angew. Chemie Int. Ed., 2011, 50, 3067-3071.3T. D. Bennett, J.-C. Tan, Y. Yue, E. Baxter, C. Ducati, N. J. Terrill, H. H.-M. Yeung, Z. Zhou, W. Chen, S. Henke, A. K. Cheetham and G. N. Greaves, Nat. Commun., 2015, 6, 8079.4Y.-Q. Tian, C.-X. Cai, X.-M. Ren, C.-Y. Duan, Y. Xu, S. Gao and X.-Z. You, Chem. - A Eur. J., 2003, 9, 5673-5685.5J. Zhang, T. Wu, C. Zhou, S. Chen, P. Feng and X. Bu, Angew. Chemie Int. Ed., 2009, 48, 2542-2545.6Y. Pan, Y. Liu, G. Zeng, L. Zhao and Z. Lai, Chem. Commun., 2011, 47, 2017-2073.7J. Sun, L. Semenchenko, T. W. Lim, M. Fernanda, B. Rivas, V. Varela-Guerrero and H.-K. Jeong, Microporous Mesoporous Mater., 2018, 264, 35-42.8K. Kida, M. Okita, K. Fujita, S. Tanaka and Y. Miyake, CrystEngComm, 2013, 15, 1794-1801.9J. Dai, C. Li, S. Xiao, J. Liu, J. He, J. Li, L. Wang and J. Lei, ChemistrySelect, 2018, 3, 5833-5844.10I. Khay, G. Chaplais, H. Nouali, G. Ortiz, C. Marichal and J. Patarin, Dalt. Trans., 2016, 45, 4392-4400.11M. Tu, C. Wiktor, C. R?sler and R. A. Fischer, Chem. Commun., 2014, 50, 13258-13260.12A. Orsi, D. J. Price, J. Kahr, R. S. Pillai, S. Sneddon, S. Cao, V. Benoit, M. M. ?ozińska, D. B. Cordes, A. M. Z. Slawin, P. L. Llewellyn, I. Casely, S. E. Ashbrook, G. Maurin and P. A. Wright, CrystEngComm, 2017, 19, 1377-1388.13A. Noguera-Díaz, N. Bimbo, L. T. Holyfield, I. Y. Ahmet, V. P. Ting and T. J. Mays, Colloids Surfaces A Physicochem. Eng. Asp., 2016, 496, 77-85.14L. T. L. Nguyen, K. K. A. Le, H. X. Truong and N. T. S. Phan, Catal. Sci. Technol., 2012, 2, 521-528.15C. M. McGuirk, T. Run?evski, J. Oktaweic, A. Turkiewicz, M. K. Taylor and J. R. Long, J. Am. Chem. Soc., 2018, 140, 15924-15933.16D.-X. Zhang, H.-X. Zhang, T. Wen, D.-S. Li and J. Zhang, Inorg. Chem. Front., 2016, 3, 263-267.17H. Hayashi, A. P. C?té, H. Furukawa, M. O’Keeffe and O. M. Yaghi, Nat. Mater., 2007, 6, 501-506.Supplementary Table 9. Thermal decomposition data for the Hybrid Ultramicroporous (HUM) family of materials.NameCompositionHeating Rate (°C/min)AtmosphereTd (°C)ReferenceSIFSIX-1-Cu[Cu(bpy)2(SiF6)]n5N21501TIFSIX-1-Cu[Cu(bpy)2(TiF6)]n10O21502SIFSIX-2-Cu-i[Cu(bpa)2(SiF6)]n10N21703,4,5.TIFSIX-2-Cu-i[Cu(bpa)2(TiF6)]n10N22604,6TIFSIX-2-Ni-i[Ni(bpa)2(TiF6)]n10N22706GeFSIX-2-Cu-i[Cu(bpa)2(GeF6)]n10N22107SIFSIX-3-Zn[Zn(pyz)2(SiF6)]n20He1503,8SIFISX-3-Cu[Cu(pyz)2(SiF6 )]n--1505SIFSIX-3-Ni[Ni(pyz)2(SiF6 )]n20N22259,10,11TIFSIX-3-Ni[Ni(pyz)2(TiF6)]n20N228011TIFSIX-4-Cu-i[Cu(bpb)2(TiF6)]n20N225012SIFSIX-5 Zn-i[Zn(bpbp)2(SiF6)]n-N230013SIFSIX-6-Zn-i[Zn(bpn)2(SiF6)]n-N230013SIFSIX-7-Cu[Cu(bpe)2(SiF6)]n20-20014SIFSIX-8-Cu[Cu(bpi)2(SiF6)]n3N220015SIFSIX-12-Cu[Cu(bpt)2(SiF6)]n5N220016SIFSIX-13-Zn[Zn(bpndi)2(SiF6)]n10N235017SIFSIX-14-Cu-i[Cu(azpy)2(SiF6)]n5N217018,19TIFSIX-14-Cu-i[Cu(azpy)2(TiF6)]n10N225020,21GEFSIX-14-Cu-i[Cu(azpy)2(GeF6)]n10N225021SIFSIX-17-Cu[Cu(pyz-NH2)2(SiF6)]n5N221022DICRO-2-Ni[Ni(bpa)2(Cr2O7)]n10N220023DICRO-3-Co-i[Co(azpy)2(Cr2O7)]n10N222524DICRO-3-Cu-i[Cu(azpy)2(Cr2O7)]n10N220024DICRO-3-Ni-i[Ni(azpy)2(Cr2O7)]n10N227524DICRO-3-Zn-i[Zn(azpy)2(Cr2O7)]n10N222524DICRO-4-Ni-i[Ni(bpb)2(Cr2O7)]n10N227525DICRO-5-Co-i[Co(bpx)2(Cr2O7)]n10N227526DICRO-5-Ni-i[Ni(bpx)2(Cr2O7)]n10N228026DICRO-6-Co-i[Co(bpd)2(Cr2O7)]n10N225026DICRO-6-Ni-i[Ni(bpd)2(Cr2O7)]n10N225026DICRO-7-Cu[Cu(pypz)2(Cr2O7)]n10N220027DICRO-8-Cu[Cu(bpz)2(Cr2O7)]n10N222527NbOFFIVE-1-Ni[Ni(pyz)2(NbOF5)]n20N232528NbOFFIVE-2-Cu-i[Cu(bpa)2(NbOF5)]n20N225029NbOFFIVE-2-Ni-i[Ni(bpa)2(NbOF5)]n10N228530ALFFIVE-1-Ni[Ni(pyz)2(AlF5(H2O))]n5N226031FEFFIVE-1-Ni[Ni(pyz)2(FeF5(H2O))]n5N223031References:S. Noro, S. Kitagawa, M. Kondo and K. Seki, Angew. Chemie Int. Ed., 2000, 39, 2081-2084.V. Guillerm, L. Garzón-Tovar, A. Yazdi, I. Imaz, J. Juanhuix and D. Maspoch, Chem. - A Eur. J., 2017, 23, 6829-6835.P. Nugent, Y. Belmabkhout, S. D. Burd, A. J. Cairns, R. Luebke, K. Forrest, T. Pham, S. Ma, B. Space, L. Wojtas, M. Eddaoudi and M. J. Zaworotko, Nature, 2013, 495, 80.K.-J. Chen, H. S. Scott, D. G. Madden, T. Pham, A. Kumar, A. Bajpai, M. Lusi, K. A. Forrest, B. Space, J. J. Perry and M. J. Zaworotko, Chem, 2016, 1, 753-765.O. Shekhah, Y. Belmabkhout, Z. Chen, V. Guillerm, A. Cairns, K. Adil and M. Eddaoudi, Nat. Commun., 2014, 5, 4228.M. Jiang, X. Cui, L. Yang, Q. Yang, Z. Zhang, Y. Yang and H. Xing, Chem. Eng. J., 2018, 352, 803-810.Z. Zhang, X. Cui, L. Yang, J. Cui, Z. Bao, Q. Yang and H. Xing, Ind. Eng. Chem. Res., 2018, 57, 7266-7274.Z. Zhang, X. Cui, L. Yang, J. Cui, Z. Bao, Q. Yang and H. Xing, Ind. Eng. Chem. Res., 2018, 57, 7266-7274.A. Kumar, D. G. Madden, M. Lusi, K.-J. Chen, E. A. Daniels, T. Curtin, J. J. Perry IV and M. J. Zaworotko, Angew. Chemie Int. Ed., 2015, 54, 14372-14377.O. Shekhah, Y. Belmabkhout, K. Adil, P. M. Bhatt, A. J. Cairns and M. Eddaoudi, Chem. Commun., 2015, 51, 13595-13598.A. Kumar, C. Hua, D. G. Madden, D. O’Nolan, K.-J. Chen, L.-A. J. Keane, J. J. Perry and M. J. Zaworotko, Chem. Commun., 2017, 53, 5946-5949.A. Bajpai, D. O’Nolan, D. G. Madden, K.-J. Chen, T. Pham, A. Kumar, M. Lusi, J. J. Perry, B. Space and M. J. Zaworotko, Chem. Commun., 2017, 53, 11592-11595.M.-J. Lin, A. Jouaiti, N. Kyritsakas and M. W. Hosseini, CrystEngComm, 2011, 13, 776-778.S. D. Burd, S. Ma, J. A. Perman, B. J. Sikora, R. Q. Snurr, P. K. Thallapally, J. Tian, L. Wojtas and M. J. Zaworotko, J. Am. Chem. Soc., 2012, 134, 3663-3666.S. Xiong, Y. He, R. Krishna, B. Chen and Z. Wang, Cryst. Growth Des., 2013, 13, 2670-2674.L. Li, R. Matsuda, I. Tanaka, H. Sato, P. Kanoo, H. J. Jeon, M. L. Foo, A. Wakamiya, Y. Murata and S. Kitagawa, J. Am. Chem. Soc., 2014, 136, 7543-7546.J.-J. Liu, Y.-J. Hong, Y.-F. Guan, M.-J. Lin, C.-C. Huang and W.-X. Dai, Dalton. Trans., 2015, 44, 653-658.B. Li, X. Cui, D. O’Nolan, H.-M. Wen, M. Jiang, R. Krishna, H. Wu, R.-B. Lin, Y.-S. Chen, D. Yuan, H. Xing, W. Zhou, Q. Ren, G. Qian, M. J. Zaworotko and B. Chen, Adv. Mater., 2017, 29, 1704210.D. O’Nolan, D. G. Madden, A. Kumar, K.-J. Chen, T. Pham, K. A. Forrest, E. Patyk-Kazmierczak, Q.-Y. Yang, C. A. Murray, C. C. Tang, B. Space and M. J. Zaworotko, Chem. Commun., 2018, 54, 3488-3491.D. O’Nolan, A. Kumar, K.-J. Chen, S. Mukherjee, D. G. Madden and M. J. Zaworotko, ACS Appl. Nano Mater., 2018, 1, 6000-6004.L. Yang, X. Cui, Y. Zhang, Q. Yang and H. Xing, J. Mater. Chem. A, 2018, 6, 24452-24458.H.-M. Wen, L. Li, R.-B. Lin, B. Li, B. Hu, W. Zhou, J. Hu and B. Chen, J. Mater. Chem. A, 2018, 6, 6931-6937.H. S. Scott, A. Bajpai, K.-J. Chen, T. Pham, B. Space, J. J. Perry and M. J. Zaworotko, Chem. Commun., 2015, 51, 14832-14835.H. S. Scott, N. Ogiwara, K.-J. Chen, D. G. Madden, T. Pham, K. Forrest, B. Space, S. Horike, J. J. Perry IV, S. Kitagawa and M. J. Zaworotko, Chem. Sci., 2016, 7, 5470-5476.H. S. Scott, M. Shivanna, A. Bajpai, D. G. Madden, K.-J. Chen, T. Pham, K. A. Forrest, A. Hogan, B. Space, J. J. Perry IV and M. J. Zaworotko, ACS Appl. Mater. Interfaces, 2017, 9, 33395-33400.H. S. Scott, M. Shivanna, A. Bajpai, K.-J. Chen, D. G. Madden, J. J. Perry IV and M. J. Zaworotko, Cryst. Growth Des., 2017, 17, 1933-1937.H. S. Scott, S. Mukherjee, D. R. Turner, M. I. J. Polson, M. J. Zaworotko and P. E. Kruger, CrystEngComm, 2018, 20, 1193-1197.A. Cadiau, K. Adil, P. M. Bhatt, Y. Belmabkhout and M. Eddaoudi, Science ., 2016, 353, 137-140.L. Yang, X. Cui, Z. Zhang, Q. Yang, Z. Bao, Q. Ren and H. Xing, Angew. Chemie, 2018, 130, 13329-13333.L. Yang, A. Jin, L. Ge, X. Cui and H. Xing, Chem. Commun., 2019, 55, 5001-5004.A. Cadiau, Y. Belmabkhout, K. Adil, P. M. Bhatt, R. S. Pillai, A. Shkurenko, C. Martineau-Corcos, G. Maurin and M. Eddaoudi, Science ., 2017, 356, 731-735.Supplementary Table 10. Thermal decomposition data for the phosphonate family of materials.NameCompositionHeating Rate (°C/min)AtmosphereTd (°C)ReferenceNotesVSB-2Ni4(MDP)2·(H2O)35O22755AVSB-3(Zn)Zn2(MDP)·(H2O) 5O22509BVSB-4(Zn)Zn2(MDP)5O26009MIL-48NaZn2(OH)(MDP)·1.5H2O5O22009MIL-48calcNaZn2(OH)(MDP)5O24009IIAl(H2O)(EDP)10-5508IIIGa(H2O)(EDP)10-5408MIL-57Zr(MDP)--75010CIFe(H2O)(EDP)10-4258III(C5H14N2)Zn4(EDP-H2)(EDP)230N24257I-Li(C5H14N2)Zn2(PrDP-H)2·Li15N25257Al2(EDP)(H2O)2F2·H2O--375141Cu2(EDP)(H2O)210N230032Cu2(PrDP)(H2O)310N222533Zn2(EDP)(H2O)210N227534Zn2(PrDP)10N25003Al2(PrDP)(H2O)2F2·H2O5N247511I(C5H14N2)Zn2(PrDP-H)215N23507II(C5H14N2)Zn4(BDP-H2)(BDP)220N242573Cu(H2O)2(BDP-H2)--200154Zn(BDP-H2)·2H2O--25015Ga4(PtDP)3(C5H5N)210N245016D1Cu3[NH2(CH2PO3)2]210O230013E2Co3[NH2(CH2PO3)2]210O2300133Mn[HN2(CH2PO3H)2]2(H2O)210O230013Ni-STA-12Ni2(PDMP)·8H2O5Air40012Ni2L[Ni2(H2O)2L]·5.4H2O5N240017Co2L[Co2(H2O)2L]·5.4H2O5N240017Fe2L[Fe2(H2O)2L]·5.4H2O5N238017Ni2L’[Ni2(H2O)2L’]·5.8H2O5N245017Co2L’Co4L’1.5(CH3CO2)1.5(OH,H2O)3]·(NH4)0.5(H2O)5.55N238017STA-12(Mg)Mg2(PDMP)·xH2O2.5Dry air32518STA-12(Mn)Mn2(PDMP)·xH2O2.5Dry air25018STA-12(Fe)Fe2(PDMP)·xH2O2.5Dry air12518STA-12(Co)Co2(PDMP)·xH2O2.5Dry air27518STA-12(Ni)Ni2(PDMP)·xH2O2.5Dry air32518STA-16(Co)Co2[(H2O)2(C12H22N2P2O6)] ·11H2O1.5Air22519MIL-91(Al)Al(OH)(HO3PCH2NC4H10NCH2PO3H)·nH2O (n ~ 3)-O22759MIL-91-TiTiO(O3PCH2NHC4H10NHCH2PO3)·nH2O (n ~ 3.6)-O22009PCMOF-3Zn3(C6H9O9P3)(H2O)2 · 2H2O5N245021PCMOF-10Mg2(H2O)4(H2L)·H2O2…20022Cu5[(O3P)2C6H3CO2]2(H2O)63N225023Cd2(pBDC)(H2O)310Air47524PCMOF20(DMA)3[Zr(HL)F2](H2O)82N222525CAU-14[Cu3(PPT)(H2O)3]·10H2O4Air37526CuBDPEtCu(C10H16O6P2)5N235027CuBDPMeCu(C6H8O6P2)5N23502713α[Co4L3(μ3-OH)(H2O)3](SO4)0.5·xH2O--325281’3α[Co4L3(μ3-OH)(H2O)3](SO4)0.5·xH2O--32528Al2[O3PC6H4PO3](H2O)2F2·2H2O5N222529F2Ga2[O3PCH2(C6H4)CH2PO3](H2O)2F25N220030G3Ga2{[O3PCH2(C6H4)CH2PO3]1-x(HPO3)2x} (H2O)2F2(0 ≤ x ≤ 0.146) x ) 0.5415N220030G4Ga2{[O3PCH2(C6H4)CH2PO3]0.853(6)(HPO3)0.29(1)}(H2O)2F25N220030GNi-CAU-29Ni-Ni-H8TPPP4Air40034Ni-CAU-29Ni-Ni-H8TPPP4N240034Mn-CAU-29Mn-Ni-H8TPPP4Air37534Co-CAU-29Co-Ni-H8TPPP4Air40034Cd-CAU-29Cd-Ni-H8TPPP4Air40034[Co2(H4-MTPPA)]·3NMP·H2O (1.3NMP·H2O)--4501Zr(H4L)Zr(H4L)10Air42535[Cu3(H3L)(OH)(H2O)3]·H2O·MeOH--2254SZ-1[C4MPYR] [Zr2.5(TPPMH3)F6]·2.5H2O10N230036SZ-2[C4MPYR]2[Zr1.5(TPPM)0.5F4 · 6H2O]10N230036SZ-3[C2PY]2[Zr3.5(TPPAH)F9] · 6.5H2O10N220036Notes:Structural transitions at 275 °C and 350 °C result in VSB-3 and VSB-4. The structure fully decomposes at temperatures in excess of 600 °C.Subsequent to dehydration at 250 °C accompanied by a structural transformation, the structure is reportedly stable up to 600 °C.Thermal decomposition deduced from TGA and variable temperature X-ray diffractometry is stated to indicate stability of MIL-57 up to 750 °C. No TGA trace provided by authors to verify the stated decomposition temperature. Mass losses associated with the loss of pyridine molecules within the structure are observed, with the final being observed at 450 °C. At temperatures greater than 500 °C total collapse of the framework is observed. The temperature at which the ligand dissociates, followed by complete disintegration of the structure at 950 °C.The MOF undergoes a structural change with loss of crystallinity at 220, with amorphilisation occuring at temperatures in excess of 550 °C.Loss of coordinated water and fluorine atoms is observed at 200 °C. This is followed by the decomposition of the ligand at temperatures in excess of 317 °C.References:1.Y. Zorlu, D. Erbahar, A. Cetinkaya, A. Bulut, T. S. Erkal, A. O. Yazaydin, J. Beckmann and G. Yucesan, Chem. Commun. (Cambridge, U. K.), 2019, 55, 3053-3056.2.K. J. Gagnon, H. P. Perry and A. Clearfield, Chem. Rev. (Washington, DC, U. S.), 2012, 112, 1034-1054.3.D. M. Poojary, B. Zhang and A. Clearfield, J. Am. Chem. Soc., 1997, 119, 12550-12559.4.J. M. Taylor, A. H. Mahmoudkhani and G. K. H. Shimizu, Angew. Chem., Int. Ed., 2007, 46, 795-798.5.Q. Gao, N. Guillou, M. Nogues, A. K. Cheetham and G. Ferey, Chem. Mater., 1999, 11, 2937-2947.6.A. Clearfield and K. Damandis, Metal phosphonate chemistry: from synthesis to applications, RSC Publishing, Cambridge, 2012.7.R. Fu, X. Huang, S. Hu, S. Xiang and X. Wu, Inorg. Chem., 2006, 45, 5254-5256.8.C. A. Merrill and A. K. Cheetham, Inorg. Chem., 2005, 44, 5273-5277.9.K. Barthelet, C. Merlier, C. Serre, M. Riou-Cavellec, D. Riou and G. Ferey, J. Mater. Chem., 2002, 12, 1132-1137.10.C. Serre and G. Ferey, J. Mater. Chem., 2002, 12, 2367-2369.11.H. G. Harvey, B. Slater and M. P. Attfield, Chem. - Eur. J., 2004, 10, 3270-3278.12.S. R. Miller, G. M. Pearce, P. A. Wright, F. Bonino, S. Chavan, S. Bordiga, I. Margiolaki, N. Guillou, G. Ferey, S. Bourrelly and P. L. Llewellyn, J. Am. Chem. Soc., 2008, 130, 15967-15981.13.D. Kong, Y. Li, X. Ouyang, A. V. Prosvirin, H. Zhao, J. H. Ross, Jr., K. R. Dunbar and A. Clearfield, Chem. Mater., 2004, 16, 3020-3031.14.H. G. Harvey, S. J. Teat and M. P. Attfield, J. Mater. Chem., 2000, 10, 2632-2633.15.R.-B. Fu, X.-T. Wu, S.-M. Hu, J.-J. Zhang, Z.-Y. Fu and W.-X. Du, Polyhedron, 2003, 22, 2739-2744.16.M. P. Attfield, Z. Yuan, H. G. Harvey and W. Clegg, Inorg. Chem., 2010, 49, 2656-2666.17.J. A. Groves, S. R. Miller, S. J. Warrender, C. Mellot-Draznieks, P. Lightfoot and P. A. Wright, Chem. Commun. (Cambridge, U. K.), 2006, DOI: 10.1039/b605400e, 3305-3307.18.M. T. Wharmby, G. M. Pearce, J. P. S. Mowat, J. M. Griffin, S. E. Ashbrook, P. A. Wright, L.-H. Schilling, A. Lieb, N. Stock, S. Chavan, S. Bordiga, E. Garcia, G. D. Pirngruber, M. Vreeke and L. Gora, Microporous Mesoporous Mater., 2012, 157, 3-17.19.M. T. Wharmby, J. P. S. Mowat, S. P. Thompson and P. A. Wright, J. Am. Chem. Soc., 2011, 133, 1266-1269.20.C. Serre, J. A. Groves, P. Lightfoot, A. M. Z. Slawin, P. A. Wright, N. Stock, T. Bein, M. Haouas, F. Taulelle and G. Ferey, Chem. Mater., 2006, 18, 1451-1457.21.J. M. Taylor, R. K. Mah, I. L. Moudrakovski, C. I. Ratcliffe, R. Vaidhyanathan and G. K. H. Shimizu, J. Am. Chem. Soc., 2010, 132, 14055-14057.22.P. Ramaswamy, N. E. Wong, B. S. Gelfand and G. K. H. Shimizu, J. Am. Chem. Soc., 2015, 137, 7640-7643.23.J.-M. Rueff, O. Perez, C. Simon, C. Lorilleux, H. Couthon-Gourves and P.-A. Jaffres, Cryst. Growth Des., 2009, 9, 4262-4268.24.C. Zhang, H. Shi, L. Sun, Y. Yan, B. Wang, Z. Liang, L. Wang and J. Li, Cryst. Growth Des., 2018, 18, 7683-7689.25.Z. Hassanzadeh Fard, N. E. Wong, C. D. Malliakas, P. Ramaswamy, J. M. Taylor, K. Otsubo and G. K. H. Shimizu, Chem. Mater., 2018, 30, 314-318.26.N. Hermer and N. Stock, Dalton Trans., 2015, 44, 3720-3723.27.S. S. Iremonger, J. Liang, R. Vaidhyanathan, I. Martens, G. K. H. Shimizu, T. D. Daff, M. Z. Aghaji, S. Yeganegi and T. K. Woo, J. Am. Chem. Soc., 2011, 133, 20048-20051.28.S. Begum, S. Horike, S. Kitagawa and H. Krautscheid, Dalton Trans., 2015, 44, 18727-18730.29.M. P. Attfield, C. Mendieta-Tan, R. N. Telchadder and M. A. Roberts, RSC Adv., 2012, 2, 10291-10297.30.H. G. Harvey, A. C. Herve, H. C. Hailes and M. P. Attfield, Chem. Mater., 2004, 16, 3756-3766.31.T. Zeng, L. Wang, L. Feng, H. Xu, Q. Cheng and Z. Pan, Dalton Trans., 2019, 48, 523-534.32.A. Bulut, Y. Zorlu, M. Woerle, A. Cetinkaya, H. Kurt, B. Tam, A. O. Yazaydin, J. Beckmann and G. Yuecesan, ChemistrySelect, 2017, 2, 7050-7053.33.X. Zhao, J. G. Bell, S.-F. Tang, L. Li and K. M. Thomas, J. Mater. Chem. A, 2016, 4, 1353-1365.34.T. Rhauderwiek, K. Wolkersdoerfer, S. Oeien-Oedegaard, K.-P. Lillerud, M. Wark and N. Stock, Chem. Commun. (Cambridge, U. K.), 2018, 54, 389-392.35.C.-Y. Gao, J. Ai, H.-R. Tian, D. Wu and Z.-M. Sun, Chem. Commun. (Cambridge, U. K.), 2017, 53, 1293-1296.36.T. Zheng, Z. Yang, D. Gui, Z. Liu, X. Wang, X. Dai, S. Liu, L. Zhang, Y. Gao, L. Chen, D. Sheng, Y. Wang, J. Diwu, J. Wang, R. Zhou, Z. Chai, T. E. Albrecht-Schmitt and S. Wang, Nat. Commun., 2017, 8, 15369.Supplementary FiguresSupplementary Figure 1. TG-MS evidence of CO2 (black), benzene (pink) and water (blue) release from the thermal decomposition of tetragonal and cubic variants of MOF-5. Reprinted from reference 1, copyright 2011, with permission from Elsevier.Supplementary Figure 2. TG-MS evidence of benzene release from the thermal decomposition of UiO-66. CO2 release was not reported in this paper. Reprinted with permission from reference 2, copyright 2011 American Chemical Society.Supplementary Figure 3. TG-MS evidence of CO2 release from the thermal decomposition of UiO-67 and UiO-67-NH2. CO2 release appears to take place over a wide-range of temperatures, beginning as low as 325 °C. Multiple release events are observed, centred at c. 450 °C and 550 °C for UiO-67, and c. 400 °C and 550 °C for UiO-67-NH2. Benzene release was not reported in this paper. Reprinted from reference 3, copyright 2018 American Chemical Society.Supplementary Figure 4. The TG-MS evidence of CO2 and benzene release from UiO-66-NH2. Left-hand side shows CO2 release, the right-hand side shows benzene release (as C6H6 or C6H4 fragments). Both are quoted in terms of measurement time, rather than temperature, so exact temperature ranges are unclear. However, CO2 release appears to occurs over a wide temperature range in two distinct events, while benzene release appears to occur in a single event over a relatively narrow band of temperatures. Reprinted from reference 4, copyright 2010 American Chemical Society.Supplementary Figure 5. The pyrazolate ligands H2TMP, H2BDPB and H2BDPP form an isoreticular family of MOFs with Co2+. The increasing linker length results in larger framework pores which appears to be to a lower thermal stability.Supplementary Figure 6. N-donor ligands used in HUM materials, and their associated Td values.12702407920SIFSIX-3-Cu/Zn Td = 150 °C00SIFSIX-3-Cu/Zn Td = 150 °C9671052413635SIFSIX-1-Cu/Zn Td = 150 °C00SIFSIX-1-Cu/Zn Td = 150 °C19907252400935SIFSIX-2-Cu-iTd = 170 °C00SIFSIX-2-Cu-iTd = 170 °C28511502388870SIFSIX-14-Cu-i Td = 170 °C00SIFSIX-14-Cu-i Td = 170 °C38239702389505SIFSIX-17-Cu Td = 210 °C00SIFSIX-17-Cu Td = 210 °C48273482385238SIFSIX-5-Zn-i Td = 300 °C00SIFSIX-5-Zn-i Td = 300 °CReferences:1L. Zhang and Y. H. Hu, Mater. Sci. Eng. B, 2011, 176, 573-578.2L. Valenzano, B. Civalleri, S. Chavan, S. Bordiga, M. H. Nilsen, S. Jakobsen, K. P. Lillerud and C. Lamberti, Chem. Mater., 2011, 23, 1700-1718.3C. Tian, J. Zhao, X. Ou, J. Wan, Y. Cai, Z. Lin, Z. Dang and B. Xing, Environ. Sci. Technol., 2018, 52, 3466-3475.4M. Kandiah, M. H. Nilsen, S. Usseglio, S. Jakobsen, U. Olsbye, M. Tilset, C. Larabi, E. A. Quadrelli, F. Bonino and K. P. Lillerud, Chem. Mater., 2010, 22, 6632-6640. ................
................

In order to avoid copyright disputes, this page is only a partial summary.

Google Online Preview   Download