Applied and Computational Linear Algebra: A First Course
[Pages:504]Charles L. Byrne Department of Mathematical Sciences University of Massachusetts Lowell
Applied and Computational Linear Algebra: A First Course
To Eileen, my wife for the last forty-three years.
My thanks to David Einstein, who read most of an earlier version of this book
and made many helpful suggestions.
Contents
Preface
xxiii
I Preliminaries
1
1 Introduction
1
1.1 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Overview of this Course . . . . . . . . . . . . . . . . . . . . 1 1.3 Solving Systems of Linear Equations . . . . . . . . . . . . . 2 1.4 Imposing Constraints . . . . . . . . . . . . . . . . . . . . . 2 1.5 Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.6 Acceleration . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2 An Overview of Applications
5
2.1 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . 6 2.2 Transmission Tomography . . . . . . . . . . . . . . . . . . 6
2.2.1 Brief Description . . . . . . . . . . . . . . . . . . . . 6 2.2.2 The Theoretical Problem . . . . . . . . . . . . . . . 7 2.2.3 The Practical Problem . . . . . . . . . . . . . . . . . 7 2.2.4 The Discretized Problem . . . . . . . . . . . . . . . 8 2.2.5 Mathematical Tools . . . . . . . . . . . . . . . . . . 8 2.3 Emission Tomography . . . . . . . . . . . . . . . . . . . . . 8 2.3.1 Coincidence-Detection PET . . . . . . . . . . . . . . 9 2.3.2 Single-Photon Emission Tomography . . . . . . . . . 9 2.3.3 The Line-Integral Model for PET and SPECT . . . 10 2.3.4 Problems with the Line-Integral Model . . . . . . . . 10 2.3.5 The Stochastic Model: Discrete Poisson Emitters . . 11 2.3.6 Reconstruction as Parameter Estimation . . . . . . . 11 2.3.7 X-Ray Fluorescence Computed Tomography . . . . . 12 2.4 Magnetic Resonance Imaging . . . . . . . . . . . . . . . . . 12 2.4.1 Alignment . . . . . . . . . . . . . . . . . . . . . . . . 13 2.4.2 Precession . . . . . . . . . . . . . . . . . . . . . . . . 13 2.4.3 Slice Isolation . . . . . . . . . . . . . . . . . . . . . . 13 2.4.4 Tipping . . . . . . . . . . . . . . . . . . . . . . . . . 13
vii
viii
Contents
2.4.5 Imaging . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.4.6 The Line-Integral Approach . . . . . . . . . . . . . . 14 2.4.7 Phase Encoding . . . . . . . . . . . . . . . . . . . . 14 2.4.8 A New Application . . . . . . . . . . . . . . . . . . . 14 2.5 Intensity Modulated Radiation Therapy . . . . . . . . . . . 15 2.5.1 Brief Description . . . . . . . . . . . . . . . . . . . . 15 2.5.2 The Problem and the Constraints . . . . . . . . . . 15 2.5.3 Convex Feasibility and IMRT . . . . . . . . . . . . . 15 2.6 Array Processing . . . . . . . . . . . . . . . . . . . . . . . . 16 2.7 A Word about Prior Information . . . . . . . . . . . . . . . 17
3 A Little Matrix Theory
21
3.1 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . 21 3.2 Vector Spaces . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.3 Matrix Algebra . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3.1 Matrix Operations . . . . . . . . . . . . . . . . . . . 24 3.3.2 Matrix Inverses . . . . . . . . . . . . . . . . . . . . . 25 3.3.3 The Sherman-Morrison-Woodbury Identity . . . . . 26 3.4 Bases and Dimension . . . . . . . . . . . . . . . . . . . . . 27 3.4.1 Linear Independence and Bases . . . . . . . . . . . . 27 3.4.2 Dimension . . . . . . . . . . . . . . . . . . . . . . . . 29 3.4.3 Rank of a Matrix . . . . . . . . . . . . . . . . . . . . 30 3.5 Representing a Linear Transformation . . . . . . . . . . . . 31 3.6 The Geometry of Euclidean Space . . . . . . . . . . . . . . 32 3.6.1 Dot Products . . . . . . . . . . . . . . . . . . . . . . 32 3.6.2 Cauchy's Inequality . . . . . . . . . . . . . . . . . . 34 3.7 Vectorization of a Matrix . . . . . . . . . . . . . . . . . . . 34 3.8 Solving Systems of Linear Equations . . . . . . . . . . . . . 35 3.8.1 Row-Reduction . . . . . . . . . . . . . . . . . . . . . 35 3.8.2 Row Operations as Matrix Multiplications . . . . . . 37 3.8.3 Determinants . . . . . . . . . . . . . . . . . . . . . . 37 3.8.4 Sylvester's Nullity Theorem . . . . . . . . . . . . . . 38 3.8.5 Homogeneous Systems of Linear Equations . . . . . 39 3.8.6 Real and Complex Systems of Linear Equations . . . 41 3.9 Under-Determined Systems of Linear Equations . . . . . . 41 3.10 Over-Determined Systems of Linear Equations . . . . . . . 43
4 The ART, MART and EM-MART
45
4.1 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . 45 4.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 4.3 The ART in Tomography . . . . . . . . . . . . . . . . . . . 46 4.4 The ART in the General Case . . . . . . . . . . . . . . . . 47
................
................
In order to avoid copyright disputes, this page is only a partial summary.
To fulfill the demand for quickly locating and searching documents.
It is intelligent file search solution for home and business.
Related download
- linear algebra by friedberg insel and spence pdf
- friedberg insel and spence linear algebra 4th ed
- download linear algebra stephen h friedberg arnold j
- friedberg insel linear algebra pdf
- linear algebra matrix approach friedberg pdf free download
- introduction to applied linear algebra
- linear algebra friedberg homework solutions
- applied and computational linear algebra a first course
- linear algebra friedberg 4th ed
- linear algebra joshua
Related searches
- linear algebra matrix solver
- linear algebra matrix pdf
- engineering and computational mechanics
- applied and computational mechanics
- numpy linear algebra tutorial
- python linear algebra library
- java linear algebra library
- linear algebra and its applications pdf 5th
- linear algebra and its applications 5th pdf
- linear algebra and its applications solutions
- a first course on probability
- lay s linear algebra and its applications pdf