Midterm #1
Exam 3 Solutions
Closed book exam. A calculator is allowed, as is one 8.5(11” sheet of paper with your own written notes. Please show all work leading to your answer to receive full credit. Answers should be calculated to 2 significant digits. Exam is worth 100 points, 25% of your total grade.
[pic]
1. Consider the toroid shown with an inner radius a = 5 cm and an outer radius
b = 6 cm. The total number of turns of wire wound around the toroid is N = 400.
The core of the toroid has a rectangular cross-section with a thickness h = 0.5 cm.
a) [6 points] If the wire carries a current of 2A, what is the magnitude of the magnetic field inside the toroid at a radius midway between the inner and outer radii?
Use Ampere’s Law. Consider a loop at a fixed radius inside toroid.
[pic]
1. Continued
b) [8 points] Calculate the inductance of the toroid.
[pic]
2. [8 points] A long straight wire with a cylindrical cross-section has a radius of 0.3 mm and carries a current of 100 mA uniformly spread across its cross-section. What is the ratio of the magnetic field at a radius of 0.1 mm to that at the surface of the wire?
Use Ampere’s Law. Consider a loop centered on wire axis.
[pic]
3. A square loop of wire with edge length 7 cm is located in the plane of the paper inside a homogeneous magnetic field of 0.35 T pointing into the paper. It is connected in series with a resistor of 210 (. The magnetic field is now increased at a constant rate by a factor of 4.5 in 18 s.
a) [6 points] Calculate the magnitude of the induced EMF in the loop (in V) during that time.
[pic]
b) [6 points] Calculate the current induced in the loop in Amps during that time.
[pic]
4. A rectangular loop of wire is located in the plane of the paper inside a homogeneous magnetic field of 6 mT pointing into the paper. One side length is fixed at 50 cm, the other side grows with time according to the formula [pic], where [pic]and [pic].
a) [6 points] Calculate the magnitude of the induced EMF in the loop.
[pic]
b) [6 points] If the resistance of the wire increases as [pic], where [pic] and ( = 0.5 s-1, what would the acceleration of the moving wire need to be in order to maintain a constant current in the wire? Hint: Consider adding a quadratic time dependence to the length of the growing side.
[pic]
5. A solenoid 42 cm long has a circular cross-section of 8.5 cm2. There are 420 turns of wire carrying a current of 3.25A.
a) [6 points] Find the magnitude of the magnetic field inside the solenoid assuming that it is essentially infinite in length (neglect end effects).
Use Ampere’s Law. Consider a loop cutting through the solenoid.
[pic]
b) [6 points] Find the total energy stored in the magnetic field inside the volume of the solenoid. Neglect end effects.
[pic]
6. An oscillating LC circuit consists of a 2 mH inductive coil and a 3 nF capacitor. The capacitor has a voltage drop of 2.8 V when the current through the coil is 1.2 mA.
a) [6 points] Find the period of oscillation.
[pic]
b) [6 points] Find the maximum charge on the capacitor.
c) [6 points] Find the maximum current through the coil.
The inductor and capacitor exhibit oscillation, with the charge on the capacitor being exchanged for current through the inductor. To solve this, note that the total energy is constant:
[pic]
7. A frog can be considered a magnetic dipole when immersed in strong magnetic field (a property known as diamagnetism).
a) [3 points] Does the frog have greater potential energy when its magnetic dipole moment is aligned with the direction of the magnetic field or opposite to it?
The potential energy of a magnetic dipole in a magnetic field is: [pic],
So the frog has more potential energy when it is aligned opposite to the field.
b) [3 points] If the field is strong enough, it is possible to levitate the frog. Would this occur near the center of a solenoid where the field is uniform, or near the end of a solenoid where the field is diverging?
The force on a magnetic dipole in a non-uniform magnetic field is:
[pic], so the force can only balance gravity when the frog is in the non- uniform field near the end of the solenoid.
[pic]
8. Consider an RLC circuit connected to an alternating-current power supply. The power supply delivers an electric potential of [pic].
a) [6 points] Write down a differential equation for the charge [pic] on the capacitor.
Apply Kirchoff’s second law that the sum of the voltage drops must be zero:
[pic]
b) [6 points] Estimate the current in the circuit for the following three limiting cases (give your reasons!): 1) [pic], 2) [pic], and 3) [pic]
Note that the complex impedance of an inductor is [pic] and of a capacitor is [pic]
1) As [pic], the capacitor becomes an open circuit and the inductor becomes a short circuit (infinite impedance and zero impedance, respectively). So the current would be zero.
2) As [pic], the capacitor becomes a short circuit and the inductor becomes an open circuit (zero impedance and infinite impedance, respectively). So the current would be zero.
3) For [pic], the current is maximized and matched to the resistor. The current becomes [pic]
c) [6 points] How does adding a transformer to the output of the power supply affect the behavior of the circuit, if the number of secondary windings on the transformer (which are connected to the circuit) is half of the number of primary windings (which are connected to the power supply)?
The transformer steps-down the AC voltage: [pic]
So the magnitude of the voltage (and current) will drop by a factor 2, but all other features (frequency, phase) remain the same.
-----------------------
R
C
L
((t)
-----------------------
PHY2061
11-18-04
Name:_______________________ ___
................
................
In order to avoid copyright disputes, this page is only a partial summary.
To fulfill the demand for quickly locating and searching documents.
It is intelligent file search solution for home and business.
Related searches
- midterm exam prep pre test questions for class sessions
- philosophy midterm study guide
- navy midterm bullets
- navy midterm goals
- navy midterm eval sample
- navy midterm strengths and weaknesses
- navy midterm weakness
- navy e 5 midterm examples
- navy midterm strength and weakness
- navy midterm strength bullets
- strategic management midterm quizlet
- sociology 101 midterm exam answers