Syllabus



Syllabus

Physics 555: Elementary Quantum Mechanics (Fall 2010)

Class number: 2402 (Credit units: 3)

Lecture Room: 104 Natural Sciences BLDG

Lecture Time: 11:00 am-11:50 pm (Monday, Wednesday, & Friday)

Textbook: Quantum Mechanics: Concepts and Applications by N. Zettili (John Wiley & Sons)

(Second Edition)

Reference book: (1) Introduction to Quantum Mechanics by David J. Griffiths, second edition

(Pearson Prentice Hall);

(2) Introductory Quantum Mechanics by Richard L. Liboff (Holden-Day, Inc);

(3) Principles of Quantum Mechanics by Ramanurti Shankar (Plenum Press);

(4) Quantum Mechanics: A New Introduction by Kenichi Konishi & Giampiero

Paffuti (Oxford University Press)

Instructor: Dr. Ming Yu

Office: Room 242, John W. Shumaker Research Building

Office Hour: 2:00 pm – 5:00 pm (MW)

Phone Number: 502-852-0931

E-mail: m0yu0001@gwise.louisville.edu

Web site:

Description

This course is the first part of the two-semester course of quantum mechanics (phys 555 and phys 556). This course (Phys 555) will cover the general concepts of quantum mechanics, Schrödinger equation and solutions in one-dimension problems, and angular momentum. The second semester (phys 556) will cover the topics of Schrödinger equation and solutions in three-dimension problems, identical particles, various approximation methods, and scattering theory. A mathematical background of linear algebra, differential equations, and partial differential equations is strongly required in the course.

Goal

The goal of the course will be to understand basic concepts of quantum mechanics, to develop critical thinking skills, and to develop problem-solving skills. The key elements related to this goal will include: recalling the origins of quantum mechanics, introducing the mathematical tools of quantum mechanics, discussing the formal foundation of quantum mechanics, and then dealing with the exact solutions of the Schrodinger equation in one-dimensional problems, as well as introducing angular momentum. You are encouraged to read the chapters and sections related to the topics from the textbook and reference books and to discuss with your fellow students or the instructor to make clear in concepts and in solving assigned problems. Your progress in this area will be assessed with a graded assignment (homework assignment, quiz set, and embedded in exam questions, etc.).

Course Requirements

PHYS 300, 450, and 460.

Topics covered

1. Origin of Quantum Mechanics (Chapter 1)

1. Historical Note

2. Particles Aspect of Radiation

3. Wave Aspect of Particles

4. Particles versus Waves

5. Indeterministic Nature of the Microphysical World

6. Atomic Transitions and Spectroscopy

2. Mathematical Tools of Quantum Mechanics(Chapter 2)

1. Introduction

2. The Hilber Space and Wave Functions

3. Dirac Notation

4. Operators

5. Representation in Discrete Bases

6. Representation in Continues Bases

7. Matrix and Wave Mechanics

3. Postulates of Quantum Mechanics (Chapter 3)

1. Introduction

2. The Basic Postulates of Quantum Mechanics

3. The State of System

4. Observables and Operators

5. Measurement in Quantum Mechanics

6. Time Evolution of the System’s State

4. One-Dimensional Problems(Chapter 4)

1. Introduction

2. Properties of One-Dimensional Motion

3. The Free Particle: Continuous States

4. The Potential Step

5. The Potential Barrier and Well

6. The Infinite Square Well Potential

7. The Finite Square Well Potential

8. The Harmonic Oscillator

5. Angular Momentum (Chapter 5)

1. Introduction

2. Orbital Angular Momentum

3. General Formalism of Angular Momentum

4. Matrix Representation of Angular Momentum

5. Spin Angular Momentum

6. Eigenfunctions of Orbital Angular Momentum

Homework

Homework assignments will be distributed at beginning of each week. The Homework includes both general problems and challenge problems. You are asked to accomplish the general problems and encouraged to take the challenge problems. Your solutions for each problem must include not only the final answers but intermediate steps. The corresponding due dates for Homework will be written on the Homework assignments. Homework assignments will be collected and graded, and form part of your final score. You may discuss homework problems with your fellow students. In fact, you are encouraged to work as a group. However, the final write-up must be your own.

Quiz

There may be two conceptual quizzes. Some extra points will be given.

Exams

There will be a midterm exam and a final exam. The midterm exam is scheduled on October 8/13, and the final exam is scheduled on December 6/13. Each exam will have an “in-class” and a “take-home” section. They are weighted as one-third and two-third, respectively.

Class Participation

Class participation will be monitored throughout the semester. You are basically required to attend the class otherwise, with an excuse. Each absence without an excuse will cost 0.5 point. It is true that certain individuals are able to learn physics solely from a textbook and may think that lectures are unnecessary. It is also true that most part of the course follows the text book basically, but (1) more explanations which do not appear in a typical textbook will be given in class (2) some of the topics of the course are even not covered by the textbook. Participation will provide you the opportunity to gain more, to ask questions as well as clarifying explanations.

Grading Policy

The final scores will be based on the two exams and the homework with breakdown as follows:

Homework 30%

Midterm Exam 35%

Final Exam 35%

The letter grades will be assigned based on the final scores. The approximate cutoffs are:

Grade A+ A A_ B+ B B_ C+ C C_ D+ D D-

Cutoff 95 90 80 75 70 65 55 50 41 38 35 32

* Please note that the scheduled exam date and above cutoffs are tentative. The instructor reserves the

right to lower the cutoffs if deemed necessary. The cutoffs, however, will not be raised in any cases.

................
................

In order to avoid copyright disputes, this page is only a partial summary.

Google Online Preview   Download

To fulfill the demand for quickly locating and searching documents.

It is intelligent file search solution for home and business.

Literature Lottery

Related searches