PET Radionuclides Production Cyclotron Selection and …

PET Radionuclides Production Cyclotron Selection and Location

Carlos Gonzalez Lepera, Ph.D. CYCLOTOPE and

Experimental Diagnostic Imaging, The University of Texas MD Anderson Cancer Center

Houston, TX

1. Cyclotron Selection

a. Nuclear Reactions b. Production Methods c. PET Radionuclides d. Selection Criteria e. Radionuclide Production Yield

2. Cyclotron Site

a. Large Vault Design b. Self-Shielded Option c. Facility Layout

3. PET Radionuclides Production

a. Gas Targets b. Liquid Targets c. Solid Targets

Displacement Caused by Nuclear Bombardment Reactions

, 2n

, 3n

, n

3He, n

p,

, np

p, n

d, n

t, n

3He, np

3He, p

p, pn

Original

d, p

p, t

, n

Nucleus

n,

t, p

n, 2n

n, n

t, np

n, t

n, d

n, p

p,

, np

, p

t, 3He

d,

n, np

n, n, n 3He

n, 3He n, pd

Charged Particle (Accelerator) p Neutron Irradiation (Reactor)

n

Radionuclides Production

Nuclear Reactor

Stars Formation Cosmic Rays

Accelerator

Cyclotron

1

Common PET Radioisotopes

Radioisotope 11C 13N

15O

Half-life 20.3 min 9.96 min

122 sec

18F

109.8 min

61Cu

62Cu (gen.) 64Cu

82Rb (gen.) 86Y 124I

3.41 hr

9.73 min 12.7 hr 75 sec 14.7 hr 4.15 d

Decay (%) + 99.8, EC 0.2

+ 100

+ Endpoint (MeV) 0.961 1.190

+ 99.9, EC 0.1

1.723

+ 96.9, EC 3.1

0.635

+ 62, EC 38

+ 97.8, EC 2.2 + 19, EC 41, - 40

+ 96, EC 4 + 34, EC 66 + 25, EC 75

1.205

2.934 0.657 3.35 1.248, others 1.533, 2.134

Principal Nuclear Reactions

14N(p,)11C 16O(p,)13N 14N(d,n)15O 15N(p,n)15O

18O(p,n)18F 20Ne(d, )18F

60Ni(d,n)61Cu 61Ni(p,n)61Cu 63Cu(p,2n)62Zn(9.1 hr) 62Cu 64Ni(p,n)64Cu, 64Zn(n,p)64Cu 85Rb(p,4n)82Sr(25 d) 82Rb 86Sr(p,n)86Y 124Te(p,n)124I

Purpose Radionuclide Activity

$

Cyclotron Selection Criteria

$

Commercial Distribution

18F

Distribution & Research

Clinical Research

Pre-Clinical Research

11C, 13N, 15O, 18F, solid

11C, 13N, 15O, 18F, solid

11C, 15O, 18F

~ 10 Ci/batch

> 1 Ci/batch

~ 1Ci/batch

< 1 Ci/batch

Particles

H-

H-, D-

H-, D-

H-

Energy

15 MeV

15 MeV

15 MeV

Shielding options:

Self + Vault (~30 cm concrete) Vault (~ 200 cm concrete)

Long term investment >10 years

Long term needs

7 MeV

Radionuclide Production Yields

Disintegration Rate: (Activity)

D = N .

N : Number of atoms A : Probability of decay A = ln(2)/T1/2

Bateman's equation (balance) for growth of daughter radionuclide B from parent A

( ) ( ) B B =

AA

B B - A

1 - e-(B -A )t

A : Number of target atoms. A: Probability of transforming target atom A into B The product A.A remains finite.

A >> 1 A 30 MeV up to few hundred MeV

T

R

Flavors:

Ion

Positive

Negative (p, d only)

Ion Source

Internal

External

5

Magnet

Conventional

Superconducting

0

0

Plane

Horizontal

Vertical

Shielding

Self

Vault

M

Particles

Single

Multiple (p,d,,He3)

e

Energy

Fixed

Variable (steps-cont.)

V

Siemens Eclipse HP

11 MeV protons 60 A (x2)max. current

MAX. POWER: 660 W (x2)

GE PETtrace

16 MeV protons 8 MeV deuterons (option) 60 A max. current

MAX. POWER: 960 W

5

................
................

In order to avoid copyright disputes, this page is only a partial summary.

Google Online Preview   Download