(Title)



A Species Independent Universal Bio-detection Microarray for Pathogen ForensicsShamira J. ShallomDissertation submitted to the faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree ofDoctor of PhilosophyInGenetics Bioinformatics and Computational BiologyHarold ‘Skip’ Garner, Committee Chair David R. BevanReinhard LaubenbacherChristopher LawrenceMay 4th, 2012Blacksburg, VAKeywords: (Array Surveillance Pathogen Detection)A Species Independent Universal Bio-detection Microarray for Pathogen ForensicsShamira J. ShallomABSTRACTThe detection and identification of bio-threat agents and study of host-pathogen interactions require a high-resolution detection platform capable of discerning closely related species. This dissertation addresses the completion of the development of an array based platform and provides a robust pipeline for the discovery of unique bio-signatures for pathogens and their host. Our collection (library) of host and pathogen signatures has been greatly expanded to improve robustness and identification accuracy of an 'unknown' sample. The library containing measured bio-signatures for each species/isolate is complemented with computational methodologies to resolve the identity of the unknown sample as well as a mixture of organisms or a pathogen in a host background. Current approaches for pathogen detection rely on prior genomic sequence information. This research targets use of a broad based platform for identification of pathogens from field or laboratory samples on a high density Universal Bio-signature Detection Array (UBDA). This array is genome independent and contains all possible (49 combinations) 9-mer probes which are mathematically computed and genome independent. It works by comparing signal intensity readout to a library of readouts established by interrogating a wide spectrum of organisms. Each genome has a unique pattern of signal intensities corresponding to each of these probes. These signal intensities were used to generate un-biased cluster analysis patterns that can easily distinguish organisms into accepted and known phylogenomic relationships. Classification methods such as hierarchical clustering, Pearson’s correlation matrix, principal component analysis and curve fitting regression methods were tested for pathogen specific use cases. Hierarchical clustering and Pearson’s correlation matrix methods can establish phylogenomic relationships between highly diverse genomes. However, in order to assign a given sample to one or more groups, such as a pure isolate of a single species or composite mixture of multiple species, principal component analysis (PCA) was used. The test cases included identification of mixed samples, case study of field samples from state diagnostic labs and finally a surveillance method for viral and parasite carrying insect host vectors. Completion of these application challenges is meant to demonstrate the power and confirm confidence in the Universal Bio-signature Detection Array.This work was supported by a graduate fellowship from the Virginia Bioinformatics Institute, Virginia Tech and the Southern Regional Education Board (SREB) to S. Shallom and U.S. Department of Homeland Security through the national Center of Excellence for Foreign Animal and Zoonotic Disease Defense at Texas A&M University to Dr. Garner, PI.Dedication To my family with love and gratitude for their patience and supportAcknowledgements I would like to express my sincere gratitude and appreciation to Dr. Harold ‘Skip’ Garner who provided mentorship, insight and vision for this research. I would also like to thank my PhD committee members: Drs. David R. Bevan, Reinhard Laubenbacher and Christopher Lawrence for their encouragement during my time at Virginia Tech. I would like to express my sincere gratitude to Dr. Gary Adams from Texas A and M University for guiding me in various aspects related to the study of bacterial pathogenesis, and critically reading my manuscripts. I would like to express my deep gratitude and appreciation to Ms. Dennie Munson from the Graduate school at Virginia Tech for guiding me and keeping me on track through the GBCB graduate program requirements.Table of ContentsIntroduction................................................................................................1Array based approaches in pathogen forensics....................................1Universal Bio-signature Detection Array (UBDA): A species independent pathogen forensics platform............................................3Computational genome hybridization analysis pipeline for UBDA array.....................................................................................................6Organization of publications and manuscripts..................................101.4.1 A species independent universal bio-detection microarray for pathogen forensics and phylogenetic classification of unknown microorganisms...........................................................................111.4.2 Comparison of genome diversity of Brucella spp. field isolates using Universal Bio-signature Detection Array and whole genome sequencing reveals limitations of current diagnostic methods.......................................................................................111.4.3 Development of molecular diagnostics using Universal Bio-signature Detection Array technology in host pathogen forensics......................................................................................12A species independent universal bio-detection microarray for pathogen forensics and phylogenetic classification of unknown micro-organisms.................................................................................................14Abstract...............................................................................................15Background.........................................................................................16Results.................................................................................................22UBDA array sensitivity and specificity of probe hybridization................................................................................22Identification of synthetically mixed pathogen sample............25Identification of genetic signatures from closely related Brucella species...........................................................................27Taxonomic phylogenetic relationships between organisms hybridized on the UBDA array....................................................29Samples subjected to DNA amplification are comparable to unamplified samples....................................................................31Discussion..........................................................................................322.5 Conclusions........................................................................................362.6. Methods.............................................................................................372.6.1. Array design details....................................................................372.6.2. Microarray procedure.................................................................402.6.3 Array data processing and organism classification.....................422.6.4 Phylogenetic taxonomic tree based on array intensity................432.6.5 Whole genome amplification......................................................442.7 Acknowledgements............................................................................442.8 Attribution..........................................................................................442.9 Bibliography.......................................................................................452.10 Figures..............................................................................................522.10.1 Figure 1: Array sensitivity determined by control probe signal intensity values............................................................................522.10.2 Figure 2: Hierarchical clustering of mixed samples demonstrates the resolution capabilities of the UBDA array............................532.10.3 Figure 3: Unique 9-mer probe bio-signatures from hybridization of Brucella genomes demonstrates ability to resolve highly similar genomes...........................................................................562.10.4 Figure 4: Correlation of Brucella suis 1330 and Brucella melitensis 16M was computed by a ratio of signal intensity divided by counts of 9-mer probe occurrences in the respective genomes.......................................................................................582.10.5 Figure 5: Phylogenetic relationships from the 9-mer probe set between organisms hybridized on the UBDA array....................592.10.6 Figure 6: Bivariate Fit of Francisella tularensis whole genome amplified genomic DNA (log2 values) by unamplified genomic DNA (log2 values) ......................................................................612.11 Additional files.................................................................................622.11.1Table S1: Distribution of probe types included in the UBDA design........................................................................................622.11.2Table S2: Sequence of labeling control oligonucleotide probes........................................................................................632.11.3Figures S1A – S1D Regression analysis of signal intensity values generated from spike in of different concentrations of 70-mer oligonucleotides to human genomic DNA versus the un-spiked sample......................................................................632.11.4Figure S2: Analysis of probe hybridization specificity on the UBDA array..............................................................................682.11.5Table S3: Genomes hybridized on the array.............................702.11.6Annotation file for 9-mer probes on the UBDA array..............702.11.7Annotation file for all other probes on the UBDA array..........70Comparison of genome diversity of Brucella spp. field isolates using Universal Bio-signature Detection Array and whole genome sequencing reveals limitations of current diagnostic methods....................................713.1 Abstract..............................................................................................723.2 Introduction........................................................................................733.3 Results................................................................................................763.3.1 PCR assay on the IS711 Element of Brucella.............................773.3.2 Principal Component Analysis of UBDA array probe signal intensity values……....................................................................793.3.3 Comparison of species independent 9-mer probe signal intensity values from the UBDA of known Brucella species and field samples from the Texas Animal Health Commission (TAHC) using phylogenomic analysis......................................................813.3.4 Experimental confirmation of UBDA findings using next generation sequencing methodology...........................................853.3.5 Phylogenomic tree built using amino acid sequence as translated from sequenced genomes of selected field isolates.....................873.4 Discussion..........................................................................................893.5 Materials and Methods.......................................................................923.5.1Bacterial Isolates: Bacteriologic, serology and biochemical procedures...................................................................................923.5.2 Genomic DNA sample preparation.............................................933.5.3 PCR assay on the IS711 Element of Brucella species and sequencing of PCR products.......................................................943.5.4 Species independent array design, preparation and hybridization and array data processing............................................................953.5.5 Principal component analysis of UBDA array probe signal intensity values using singular value decomposition..................963.5.6 Phylogenomic relationship tree based on UBDA signal intensity values...........................................................................................963.5.7 Sequence analysis using Illumina sequencer...............................973.5.8 Phylogenomic analysis using protein sequences of field isolates.........................................................................................973.6 Acknowledgements............................................................................983.7 Attribution..........................................................................................993.8 Bibliography.....................................................................................1003.9 Figures..............................................................................................1083.9.1Locations of PCR primer sequences for B. suis and B. abortus in 5 completed Brucella genomes aligned by Mauve...................1083.9.2Phylogenomic relationships from 9-mer probe set between Brucella field isolates and other known reference genomes.....1093.9.3 Phylogenomic tree from nine recently sequenced Brucella field isolates and thirteen known previously sequenced Brucella genomes.....................................................................................1113.10 Tables.............................................................................................1123.10.1Comparison of common variations between nine field samples to the B. suis1330 genome.........................................................1123.11 Supplementary Tables....................................................................1133.10.1A Supplementary Table 1A: Comparison of Biochemical Typing, Universal Bio-signature Detection: Array, PCR and Genome Sequence Analysis......................................................1133.10.1B Supplementary Table 1B: Principal component analysis of field isolates with B. suis1330 and B. abortus 2308 using 9-mer (262,144) probes........................................................................1153.10.2 Supplementary Table 2: Comparison of similarities among nine Brucella samples and two reference genomes; B. abortus biovar 1 9-941 and B.suis1330.............................................................1183.10.3 Supplementary Table 3: Analysis of unmapped reads using BLAST program against NT database......................................1193.10.4Supplementary Table 4: Analysis of the unmapped reads from other contaminant micro-organisms listed in supplementary table 3…………………………………………………………1203.10.5 Supplementary Table 5: Sequence coverage on a non B. suis1330 region.........................................................................1213.10.6 Supplementary Table 6: Universal Bio-signature Detection Array probe intensities from 9-mer with Brucella field isolates hybridized on the array (log2scale) ...........................................1223.11 Supplementary Figures...................................................................1233.11.1A Supplementary Figure 1A: PCR of genetic element IS711 from Brucella field isolates 1 through 9 with IS711 element B. abortus (a) and B. suis (s) primers….........................................123 3.11.1B Supplementary Figure 1B: PCR of genetic element IS711 from Brucella field isolates 10 through 18 with IS711 element B. abortus (a) and B. suis (s) primers............................................124 3.11.1C Supplementary Figure 1C: PCR of genetic element IS711 from Brucella field isolates 19 through 26 and 29 with IS711 element B. abortus (a) and B. suis (s) primers........................................1253.11.1D Supplementary Figure 1D: PCR of genetic element IS711 from Brucella field isolates 30 through 32 with IS711 element B. abortus (a) and B. suis (s) primers............................................1263.11.1E Supplementary Figure 1E: PCR of genetic element IS711 from Brucella field isolates 33 through 37 and 40 with IS711 element B. abortus (a) and B. suis (s) primers........................................127 3.11.2Supplementary Figure 2: PCR assay of IS711 element primers from Brucella species suis (Bs), abortus (Ba) and melitensis (Bm) with B. suis 1330, B. abortus 2308, B. abortus RB51 and B. melitensis 16M for reference Brucella genomes.......................1283.11.3 Supplementary Figure 3: Phylogenomic relationships from 9- mer probe set between Brucella field isolates and other known reference genomes.....................................................................1294. Development of molecular diagnostics using Universal Bio-signature Detection Array technology in host pathogen forensics........................1314.1. Abstract...........................................................................................1324.2. Background.....................................................................................1344.3. Results.............................................................................................1384.3.1Use of the UBDA array in direct bio-defense application: Detection of Bacillus anthracis Sterne strain contamination in a soil sample.................................................................................1394.3.2 Diagnostic utility in determining genomic signature of a fungal pathogen: Aspergillus fumigatus in BEAS B2B human cell line.............................................................................................1394.3.3Surveillance method for vector borne disease...........................1404.3.3.1 Detection of Dengue Virus in Aedes aegypti mosquitoes..1404.3.3.2 Detection of Leishmania species in Phlebotomus papatasi Sand fly................................................................................1404.4. Discussion.......................................................................................1414.5. Conclusions.....................................................................................1424.6. Methods...........................................................................................1424.6.1 Extraction of genomic DNA from soil......................................142 4.6.2 Sample preparation of genomic DNA from mosquitoes and Dengue viral cDNA................................................................1444.6.3 Microarray procedure and array data processing......................1444.6.4 Regression analysis using curve fit...........................................1444.6.5 Quantification of pathogen in a host background using principal component analysis.................................................................1454.7 Acknowledgements..........................................................................1464.8 Attribution........................................................................................1474.9 Bibliography.....................................................................................1474.10 Figures............................................................................................1524.10.1 Figure 1: Comparison of Phlebotomus and Leishmania species pure bio-signatures..................................................................1524.10.2 Figure 2: Regression analysis of soil sample spiked with Bacillus anthracis Sterne strain..............................................1544.11 Tables.............................................................................................1554.11.1 Table 1: Regression analysis of Soil sample spiked with Bacillus anthracis...................................................................1554.11.2 Table 2: Quantification of probe signal intensity attributed to the pathogen spiked soil sample...................................................1564.11.3 Table 3: Regression analysis of Human genomic DNA spiked with Aspergillus fumigatus.....................................................1574.11.4 Table 4: Quantification of probe signal intensity attributed to the fungal signature in a human host background........................158 4.11.5 Table 5: Quantification of probe signal intensity attributed to Dengue virus bio-signature in the Aedes aegypti mosquito host.........................................................................................1584.11.6 Table 6: Quantification of probe signal intensity bio-signatures attributed to four species of Leishmania in a the Sand fly host Phlebotomus papatasi.............................................................159 5. Outlooks and Perspectives......................................................................160Additional Bibliography..............................................................................164Chapter 11. Introduction1.1 Array based approaches in pathogen forensicsThe ability to identify a bio-terror attack or an accidental release of a research pathogen from a naturally occurring disease event is crucial to the safety and security of this nation, enabling an appropriate and rapid response. Micro-organisms that have been developed for an attack maybe altered, selected or engineered for enhanced survival outside the host with increased virulence. It is critical in an infected animal, environmental or laboratory sample to quickly and accurately identify the precise pathogen. This includes variants from natural or engineered genetic drift and to classify new pathogens in relation to those that are known. Rapid, accurate and sensitive detection of bio-threat agents requires a broad-spectrum assay capable of discriminating between closely related microbial or viral pathogens. In cases where a biological agent release has been identified, forensic analysis demands detailed genetic signature data for accurate strain identification and attribution. Identification of genetic signatures for detection, coupled with identification of pathogenic phenotypes, would provide a robust means of discriminating pathogens from closely related species ADDIN EN.CITE <EndNote><Cite><Author>Pannucci</Author><Year>2004</Year><RecNum>5</RecNum><DisplayText>[1]</DisplayText><record><rec-number>5</rec-number><foreign-keys><key app="EN" db-id="wx90r9pt8rtr20eftvyvz0a4t02v0zsw02wv">5</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Pannucci, J.</author><author>Cai, H.</author><author>Pardington, P. E.</author><author>Williams, E.</author><author>Okinaka, R. T.</author><author>Kuske, C. R.</author><author>Cary, R. B.</author></authors></contributors><auth-address>Bioscience Division, M888, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.</auth-address><titles><title>Virulence signatures: microarray-based approaches to discovery and analysis</title><secondary-title>Biosens Bioelectron</secondary-title></titles><pages>706-18</pages><volume>20</volume><number>4</number><edition>2004/11/04</edition><keywords><keyword>Bacillus anthracis/classification/genetics/*isolation &amp;</keyword><keyword>purification/*pathogenicity</keyword><keyword>Environmental Monitoring/instrumentation/methods</keyword><keyword>Gene Expression Profiling/*methods</keyword><keyword>Oligonucleotide Array Sequence Analysis/instrumentation/*methods</keyword><keyword>Polymorphism, Single Nucleotide/genetics</keyword><keyword>Sequence Analysis, DNA/*methods</keyword><keyword>Virulence Factors/*analysis/*genetics</keyword></keywords><dates><year>2004</year><pub-dates><date>Nov 1</date></pub-dates></dates><isbn>0956-5663 (Print)&#xD;0956-5663 (Linking)</isbn><accession-num>15522585</accession-num><urls><related-urls><url> [pii]&#xD;10.1016/j.bios.2004.04.005</electronic-resource-num><language>eng</language></record></Cite></EndNote>[1].Traditional strategies for detecting pathogens have used the following approaches. The first approach uses universal PCR to amplify one or more universal genes such as 16S ribosomal RNA, 18Sribosomal RNA, 23S ribosomal RNA and screen for pathogen specific polymorphisms ADDIN EN.CITE <EndNote><Cite><Author>Call</Author><Year>2005</Year><RecNum>10</RecNum><DisplayText>[2]</DisplayText><record><rec-number>10</rec-number><foreign-keys><key app="EN" db-id="wx90r9pt8rtr20eftvyvz0a4t02v0zsw02wv">10</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Call, D. R.</author></authors></contributors><auth-address>Department of Veterinary Microbiology and Pathology and Center for Reproductive Biology, Washington State University, Pullman, Washington 99164-7040, USA. drcall@wsu.edu</auth-address><titles><title>Challenges and opportunities for pathogen detection using DNA microarrays</title><secondary-title>Crit Rev Microbiol</secondary-title></titles><pages>91-9</pages><volume>31</volume><number>2</number><edition>2005/07/02</edition><keywords><keyword>Animals</keyword><keyword>Bacteria/genetics/*isolation &amp; purification</keyword><keyword>Bacterial Infections/*diagnosis</keyword><keyword>Humans</keyword><keyword>Infection/*diagnosis</keyword><keyword>Nucleic Acid Hybridization</keyword><keyword>Oligonucleotide Array Sequence Analysis/*methods</keyword><keyword>Polymorphism, Genetic</keyword><keyword>Sensitivity and Specificity</keyword></keywords><dates><year>2005</year></dates><isbn>1040-841X (Print)&#xD;1040-841X (Linking)</isbn><accession-num>15988839</accession-num><urls><related-urls><url>;[2]. The probes on the array are derived from a combination of ribosomal RNA genes from a given set of organisms of high priority. One of the challenges of this approach is the frequent and unexpected amplification of contaminating template DNA, as observed in control reactions ADDIN EN.CITE <EndNote><Cite><Author>Warsen</Author><Year>2004</Year><RecNum>1045</RecNum><DisplayText>[3]</DisplayText><record><rec-number>1045</rec-number><foreign-keys><key app="EN" db-id="wx90r9pt8rtr20eftvyvz0a4t02v0zsw02wv">1045</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Warsen, A. E.</author><author>Krug, M. J.</author><author>LaFrentz, S.</author><author>Stanek, D. R.</author><author>Loge, F. J.</author><author>Call, D. R.</author></authors></contributors><auth-address>Department of Veterinary Microbiology and Pathology, 490 Bustad Hall, Washington State University, Pullman, WA 99164-7040, USA.</auth-address><titles><title>Simultaneous discrimination between 15 fish pathogens by using 16S ribosomal DNA PCR and DNA microarrays</title><secondary-title>Appl Environ Microbiol</secondary-title><alt-title>Applied and environmental microbiology</alt-title></titles><periodical><full-title>Appl Environ Microbiol</full-title></periodical><pages>4216-21</pages><volume>70</volume><number>7</number><edition>2004/07/09</edition><keywords><keyword>Animals</keyword><keyword>Bacteria/*isolation &amp; purification</keyword><keyword>DNA, Bacterial/analysis</keyword><keyword>DNA, Ribosomal/*genetics</keyword><keyword>Fishes/*microbiology</keyword><keyword>Oligonucleotide Array Sequence Analysis/*methods</keyword><keyword>Polymerase Chain Reaction/*methods</keyword><keyword>RNA, Ribosomal, 16S/*genetics</keyword></keywords><dates><year>2004</year><pub-dates><date>Jul</date></pub-dates></dates><isbn>0099-2240 (Print)&#xD;0099-2240 (Linking)</isbn><accession-num>15240304</accession-num><work-type>Research Support, Non-U.S. Gov&apos;t</work-type><urls><related-urls><url>;[3]. Another potential problem that targets 16S ribosomal RNA pathogen specific sequences is unexpected polymorphisms. Hence naturally occurring variants may not be represented on the microarray and failure to detect the variants would represent false negatives ADDIN EN.CITE <EndNote><Cite><Author>Call</Author><Year>2005</Year><RecNum>10</RecNum><DisplayText>[2]</DisplayText><record><rec-number>10</rec-number><foreign-keys><key app="EN" db-id="wx90r9pt8rtr20eftvyvz0a4t02v0zsw02wv">10</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Call, D. R.</author></authors></contributors><auth-address>Department of Veterinary Microbiology and Pathology and Center for Reproductive Biology, Washington State University, Pullman, Washington 99164-7040, USA. drcall@wsu.edu</auth-address><titles><title>Challenges and opportunities for pathogen detection using DNA microarrays</title><secondary-title>Crit Rev Microbiol</secondary-title></titles><pages>91-9</pages><volume>31</volume><number>2</number><edition>2005/07/02</edition><keywords><keyword>Animals</keyword><keyword>Bacteria/genetics/*isolation &amp; purification</keyword><keyword>Bacterial Infections/*diagnosis</keyword><keyword>Humans</keyword><keyword>Infection/*diagnosis</keyword><keyword>Nucleic Acid Hybridization</keyword><keyword>Oligonucleotide Array Sequence Analysis/*methods</keyword><keyword>Polymorphism, Genetic</keyword><keyword>Sensitivity and Specificity</keyword></keywords><dates><year>2005</year></dates><isbn>1040-841X (Print)&#xD;1040-841X (Linking)</isbn><accession-num>15988839</accession-num><urls><related-urls><url>;[2]. The second approach uses detection by amplifying a specific set of genetic markers that are detected on an array that has several probes for genes from a set of organisms. Such tests have been used for food-borne bacteria such as E. coli O157:H7 ADDIN EN.CITE <EndNote><Cite><Author>Call</Author><Year>2001</Year><RecNum>19</RecNum><DisplayText>[4]</DisplayText><record><rec-number>19</rec-number><foreign-keys><key app="EN" db-id="wx90r9pt8rtr20eftvyvz0a4t02v0zsw02wv">19</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Call, D. R.</author><author>Brockman, F. J.</author><author>Chandler, D. P.</author></authors></contributors><auth-address>Environmental Microbiology, Pacific Northwest National Laboratory, Richland, WA 99352, USA. drcall@wsu.edu</auth-address><titles><title>Detecting and genotyping Escherichia coli O157:H7 using multiplexed PCR and nucleic acid microarrays</title><secondary-title>Int J Food Microbiol</secondary-title></titles><pages>71-80</pages><volume>67</volume><number>1-2</number><edition>2001/08/03</edition><keywords><keyword>Animals</keyword><keyword>Chickens/*microbiology</keyword><keyword>Colony Count, Microbial</keyword><keyword>DNA, Bacterial/*analysis</keyword><keyword>Electrophoresis, Agar Gel</keyword><keyword>Escherichia coli O157/*classification/genetics/*isolation &amp; purification</keyword><keyword>*Food Microbiology</keyword><keyword>Gene Amplification</keyword><keyword>Genotype</keyword><keyword>Oligonucleotide Array Sequence Analysis/methods</keyword><keyword>Polymerase Chain Reaction/methods</keyword><keyword>Sensitivity and Specificity</keyword></keywords><dates><year>2001</year><pub-dates><date>Jul 20</date></pub-dates></dates><isbn>0168-1605 (Print)&#xD;0168-1605 (Linking)</isbn><accession-num>11482571</accession-num><urls><related-urls><url>;[4], viruses PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5DaGl6aGlrb3Y8L0F1dGhvcj48WWVhcj4yMDAyPC9ZZWFy

PjxSZWNOdW0+NDk8L1JlY051bT48RGlzcGxheVRleHQ+WzVdPC9EaXNwbGF5VGV4dD48cmVjb3Jk

PjxyZWMtbnVtYmVyPjQ5PC9yZWMtbnVtYmVyPjxmb3JlaWduLWtleXM+PGtleSBhcHA9IkVOIiBk

Yi1pZD0id3g5MHI5cHQ4cnRyMjBlZnR2eXZ6MGE0dDAydjB6c3cwMnd2Ij40OTwva2V5PjwvZm9y

ZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJKb3VybmFsIEFydGljbGUiPjE3PC9yZWYtdHlwZT48

Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+Q2hpemhpa292LCBWLjwvYXV0aG9yPjxhdXRo

b3I+V2FnbmVyLCBNLjwvYXV0aG9yPjxhdXRob3I+SXZzaGluYSwgQS48L2F1dGhvcj48YXV0aG9y

Pkhvc2hpbm8sIFkuPC9hdXRob3I+PGF1dGhvcj5LYXBpa2lhbiwgQS4gWi48L2F1dGhvcj48YXV0

aG9yPkNodW1ha292LCBLLjwvYXV0aG9yPjwvYXV0aG9ycz48L2NvbnRyaWJ1dG9ycz48YXV0aC1h

ZGRyZXNzPkxhYm9yYXRvcnkgb2YgTWV0aG9kIERldmVsb3BtZW50LCBDZW50ZXIgZm9yIEJpb2xv

Z2ljcyBFdmFsdWF0aW9uIGFuZCBSZXNlYXJjaCwgRm9vZCBhbmQgRHJ1ZyBBZG1pbmlzdHJhdGlv

biwgS2Vuc2luZ3RvbiwgTWFyeWxhbmQgMjA4OTUsIFVTQS4gY2hpemhpa292QGNiZXIuZmRhLmdv

djwvYXV0aC1hZGRyZXNzPjx0aXRsZXM+PHRpdGxlPkRldGVjdGlvbiBhbmQgZ2Vub3R5cGluZyBv

ZiBodW1hbiBncm91cCBBIHJvdGF2aXJ1c2VzIGJ5IG9saWdvbnVjbGVvdGlkZSBtaWNyb2FycmF5

IGh5YnJpZGl6YXRpb248L3RpdGxlPjxzZWNvbmRhcnktdGl0bGU+SiBDbGluIE1pY3JvYmlvbDwv

c2Vjb25kYXJ5LXRpdGxlPjwvdGl0bGVzPjxwZXJpb2RpY2FsPjxmdWxsLXRpdGxlPkogQ2xpbiBN

aWNyb2Jpb2w8L2Z1bGwtdGl0bGU+PC9wZXJpb2RpY2FsPjxwYWdlcz4yMzk4LTQwNzwvcGFnZXM+

PHZvbHVtZT40MDwvdm9sdW1lPjxudW1iZXI+NzwvbnVtYmVyPjxlZGl0aW9uPjIwMDIvMDYvMjk8

L2VkaXRpb24+PGtleXdvcmRzPjxrZXl3b3JkPipBbnRpZ2VucywgVmlyYWw8L2tleXdvcmQ+PGtl

eXdvcmQ+QmFzZSBTZXF1ZW5jZTwva2V5d29yZD48a2V5d29yZD5DYXBzaWQvZ2VuZXRpY3M8L2tl

eXdvcmQ+PGtleXdvcmQ+KkNhcHNpZCBQcm90ZWluczwva2V5d29yZD48a2V5d29yZD5ETkEgUHJp

bWVycy9nZW5ldGljczwva2V5d29yZD48a2V5d29yZD5ETkEsIFZpcmFsL2dlbmV0aWNzL2lzb2xh

dGlvbiAmYW1wOyBwdXJpZmljYXRpb248L2tleXdvcmQ+PGtleXdvcmQ+RHJ1ZyBEZXNpZ248L2tl

eXdvcmQ+PGtleXdvcmQ+R2VuZXMsIFZpcmFsPC9rZXl3b3JkPjxrZXl3b3JkPkdlbm90eXBlPC9r

ZXl3b3JkPjxrZXl3b3JkPkh1bWFuczwva2V5d29yZD48a2V5d29yZD5Nb2xlY3VsYXIgUHJvYmUg

VGVjaG5pcXVlczwva2V5d29yZD48a2V5d29yZD5NdXRhdGlvbjwva2V5d29yZD48a2V5d29yZD5P

bGlnb251Y2xlb3RpZGUgQXJyYXkgU2VxdWVuY2UgQW5hbHlzaXMvKm1ldGhvZHM8L2tleXdvcmQ+

PGtleXdvcmQ+T2xpZ29udWNsZW90aWRlIFByb2Jlcy9nZW5ldGljczwva2V5d29yZD48a2V5d29y

ZD5Sb3RhdmlydXMvY2xhc3NpZmljYXRpb24vKmdlbmV0aWNzLyppc29sYXRpb24gJmFtcDsgcHVy

aWZpY2F0aW9uPC9rZXl3b3JkPjxrZXl3b3JkPlNwZWNpZXMgU3BlY2lmaWNpdHk8L2tleXdvcmQ+

PGtleXdvcmQ+Vmlyb2xvZ3kvbWV0aG9kczwva2V5d29yZD48L2tleXdvcmRzPjxkYXRlcz48eWVh

cj4yMDAyPC95ZWFyPjxwdWItZGF0ZXM+PGRhdGU+SnVsPC9kYXRlPjwvcHViLWRhdGVzPjwvZGF0

ZXM+PGlzYm4+MDA5NS0xMTM3IChQcmludCkmI3hEOzAwOTUtMTEzNyAoTGlua2luZyk8L2lzYm4+

PGFjY2Vzc2lvbi1udW0+MTIwODkyNTQ8L2FjY2Vzc2lvbi1udW0+PHVybHM+PHJlbGF0ZWQtdXJs

cz48dXJsPmh0dHA6Ly93d3cubmNiaS5ubG0ubmloLmdvdi9lbnRyZXovcXVlcnkuZmNnaT9jbWQ9

UmV0cmlldmUmYW1wO2RiPVB1Yk1lZCZhbXA7ZG9wdD1DaXRhdGlvbiZhbXA7bGlzdF91aWRzPTEy

MDg5MjU0PC91cmw+PC9yZWxhdGVkLXVybHM+PC91cmxzPjxjdXN0b20yPjEyMDU2NzwvY3VzdG9t

Mj48bGFuZ3VhZ2U+ZW5nPC9sYW5ndWFnZT48L3JlY29yZD48L0NpdGU+PC9FbmROb3RlPgB=

ADDIN EN.CITE PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5DaGl6aGlrb3Y8L0F1dGhvcj48WWVhcj4yMDAyPC9ZZWFy

PjxSZWNOdW0+NDk8L1JlY051bT48RGlzcGxheVRleHQ+WzVdPC9EaXNwbGF5VGV4dD48cmVjb3Jk

PjxyZWMtbnVtYmVyPjQ5PC9yZWMtbnVtYmVyPjxmb3JlaWduLWtleXM+PGtleSBhcHA9IkVOIiBk

Yi1pZD0id3g5MHI5cHQ4cnRyMjBlZnR2eXZ6MGE0dDAydjB6c3cwMnd2Ij40OTwva2V5PjwvZm9y

ZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJKb3VybmFsIEFydGljbGUiPjE3PC9yZWYtdHlwZT48

Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+Q2hpemhpa292LCBWLjwvYXV0aG9yPjxhdXRo

b3I+V2FnbmVyLCBNLjwvYXV0aG9yPjxhdXRob3I+SXZzaGluYSwgQS48L2F1dGhvcj48YXV0aG9y

Pkhvc2hpbm8sIFkuPC9hdXRob3I+PGF1dGhvcj5LYXBpa2lhbiwgQS4gWi48L2F1dGhvcj48YXV0

aG9yPkNodW1ha292LCBLLjwvYXV0aG9yPjwvYXV0aG9ycz48L2NvbnRyaWJ1dG9ycz48YXV0aC1h

ZGRyZXNzPkxhYm9yYXRvcnkgb2YgTWV0aG9kIERldmVsb3BtZW50LCBDZW50ZXIgZm9yIEJpb2xv

Z2ljcyBFdmFsdWF0aW9uIGFuZCBSZXNlYXJjaCwgRm9vZCBhbmQgRHJ1ZyBBZG1pbmlzdHJhdGlv

biwgS2Vuc2luZ3RvbiwgTWFyeWxhbmQgMjA4OTUsIFVTQS4gY2hpemhpa292QGNiZXIuZmRhLmdv

djwvYXV0aC1hZGRyZXNzPjx0aXRsZXM+PHRpdGxlPkRldGVjdGlvbiBhbmQgZ2Vub3R5cGluZyBv

ZiBodW1hbiBncm91cCBBIHJvdGF2aXJ1c2VzIGJ5IG9saWdvbnVjbGVvdGlkZSBtaWNyb2FycmF5

IGh5YnJpZGl6YXRpb248L3RpdGxlPjxzZWNvbmRhcnktdGl0bGU+SiBDbGluIE1pY3JvYmlvbDwv

c2Vjb25kYXJ5LXRpdGxlPjwvdGl0bGVzPjxwZXJpb2RpY2FsPjxmdWxsLXRpdGxlPkogQ2xpbiBN

aWNyb2Jpb2w8L2Z1bGwtdGl0bGU+PC9wZXJpb2RpY2FsPjxwYWdlcz4yMzk4LTQwNzwvcGFnZXM+

PHZvbHVtZT40MDwvdm9sdW1lPjxudW1iZXI+NzwvbnVtYmVyPjxlZGl0aW9uPjIwMDIvMDYvMjk8

L2VkaXRpb24+PGtleXdvcmRzPjxrZXl3b3JkPipBbnRpZ2VucywgVmlyYWw8L2tleXdvcmQ+PGtl

eXdvcmQ+QmFzZSBTZXF1ZW5jZTwva2V5d29yZD48a2V5d29yZD5DYXBzaWQvZ2VuZXRpY3M8L2tl

eXdvcmQ+PGtleXdvcmQ+KkNhcHNpZCBQcm90ZWluczwva2V5d29yZD48a2V5d29yZD5ETkEgUHJp

bWVycy9nZW5ldGljczwva2V5d29yZD48a2V5d29yZD5ETkEsIFZpcmFsL2dlbmV0aWNzL2lzb2xh

dGlvbiAmYW1wOyBwdXJpZmljYXRpb248L2tleXdvcmQ+PGtleXdvcmQ+RHJ1ZyBEZXNpZ248L2tl

eXdvcmQ+PGtleXdvcmQ+R2VuZXMsIFZpcmFsPC9rZXl3b3JkPjxrZXl3b3JkPkdlbm90eXBlPC9r

ZXl3b3JkPjxrZXl3b3JkPkh1bWFuczwva2V5d29yZD48a2V5d29yZD5Nb2xlY3VsYXIgUHJvYmUg

VGVjaG5pcXVlczwva2V5d29yZD48a2V5d29yZD5NdXRhdGlvbjwva2V5d29yZD48a2V5d29yZD5P

bGlnb251Y2xlb3RpZGUgQXJyYXkgU2VxdWVuY2UgQW5hbHlzaXMvKm1ldGhvZHM8L2tleXdvcmQ+

PGtleXdvcmQ+T2xpZ29udWNsZW90aWRlIFByb2Jlcy9nZW5ldGljczwva2V5d29yZD48a2V5d29y

ZD5Sb3RhdmlydXMvY2xhc3NpZmljYXRpb24vKmdlbmV0aWNzLyppc29sYXRpb24gJmFtcDsgcHVy

aWZpY2F0aW9uPC9rZXl3b3JkPjxrZXl3b3JkPlNwZWNpZXMgU3BlY2lmaWNpdHk8L2tleXdvcmQ+

PGtleXdvcmQ+Vmlyb2xvZ3kvbWV0aG9kczwva2V5d29yZD48L2tleXdvcmRzPjxkYXRlcz48eWVh

cj4yMDAyPC95ZWFyPjxwdWItZGF0ZXM+PGRhdGU+SnVsPC9kYXRlPjwvcHViLWRhdGVzPjwvZGF0

ZXM+PGlzYm4+MDA5NS0xMTM3IChQcmludCkmI3hEOzAwOTUtMTEzNyAoTGlua2luZyk8L2lzYm4+

PGFjY2Vzc2lvbi1udW0+MTIwODkyNTQ8L2FjY2Vzc2lvbi1udW0+PHVybHM+PHJlbGF0ZWQtdXJs

cz48dXJsPmh0dHA6Ly93d3cubmNiaS5ubG0ubmloLmdvdi9lbnRyZXovcXVlcnkuZmNnaT9jbWQ9

UmV0cmlldmUmYW1wO2RiPVB1Yk1lZCZhbXA7ZG9wdD1DaXRhdGlvbiZhbXA7bGlzdF91aWRzPTEy

MDg5MjU0PC91cmw+PC9yZWxhdGVkLXVybHM+PC91cmxzPjxjdXN0b20yPjEyMDU2NzwvY3VzdG9t

Mj48bGFuZ3VhZ2U+ZW5nPC9sYW5ndWFnZT48L3JlY29yZD48L0NpdGU+PC9FbmROb3RlPgB=

ADDIN EN.CITE.DATA [5] and mixtures of pathogens PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5XaWxzb248L0F1dGhvcj48WWVhcj4yMDAyPC9ZZWFyPjxS

ZWNOdW0+NTQ8L1JlY051bT48RGlzcGxheVRleHQ+WzZdPC9EaXNwbGF5VGV4dD48cmVjb3JkPjxy

ZWMtbnVtYmVyPjU0PC9yZWMtbnVtYmVyPjxmb3JlaWduLWtleXM+PGtleSBhcHA9IkVOIiBkYi1p

ZD0id3g5MHI5cHQ4cnRyMjBlZnR2eXZ6MGE0dDAydjB6c3cwMnd2Ij41NDwva2V5PjwvZm9yZWln

bi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJKb3VybmFsIEFydGljbGUiPjE3PC9yZWYtdHlwZT48Y29u

dHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+V2lsc29uLCBXLiBKLjwvYXV0aG9yPjxhdXRob3I+

U3Ryb3V0LCBDLiBMLjwvYXV0aG9yPjxhdXRob3I+RGVTYW50aXMsIFQuIFouPC9hdXRob3I+PGF1

dGhvcj5TdGlsd2VsbCwgSi4gTC48L2F1dGhvcj48YXV0aG9yPkNhcnJhbm8sIEEuIFYuPC9hdXRo

b3I+PGF1dGhvcj5BbmRlcnNlbiwgRy4gTC48L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRv

cnM+PGF1dGgtYWRkcmVzcz5CaW9sb2d5IGFuZCBCaW90ZWNobm9sb2d5IFJlc2VhcmNoIFByb2dy

YW0sIExhd3JlbmNlIExpdmVybW9yZSBOYXRpb25hbCBMYWJvcmF0b3J5LCBMaXZlcm1vcmUsIENB

IDk0NTUxLCBVU0EuPC9hdXRoLWFkZHJlc3M+PHRpdGxlcz48dGl0bGU+U2VxdWVuY2Utc3BlY2lm

aWMgaWRlbnRpZmljYXRpb24gb2YgMTggcGF0aG9nZW5pYyBtaWNyb29yZ2FuaXNtcyB1c2luZyBt

aWNyb2FycmF5IHRlY2hub2xvZ3k8L3RpdGxlPjxzZWNvbmRhcnktdGl0bGU+TW9sIENlbGwgUHJv

YmVzPC9zZWNvbmRhcnktdGl0bGU+PC90aXRsZXM+PHBhZ2VzPjExOS0yNzwvcGFnZXM+PHZvbHVt

ZT4xNjwvdm9sdW1lPjxudW1iZXI+MjwvbnVtYmVyPjxlZGl0aW9uPjIwMDIvMDUvMjk8L2VkaXRp

b24+PGtleXdvcmRzPjxrZXl3b3JkPkFuaW1hbHM8L2tleXdvcmQ+PGtleXdvcmQ+QmFjdGVyaWEv

KmNsYXNzaWZpY2F0aW9uL2dlbmV0aWNzL3BhdGhvZ2VuaWNpdHk8L2tleXdvcmQ+PGtleXdvcmQ+

QmlvdGVycm9yaXNtPC9rZXl3b3JkPjxrZXl3b3JkPkROQSwgQmFjdGVyaWFsL2FuYWx5c2lzPC9r

ZXl3b3JkPjxrZXl3b3JkPkROQSwgRnVuZ2FsL2FuYWx5c2lzPC9rZXl3b3JkPjxrZXl3b3JkPkRO

QSwgUHJvdG96b2FuL2FuYWx5c2lzPC9rZXl3b3JkPjxrZXl3b3JkPkROQSwgVmlyYWwvYW5hbHlz

aXM8L2tleXdvcmQ+PGtleXdvcmQ+RGlub2ZsYWdlbGxpZGEvKmNsYXNzaWZpY2F0aW9uL2dlbmV0

aWNzL3BhdGhvZ2VuaWNpdHk8L2tleXdvcmQ+PGtleXdvcmQ+RnVzYXJpdW0vKmNsYXNzaWZpY2F0

aW9uL2dlbmV0aWNzL3BhdGhvZ2VuaWNpdHk8L2tleXdvcmQ+PGtleXdvcmQ+SHVtYW5zPC9rZXl3

b3JkPjxrZXl3b3JkPk9saWdvbnVjbGVvdGlkZSBBcnJheSBTZXF1ZW5jZSBBbmFseXNpcy8qbWV0

aG9kczwva2V5d29yZD48a2V5d29yZD5PbGlnb251Y2xlb3RpZGUgUHJvYmVzPC9rZXl3b3JkPjxr

ZXl3b3JkPlJOQSBWaXJ1c2VzLypjbGFzc2lmaWNhdGlvbi9nZW5ldGljcy9wYXRob2dlbmljaXR5

PC9rZXl3b3JkPjxrZXl3b3JkPlNlbnNpdGl2aXR5IGFuZCBTcGVjaWZpY2l0eTwva2V5d29yZD48

a2V5d29yZD5WaXJ1bGVuY2U8L2tleXdvcmQ+PC9rZXl3b3Jkcz48ZGF0ZXM+PHllYXI+MjAwMjwv

eWVhcj48cHViLWRhdGVzPjxkYXRlPkFwcjwvZGF0ZT48L3B1Yi1kYXRlcz48L2RhdGVzPjxpc2Ju

PjA4OTAtODUwOCAoUHJpbnQpJiN4RDswODkwLTg1MDggKExpbmtpbmcpPC9pc2JuPjxhY2Nlc3Np

b24tbnVtPjEyMDMwNzYyPC9hY2Nlc3Npb24tbnVtPjx1cmxzPjxyZWxhdGVkLXVybHM+PHVybD5o

dHRwOi8vd3d3Lm5jYmkubmxtLm5paC5nb3YvZW50cmV6L3F1ZXJ5LmZjZ2k/Y21kPVJldHJpZXZl

JmFtcDtkYj1QdWJNZWQmYW1wO2RvcHQ9Q2l0YXRpb24mYW1wO2xpc3RfdWlkcz0xMjAzMDc2Mjwv

dXJsPjwvcmVsYXRlZC11cmxzPjwvdXJscz48ZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+MTAuMTAw

Ni9tY3ByLjIwMDEuMDM5NyYjeEQ7UzA4OTA4NTA4MDE5MDM5NzQgW3BpaV08L2VsZWN0cm9uaWMt

cmVzb3VyY2UtbnVtPjxsYW5ndWFnZT5lbmc8L2xhbmd1YWdlPjwvcmVjb3JkPjwvQ2l0ZT48L0Vu

ZE5vdGU+AG==

ADDIN EN.CITE PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5XaWxzb248L0F1dGhvcj48WWVhcj4yMDAyPC9ZZWFyPjxS

ZWNOdW0+NTQ8L1JlY051bT48RGlzcGxheVRleHQ+WzZdPC9EaXNwbGF5VGV4dD48cmVjb3JkPjxy

ZWMtbnVtYmVyPjU0PC9yZWMtbnVtYmVyPjxmb3JlaWduLWtleXM+PGtleSBhcHA9IkVOIiBkYi1p

ZD0id3g5MHI5cHQ4cnRyMjBlZnR2eXZ6MGE0dDAydjB6c3cwMnd2Ij41NDwva2V5PjwvZm9yZWln

bi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJKb3VybmFsIEFydGljbGUiPjE3PC9yZWYtdHlwZT48Y29u

dHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+V2lsc29uLCBXLiBKLjwvYXV0aG9yPjxhdXRob3I+

U3Ryb3V0LCBDLiBMLjwvYXV0aG9yPjxhdXRob3I+RGVTYW50aXMsIFQuIFouPC9hdXRob3I+PGF1

dGhvcj5TdGlsd2VsbCwgSi4gTC48L2F1dGhvcj48YXV0aG9yPkNhcnJhbm8sIEEuIFYuPC9hdXRo

b3I+PGF1dGhvcj5BbmRlcnNlbiwgRy4gTC48L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRv

cnM+PGF1dGgtYWRkcmVzcz5CaW9sb2d5IGFuZCBCaW90ZWNobm9sb2d5IFJlc2VhcmNoIFByb2dy

YW0sIExhd3JlbmNlIExpdmVybW9yZSBOYXRpb25hbCBMYWJvcmF0b3J5LCBMaXZlcm1vcmUsIENB

IDk0NTUxLCBVU0EuPC9hdXRoLWFkZHJlc3M+PHRpdGxlcz48dGl0bGU+U2VxdWVuY2Utc3BlY2lm

aWMgaWRlbnRpZmljYXRpb24gb2YgMTggcGF0aG9nZW5pYyBtaWNyb29yZ2FuaXNtcyB1c2luZyBt

aWNyb2FycmF5IHRlY2hub2xvZ3k8L3RpdGxlPjxzZWNvbmRhcnktdGl0bGU+TW9sIENlbGwgUHJv

YmVzPC9zZWNvbmRhcnktdGl0bGU+PC90aXRsZXM+PHBhZ2VzPjExOS0yNzwvcGFnZXM+PHZvbHVt

ZT4xNjwvdm9sdW1lPjxudW1iZXI+MjwvbnVtYmVyPjxlZGl0aW9uPjIwMDIvMDUvMjk8L2VkaXRp

b24+PGtleXdvcmRzPjxrZXl3b3JkPkFuaW1hbHM8L2tleXdvcmQ+PGtleXdvcmQ+QmFjdGVyaWEv

KmNsYXNzaWZpY2F0aW9uL2dlbmV0aWNzL3BhdGhvZ2VuaWNpdHk8L2tleXdvcmQ+PGtleXdvcmQ+

QmlvdGVycm9yaXNtPC9rZXl3b3JkPjxrZXl3b3JkPkROQSwgQmFjdGVyaWFsL2FuYWx5c2lzPC9r

ZXl3b3JkPjxrZXl3b3JkPkROQSwgRnVuZ2FsL2FuYWx5c2lzPC9rZXl3b3JkPjxrZXl3b3JkPkRO

QSwgUHJvdG96b2FuL2FuYWx5c2lzPC9rZXl3b3JkPjxrZXl3b3JkPkROQSwgVmlyYWwvYW5hbHlz

aXM8L2tleXdvcmQ+PGtleXdvcmQ+RGlub2ZsYWdlbGxpZGEvKmNsYXNzaWZpY2F0aW9uL2dlbmV0

aWNzL3BhdGhvZ2VuaWNpdHk8L2tleXdvcmQ+PGtleXdvcmQ+RnVzYXJpdW0vKmNsYXNzaWZpY2F0

aW9uL2dlbmV0aWNzL3BhdGhvZ2VuaWNpdHk8L2tleXdvcmQ+PGtleXdvcmQ+SHVtYW5zPC9rZXl3

b3JkPjxrZXl3b3JkPk9saWdvbnVjbGVvdGlkZSBBcnJheSBTZXF1ZW5jZSBBbmFseXNpcy8qbWV0

aG9kczwva2V5d29yZD48a2V5d29yZD5PbGlnb251Y2xlb3RpZGUgUHJvYmVzPC9rZXl3b3JkPjxr

ZXl3b3JkPlJOQSBWaXJ1c2VzLypjbGFzc2lmaWNhdGlvbi9nZW5ldGljcy9wYXRob2dlbmljaXR5

PC9rZXl3b3JkPjxrZXl3b3JkPlNlbnNpdGl2aXR5IGFuZCBTcGVjaWZpY2l0eTwva2V5d29yZD48

a2V5d29yZD5WaXJ1bGVuY2U8L2tleXdvcmQ+PC9rZXl3b3Jkcz48ZGF0ZXM+PHllYXI+MjAwMjwv

eWVhcj48cHViLWRhdGVzPjxkYXRlPkFwcjwvZGF0ZT48L3B1Yi1kYXRlcz48L2RhdGVzPjxpc2Ju

PjA4OTAtODUwOCAoUHJpbnQpJiN4RDswODkwLTg1MDggKExpbmtpbmcpPC9pc2JuPjxhY2Nlc3Np

b24tbnVtPjEyMDMwNzYyPC9hY2Nlc3Npb24tbnVtPjx1cmxzPjxyZWxhdGVkLXVybHM+PHVybD5o

dHRwOi8vd3d3Lm5jYmkubmxtLm5paC5nb3YvZW50cmV6L3F1ZXJ5LmZjZ2k/Y21kPVJldHJpZXZl

JmFtcDtkYj1QdWJNZWQmYW1wO2RvcHQ9Q2l0YXRpb24mYW1wO2xpc3RfdWlkcz0xMjAzMDc2Mjwv

dXJsPjwvcmVsYXRlZC11cmxzPjwvdXJscz48ZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+MTAuMTAw

Ni9tY3ByLjIwMDEuMDM5NyYjeEQ7UzA4OTA4NTA4MDE5MDM5NzQgW3BpaV08L2VsZWN0cm9uaWMt

cmVzb3VyY2UtbnVtPjxsYW5ndWFnZT5lbmc8L2xhbmd1YWdlPjwvcmVjb3JkPjwvQ2l0ZT48L0Vu

ZE5vdGU+AG==

ADDIN EN.CITE.DATA [6]. The drawback of using this approach with multiple PCR primers sets is the generation of spurious products ADDIN EN.CITE <EndNote><Cite><Author>Call</Author><Year>2005</Year><RecNum>10</RecNum><DisplayText>[2]</DisplayText><record><rec-number>10</rec-number><foreign-keys><key app="EN" db-id="wx90r9pt8rtr20eftvyvz0a4t02v0zsw02wv">10</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Call, D. R.</author></authors></contributors><auth-address>Department of Veterinary Microbiology and Pathology and Center for Reproductive Biology, Washington State University, Pullman, Washington 99164-7040, USA. drcall@wsu.edu</auth-address><titles><title>Challenges and opportunities for pathogen detection using DNA microarrays</title><secondary-title>Crit Rev Microbiol</secondary-title></titles><pages>91-9</pages><volume>31</volume><number>2</number><edition>2005/07/02</edition><keywords><keyword>Animals</keyword><keyword>Bacteria/genetics/*isolation &amp; purification</keyword><keyword>Bacterial Infections/*diagnosis</keyword><keyword>Humans</keyword><keyword>Infection/*diagnosis</keyword><keyword>Nucleic Acid Hybridization</keyword><keyword>Oligonucleotide Array Sequence Analysis/*methods</keyword><keyword>Polymorphism, Genetic</keyword><keyword>Sensitivity and Specificity</keyword></keywords><dates><year>2005</year></dates><isbn>1040-841X (Print)&#xD;1040-841X (Linking)</isbn><accession-num>15988839</accession-num><urls><related-urls><url>;[2]. The third strategy is the use of 70-mer oligonucleotide derived from pathogen specific genes which are spotted on the array. Strategies for viral detection have used a microarray composed of 1600 unique viral oligonucleotides (70-mers) derived from 140 distinct viral genomesPEVuZE5vdGU+PENpdGU+PEF1dGhvcj5XYW5nPC9BdXRob3I+PFllYXI+MjAwMjwvWWVhcj48UmVj

TnVtPjUxPC9SZWNOdW0+PERpc3BsYXlUZXh0Pls3XTwvRGlzcGxheVRleHQ+PHJlY29yZD48cmVj

LW51bWJlcj41MTwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9

Ind4OTByOXB0OHJ0cjIwZWZ0dnl2ejBhNHQwMnYwenN3MDJ3diI+NTE8L2tleT48L2ZvcmVpZ24t

a2V5cz48cmVmLXR5cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwvcmVmLXR5cGU+PGNvbnRy

aWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPldhbmcsIEQuPC9hdXRob3I+PGF1dGhvcj5Db3Njb3ks

IEwuPC9hdXRob3I+PGF1dGhvcj5aeWxiZXJiZXJnLCBNLjwvYXV0aG9yPjxhdXRob3I+QXZpbGEs

IFAuIEMuPC9hdXRob3I+PGF1dGhvcj5Cb3VzaGV5LCBILiBBLjwvYXV0aG9yPjxhdXRob3I+R2Fu

ZW0sIEQuPC9hdXRob3I+PGF1dGhvcj5EZVJpc2ksIEouIEwuPC9hdXRob3I+PC9hdXRob3JzPjwv

Y29udHJpYnV0b3JzPjxhdXRoLWFkZHJlc3M+RGVwYXJ0bWVudCBvZiBCaW9jaGVtaXN0cnkgYW5k

IEJpb3BoeXNpY3MsIFVuaXZlcnNpdHkgb2YgQ2FsaWZvcm5pYSwgU2FuIEZyYW5jaXNjbyA5NDE0

MywgVVNBLjwvYXV0aC1hZGRyZXNzPjx0aXRsZXM+PHRpdGxlPk1pY3JvYXJyYXktYmFzZWQgZGV0

ZWN0aW9uIGFuZCBnZW5vdHlwaW5nIG9mIHZpcmFsIHBhdGhvZ2VuczwvdGl0bGU+PHNlY29uZGFy

eS10aXRsZT5Qcm9jIE5hdGwgQWNhZCBTY2kgVSBTIEE8L3NlY29uZGFyeS10aXRsZT48L3RpdGxl

cz48cGVyaW9kaWNhbD48ZnVsbC10aXRsZT5Qcm9jIE5hdGwgQWNhZCBTY2kgVSBTIEE8L2Z1bGwt

dGl0bGU+PC9wZXJpb2RpY2FsPjxwYWdlcz4xNTY4Ny05MjwvcGFnZXM+PHZvbHVtZT45OTwvdm9s

dW1lPjxudW1iZXI+MjQ8L251bWJlcj48ZWRpdGlvbj4yMDAyLzExLzE0PC9lZGl0aW9uPjxrZXl3

b3Jkcz48a2V5d29yZD5ETkEgVmlydXNlcy9jbGFzc2lmaWNhdGlvbi9nZW5ldGljcy9pc29sYXRp

b24gJmFtcDsgcHVyaWZpY2F0aW9uPC9rZXl3b3JkPjxrZXl3b3JkPipHZW5vbWUsIFZpcmFsPC9r

ZXl3b3JkPjxrZXl3b3JkPkdlbm90eXBlPC9rZXl3b3JkPjxrZXl3b3JkPkhlbGEgQ2VsbHMvdmly

b2xvZ3k8L2tleXdvcmQ+PGtleXdvcmQ+SGVycGVzdmlydXMgOCwgSHVtYW4vZ2VuZXRpY3MvaXNv

bGF0aW9uICZhbXA7IHB1cmlmaWNhdGlvbjwva2V5d29yZD48a2V5d29yZD5IdW1hbnM8L2tleXdv

cmQ+PGtleXdvcmQ+SXJyaWdhdGlvbjwva2V5d29yZD48a2V5d29yZD5Nb2xlY3VsYXIgV2VpZ2h0

PC9rZXl3b3JkPjxrZXl3b3JkPk5hc2FsIENhdml0eS92aXJvbG9neTwva2V5d29yZD48a2V5d29y

ZD5PbGlnb2Rlb3h5cmlib251Y2xlb3RpZGVzPC9rZXl3b3JkPjxrZXl3b3JkPipPbGlnb251Y2xl

b3RpZGUgQXJyYXkgU2VxdWVuY2UgQW5hbHlzaXM8L2tleXdvcmQ+PGtleXdvcmQ+UG9seW1lcmFz

ZSBDaGFpbiBSZWFjdGlvbjwva2V5d29yZD48a2V5d29yZD5STkEgVmlydXNlcy9jbGFzc2lmaWNh

dGlvbi9nZW5ldGljcy9pc29sYXRpb24gJmFtcDsgcHVyaWZpY2F0aW9uPC9rZXl3b3JkPjxrZXl3

b3JkPlJlc3BpcmF0b3J5IFN5bmN5dGlhbCBWaXJ1c2VzL2dlbmV0aWNzL2lzb2xhdGlvbiAmYW1w

OyBwdXJpZmljYXRpb248L2tleXdvcmQ+PGtleXdvcmQ+Umhpbm92aXJ1cy9jbGFzc2lmaWNhdGlv

bi9nZW5ldGljcy9pc29sYXRpb24gJmFtcDsgcHVyaWZpY2F0aW9uPC9rZXl3b3JkPjxrZXl3b3Jk

PlZpcm9sb2d5L2luc3RydW1lbnRhdGlvbi8qbWV0aG9kczwva2V5d29yZD48a2V5d29yZD5WaXJ1

c2VzLypnZW5ldGljcy9pc29sYXRpb24gJmFtcDsgcHVyaWZpY2F0aW9uPC9rZXl3b3JkPjwva2V5

d29yZHM+PGRhdGVzPjx5ZWFyPjIwMDI8L3llYXI+PHB1Yi1kYXRlcz48ZGF0ZT5Ob3YgMjY8L2Rh

dGU+PC9wdWItZGF0ZXM+PC9kYXRlcz48aXNibj4wMDI3LTg0MjQgKFByaW50KSYjeEQ7MDAyNy04

NDI0IChMaW5raW5nKTwvaXNibj48YWNjZXNzaW9uLW51bT4xMjQyOTg1MjwvYWNjZXNzaW9uLW51

bT48dXJscz48cmVsYXRlZC11cmxzPjx1cmw+aHR0cDovL3d3dy5uY2JpLm5sbS5uaWguZ292L2Vu

dHJlei9xdWVyeS5mY2dpP2NtZD1SZXRyaWV2ZSZhbXA7ZGI9UHViTWVkJmFtcDtkb3B0PUNpdGF0

aW9uJmFtcDtsaXN0X3VpZHM9MTI0Mjk4NTI8L3VybD48L3JlbGF0ZWQtdXJscz48L3VybHM+PGN1

c3RvbTI+MTM3Nzc3PC9jdXN0b20yPjxlbGVjdHJvbmljLXJlc291cmNlLW51bT4xMC4xMDczL3Bu

YXMuMjQyNTc5Njk5JiN4RDsyNDI1Nzk2OTkgW3BpaV08L2VsZWN0cm9uaWMtcmVzb3VyY2UtbnVt

PjxsYW5ndWFnZT5lbmc8L2xhbmd1YWdlPjwvcmVjb3JkPjwvQ2l0ZT48L0VuZE5vdGU+

ADDIN EN.CITE PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5XYW5nPC9BdXRob3I+PFllYXI+MjAwMjwvWWVhcj48UmVj

TnVtPjUxPC9SZWNOdW0+PERpc3BsYXlUZXh0Pls3XTwvRGlzcGxheVRleHQ+PHJlY29yZD48cmVj

LW51bWJlcj41MTwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9

Ind4OTByOXB0OHJ0cjIwZWZ0dnl2ejBhNHQwMnYwenN3MDJ3diI+NTE8L2tleT48L2ZvcmVpZ24t

a2V5cz48cmVmLXR5cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwvcmVmLXR5cGU+PGNvbnRy

aWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPldhbmcsIEQuPC9hdXRob3I+PGF1dGhvcj5Db3Njb3ks

IEwuPC9hdXRob3I+PGF1dGhvcj5aeWxiZXJiZXJnLCBNLjwvYXV0aG9yPjxhdXRob3I+QXZpbGEs

IFAuIEMuPC9hdXRob3I+PGF1dGhvcj5Cb3VzaGV5LCBILiBBLjwvYXV0aG9yPjxhdXRob3I+R2Fu

ZW0sIEQuPC9hdXRob3I+PGF1dGhvcj5EZVJpc2ksIEouIEwuPC9hdXRob3I+PC9hdXRob3JzPjwv

Y29udHJpYnV0b3JzPjxhdXRoLWFkZHJlc3M+RGVwYXJ0bWVudCBvZiBCaW9jaGVtaXN0cnkgYW5k

IEJpb3BoeXNpY3MsIFVuaXZlcnNpdHkgb2YgQ2FsaWZvcm5pYSwgU2FuIEZyYW5jaXNjbyA5NDE0

MywgVVNBLjwvYXV0aC1hZGRyZXNzPjx0aXRsZXM+PHRpdGxlPk1pY3JvYXJyYXktYmFzZWQgZGV0

ZWN0aW9uIGFuZCBnZW5vdHlwaW5nIG9mIHZpcmFsIHBhdGhvZ2VuczwvdGl0bGU+PHNlY29uZGFy

eS10aXRsZT5Qcm9jIE5hdGwgQWNhZCBTY2kgVSBTIEE8L3NlY29uZGFyeS10aXRsZT48L3RpdGxl

cz48cGVyaW9kaWNhbD48ZnVsbC10aXRsZT5Qcm9jIE5hdGwgQWNhZCBTY2kgVSBTIEE8L2Z1bGwt

dGl0bGU+PC9wZXJpb2RpY2FsPjxwYWdlcz4xNTY4Ny05MjwvcGFnZXM+PHZvbHVtZT45OTwvdm9s

dW1lPjxudW1iZXI+MjQ8L251bWJlcj48ZWRpdGlvbj4yMDAyLzExLzE0PC9lZGl0aW9uPjxrZXl3

b3Jkcz48a2V5d29yZD5ETkEgVmlydXNlcy9jbGFzc2lmaWNhdGlvbi9nZW5ldGljcy9pc29sYXRp

b24gJmFtcDsgcHVyaWZpY2F0aW9uPC9rZXl3b3JkPjxrZXl3b3JkPipHZW5vbWUsIFZpcmFsPC9r

ZXl3b3JkPjxrZXl3b3JkPkdlbm90eXBlPC9rZXl3b3JkPjxrZXl3b3JkPkhlbGEgQ2VsbHMvdmly

b2xvZ3k8L2tleXdvcmQ+PGtleXdvcmQ+SGVycGVzdmlydXMgOCwgSHVtYW4vZ2VuZXRpY3MvaXNv

bGF0aW9uICZhbXA7IHB1cmlmaWNhdGlvbjwva2V5d29yZD48a2V5d29yZD5IdW1hbnM8L2tleXdv

cmQ+PGtleXdvcmQ+SXJyaWdhdGlvbjwva2V5d29yZD48a2V5d29yZD5Nb2xlY3VsYXIgV2VpZ2h0

PC9rZXl3b3JkPjxrZXl3b3JkPk5hc2FsIENhdml0eS92aXJvbG9neTwva2V5d29yZD48a2V5d29y

ZD5PbGlnb2Rlb3h5cmlib251Y2xlb3RpZGVzPC9rZXl3b3JkPjxrZXl3b3JkPipPbGlnb251Y2xl

b3RpZGUgQXJyYXkgU2VxdWVuY2UgQW5hbHlzaXM8L2tleXdvcmQ+PGtleXdvcmQ+UG9seW1lcmFz

ZSBDaGFpbiBSZWFjdGlvbjwva2V5d29yZD48a2V5d29yZD5STkEgVmlydXNlcy9jbGFzc2lmaWNh

dGlvbi9nZW5ldGljcy9pc29sYXRpb24gJmFtcDsgcHVyaWZpY2F0aW9uPC9rZXl3b3JkPjxrZXl3

b3JkPlJlc3BpcmF0b3J5IFN5bmN5dGlhbCBWaXJ1c2VzL2dlbmV0aWNzL2lzb2xhdGlvbiAmYW1w

OyBwdXJpZmljYXRpb248L2tleXdvcmQ+PGtleXdvcmQ+Umhpbm92aXJ1cy9jbGFzc2lmaWNhdGlv

bi9nZW5ldGljcy9pc29sYXRpb24gJmFtcDsgcHVyaWZpY2F0aW9uPC9rZXl3b3JkPjxrZXl3b3Jk

PlZpcm9sb2d5L2luc3RydW1lbnRhdGlvbi8qbWV0aG9kczwva2V5d29yZD48a2V5d29yZD5WaXJ1

c2VzLypnZW5ldGljcy9pc29sYXRpb24gJmFtcDsgcHVyaWZpY2F0aW9uPC9rZXl3b3JkPjwva2V5

d29yZHM+PGRhdGVzPjx5ZWFyPjIwMDI8L3llYXI+PHB1Yi1kYXRlcz48ZGF0ZT5Ob3YgMjY8L2Rh

dGU+PC9wdWItZGF0ZXM+PC9kYXRlcz48aXNibj4wMDI3LTg0MjQgKFByaW50KSYjeEQ7MDAyNy04

NDI0IChMaW5raW5nKTwvaXNibj48YWNjZXNzaW9uLW51bT4xMjQyOTg1MjwvYWNjZXNzaW9uLW51

bT48dXJscz48cmVsYXRlZC11cmxzPjx1cmw+aHR0cDovL3d3dy5uY2JpLm5sbS5uaWguZ292L2Vu

dHJlei9xdWVyeS5mY2dpP2NtZD1SZXRyaWV2ZSZhbXA7ZGI9UHViTWVkJmFtcDtkb3B0PUNpdGF0

aW9uJmFtcDtsaXN0X3VpZHM9MTI0Mjk4NTI8L3VybD48L3JlbGF0ZWQtdXJscz48L3VybHM+PGN1

c3RvbTI+MTM3Nzc3PC9jdXN0b20yPjxlbGVjdHJvbmljLXJlc291cmNlLW51bT4xMC4xMDczL3Bu

YXMuMjQyNTc5Njk5JiN4RDsyNDI1Nzk2OTkgW3BpaV08L2VsZWN0cm9uaWMtcmVzb3VyY2UtbnVt

PjxsYW5ndWFnZT5lbmc8L2xhbmd1YWdlPjwvcmVjb3JkPjwvQ2l0ZT48L0VuZE5vdGU+

ADDIN EN.CITE.DATA [7]. The drawback of this strategy is that only the group of pathogen specific genes will be queried. Information will not be obtained if the strain has undergone a genetic drift or has been engineered differently. Detection and identification of bio-threat agents and study of host-pathogen interaction requires a high-resolution detection system capable of discerning closely related species. Given the enormous spectrum of genetic possibilities, only a highly parallel field deployable, robust technology which is universal in nature has near-term potential to address these needs. This research addresses the development of an array-based platform and provides a robust pipeline for the discovery of unique signature patterns for pathogens and their host.1.2 Universal Bio-signature Detection Array (UBDA): A species independent pathogen forensics platform The initial vision for a universal DNA microarray was a matrix of oligonucleotides containing features with unique n-mer probes ADDIN EN.CITE <EndNote><Cite><Author>Pease</Author><Year>1994</Year><RecNum>3</RecNum><DisplayText>[8]</DisplayText><record><rec-number>3</rec-number><foreign-keys><key app="EN" db-id="wx90r9pt8rtr20eftvyvz0a4t02v0zsw02wv">3</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Pease, A. C.</author><author>Solas, D.</author><author>Sullivan, E. J.</author><author>Cronin, M. T.</author><author>Holmes, C. P.</author><author>Fodor, S. P.</author></authors></contributors><auth-address>Affymetrix, Santa Clara, CA 95051.</auth-address><titles><title>Light-generated oligonucleotide arrays for rapid DNA sequence analysis</title><secondary-title>Proc Natl Acad Sci U S A</secondary-title></titles><periodical><full-title>Proc Natl Acad Sci U S A</full-title></periodical><pages>5022-6</pages><volume>91</volume><number>11</number><edition>1994/05/24</edition><keywords><keyword>Base Sequence</keyword><keyword>Humans</keyword><keyword>*Light</keyword><keyword>Microscopy, Fluorescence</keyword><keyword>Molecular Sequence Data</keyword><keyword>Molecular Structure</keyword><keyword>Nucleic Acid Hybridization</keyword><keyword>Oligodeoxyribonucleotides/radiation effects</keyword><keyword>Oligonucleotide Probes</keyword><keyword>Sequence Analysis, DNA/*methods</keyword></keywords><dates><year>1994</year><pub-dates><date>May 24</date></pub-dates></dates><isbn>0027-8424 (Print)&#xD;0027-8424 (Linking)</isbn><accession-num>8197176</accession-num><urls><related-urls><url>;[8]. This requires constructing an array that requires 4n features. Larger values of n infuse greater specificity into the arrayed probes, but as n increases the number of required features grows rapidly. This universality is obtained by synthesizing a combinatorial n-mer array containing all 4n possible sequences of length n ADDIN EN.CITE <EndNote><Cite><Author>Royce</Author><Year>2007</Year><RecNum>61</RecNum><DisplayText>[9]</DisplayText><record><rec-number>61</rec-number><foreign-keys><key app="EN" db-id="wx90r9pt8rtr20eftvyvz0a4t02v0zsw02wv">61</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Royce, T. E.</author><author>Rozowsky, J. S.</author><author>Gerstein, M. B.</author></authors></contributors><auth-address>Interdepartmental Program in Computational Biology and Bioinformatics, Yale University, USA.</auth-address><titles><title>Toward a universal microarray: prediction of gene expression through nearest-neighbor probe sequence identification</title><secondary-title>Nucleic Acids Res</secondary-title></titles><periodical><full-title>Nucleic Acids Res</full-title></periodical><pages>e99</pages><volume>35</volume><number>15</number><edition>2007/08/10</edition><keywords><keyword>Gene Expression Profiling/*methods</keyword><keyword>Genome, Human</keyword><keyword>Humans</keyword><keyword>Oligonucleotide Array Sequence Analysis/*methods</keyword><keyword>Oligonucleotide Probes/*chemistry</keyword><keyword>Sequence Analysis, DNA</keyword><keyword>Transcription, Genetic</keyword></keywords><dates><year>2007</year></dates><isbn>1362-4962 (Electronic)&#xD;0305-1048 (Linking)</isbn><accession-num>17686789</accession-num><urls><related-urls><url> [pii]&#xD;10.1093/nar/gkm549</electronic-resource-num><language>eng</language></record></Cite></EndNote>[9]. The key issue was to find a value of n that is large enough to afford sufficient hybridization specificity and small enough to be practically fabricated and analyzed. The initial prototype of universal arrays used oligonucleotide probe lengths of 12 and 13 bases. A subset of 14,283 probes from 412 possible probes were synthesized by in situ synthesis technology using digital optical chemistry (DOC) ADDIN EN.CITE <EndNote><Cite><Author>Luebke</Author><Year>2002</Year><RecNum>77</RecNum><DisplayText>[10]</DisplayText><record><rec-number>77</rec-number><foreign-keys><key app="EN" db-id="wx90r9pt8rtr20eftvyvz0a4t02v0zsw02wv">77</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Luebke, K. J.</author><author>Balog, R. P.</author><author>Mittelman, D.</author><author>Garner, H. R.</author></authors></contributors><auth-address>Luebke, KJ&#xD;Univ Texas, SW Med Ctr, Ctr Biomed Invent, 5323 Harry Hines Blvd, Dallas, TX 75390 USA&#xD;Univ Texas, SW Med Ctr, Ctr Biomed Invent, 5323 Harry Hines Blvd, Dallas, TX 75390 USA&#xD;Univ Texas, SW Med Ctr, Ctr Biomed Invent, Dallas, TX 75390 USA&#xD;Univ Texas, SW Med Ctr, McDermott Ctr Human Growth &amp; Dev, Dallas, TX 75390 USA</auth-address><titles><title>Digital optical chemistry: A novel system for the rapid fabrication of custom oligonucleotide arrays</title><secondary-title>Microfabricated Sensors</secondary-title><alt-title>Acs Sym Ser</alt-title></titles><pages>87-106</pages><volume>815</volume><keywords><keyword>glass supports</keyword><keyword>DNA arrays</keyword><keyword>microarrays</keyword><keyword>genome</keyword><keyword>polymorphisms</keyword><keyword>hybridization</keyword></keywords><dates><year>2002</year></dates><isbn>0097-6156</isbn><accession-num>ISI:000175745500006</accession-num><urls><related-urls><url>&lt;Go to ISI&gt;://000175745500006</url></related-urls></urls><language>English</language></record></Cite></EndNote>[10], ADDIN EN.CITE <EndNote><Cite><Author>Luebke</Author><Year>2003</Year><RecNum>104</RecNum><DisplayText>[11]</DisplayText><record><rec-number>104</rec-number><foreign-keys><key app="EN" db-id="wx90r9pt8rtr20eftvyvz0a4t02v0zsw02wv">104</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Luebke, K. J.</author><author>Balog, R. P.</author><author>Garner, H. R.</author></authors></contributors><auth-address>Luebke, KJ&#xD;Univ Texas, SW Med Ctr, Ctr Biomed Invent, Dallas, TX 75390 USA&#xD;Univ Texas, SW Med Ctr, Ctr Biomed Invent, Dallas, TX 75390 USA&#xD;Univ Texas, SW Med Ctr, Ctr Biomed Invent, Dallas, TX 75390 USA&#xD;Univ Texas, SW Med Ctr, McDermott Ctr Human Growth &amp; Dev, Dallas, TX 75390 USA</auth-address><titles><title>Prioritized selection of oligodeoxyribonucleotide probes for efficient hybridization to RNA transcripts</title><secondary-title>Nucleic Acids Research</secondary-title><alt-title>Nucleic Acids Res</alt-title></titles><alt-periodical><full-title>Nucleic Acids Res</full-title></alt-periodical><pages>750-758</pages><volume>31</volume><number>2</number><keywords><keyword>density oligonucleotide arrays</keyword><keyword>effective antisense reagents</keyword><keyword>thermodynamic parameters</keyword><keyword>secondary structure</keyword><keyword>scanning arrays</keyword><keyword>messenger-rna</keyword><keyword>in-vivo</keyword><keyword>DNA</keyword><keyword>expression</keyword><keyword>microarrays</keyword></keywords><dates><year>2003</year><pub-dates><date>Jan 15</date></pub-dates></dates><isbn>0305-1048</isbn><accession-num>ISI:000181081500027</accession-num><urls><related-urls><url>&lt;Go to ISI&gt;://000181081500027</url></related-urls></urls><electronic-resource-num>Doi 10.1093/Nar/Gkg133</electronic-resource-num><language>English</language></record></Cite></EndNote>[11], PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5CYWxvZzwvQXV0aG9yPjxZZWFyPjIwMDI8L1llYXI+PFJl

Y051bT4xMTA8L1JlY051bT48RGlzcGxheVRleHQ+WzEyXTwvRGlzcGxheVRleHQ+PHJlY29yZD48

cmVjLW51bWJlcj4xMTA8L3JlYy1udW1iZXI+PGZvcmVpZ24ta2V5cz48a2V5IGFwcD0iRU4iIGRi

LWlkPSJ3eDkwcjlwdDhydHIyMGVmdHZ5dnowYTR0MDJ2MHpzdzAyd3YiPjExMDwva2V5PjwvZm9y

ZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJKb3VybmFsIEFydGljbGUiPjE3PC9yZWYtdHlwZT48

Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+QmFsb2csIFIuIFAuPC9hdXRob3I+PGF1dGhv

cj5kZSBTb3V6YSwgWS4gRS48L2F1dGhvcj48YXV0aG9yPlRhbmcsIEguIE0uPC9hdXRob3I+PGF1

dGhvcj5EZU1hc2VsbGlzLCBHLiBNLjwvYXV0aG9yPjxhdXRob3I+R2FvLCBCLjwvYXV0aG9yPjxh

dXRob3I+QXZpbGEsIEEuPC9hdXRob3I+PGF1dGhvcj5HYWJhbiwgRC4gSi48L2F1dGhvcj48YXV0

aG9yPk1pdHRlbG1hbiwgRC48L2F1dGhvcj48YXV0aG9yPk1pbm5hLCBKLiBELjwvYXV0aG9yPjxh

dXRob3I+THVlYmtlLCBLLiBKLjwvYXV0aG9yPjxhdXRob3I+R2FybmVyLCBILiBSLjwvYXV0aG9y

PjwvYXV0aG9ycz48L2NvbnRyaWJ1dG9ycz48YXV0aC1hZGRyZXNzPkNlbnRlciBmb3IgQmlvbWVk

aWNhbCBJbnZlbnRpb25zLCBVbml2ZXJzaXR5IG9mIFRleGFzIFNvdXRod2VzdGVybiBNZWRpY2Fs

IENlbnRlciBhdCBEYWxsYXMsIERhbGxhcywgVFggNzUzOTAtODU3MywgVVNBLjwvYXV0aC1hZGRy

ZXNzPjx0aXRsZXM+PHRpdGxlPlBhcmFsbGVsIGFzc2Vzc21lbnQgb2YgQ3BHIG1ldGh5bGF0aW9u

IGJ5IHR3by1jb2xvciBoeWJyaWRpemF0aW9uIHdpdGggb2xpZ29udWNsZW90aWRlIGFycmF5czwv

dGl0bGU+PHNlY29uZGFyeS10aXRsZT5BbmFseXRpY2FsIEJpb2NoZW1pc3RyeTwvc2Vjb25kYXJ5

LXRpdGxlPjwvdGl0bGVzPjxwYWdlcz4zMDEtMTA8L3BhZ2VzPjx2b2x1bWU+MzA5PC92b2x1bWU+

PG51bWJlcj4yPC9udW1iZXI+PGVkaXRpb24+MjAwMi8xMS8wNTwvZWRpdGlvbj48a2V5d29yZHM+

PGtleXdvcmQ+QmFzZSBTZXF1ZW5jZTwva2V5d29yZD48a2V5d29yZD5DYXJib2N5YW5pbmVzL2No

ZW1pc3RyeTwva2V5d29yZD48a2V5d29yZD5DbG9uaW5nLCBNb2xlY3VsYXI8L2tleXdvcmQ+PGtl

eXdvcmQ+KkNwRyBJc2xhbmRzPC9rZXl3b3JkPjxrZXl3b3JkPkN5dG9zaW5lL2FuYWx5c2lzL2No

ZW1pc3RyeTwva2V5d29yZD48a2V5d29yZD4qRE5BIE1ldGh5bGF0aW9uPC9rZXl3b3JkPjxrZXl3

b3JkPkROQSBQcmltZXJzPC9rZXl3b3JkPjxrZXl3b3JkPkROQSwgTmVvcGxhc20vY2hlbWlzdHJ5

PC9rZXl3b3JkPjxrZXl3b3JkPkdlbmVzLCBUdW1vciBTdXBwcmVzc29yPC9rZXl3b3JkPjxrZXl3

b3JkPkh1bWFuczwva2V5d29yZD48a2V5d29yZD5OdWNsZWljIEFjaWQgSHlicmlkaXphdGlvbi9t

ZXRob2RzPC9rZXl3b3JkPjxrZXl3b3JkPk9saWdvbnVjbGVvdGlkZSBBcnJheSBTZXF1ZW5jZSBB

bmFseXNpcy8qbWV0aG9kczwva2V5d29yZD48a2V5d29yZD5Qcm9tb3RlciBSZWdpb25zLCBHZW5l

dGljPC9rZXl3b3JkPjxrZXl3b3JkPlJlZmVyZW5jZSBTdGFuZGFyZHM8L2tleXdvcmQ+PGtleXdv

cmQ+U3VsZml0ZXMvY2hlbWlzdHJ5PC9rZXl3b3JkPjxrZXl3b3JkPlR1bW9yIENlbGxzLCBDdWx0

dXJlZDwva2V5d29yZD48L2tleXdvcmRzPjxkYXRlcz48eWVhcj4yMDAyPC95ZWFyPjxwdWItZGF0

ZXM+PGRhdGU+T2N0IDE1PC9kYXRlPjwvcHViLWRhdGVzPjwvZGF0ZXM+PGlzYm4+MDAwMy0yNjk3

IChQcmludCkmI3hEOzAwMDMtMjY5NyAoTGlua2luZyk8L2lzYm4+PGFjY2Vzc2lvbi1udW0+MTI0

MTM0NjQ8L2FjY2Vzc2lvbi1udW0+PHVybHM+PHJlbGF0ZWQtdXJscz48dXJsPmh0dHA6Ly93d3cu

bmNiaS5ubG0ubmloLmdvdi9lbnRyZXovcXVlcnkuZmNnaT9jbWQ9UmV0cmlldmUmYW1wO2RiPVB1

Yk1lZCZhbXA7ZG9wdD1DaXRhdGlvbiZhbXA7bGlzdF91aWRzPTEyNDEzNDY0PC91cmw+PC9yZWxh

dGVkLXVybHM+PC91cmxzPjxlbGVjdHJvbmljLXJlc291cmNlLW51bT5TMDAwMzI2OTcwMjAwMjk0

NCBbcGlpXTwvZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+PGxhbmd1YWdlPmVuZzwvbGFuZ3VhZ2U+

PC9yZWNvcmQ+PC9DaXRlPjwvRW5kTm90ZT5=

ADDIN EN.CITE PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5CYWxvZzwvQXV0aG9yPjxZZWFyPjIwMDI8L1llYXI+PFJl

Y051bT4xMTA8L1JlY051bT48RGlzcGxheVRleHQ+WzEyXTwvRGlzcGxheVRleHQ+PHJlY29yZD48

cmVjLW51bWJlcj4xMTA8L3JlYy1udW1iZXI+PGZvcmVpZ24ta2V5cz48a2V5IGFwcD0iRU4iIGRi

LWlkPSJ3eDkwcjlwdDhydHIyMGVmdHZ5dnowYTR0MDJ2MHpzdzAyd3YiPjExMDwva2V5PjwvZm9y

ZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJKb3VybmFsIEFydGljbGUiPjE3PC9yZWYtdHlwZT48

Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+QmFsb2csIFIuIFAuPC9hdXRob3I+PGF1dGhv

cj5kZSBTb3V6YSwgWS4gRS48L2F1dGhvcj48YXV0aG9yPlRhbmcsIEguIE0uPC9hdXRob3I+PGF1

dGhvcj5EZU1hc2VsbGlzLCBHLiBNLjwvYXV0aG9yPjxhdXRob3I+R2FvLCBCLjwvYXV0aG9yPjxh

dXRob3I+QXZpbGEsIEEuPC9hdXRob3I+PGF1dGhvcj5HYWJhbiwgRC4gSi48L2F1dGhvcj48YXV0

aG9yPk1pdHRlbG1hbiwgRC48L2F1dGhvcj48YXV0aG9yPk1pbm5hLCBKLiBELjwvYXV0aG9yPjxh

dXRob3I+THVlYmtlLCBLLiBKLjwvYXV0aG9yPjxhdXRob3I+R2FybmVyLCBILiBSLjwvYXV0aG9y

PjwvYXV0aG9ycz48L2NvbnRyaWJ1dG9ycz48YXV0aC1hZGRyZXNzPkNlbnRlciBmb3IgQmlvbWVk

aWNhbCBJbnZlbnRpb25zLCBVbml2ZXJzaXR5IG9mIFRleGFzIFNvdXRod2VzdGVybiBNZWRpY2Fs

IENlbnRlciBhdCBEYWxsYXMsIERhbGxhcywgVFggNzUzOTAtODU3MywgVVNBLjwvYXV0aC1hZGRy

ZXNzPjx0aXRsZXM+PHRpdGxlPlBhcmFsbGVsIGFzc2Vzc21lbnQgb2YgQ3BHIG1ldGh5bGF0aW9u

IGJ5IHR3by1jb2xvciBoeWJyaWRpemF0aW9uIHdpdGggb2xpZ29udWNsZW90aWRlIGFycmF5czwv

dGl0bGU+PHNlY29uZGFyeS10aXRsZT5BbmFseXRpY2FsIEJpb2NoZW1pc3RyeTwvc2Vjb25kYXJ5

LXRpdGxlPjwvdGl0bGVzPjxwYWdlcz4zMDEtMTA8L3BhZ2VzPjx2b2x1bWU+MzA5PC92b2x1bWU+

PG51bWJlcj4yPC9udW1iZXI+PGVkaXRpb24+MjAwMi8xMS8wNTwvZWRpdGlvbj48a2V5d29yZHM+

PGtleXdvcmQ+QmFzZSBTZXF1ZW5jZTwva2V5d29yZD48a2V5d29yZD5DYXJib2N5YW5pbmVzL2No

ZW1pc3RyeTwva2V5d29yZD48a2V5d29yZD5DbG9uaW5nLCBNb2xlY3VsYXI8L2tleXdvcmQ+PGtl

eXdvcmQ+KkNwRyBJc2xhbmRzPC9rZXl3b3JkPjxrZXl3b3JkPkN5dG9zaW5lL2FuYWx5c2lzL2No

ZW1pc3RyeTwva2V5d29yZD48a2V5d29yZD4qRE5BIE1ldGh5bGF0aW9uPC9rZXl3b3JkPjxrZXl3

b3JkPkROQSBQcmltZXJzPC9rZXl3b3JkPjxrZXl3b3JkPkROQSwgTmVvcGxhc20vY2hlbWlzdHJ5

PC9rZXl3b3JkPjxrZXl3b3JkPkdlbmVzLCBUdW1vciBTdXBwcmVzc29yPC9rZXl3b3JkPjxrZXl3

b3JkPkh1bWFuczwva2V5d29yZD48a2V5d29yZD5OdWNsZWljIEFjaWQgSHlicmlkaXphdGlvbi9t

ZXRob2RzPC9rZXl3b3JkPjxrZXl3b3JkPk9saWdvbnVjbGVvdGlkZSBBcnJheSBTZXF1ZW5jZSBB

bmFseXNpcy8qbWV0aG9kczwva2V5d29yZD48a2V5d29yZD5Qcm9tb3RlciBSZWdpb25zLCBHZW5l

dGljPC9rZXl3b3JkPjxrZXl3b3JkPlJlZmVyZW5jZSBTdGFuZGFyZHM8L2tleXdvcmQ+PGtleXdv

cmQ+U3VsZml0ZXMvY2hlbWlzdHJ5PC9rZXl3b3JkPjxrZXl3b3JkPlR1bW9yIENlbGxzLCBDdWx0

dXJlZDwva2V5d29yZD48L2tleXdvcmRzPjxkYXRlcz48eWVhcj4yMDAyPC95ZWFyPjxwdWItZGF0

ZXM+PGRhdGU+T2N0IDE1PC9kYXRlPjwvcHViLWRhdGVzPjwvZGF0ZXM+PGlzYm4+MDAwMy0yNjk3

IChQcmludCkmI3hEOzAwMDMtMjY5NyAoTGlua2luZyk8L2lzYm4+PGFjY2Vzc2lvbi1udW0+MTI0

MTM0NjQ8L2FjY2Vzc2lvbi1udW0+PHVybHM+PHJlbGF0ZWQtdXJscz48dXJsPmh0dHA6Ly93d3cu

bmNiaS5ubG0ubmloLmdvdi9lbnRyZXovcXVlcnkuZmNnaT9jbWQ9UmV0cmlldmUmYW1wO2RiPVB1

Yk1lZCZhbXA7ZG9wdD1DaXRhdGlvbiZhbXA7bGlzdF91aWRzPTEyNDEzNDY0PC91cmw+PC9yZWxh

dGVkLXVybHM+PC91cmxzPjxlbGVjdHJvbmljLXJlc291cmNlLW51bT5TMDAwMzI2OTcwMjAwMjk0

NCBbcGlpXTwvZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+PGxhbmd1YWdlPmVuZzwvbGFuZ3VhZ2U+

PC9yZWNvcmQ+PC9DaXRlPjwvRW5kTm90ZT5=

ADDIN EN.CITE.DATA [12]. Subsequently a high density oligonucleotide microarray with 370k elements called Universal Bio-signature Detection Array (UBDA) has been designed by the Garner Laboratory and commercially produced by Roche-Nimblegen (Madison, WI).The main feature of this array is that the probes are computationally derived and sequence independent. There is one probe for each possible 9-mer sequence, thus 49 (262,144) probes. These probes were synthesized on the array using light-directed photolithographic synthesis of high density oligonucleotide arrays ADDIN EN.CITE <EndNote><Cite><Author>McGall</Author><Year>2001</Year><RecNum>138</RecNum><DisplayText>[13]</DisplayText><record><rec-number>138</rec-number><foreign-keys><key app="EN" db-id="wx90r9pt8rtr20eftvyvz0a4t02v0zsw02wv">138</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>McGall, G. H.</author><author>Fidanza, J. A.</author></authors></contributors><auth-address>Affymetrix Inc., Santa Clara, CA, USA.</auth-address><titles><title>Photolithographic synthesis of high-density oligonucleotide arrays</title><secondary-title>Methods Mol Biol</secondary-title></titles><periodical><full-title>Methods Mol Biol</full-title></periodical><pages>71-101</pages><volume>170</volume><edition>2001/05/19</edition><keywords><keyword>2-Aminopurine/*analogs &amp; derivatives/chemistry/radiation effects</keyword><keyword>Amides/chemistry/radiation effects</keyword><keyword>Combinatorial Chemistry Techniques/instrumentation</keyword><keyword>Membrane Glycoproteins</keyword><keyword>Oligonucleotide Array Sequence Analysis/*methods</keyword><keyword>Oligonucleotides/chemical synthesis/radiation effects</keyword><keyword>Phosphoric Acids/chemistry/radiation effects</keyword><keyword>Photolysis</keyword><keyword>Purine Nucleosides/chemistry/radiation effects</keyword></keywords><dates><year>2001</year></dates><isbn>1064-3745 (Print)&#xD;1064-3745 (Linking)</isbn><accession-num>11357690</accession-num><urls><related-urls><url> [pii]&#xD;10.1385/1-59259-234-1:71</electronic-resource-num><language>eng</language></record></Cite></EndNote>[13], ADDIN EN.CITE <EndNote><Cite><Author>Pease</Author><Year>1994</Year><RecNum>3</RecNum><DisplayText>[8]</DisplayText><record><rec-number>3</rec-number><foreign-keys><key app="EN" db-id="wx90r9pt8rtr20eftvyvz0a4t02v0zsw02wv">3</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Pease, A. C.</author><author>Solas, D.</author><author>Sullivan, E. J.</author><author>Cronin, M. T.</author><author>Holmes, C. P.</author><author>Fodor, S. P.</author></authors></contributors><auth-address>Affymetrix, Santa Clara, CA 95051.</auth-address><titles><title>Light-generated oligonucleotide arrays for rapid DNA sequence analysis</title><secondary-title>Proc Natl Acad Sci U S A</secondary-title></titles><periodical><full-title>Proc Natl Acad Sci U S A</full-title></periodical><pages>5022-6</pages><volume>91</volume><number>11</number><edition>1994/05/24</edition><keywords><keyword>Base Sequence</keyword><keyword>Humans</keyword><keyword>*Light</keyword><keyword>Microscopy, Fluorescence</keyword><keyword>Molecular Sequence Data</keyword><keyword>Molecular Structure</keyword><keyword>Nucleic Acid Hybridization</keyword><keyword>Oligodeoxyribonucleotides/radiation effects</keyword><keyword>Oligonucleotide Probes</keyword><keyword>Sequence Analysis, DNA/*methods</keyword></keywords><dates><year>1994</year><pub-dates><date>May 24</date></pub-dates></dates><isbn>0027-8424 (Print)&#xD;0027-8424 (Linking)</isbn><accession-num>8197176</accession-num><urls><related-urls><url>;[8].The random 9-mer probes are comprised of a core of 9 nucleotides and flanked on both sides by three nucleotides, selected to maximize sequence coverage of these basic 15-mers. Probes with a low GC content were padded with additional bases at their termini to equalize melting temperatures, with most probes ranging from 15-21 nucleotides in total length. There are 262,144 random 9-mer probes and 20,000 of them are replicated 3 times in total. All sequences were uniquely mapped to integers by representing them as the base-10 equivalents of base-4 representations of DNA sequences in which A=0, C=1, G=2 and T=3 where for example AAACTATAG = 000130302(base 4) = 1842 (decimal). Hence all 49 9-mers have corresponding unique decimal integer values. These integers will double as unique IDs and array indices. UBDA is a two-color array, where two independent samples can be labeled with either fluorescent dyes Cy3 and Cy5. Each dye fluoresces at a different wavelength and hence they do not interfere with signal intensity for each of their spectra. This unique strategy uses the robustness of patterns generated from hybridization of any DNA or cDNA to a very high-density species independent oligonucleotide microarray. Each genome hybridized on this array has a unique pattern of signal intensities corresponding to each of these probes. This platform is highly attractive because it has multiplex capacity where knowledge can be drawn from the various probe sets available on the array without prior knowledge of the sample’s genomic composition. This dissertation addresses the development of broad based methods for identification of pathogens including variant strains from infected animals, environmental or laboratory samples on a Universal Bio-defense Array (UBDA). This platform has commercial applications for the development of cost effective reliable platform for accurately screening of large number of samples for bio-threat agents in forensic analysis, pathogens that routinely infect animals of farm value, food borne pathogens and as a molecular diagnostic of micro-organisms in a clinical environment. It is also applicable to un-sequenced genomes or strains of microbes whose sequence may have drifted or been intentionally engineered. The spectrum of organisms chosen for hybridization on the UBDA array were based on priority, primarily bio-threat agents, micro-organisms infecting farm animals and organism of molecular diagnostic importance in a clinical setting.1.3. Comparative genome hybridization analysis pipeline for UBDA arrayThis platform is highly attractive because it has multiplex capacity where knowledge can be drawn from the various probe sets available on the array without prior knowledge of the sample’s genomic composition. These probe sets are available in a repository of bio-signatures that future users of this technology can compare and draw inferences related to the sample under study. Most of the genomic DNA from this collection of organisms belongs to the category of select agents NIAID A-C. The library of bio-signatures for these organisms and their hosts is complemented by computational methodologies comprised of data parsing, clustering and classification algorithms and regression techniques to resolve mixed samples.Clustering is one of the data mining processes for discovery and identifying patterns in the underlying data. Clustering algorithms partition data into subsets based on similarity and dissimilarity. Clustering methods follow three steps: pattern recognition, use of a clustering algorithm and similarity measure matrix ADDIN EN.CITE <EndNote><Cite><Author>Frades</Author><Year>2010</Year><RecNum>139</RecNum><DisplayText>[14]</DisplayText><record><rec-number>139</rec-number><foreign-keys><key app="EN" db-id="wx90r9pt8rtr20eftvyvz0a4t02v0zsw02wv">139</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Frades, I.</author><author>Matthiesen, R.</author></authors></contributors><auth-address>Bioinformatics, Parque Technologico de Bizkaia, Derio, Spain.</auth-address><titles><title>Overview on techniques in cluster analysis</title><secondary-title>Methods Mol Biol</secondary-title></titles><periodical><full-title>Methods Mol Biol</full-title></periodical><pages>81-107</pages><volume>593</volume><edition>2009/12/04</edition><keywords><keyword>Algorithms</keyword><keyword>*Cluster Analysis</keyword><keyword>Computational Biology/*methods</keyword><keyword>Neural Networks (Computer)</keyword><keyword>Pattern Recognition, Automated</keyword></keywords><dates><year>2010</year></dates><isbn>1940-6029 (Electronic)&#xD;1064-3745 (Linking)</isbn><accession-num>19957146</accession-num><urls><related-urls><url>;[14]. For pattern recognition, pair wise comparisons will be used between samples to select the features on which the clustering is to be performed. A wide range of clustering algorithms have been developed for analysis of genomic expression data sets such as hierarchical clustering, k-means clustering, self-organizing maps and principal component analysis. K-means, self-organizing maps and principal component analysis are frequently used in gene expression studies to group related gene clusters. The initial approach utilized the hierarchical clustering algorithm to determine phylogenomic relationships between organisms. This method could be used as an initial approach to cluster a large number of arrays. Hierarchical clustering ADDIN EN.CITE <EndNote><Cite><Author>Eisen</Author><Year>1998</Year><RecNum>322</RecNum><DisplayText>[15]</DisplayText><record><rec-number>322</rec-number><foreign-keys><key app="EN" db-id="wx90r9pt8rtr20eftvyvz0a4t02v0zsw02wv">322</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Eisen, M. B.</author><author>Spellman, P. T.</author><author>Brown, P. O.</author><author>Botstein, D.</author></authors></contributors><auth-address>Department of Genetics, Stanford University School of Medicine, 300 Pasteur Avenue, Stanford, CA 94305, USA.</auth-address><titles><title>Cluster analysis and display of genome-wide expression patterns</title><secondary-title>Proc Natl Acad Sci U S A</secondary-title></titles><periodical><full-title>Proc Natl Acad Sci U S A</full-title></periodical><pages>14863-8</pages><volume>95</volume><number>25</number><edition>1998/12/09</edition><keywords><keyword>Cluster Analysis</keyword><keyword>Gene Expression</keyword><keyword>*Genome, Fungal</keyword><keyword>*Genome, Human</keyword><keyword>Humans</keyword><keyword>*Multigene Family</keyword><keyword>Saccharomyces cerevisiae/*genetics</keyword></keywords><dates><year>1998</year><pub-dates><date>Dec 8</date></pub-dates></dates><isbn>0027-8424 (Print)&#xD;0027-8424 (Linking)</isbn><accession-num>9843981</accession-num><urls><related-urls><url>;[15] transforms a distance matrix of pair-wise similarity measurements between all items into a hierarchy of nested groupings. The hierarchy is represented with a binary tree like dendrogram that shows the nested grouping of patterns and the similarity levels at which groupings change. Hierarchical clustering algorithm then follows either agglomerative procedures or divisive procedures. In agglomerative hierarchical clustering, a similarity distance matrix is constructed by calculating the pair wise distance between all patterns ADDIN EN.CITE <EndNote><Cite><Author>Frades</Author><Year>2010</Year><RecNum>139</RecNum><DisplayText>[14]</DisplayText><record><rec-number>139</rec-number><foreign-keys><key app="EN" db-id="wx90r9pt8rtr20eftvyvz0a4t02v0zsw02wv">139</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Frades, I.</author><author>Matthiesen, R.</author></authors></contributors><auth-address>Bioinformatics, Parque Technologico de Bizkaia, Derio, Spain.</auth-address><titles><title>Overview on techniques in cluster analysis</title><secondary-title>Methods Mol Biol</secondary-title></titles><periodical><full-title>Methods Mol Biol</full-title></periodical><pages>81-107</pages><volume>593</volume><edition>2009/12/04</edition><keywords><keyword>Algorithms</keyword><keyword>*Cluster Analysis</keyword><keyword>Computational Biology/*methods</keyword><keyword>Neural Networks (Computer)</keyword><keyword>Pattern Recognition, Automated</keyword></keywords><dates><year>2010</year></dates><isbn>1940-6029 (Electronic)&#xD;1064-3745 (Linking)</isbn><accession-num>19957146</accession-num><urls><related-urls><url>;[14]. Agglomerative procedures or rules that govern this distance or similarity calculation are classified under linkage methods: single, average, complete and centroid. In this study the centroid or complete linkage were used to generate relationship dendrogram by hierarchical clustering. Centroid linkage is an un-weighted pair group method, the distance between two clusters is the Euclidean distance between their centroids, calculated by arithmetic mean. Complete linkage clustering or the farthest neighbor method is a method of calculating distance between clusters in hierarchical cluster analysis. Similarity measure that is frequently used is Euclidean distance. Euclidean distance metric is a measure of the geometric distance between two components. Hierarchical clustering algorithm was found to be not robust enough to handle multiple arrays due to the large number of data points on the array. Further, Pearson’s correlation coefficient was used to develop a matrix of associations for a given set of samples and k-nearest distance PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5IdXR0ZW5ob3dlcjwvQXV0aG9yPjxZZWFyPjIwMDc8L1ll

YXI+PFJlY051bT4xMDQ3PC9SZWNOdW0+PERpc3BsYXlUZXh0PlsxNl08L0Rpc3BsYXlUZXh0Pjxy

ZWNvcmQ+PHJlYy1udW1iZXI+MTA0NzwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBw

PSJFTiIgZGItaWQ9Ind4OTByOXB0OHJ0cjIwZWZ0dnl2ejBhNHQwMnYwenN3MDJ3diI+MTA0Nzwv

a2V5PjwvZm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJKb3VybmFsIEFydGljbGUiPjE3PC9y

ZWYtdHlwZT48Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+SHV0dGVuaG93ZXIsIEMuPC9h

dXRob3I+PGF1dGhvcj5GbGFtaG9seiwgQS4gSS48L2F1dGhvcj48YXV0aG9yPkxhbmRpcywgSi4g

Ti48L2F1dGhvcj48YXV0aG9yPlNhaGksIFMuPC9hdXRob3I+PGF1dGhvcj5NeWVycywgQy4gTC48

L2F1dGhvcj48YXV0aG9yPk9sc3pld3NraSwgSy4gTC48L2F1dGhvcj48YXV0aG9yPkhpYmJzLCBN

LiBBLjwvYXV0aG9yPjxhdXRob3I+U2llbWVycywgTi4gTy48L2F1dGhvcj48YXV0aG9yPlRyb3lh

bnNrYXlhLCBPLiBHLjwvYXV0aG9yPjxhdXRob3I+Q29sbGVyLCBILiBBLjwvYXV0aG9yPjwvYXV0

aG9ycz48L2NvbnRyaWJ1dG9ycz48YXV0aC1hZGRyZXNzPkRlcGFydG1lbnQgb2YgTW9sZWN1bGFy

IEJpb2xvZ3ksIFByaW5jZXRvbiBVbml2ZXJzaXR5LCBQcmluY2V0b24sIE5KIDA4NTQ0LCBVU0Eu

IGNodXR0ZW5oQHByaW5jZXRvbi5lZHUgJmx0O2NodXR0ZW5oQHByaW5jZXRvbi5lZHUmZ3Q7PC9h

dXRoLWFkZHJlc3M+PHRpdGxlcz48dGl0bGU+TmVhcmVzdCBOZWlnaGJvciBOZXR3b3JrczogY2x1

c3RlcmluZyBleHByZXNzaW9uIGRhdGEgYmFzZWQgb24gZ2VuZSBuZWlnaGJvcmhvb2RzPC90aXRs

ZT48c2Vjb25kYXJ5LXRpdGxlPkJNQyBCaW9pbmZvcm1hdGljczwvc2Vjb25kYXJ5LXRpdGxlPjxh

bHQtdGl0bGU+Qk1DIGJpb2luZm9ybWF0aWNzPC9hbHQtdGl0bGU+PC90aXRsZXM+PHBlcmlvZGlj

YWw+PGZ1bGwtdGl0bGU+Qk1DIEJpb2luZm9ybWF0aWNzPC9mdWxsLXRpdGxlPjxhYmJyLTE+Qk1D

IGJpb2luZm9ybWF0aWNzPC9hYmJyLTE+PC9wZXJpb2RpY2FsPjxhbHQtcGVyaW9kaWNhbD48ZnVs

bC10aXRsZT5CTUMgQmlvaW5mb3JtYXRpY3M8L2Z1bGwtdGl0bGU+PGFiYnItMT5CTUMgYmlvaW5m

b3JtYXRpY3M8L2FiYnItMT48L2FsdC1wZXJpb2RpY2FsPjxwYWdlcz4yNTA8L3BhZ2VzPjx2b2x1

bWU+ODwvdm9sdW1lPjxlZGl0aW9uPjIwMDcvMDcvMTQ8L2VkaXRpb24+PGtleXdvcmRzPjxrZXl3

b3JkPipBbGdvcml0aG1zPC9rZXl3b3JkPjxrZXl3b3JkPipDbHVzdGVyIEFuYWx5c2lzPC9rZXl3

b3JkPjxrZXl3b3JkPkRhdGFiYXNlcywgR2VuZXRpYzwva2V5d29yZD48a2V5d29yZD4qR2VuZSBF

eHByZXNzaW9uPC9rZXl3b3JkPjxrZXl3b3JkPkdlbmUgRXhwcmVzc2lvbiBQcm9maWxpbmcvbWV0

aG9kczwva2V5d29yZD48a2V5d29yZD5HZW5lIEV4cHJlc3Npb24gUmVndWxhdGlvbiwgRnVuZ2Fs

PC9rZXl3b3JkPjxrZXl3b3JkPipHZW5lcywgRnVuZ2FsPC9rZXl3b3JkPjxrZXl3b3JkPlJPQyBD

dXJ2ZTwva2V5d29yZD48a2V5d29yZD5TYWNjaGFyb215Y2VzIGNlcmV2aXNpYWUvKmdlbmV0aWNz

PC9rZXl3b3JkPjxrZXl3b3JkPlNvZnR3YXJlPC9rZXl3b3JkPjwva2V5d29yZHM+PGRhdGVzPjx5

ZWFyPjIwMDc8L3llYXI+PC9kYXRlcz48aXNibj4xNDcxLTIxMDUgKEVsZWN0cm9uaWMpJiN4RDsx

NDcxLTIxMDUgKExpbmtpbmcpPC9pc2JuPjxhY2Nlc3Npb24tbnVtPjE3NjI2NjM2PC9hY2Nlc3Np

b24tbnVtPjx3b3JrLXR5cGU+Q29tcGFyYXRpdmUgU3R1ZHkmI3hEO1Jlc2VhcmNoIFN1cHBvcnQs

IE4uSS5ILiwgRXh0cmFtdXJhbCYjeEQ7UmVzZWFyY2ggU3VwcG9ydCwgTm9uLVUuUy4gR292JmFw

b3M7dCYjeEQ7UmVzZWFyY2ggU3VwcG9ydCwgVS5TLiBHb3YmYXBvczt0LCBOb24tUC5ILlMuPC93

b3JrLXR5cGU+PHVybHM+PHJlbGF0ZWQtdXJscz48dXJsPmh0dHA6Ly93d3cubmNiaS5ubG0ubmlo

Lmdvdi9wdWJtZWQvMTc2MjY2MzY8L3VybD48L3JlbGF0ZWQtdXJscz48L3VybHM+PGN1c3RvbTI+

MTk0MTc0NTwvY3VzdG9tMj48ZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+MTAuMTE4Ni8xNDcxLTIx

MDUtOC0yNTA8L2VsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjxsYW5ndWFnZT5lbmc8L2xhbmd1YWdl

PjwvcmVjb3JkPjwvQ2l0ZT48L0VuZE5vdGU+

ADDIN EN.CITE PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5IdXR0ZW5ob3dlcjwvQXV0aG9yPjxZZWFyPjIwMDc8L1ll

YXI+PFJlY051bT4xMDQ3PC9SZWNOdW0+PERpc3BsYXlUZXh0PlsxNl08L0Rpc3BsYXlUZXh0Pjxy

ZWNvcmQ+PHJlYy1udW1iZXI+MTA0NzwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBw

PSJFTiIgZGItaWQ9Ind4OTByOXB0OHJ0cjIwZWZ0dnl2ejBhNHQwMnYwenN3MDJ3diI+MTA0Nzwv

a2V5PjwvZm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJKb3VybmFsIEFydGljbGUiPjE3PC9y

ZWYtdHlwZT48Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+SHV0dGVuaG93ZXIsIEMuPC9h

dXRob3I+PGF1dGhvcj5GbGFtaG9seiwgQS4gSS48L2F1dGhvcj48YXV0aG9yPkxhbmRpcywgSi4g

Ti48L2F1dGhvcj48YXV0aG9yPlNhaGksIFMuPC9hdXRob3I+PGF1dGhvcj5NeWVycywgQy4gTC48

L2F1dGhvcj48YXV0aG9yPk9sc3pld3NraSwgSy4gTC48L2F1dGhvcj48YXV0aG9yPkhpYmJzLCBN

LiBBLjwvYXV0aG9yPjxhdXRob3I+U2llbWVycywgTi4gTy48L2F1dGhvcj48YXV0aG9yPlRyb3lh

bnNrYXlhLCBPLiBHLjwvYXV0aG9yPjxhdXRob3I+Q29sbGVyLCBILiBBLjwvYXV0aG9yPjwvYXV0

aG9ycz48L2NvbnRyaWJ1dG9ycz48YXV0aC1hZGRyZXNzPkRlcGFydG1lbnQgb2YgTW9sZWN1bGFy

IEJpb2xvZ3ksIFByaW5jZXRvbiBVbml2ZXJzaXR5LCBQcmluY2V0b24sIE5KIDA4NTQ0LCBVU0Eu

IGNodXR0ZW5oQHByaW5jZXRvbi5lZHUgJmx0O2NodXR0ZW5oQHByaW5jZXRvbi5lZHUmZ3Q7PC9h

dXRoLWFkZHJlc3M+PHRpdGxlcz48dGl0bGU+TmVhcmVzdCBOZWlnaGJvciBOZXR3b3JrczogY2x1

c3RlcmluZyBleHByZXNzaW9uIGRhdGEgYmFzZWQgb24gZ2VuZSBuZWlnaGJvcmhvb2RzPC90aXRs

ZT48c2Vjb25kYXJ5LXRpdGxlPkJNQyBCaW9pbmZvcm1hdGljczwvc2Vjb25kYXJ5LXRpdGxlPjxh

bHQtdGl0bGU+Qk1DIGJpb2luZm9ybWF0aWNzPC9hbHQtdGl0bGU+PC90aXRsZXM+PHBlcmlvZGlj

YWw+PGZ1bGwtdGl0bGU+Qk1DIEJpb2luZm9ybWF0aWNzPC9mdWxsLXRpdGxlPjxhYmJyLTE+Qk1D

IGJpb2luZm9ybWF0aWNzPC9hYmJyLTE+PC9wZXJpb2RpY2FsPjxhbHQtcGVyaW9kaWNhbD48ZnVs

bC10aXRsZT5CTUMgQmlvaW5mb3JtYXRpY3M8L2Z1bGwtdGl0bGU+PGFiYnItMT5CTUMgYmlvaW5m

b3JtYXRpY3M8L2FiYnItMT48L2FsdC1wZXJpb2RpY2FsPjxwYWdlcz4yNTA8L3BhZ2VzPjx2b2x1

bWU+ODwvdm9sdW1lPjxlZGl0aW9uPjIwMDcvMDcvMTQ8L2VkaXRpb24+PGtleXdvcmRzPjxrZXl3

b3JkPipBbGdvcml0aG1zPC9rZXl3b3JkPjxrZXl3b3JkPipDbHVzdGVyIEFuYWx5c2lzPC9rZXl3

b3JkPjxrZXl3b3JkPkRhdGFiYXNlcywgR2VuZXRpYzwva2V5d29yZD48a2V5d29yZD4qR2VuZSBF

eHByZXNzaW9uPC9rZXl3b3JkPjxrZXl3b3JkPkdlbmUgRXhwcmVzc2lvbiBQcm9maWxpbmcvbWV0

aG9kczwva2V5d29yZD48a2V5d29yZD5HZW5lIEV4cHJlc3Npb24gUmVndWxhdGlvbiwgRnVuZ2Fs

PC9rZXl3b3JkPjxrZXl3b3JkPipHZW5lcywgRnVuZ2FsPC9rZXl3b3JkPjxrZXl3b3JkPlJPQyBD

dXJ2ZTwva2V5d29yZD48a2V5d29yZD5TYWNjaGFyb215Y2VzIGNlcmV2aXNpYWUvKmdlbmV0aWNz

PC9rZXl3b3JkPjxrZXl3b3JkPlNvZnR3YXJlPC9rZXl3b3JkPjwva2V5d29yZHM+PGRhdGVzPjx5

ZWFyPjIwMDc8L3llYXI+PC9kYXRlcz48aXNibj4xNDcxLTIxMDUgKEVsZWN0cm9uaWMpJiN4RDsx

NDcxLTIxMDUgKExpbmtpbmcpPC9pc2JuPjxhY2Nlc3Npb24tbnVtPjE3NjI2NjM2PC9hY2Nlc3Np

b24tbnVtPjx3b3JrLXR5cGU+Q29tcGFyYXRpdmUgU3R1ZHkmI3hEO1Jlc2VhcmNoIFN1cHBvcnQs

IE4uSS5ILiwgRXh0cmFtdXJhbCYjeEQ7UmVzZWFyY2ggU3VwcG9ydCwgTm9uLVUuUy4gR292JmFw

b3M7dCYjeEQ7UmVzZWFyY2ggU3VwcG9ydCwgVS5TLiBHb3YmYXBvczt0LCBOb24tUC5ILlMuPC93

b3JrLXR5cGU+PHVybHM+PHJlbGF0ZWQtdXJscz48dXJsPmh0dHA6Ly93d3cubmNiaS5ubG0ubmlo

Lmdvdi9wdWJtZWQvMTc2MjY2MzY8L3VybD48L3JlbGF0ZWQtdXJscz48L3VybHM+PGN1c3RvbTI+

MTk0MTc0NTwvY3VzdG9tMj48ZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+MTAuMTE4Ni8xNDcxLTIx

MDUtOC0yNTA8L2VsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjxsYW5ndWFnZT5lbmc8L2xhbmd1YWdl

PjwvcmVjb3JkPjwvQ2l0ZT48L0VuZE5vdGU+

ADDIN EN.CITE.DATA [16] measure was used to generate a phylogenomic tree. Hierarchical clustering and Pearson’s correlation coefficient methods were not robust enough to distinguish between closely related isolates of Brucella. Hence Principal component analysis (PCA) ADDIN EN.CITE <EndNote><Cite><Author>Raychaudhuri</Author><Year>2000</Year><RecNum>1049</RecNum><DisplayText>[17]</DisplayText><record><rec-number>1049</rec-number><foreign-keys><key app="EN" db-id="wx90r9pt8rtr20eftvyvz0a4t02v0zsw02wv">1049</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Raychaudhuri, S.</author><author>Stuart, J. M.</author><author>Altman, R. B.</author></authors></contributors><auth-address>Stanford Medical Informatics, Stanford University, CA 94305-5479, USA. sxr@smi.stanford.edu</auth-address><titles><title>Principal components analysis to summarize microarray experiments: application to sporulation time series</title><secondary-title>Pac Symp Biocomput</secondary-title><alt-title>Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing</alt-title></titles><periodical><full-title>Pac Symp Biocomput</full-title><abbr-1>Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing</abbr-1></periodical><alt-periodical><full-title>Pac Symp Biocomput</full-title><abbr-1>Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing</abbr-1></alt-periodical><pages>455-66</pages><edition>2000/07/21</edition><keywords><keyword>Computer Simulation</keyword><keyword>Databases, Factual</keyword><keyword>Gene Expression</keyword><keyword>Genes, Fungal</keyword><keyword>*Models, Genetic</keyword><keyword>Oligonucleotide Array Sequence Analysis</keyword><keyword>Saccharomyces cerevisiae/*genetics/*physiology</keyword><keyword>Spores, Fungal/genetics/physiology</keyword></keywords><dates><year>2000</year></dates><isbn>1793-5091 (Print)</isbn><accession-num>10902193</accession-num><work-type>Research Support, Non-U.S. Gov&apos;t&#xD;Research Support, U.S. Gov&apos;t, Non-P.H.S.&#xD;Research Support, U.S. Gov&apos;t, P.H.S.</work-type><urls><related-urls><url>;[17] was used in classification of Brucella isolates into their respective species. Given m observations on n variables, the goal of PCA is to reduce the dimensionality of the data matrix by r new variables, where r is less than n. The most robust method for UBDA classification of bio-signatures signal intensities from a given sample was a regression analysis using the best least squares fit measure. This algorithm was originally applied to quantitate and attribute fluorescent intensities from a mixture of microspheres with different colors and comparing this to individual spectra generated from each colored microsphere. The standard linear curve fitting algorithm was used to determine the contribution of each individual dye to the measured emission spectrum ADDIN EN.CITE <EndNote><Cite><Author>Schultz</Author><Year>2001</Year><RecNum>1050</RecNum><DisplayText>[18]</DisplayText><record><rec-number>1050</rec-number><foreign-keys><key app="EN" db-id="wx90r9pt8rtr20eftvyvz0a4t02v0zsw02wv">1050</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Schultz, R. A.</author><author>Nielsen, T.</author><author>Zavaleta, J. R.</author><author>Ruch, R.</author><author>Wyatt, R.</author><author>Garner, H. R.</author></authors></contributors><auth-address>McDermott Center for Human Growth and Development, The University of Texas Southwestern Medical Center, Dallas, Texas 75235-8591, USA.</auth-address><titles><title>Hyperspectral imaging: a novel approach for microscopic analysis</title><secondary-title>Cytometry</secondary-title><alt-title>Cytometry</alt-title></titles><periodical><full-title>Cytometry</full-title><abbr-1>Cytometry</abbr-1></periodical><alt-periodical><full-title>Cytometry</full-title><abbr-1>Cytometry</abbr-1></alt-periodical><pages>239-47</pages><volume>43</volume><number>4</number><edition>2001/03/22</edition><keywords><keyword>Humans</keyword><keyword>Image Cytometry/*instrumentation/methods</keyword><keyword>Image Processing, Computer-Assisted</keyword><keyword>Imaging, Three-Dimensional/*instrumentation/methods</keyword><keyword>In Situ Hybridization, Fluorescence</keyword><keyword>Microscopy, Fluorescence/*instrumentation/methods</keyword><keyword>Microspheres</keyword><keyword>Spectrometry, Fluorescence/*instrumentation/methods</keyword><keyword>Staining and Labeling</keyword></keywords><dates><year>2001</year><pub-dates><date>Apr 1</date></pub-dates></dates><isbn>0196-4763 (Print)&#xD;0196-4763 (Linking)</isbn><accession-num>11260591</accession-num><work-type>Research Support, Non-U.S. Gov&apos;t</work-type><urls><related-urls><url>;[18]. This algorithm was developed further and recently has been applied in a hyper spectral imaging platform that can precisely identify and quantify the amount of a specific marker or a group in a given tumor sample. This was determined by comparing the spectra generated by the tumor sample to individual spectra generated from each of the fluorescently labeled molecular markers [REF]. Further this method has been used to determine the constituent proteins in a cell lysate on quantum dot lysate arrays using fluorescently labeled antibodies. The algorithm compared the data spectra to a linear combination of standard spectra ADDIN EN.CITE <EndNote><Cite><Author>Rosenblatt</Author><Year>2012</Year><RecNum>1051</RecNum><DisplayText>[19]</DisplayText><record><rec-number>1051</rec-number><foreign-keys><key app="EN" db-id="wx90r9pt8rtr20eftvyvz0a4t02v0zsw02wv">1051</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Rosenblatt, K. P.</author><author>Huebschman, M. L.</author><author>Garner, H. R.</author></authors></contributors><auth-address>Health Science Center CCTS Proteomics Core, The Brown Foundation Institute of Molecular Medicine/UT, Houston, TX, USA. Kevin.Rosenblatt@uth.tmc.edu</auth-address><titles><title>Construction and hyperspectral imaging of quantum dot lysate arrays</title><secondary-title>Methods Mol Biol</secondary-title><alt-title>Methods in molecular biology</alt-title></titles><periodical><full-title>Methods Mol Biol</full-title></periodical><pages>311-24</pages><volume>823</volume><edition>2011/11/15</edition><dates><year>2012</year></dates><isbn>1940-6029 (Electronic)&#xD;1064-3745 (Linking)</isbn><accession-num>22081354</accession-num><urls><related-urls><url>;[19]. The identity or a close match to the unknown sample has been determined using regression analysis and classification approaches. The development of this technology has resulted in the creation of an integrated bio-signature, multiple select agent specific detection system.1.4 Organization of publications and manuscripts This research addresses the development of a pipeline for comparative genome analysis and creation of a data repository of bio-signatures specific for organisms under study. Our library contains over 70 pathogen and host ‘patterns’, and expands and increases in resolving power as more samples are processed. Hybridization patterns on these probes are unique to a genome, and potentially to different isolates and to a mixture of organisms. Identification of a new or emerging species can be classified on the similarity of its pattern to similar patterns found within a library of known samples. These probe sets were translated into a knowledge base repository of bio-signatures. Examples of unique hybridization signal intensity patterns are presented for different Brucella species as well as relevant host species and other pathogens. These results demonstrate the utility of the UBDA array as a diagnostic tool in pathogen forensics.1.4.1 A species independent universal bio-detection microarray for pathogen forensics and phylogenetic classification of unknown microorganisms.The first publication ADDIN EN.CITE <EndNote><Cite><Author>Shallom</Author><Year>2011</Year><RecNum>444</RecNum><DisplayText>[20]</DisplayText><record><rec-number>444</rec-number><foreign-keys><key app="EN" db-id="wx90r9pt8rtr20eftvyvz0a4t02v0zsw02wv">444</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Shallom, S. J.</author><author>Weeks, J. N.</author><author>Galindo, C. L.</author><author>McIver, L.</author><author>Sun, Z.</author><author>McCormick, J.</author><author>Adams, L. G.</author><author>Garner, H. R.</author></authors></contributors><auth-address>Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, VA, USA. garner@vbi.vt.edu.</auth-address><titles><title>A species independent universal bio-detection microarray for pathogen forensics and phylogenetic classification of unknown microorganisms</title><secondary-title>BMC Microbiol</secondary-title><alt-title>BMC microbiology</alt-title></titles><periodical><full-title>BMC Microbiol</full-title></periodical><pages>132</pages><volume>11</volume><edition>2011/06/16</edition><dates><year>2011</year></dates><isbn>1471-2180 (Electronic)&#xD;1471-2180 (Linking)</isbn><accession-num>21672191</accession-num><urls><related-urls><url>;[20] addresses the development of the basic UBDA technology. Several arrays were tested to determine hybridization conditions and image scanning parameters. UBDA array sensitivity and specificity of probe hybridization and signal intensities were determined. UBDA technology was used to differentiate between an initial collection of samples that spanned eukaryotes, prokaryotes and virus clades. Hierarchical clustering algorithm and Pearson's correlation was used to determine phylogenetic relationships between organisms. 1.4.2 Comparison of genome diversity of Brucella spp. field isolates using Universal Bio-signature Detection Array and whole genome sequencing reveals limitations of current diagnostic methods.The second manuscript addresses the utilization of this array technology to resolve closely related species and isolates of Brucella field isolates obtained from a state diagnostic lab "The Texas Animal Health Commission". This study was an in-depth study of the Brucella genome, for it involved real world field analysis of samples with unusual profiles from standard protocols (serology and biochemical typing). The UBDA method was used to establish the identity of the species diversity and phylogenomic relationships between field isolates, and was shown to be sensitive to species variants of the type seen here. We demonstrate the use of signal intensities from UBDA to generate a principal component analysis and assign a given sample to one of more groups. Principal component analysis and Euclidean distance mapping to reference B. abortus 2308 and B. suis 1330 genomes provides a quantitative approximation to the composite species identity of the field isolate. Samples from bovine milk or tissue determined to be B. suis in biochemical or serological tests were found to be a mixed composite of Brucella species. To validate this, nine field isolates were sequenced and their sequencing reads were mapped to the B. suis 1330 and B. abortus 9-941 genome sequences. Hence, we determined that they were not pure B. suis isolates and presumably are the result of mixed or dual infections. The analysis of closely related strains and species by microarray-based comparative genomics provides a measure of genetic variability within natural populations.1.4.3 Development of molecular diagnostics using Universal Bio-signature Detection Array technology in host pathogen forensics.The third manuscript addresses advancing the development of the UBDA array as a molecular diagnostic and a robust pipeline for the discovery of unique nucleic acid signatures for pathogens and their host. Further the development of UBDA as a surveillance method for host insect vectors as carriers of viral and parasitic diseases was explored. This study provides a quantitative assessment of amounts of a given pathogen present in a host background or in a mixed organism population. Thus bio-signatures from the pathogen and host are simultaneously captured and analyzed.Chapter 2A species independent universal bio-detection microarray for pathogen forensics and phylogenetic classification of unknown microorganismsShamira J Shallom1, Jenni N Weeks2, Cristi L Galindo1, Lauren McIver1, Zhaohui Sun1, John McCormick1, L Garry Adams3, Harold R Garner1§1Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, VA, USA; 2 St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN, USA; 3Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A & M University, College Station, TX, USA.1§Corresponding authorHarold R. GarnerExecutive DirectorVirginia Bioinformatics InstituteVirginia TechWashington Street, MC0477Blacksburg, VA 24061-0477, USAEmail?: garner@vbi.vt.eduPhone: 540.231.2582Fax: 540.231.26062.1 Abstract BackgroundThe ability to differentiate a bioterrorist attack or an accidental release of a research pathogen from a naturally occurring pandemic or disease event is crucial to the safety and security of this nation by enabling an appropriate and rapid response. It is critical in samples from an infected patient, the environment, or a laboratory to quickly and accurately identify the precise pathogen including natural or engineered variants and to classify new pathogens in relation to those that are known. Current approaches for pathogen detection rely on prior genomic sequence information. Given the enormous spectrum of genetic possibilities, a field deployable, robust technology, such as a universal (any species) microarray has near-term potential to address these needs. ResultsA new and comprehensive sequence-independent array (Universal Bio-Signature Detection Array) was designed with approximately 373,000 probes. The main feature of this array is that the probes are computationally derived and sequence independent. There is one probe for each possible 9-mer sequence, thus 49 (262,144) probes. Each genome hybridized on this array has a unique pattern of signal intensities corresponding to each of these probes. These signal intensities were used to generate an un-biased cluster analysis of signal intensity hybridization patterns that can easily distinguish species into accepted and known phylogenomic relationships. Within limits, the array is highly sensitive and is able to detect synthetically mixed pathogens. Examples of unique hybridization signal intensity patterns are presented for different Brucella species as well as relevant host species and other pathogens. These results demonstrate the utility of the UBDA array as a diagnostic tool in pathogen forensics.ConclusionsThis pathogen detection system is fast, accurate and can be applied to any species. Hybridization patterns are unique to a specific genome and these can be used to decipher the identity of a mixed pathogen sample and can separate hosts and pathogens into their respective phylogenomic relationships. This technology can also differentiate between different species and classify genomes into their known clades. The development of this technology will result in the creation of an integrated biomarker-specific bio-signature, multiple select agent specific detection system.2.2 Background Rapid, accurate and sensitive detection of bio-threat agents requires a broad-spectrum assay capable of discriminating between closely related microbial or viral pathogens. In cases where a biological agent release has been identified, forensic analysis demands detailed genetic signature data for accurate strain identification and attribution. Identification of genetic signatures for detection coupled with identification of pathogenic phenotypes would provide a robust means of discriminating pathogens from closely related but benign species ADDIN EN.CITE <EndNote><Cite><Author>Pannucci</Author><Year>2004</Year><RecNum>5</RecNum><DisplayText>[1]</DisplayText><record><rec-number>5</rec-number><foreign-keys><key app="EN" db-id="wx90r9pt8rtr20eftvyvz0a4t02v0zsw02wv">5</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Pannucci, J.</author><author>Cai, H.</author><author>Pardington, P. E.</author><author>Williams, E.</author><author>Okinaka, R. T.</author><author>Kuske, C. R.</author><author>Cary, R. B.</author></authors></contributors><auth-address>Bioscience Division, M888, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.</auth-address><titles><title>Virulence signatures: microarray-based approaches to discovery and analysis</title><secondary-title>Biosens Bioelectron</secondary-title></titles><pages>706-18</pages><volume>20</volume><number>4</number><edition>2004/11/04</edition><keywords><keyword>Bacillus anthracis/classification/genetics/*isolation &amp;</keyword><keyword>purification/*pathogenicity</keyword><keyword>Environmental Monitoring/instrumentation/methods</keyword><keyword>Gene Expression Profiling/*methods</keyword><keyword>Oligonucleotide Array Sequence Analysis/instrumentation/*methods</keyword><keyword>Polymorphism, Single Nucleotide/genetics</keyword><keyword>Sequence Analysis, DNA/*methods</keyword><keyword>Virulence Factors/*analysis/*genetics</keyword></keywords><dates><year>2004</year><pub-dates><date>Nov 1</date></pub-dates></dates><isbn>0956-5663 (Print)&#xD;0956-5663 (Linking)</isbn><accession-num>15522585</accession-num><urls><related-urls><url> [pii]&#xD;10.1016/j.bios.2004.04.005</electronic-resource-num><language>eng</language></record></Cite></EndNote>[1].Current forensics methods based on bacteriological, serological, biochemical and genomic strategies have been used to detect pathogens using serological methods PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5SdWl6LU1lc2E8L0F1dGhvcj48WWVhcj4yMDA1PC9ZZWFy

PjxSZWNOdW0+Mzk4PC9SZWNOdW0+PERpc3BsYXlUZXh0PlsyXTwvRGlzcGxheVRleHQ+PHJlY29y

ZD48cmVjLW51bWJlcj4zOTg8L3JlYy1udW1iZXI+PGZvcmVpZ24ta2V5cz48a2V5IGFwcD0iRU4i

IGRiLWlkPSJ3eDkwcjlwdDhydHIyMGVmdHZ5dnowYTR0MDJ2MHpzdzAyd3YiPjM5ODwva2V5Pjwv

Zm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJKb3VybmFsIEFydGljbGUiPjE3PC9yZWYtdHlw

ZT48Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+UnVpei1NZXNhLCBKLiBELjwvYXV0aG9y

PjxhdXRob3I+U2FuY2hlei1Hb256YWxleiwgSi48L2F1dGhvcj48YXV0aG9yPlJlZ3VlcmEsIEou

IE0uPC9hdXRob3I+PGF1dGhvcj5NYXJ0aW4sIEwuPC9hdXRob3I+PGF1dGhvcj5Mb3Blei1QYWxt

ZXJvLCBTLjwvYXV0aG9yPjxhdXRob3I+Q29sbWVuZXJvLCBKLiBELjwvYXV0aG9yPjwvYXV0aG9y

cz48L2NvbnRyaWJ1dG9ycz48YXV0aC1hZGRyZXNzPkluZmVjdGlvdXMgRGlzZWFzZXMgVW5pdCwg

SW50ZXJuYWwgTWVkaWNpbmUgRGVwYXJ0bWVudCwgQ2FybG9zIEhheWEgVW5pdmVyc2l0eSwgMjkw

MTAgTWFsYWdhLCBTcGFpbi48L2F1dGgtYWRkcmVzcz48dGl0bGVzPjx0aXRsZT5Sb3NlIEJlbmdh

bCB0ZXN0OiBkaWFnbm9zdGljIHlpZWxkIGFuZCB1c2UgZm9yIHRoZSByYXBpZCBkaWFnbm9zaXMg

b2YgaHVtYW4gYnJ1Y2VsbG9zaXMgaW4gZW1lcmdlbmN5IGRlcGFydG1lbnRzIGluIGVuZGVtaWMg

YXJlYXM8L3RpdGxlPjxzZWNvbmRhcnktdGl0bGU+Q2xpbiBNaWNyb2Jpb2wgSW5mZWN0PC9zZWNv

bmRhcnktdGl0bGU+PC90aXRsZXM+PHBlcmlvZGljYWw+PGZ1bGwtdGl0bGU+Q2xpbiBNaWNyb2Jp

b2wgSW5mZWN0PC9mdWxsLXRpdGxlPjwvcGVyaW9kaWNhbD48cGFnZXM+MjIxLTU8L3BhZ2VzPjx2

b2x1bWU+MTE8L3ZvbHVtZT48bnVtYmVyPjM8L251bWJlcj48ZWRpdGlvbj4yMDA1LzAyLzE4PC9l

ZGl0aW9uPjxrZXl3b3Jkcz48a2V5d29yZD5BZG9sZXNjZW50PC9rZXl3b3JkPjxrZXl3b3JkPkFk

dWx0PC9rZXl3b3JkPjxrZXl3b3JkPkFnZWQ8L2tleXdvcmQ+PGtleXdvcmQ+QWdlZCwgODAgYW5k

IG92ZXI8L2tleXdvcmQ+PGtleXdvcmQ+QWdnbHV0aW5hdGlvbiBUZXN0cy8qbWV0aG9kczwva2V5

d29yZD48a2V5d29yZD5CcnVjZWxsb3Npcy8qZGlhZ25vc2lzL2VwaWRlbWlvbG9neTwva2V5d29y

ZD48a2V5d29yZD5FbWVyZ2VuY3kgTWVkaWNhbCBTZXJ2aWNlczwva2V5d29yZD48a2V5d29yZD5F

bWVyZ2VuY3kgU2VydmljZSwgSG9zcGl0YWw8L2tleXdvcmQ+PGtleXdvcmQ+RmVtYWxlPC9rZXl3

b3JkPjxrZXl3b3JkPkh1bWFuczwva2V5d29yZD48a2V5d29yZD5NYWxlPC9rZXl3b3JkPjxrZXl3

b3JkPk1pZGRsZSBBZ2VkPC9rZXl3b3JkPjxrZXl3b3JkPipSb3NlIEJlbmdhbDwva2V5d29yZD48

a2V5d29yZD5TZW5zaXRpdml0eSBhbmQgU3BlY2lmaWNpdHk8L2tleXdvcmQ+PGtleXdvcmQ+U3Bh

aW4vZXBpZGVtaW9sb2d5PC9rZXl3b3JkPjxrZXl3b3JkPlN0YWluaW5nIGFuZCBMYWJlbGluZzwv

a2V5d29yZD48L2tleXdvcmRzPjxkYXRlcz48eWVhcj4yMDA1PC95ZWFyPjxwdWItZGF0ZXM+PGRh

dGU+TWFyPC9kYXRlPjwvcHViLWRhdGVzPjwvZGF0ZXM+PGlzYm4+MTE5OC03NDNYIChQcmludCkm

I3hEOzExOTgtNzQzWCAoTGlua2luZyk8L2lzYm4+PGFjY2Vzc2lvbi1udW0+MTU3MTU3MjA8L2Fj

Y2Vzc2lvbi1udW0+PHVybHM+PHJlbGF0ZWQtdXJscz48dXJsPmh0dHA6Ly93d3cubmNiaS5ubG0u

bmloLmdvdi9lbnRyZXovcXVlcnkuZmNnaT9jbWQ9UmV0cmlldmUmYW1wO2RiPVB1Yk1lZCZhbXA7

ZG9wdD1DaXRhdGlvbiZhbXA7bGlzdF91aWRzPTE1NzE1NzIwPC91cmw+PC9yZWxhdGVkLXVybHM+

PC91cmxzPjxlbGVjdHJvbmljLXJlc291cmNlLW51bT5DTE0xMDYzIFtwaWldJiN4RDsxMC4xMTEx

L2ouMTQ2OS0wNjkxLjIwMDQuMDEwNjMueDwvZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+PGxhbmd1

YWdlPmVuZzwvbGFuZ3VhZ2U+PC9yZWNvcmQ+PC9DaXRlPjwvRW5kTm90ZT5=

ADDIN EN.CITE PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5SdWl6LU1lc2E8L0F1dGhvcj48WWVhcj4yMDA1PC9ZZWFy

PjxSZWNOdW0+Mzk4PC9SZWNOdW0+PERpc3BsYXlUZXh0PlsyXTwvRGlzcGxheVRleHQ+PHJlY29y

ZD48cmVjLW51bWJlcj4zOTg8L3JlYy1udW1iZXI+PGZvcmVpZ24ta2V5cz48a2V5IGFwcD0iRU4i

IGRiLWlkPSJ3eDkwcjlwdDhydHIyMGVmdHZ5dnowYTR0MDJ2MHpzdzAyd3YiPjM5ODwva2V5Pjwv

Zm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJKb3VybmFsIEFydGljbGUiPjE3PC9yZWYtdHlw

ZT48Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+UnVpei1NZXNhLCBKLiBELjwvYXV0aG9y

PjxhdXRob3I+U2FuY2hlei1Hb256YWxleiwgSi48L2F1dGhvcj48YXV0aG9yPlJlZ3VlcmEsIEou

IE0uPC9hdXRob3I+PGF1dGhvcj5NYXJ0aW4sIEwuPC9hdXRob3I+PGF1dGhvcj5Mb3Blei1QYWxt

ZXJvLCBTLjwvYXV0aG9yPjxhdXRob3I+Q29sbWVuZXJvLCBKLiBELjwvYXV0aG9yPjwvYXV0aG9y

cz48L2NvbnRyaWJ1dG9ycz48YXV0aC1hZGRyZXNzPkluZmVjdGlvdXMgRGlzZWFzZXMgVW5pdCwg

SW50ZXJuYWwgTWVkaWNpbmUgRGVwYXJ0bWVudCwgQ2FybG9zIEhheWEgVW5pdmVyc2l0eSwgMjkw

MTAgTWFsYWdhLCBTcGFpbi48L2F1dGgtYWRkcmVzcz48dGl0bGVzPjx0aXRsZT5Sb3NlIEJlbmdh

bCB0ZXN0OiBkaWFnbm9zdGljIHlpZWxkIGFuZCB1c2UgZm9yIHRoZSByYXBpZCBkaWFnbm9zaXMg

b2YgaHVtYW4gYnJ1Y2VsbG9zaXMgaW4gZW1lcmdlbmN5IGRlcGFydG1lbnRzIGluIGVuZGVtaWMg

YXJlYXM8L3RpdGxlPjxzZWNvbmRhcnktdGl0bGU+Q2xpbiBNaWNyb2Jpb2wgSW5mZWN0PC9zZWNv

bmRhcnktdGl0bGU+PC90aXRsZXM+PHBlcmlvZGljYWw+PGZ1bGwtdGl0bGU+Q2xpbiBNaWNyb2Jp

b2wgSW5mZWN0PC9mdWxsLXRpdGxlPjwvcGVyaW9kaWNhbD48cGFnZXM+MjIxLTU8L3BhZ2VzPjx2

b2x1bWU+MTE8L3ZvbHVtZT48bnVtYmVyPjM8L251bWJlcj48ZWRpdGlvbj4yMDA1LzAyLzE4PC9l

ZGl0aW9uPjxrZXl3b3Jkcz48a2V5d29yZD5BZG9sZXNjZW50PC9rZXl3b3JkPjxrZXl3b3JkPkFk

dWx0PC9rZXl3b3JkPjxrZXl3b3JkPkFnZWQ8L2tleXdvcmQ+PGtleXdvcmQ+QWdlZCwgODAgYW5k

IG92ZXI8L2tleXdvcmQ+PGtleXdvcmQ+QWdnbHV0aW5hdGlvbiBUZXN0cy8qbWV0aG9kczwva2V5

d29yZD48a2V5d29yZD5CcnVjZWxsb3Npcy8qZGlhZ25vc2lzL2VwaWRlbWlvbG9neTwva2V5d29y

ZD48a2V5d29yZD5FbWVyZ2VuY3kgTWVkaWNhbCBTZXJ2aWNlczwva2V5d29yZD48a2V5d29yZD5F

bWVyZ2VuY3kgU2VydmljZSwgSG9zcGl0YWw8L2tleXdvcmQ+PGtleXdvcmQ+RmVtYWxlPC9rZXl3

b3JkPjxrZXl3b3JkPkh1bWFuczwva2V5d29yZD48a2V5d29yZD5NYWxlPC9rZXl3b3JkPjxrZXl3

b3JkPk1pZGRsZSBBZ2VkPC9rZXl3b3JkPjxrZXl3b3JkPipSb3NlIEJlbmdhbDwva2V5d29yZD48

a2V5d29yZD5TZW5zaXRpdml0eSBhbmQgU3BlY2lmaWNpdHk8L2tleXdvcmQ+PGtleXdvcmQ+U3Bh

aW4vZXBpZGVtaW9sb2d5PC9rZXl3b3JkPjxrZXl3b3JkPlN0YWluaW5nIGFuZCBMYWJlbGluZzwv

a2V5d29yZD48L2tleXdvcmRzPjxkYXRlcz48eWVhcj4yMDA1PC95ZWFyPjxwdWItZGF0ZXM+PGRh

dGU+TWFyPC9kYXRlPjwvcHViLWRhdGVzPjwvZGF0ZXM+PGlzYm4+MTE5OC03NDNYIChQcmludCkm

I3hEOzExOTgtNzQzWCAoTGlua2luZyk8L2lzYm4+PGFjY2Vzc2lvbi1udW0+MTU3MTU3MjA8L2Fj

Y2Vzc2lvbi1udW0+PHVybHM+PHJlbGF0ZWQtdXJscz48dXJsPmh0dHA6Ly93d3cubmNiaS5ubG0u

bmloLmdvdi9lbnRyZXovcXVlcnkuZmNnaT9jbWQ9UmV0cmlldmUmYW1wO2RiPVB1Yk1lZCZhbXA7

ZG9wdD1DaXRhdGlvbiZhbXA7bGlzdF91aWRzPTE1NzE1NzIwPC91cmw+PC9yZWxhdGVkLXVybHM+

PC91cmxzPjxlbGVjdHJvbmljLXJlc291cmNlLW51bT5DTE0xMDYzIFtwaWldJiN4RDsxMC4xMTEx

L2ouMTQ2OS0wNjkxLjIwMDQuMDEwNjMueDwvZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+PGxhbmd1

YWdlPmVuZzwvbGFuZ3VhZ2U+PC9yZWNvcmQ+PC9DaXRlPjwvRW5kTm90ZT5=

ADDIN EN.CITE.DATA [2], PCR ADDIN EN.CITE <EndNote><Cite><Author>Bricker</Author><Year>2002</Year><RecNum>402</RecNum><DisplayText>[3]</DisplayText><record><rec-number>402</rec-number><foreign-keys><key app="EN" db-id="wx90r9pt8rtr20eftvyvz0a4t02v0zsw02wv">402</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Bricker, B. J.</author></authors></contributors><auth-address>United States Department of Agriculture, Agricultural Research Service, National Animal Disease Center, 2300 Dayton Road, Ames, IA 50010, USA. bbricker@nadc.ars.</auth-address><titles><title>PCR as a diagnostic tool for brucellosis</title><secondary-title>Vet Microbiol</secondary-title></titles><periodical><full-title>Vet Microbiol</full-title></periodical><pages>435-46</pages><volume>90</volume><number>1-4</number><edition>2002/11/05</edition><keywords><keyword>Animals</keyword><keyword>Brucella/genetics/*isolation &amp; purification</keyword><keyword>Brucellosis/*diagnosis/*microbiology</keyword><keyword>DNA Primers</keyword><keyword>Polymerase Chain Reaction/methods</keyword></keywords><dates><year>2002</year><pub-dates><date>Dec 20</date></pub-dates></dates><isbn>0378-1135 (Print)&#xD;0378-1135 (Linking)</isbn><accession-num>12414163</accession-num><urls><related-urls><url> [pii]</electronic-resource-num><language>eng</language></record></Cite></EndNote>[3], real time PCR PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5Cb3VuYWFkamE8L0F1dGhvcj48WWVhcj4yMDA5PC9ZZWFy

PjxSZWNOdW0+NDAzPC9SZWNOdW0+PERpc3BsYXlUZXh0Pls0LCA1XTwvRGlzcGxheVRleHQ+PHJl

Y29yZD48cmVjLW51bWJlcj40MDM8L3JlYy1udW1iZXI+PGZvcmVpZ24ta2V5cz48a2V5IGFwcD0i

RU4iIGRiLWlkPSJ3eDkwcjlwdDhydHIyMGVmdHZ5dnowYTR0MDJ2MHpzdzAyd3YiPjQwMzwva2V5

PjwvZm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJKb3VybmFsIEFydGljbGUiPjE3PC9yZWYt

dHlwZT48Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+Qm91bmFhZGphLCBMLjwvYXV0aG9y

PjxhdXRob3I+QWxiZXJ0LCBELjwvYXV0aG9yPjxhdXRob3I+Q2hlbmFpcywgQi48L2F1dGhvcj48

YXV0aG9yPkhlbmF1bHQsIFMuPC9hdXRob3I+PGF1dGhvcj5aeWdtdW50LCBNLiBTLjwvYXV0aG9y

PjxhdXRob3I+UG9saWFrLCBTLjwvYXV0aG9yPjxhdXRob3I+R2FyaW4tQmFzdHVqaSwgQi48L2F1

dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PGF1dGgtYWRkcmVzcz5Vbml2ZXJzaXRlIGR1

IE1haW5lLCBMYWJvcmF0b2lyZSBkZSBCaW9sb2dpZSBldCBHZW5ldGlxdWUgRXZvbHV0aXZlLCBF

QTIxNjAgTWVyIE1vbGVjdWxlcyBTYW50ZSwgNzIwODUgTGUgTWFucywgRnJhbmNlLjwvYXV0aC1h

ZGRyZXNzPjx0aXRsZXM+PHRpdGxlPlJlYWwtdGltZSBQQ1IgZm9yIGlkZW50aWZpY2F0aW9uIG9m

IEJydWNlbGxhIHNwcC46IGEgY29tcGFyYXRpdmUgc3R1ZHkgb2YgSVM3MTEsIGJjc3AzMSBhbmQg

cGVyIHRhcmdldCBnZW5lczwvdGl0bGU+PHNlY29uZGFyeS10aXRsZT5WZXQgTWljcm9iaW9sPC9z

ZWNvbmRhcnktdGl0bGU+PC90aXRsZXM+PHBlcmlvZGljYWw+PGZ1bGwtdGl0bGU+VmV0IE1pY3Jv

YmlvbDwvZnVsbC10aXRsZT48L3BlcmlvZGljYWw+PHBhZ2VzPjE1Ni02NDwvcGFnZXM+PHZvbHVt

ZT4xMzc8L3ZvbHVtZT48bnVtYmVyPjEtMjwvbnVtYmVyPjxlZGl0aW9uPjIwMDkvMDIvMTA8L2Vk

aXRpb24+PGtleXdvcmRzPjxrZXl3b3JkPkJydWNlbGxhLypnZW5ldGljcy8qaXNvbGF0aW9uICZh

bXA7IHB1cmlmaWNhdGlvbjwva2V5d29yZD48a2V5d29yZD5ETkEsIEJhY3RlcmlhbC9nZW5ldGlj

czwva2V5d29yZD48a2V5d29yZD4qR2VuZXMsIEJhY3RlcmlhbDwva2V5d29yZD48a2V5d29yZD5Q

b2x5bWVyYXNlIENoYWluIFJlYWN0aW9uLyptZXRob2RzPC9rZXl3b3JkPjxrZXl3b3JkPlJlcHJv

ZHVjaWJpbGl0eSBvZiBSZXN1bHRzPC9rZXl3b3JkPjxrZXl3b3JkPlNlbnNpdGl2aXR5IGFuZCBT

cGVjaWZpY2l0eTwva2V5d29yZD48L2tleXdvcmRzPjxkYXRlcz48eWVhcj4yMDA5PC95ZWFyPjxw

dWItZGF0ZXM+PGRhdGU+TWF5IDI4PC9kYXRlPjwvcHViLWRhdGVzPjwvZGF0ZXM+PGlzYm4+MDM3

OC0xMTM1IChQcmludCkmI3hEOzAzNzgtMTEzNSAoTGlua2luZyk8L2lzYm4+PGFjY2Vzc2lvbi1u

dW0+MTkyMDA2NjY8L2FjY2Vzc2lvbi1udW0+PHVybHM+PHJlbGF0ZWQtdXJscz48dXJsPmh0dHA6

Ly93d3cubmNiaS5ubG0ubmloLmdvdi9lbnRyZXovcXVlcnkuZmNnaT9jbWQ9UmV0cmlldmUmYW1w

O2RiPVB1Yk1lZCZhbXA7ZG9wdD1DaXRhdGlvbiZhbXA7bGlzdF91aWRzPTE5MjAwNjY2PC91cmw+

PC9yZWxhdGVkLXVybHM+PC91cmxzPjxlbGVjdHJvbmljLXJlc291cmNlLW51bT5TMDM3OC0xMTM1

KDA4KTAwNjA5LTMgW3BpaV0mI3hEOzEwLjEwMTYvai52ZXRtaWMuMjAwOC4xMi4wMjM8L2VsZWN0

cm9uaWMtcmVzb3VyY2UtbnVtPjxsYW5ndWFnZT5lbmc8L2xhbmd1YWdlPjwvcmVjb3JkPjwvQ2l0

ZT48Q2l0ZT48QXV0aG9yPkhpbmljPC9BdXRob3I+PFllYXI+MjAwOTwvWWVhcj48UmVjTnVtPjQw

NTwvUmVjTnVtPjxyZWNvcmQ+PHJlYy1udW1iZXI+NDA1PC9yZWMtbnVtYmVyPjxmb3JlaWduLWtl

eXM+PGtleSBhcHA9IkVOIiBkYi1pZD0id3g5MHI5cHQ4cnRyMjBlZnR2eXZ6MGE0dDAydjB6c3cw

Mnd2Ij40MDU8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iSm91cm5hbCBBcnRp

Y2xlIj4xNzwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPkhpbmljLCBW

LjwvYXV0aG9yPjxhdXRob3I+QnJvZGFyZCwgSS48L2F1dGhvcj48YXV0aG9yPlRob21hbm4sIEEu

PC9hdXRob3I+PGF1dGhvcj5Ib2x1YiwgTS48L2F1dGhvcj48YXV0aG9yPk1pc2VyZXosIFIuPC9h

dXRob3I+PGF1dGhvcj5BYnJpbCwgQy48L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+

PGF1dGgtYWRkcmVzcz5OYXRpb25hbCBDZW50cmUgZm9yIFpvb25vc2VzLCBCYWN0ZXJpYWwgQW5p

bWFsIERpc2Vhc2VzIGFuZCBBbnRpbWljcm9iaWFsIFJlc2lzdGFuY2UgKFpPQkEpLCBJbnN0aXR1

dGUgb2YgVmV0ZXJpbmFyeSBCYWN0ZXJpb2xvZ3ksIFVuaXZlcnNpdHkgb2YgQmVybiwgVmV0c3Vp

c3NlIEZhY3VsdHksIExhbmdnYXNzLVN0cmFzc2UgMTIyLCBQTyBCb3gsIENILTMwMDEgQmVybiwg

U3dpdHplcmxhbmQuIHZsYWRpbWlyYS5oaW5pY0B2YmkudW5pYmUuY2g8L2F1dGgtYWRkcmVzcz48

dGl0bGVzPjx0aXRsZT5JUzcxMS1iYXNlZCByZWFsLXRpbWUgUENSIGFzc2F5IGFzIGEgdG9vbCBm

b3IgZGV0ZWN0aW9uIG9mIEJydWNlbGxhIHNwcC4gaW4gd2lsZCBib2FycyBhbmQgY29tcGFyaXNv

biB3aXRoIGJhY3RlcmlhbCBpc29sYXRpb24gYW5kIHNlcm9sb2d5PC90aXRsZT48c2Vjb25kYXJ5

LXRpdGxlPkJNQyBWZXQgUmVzPC9zZWNvbmRhcnktdGl0bGU+PC90aXRsZXM+PHBlcmlvZGljYWw+

PGZ1bGwtdGl0bGU+Qk1DIFZldCBSZXM8L2Z1bGwtdGl0bGU+PC9wZXJpb2RpY2FsPjxwYWdlcz4y

MjwvcGFnZXM+PHZvbHVtZT41PC92b2x1bWU+PGVkaXRpb24+MjAwOS8wNy8xNjwvZWRpdGlvbj48

a2V5d29yZHM+PGtleXdvcmQ+QW5pbWFsczwva2V5d29yZD48a2V5d29yZD5CcnVjZWxsYS8qaXNv

bGF0aW9uICZhbXA7IHB1cmlmaWNhdGlvbjwva2V5d29yZD48a2V5d29yZD5CcnVjZWxsb3Npcy9i

bG9vZC9lcGlkZW1pb2xvZ3kvbWljcm9iaW9sb2d5Lyp2ZXRlcmluYXJ5PC9rZXl3b3JkPjxrZXl3

b3JkPkZlbWFsZTwva2V5d29yZD48a2V5d29yZD5NYWxlPC9rZXl3b3JkPjxrZXl3b3JkPlBvbHlt

ZXJhc2UgQ2hhaW4gUmVhY3Rpb24vKnZldGVyaW5hcnk8L2tleXdvcmQ+PGtleXdvcmQ+UmVwcm9k

dWNpYmlsaXR5IG9mIFJlc3VsdHM8L2tleXdvcmQ+PGtleXdvcmQ+U2Vuc2l0aXZpdHkgYW5kIFNw

ZWNpZmljaXR5PC9rZXl3b3JkPjxrZXl3b3JkPlNlcm9sb2dpYyBUZXN0czwva2V5d29yZD48a2V5

d29yZD5TcGxlZW4vbWljcm9iaW9sb2d5PC9rZXl3b3JkPjxrZXl3b3JkPlN3aW5lPC9rZXl3b3Jk

PjxrZXl3b3JkPlN3aW5lIERpc2Vhc2VzLypkaWFnbm9zaXMvbWljcm9iaW9sb2d5PC9rZXl3b3Jk

PjxrZXl3b3JkPlRlc3Rpcy9taWNyb2Jpb2xvZ3k8L2tleXdvcmQ+PGtleXdvcmQ+VXRlcnVzL21p

Y3JvYmlvbG9neTwva2V5d29yZD48L2tleXdvcmRzPjxkYXRlcz48eWVhcj4yMDA5PC95ZWFyPjwv

ZGF0ZXM+PGlzYm4+MTc0Ni02MTQ4IChFbGVjdHJvbmljKSYjeEQ7MTc0Ni02MTQ4IChMaW5raW5n

KTwvaXNibj48YWNjZXNzaW9uLW51bT4xOTYwMjI2NjwvYWNjZXNzaW9uLW51bT48dXJscz48cmVs

YXRlZC11cmxzPjx1cmw+aHR0cDovL3d3dy5uY2JpLm5sbS5uaWguZ292L2VudHJlei9xdWVyeS5m

Y2dpP2NtZD1SZXRyaWV2ZSZhbXA7ZGI9UHViTWVkJmFtcDtkb3B0PUNpdGF0aW9uJmFtcDtsaXN0

X3VpZHM9MTk2MDIyNjY8L3VybD48L3JlbGF0ZWQtdXJscz48L3VybHM+PGN1c3RvbTI+MjcxOTYy

NDwvY3VzdG9tMj48ZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+MTc0Ni02MTQ4LTUtMjIgW3BpaV0m

I3hEOzEwLjExODYvMTc0Ni02MTQ4LTUtMjI8L2VsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjxsYW5n

dWFnZT5lbmc8L2xhbmd1YWdlPjwvcmVjb3JkPjwvQ2l0ZT48L0VuZE5vdGU+

ADDIN EN.CITE PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5Cb3VuYWFkamE8L0F1dGhvcj48WWVhcj4yMDA5PC9ZZWFy

PjxSZWNOdW0+NDAzPC9SZWNOdW0+PERpc3BsYXlUZXh0Pls0LCA1XTwvRGlzcGxheVRleHQ+PHJl

Y29yZD48cmVjLW51bWJlcj40MDM8L3JlYy1udW1iZXI+PGZvcmVpZ24ta2V5cz48a2V5IGFwcD0i

RU4iIGRiLWlkPSJ3eDkwcjlwdDhydHIyMGVmdHZ5dnowYTR0MDJ2MHpzdzAyd3YiPjQwMzwva2V5

PjwvZm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJKb3VybmFsIEFydGljbGUiPjE3PC9yZWYt

dHlwZT48Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+Qm91bmFhZGphLCBMLjwvYXV0aG9y

PjxhdXRob3I+QWxiZXJ0LCBELjwvYXV0aG9yPjxhdXRob3I+Q2hlbmFpcywgQi48L2F1dGhvcj48

YXV0aG9yPkhlbmF1bHQsIFMuPC9hdXRob3I+PGF1dGhvcj5aeWdtdW50LCBNLiBTLjwvYXV0aG9y

PjxhdXRob3I+UG9saWFrLCBTLjwvYXV0aG9yPjxhdXRob3I+R2FyaW4tQmFzdHVqaSwgQi48L2F1

dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PGF1dGgtYWRkcmVzcz5Vbml2ZXJzaXRlIGR1

IE1haW5lLCBMYWJvcmF0b2lyZSBkZSBCaW9sb2dpZSBldCBHZW5ldGlxdWUgRXZvbHV0aXZlLCBF

QTIxNjAgTWVyIE1vbGVjdWxlcyBTYW50ZSwgNzIwODUgTGUgTWFucywgRnJhbmNlLjwvYXV0aC1h

ZGRyZXNzPjx0aXRsZXM+PHRpdGxlPlJlYWwtdGltZSBQQ1IgZm9yIGlkZW50aWZpY2F0aW9uIG9m

IEJydWNlbGxhIHNwcC46IGEgY29tcGFyYXRpdmUgc3R1ZHkgb2YgSVM3MTEsIGJjc3AzMSBhbmQg

cGVyIHRhcmdldCBnZW5lczwvdGl0bGU+PHNlY29uZGFyeS10aXRsZT5WZXQgTWljcm9iaW9sPC9z

ZWNvbmRhcnktdGl0bGU+PC90aXRsZXM+PHBlcmlvZGljYWw+PGZ1bGwtdGl0bGU+VmV0IE1pY3Jv

YmlvbDwvZnVsbC10aXRsZT48L3BlcmlvZGljYWw+PHBhZ2VzPjE1Ni02NDwvcGFnZXM+PHZvbHVt

ZT4xMzc8L3ZvbHVtZT48bnVtYmVyPjEtMjwvbnVtYmVyPjxlZGl0aW9uPjIwMDkvMDIvMTA8L2Vk

aXRpb24+PGtleXdvcmRzPjxrZXl3b3JkPkJydWNlbGxhLypnZW5ldGljcy8qaXNvbGF0aW9uICZh

bXA7IHB1cmlmaWNhdGlvbjwva2V5d29yZD48a2V5d29yZD5ETkEsIEJhY3RlcmlhbC9nZW5ldGlj

czwva2V5d29yZD48a2V5d29yZD4qR2VuZXMsIEJhY3RlcmlhbDwva2V5d29yZD48a2V5d29yZD5Q

b2x5bWVyYXNlIENoYWluIFJlYWN0aW9uLyptZXRob2RzPC9rZXl3b3JkPjxrZXl3b3JkPlJlcHJv

ZHVjaWJpbGl0eSBvZiBSZXN1bHRzPC9rZXl3b3JkPjxrZXl3b3JkPlNlbnNpdGl2aXR5IGFuZCBT

cGVjaWZpY2l0eTwva2V5d29yZD48L2tleXdvcmRzPjxkYXRlcz48eWVhcj4yMDA5PC95ZWFyPjxw

dWItZGF0ZXM+PGRhdGU+TWF5IDI4PC9kYXRlPjwvcHViLWRhdGVzPjwvZGF0ZXM+PGlzYm4+MDM3

OC0xMTM1IChQcmludCkmI3hEOzAzNzgtMTEzNSAoTGlua2luZyk8L2lzYm4+PGFjY2Vzc2lvbi1u

dW0+MTkyMDA2NjY8L2FjY2Vzc2lvbi1udW0+PHVybHM+PHJlbGF0ZWQtdXJscz48dXJsPmh0dHA6

Ly93d3cubmNiaS5ubG0ubmloLmdvdi9lbnRyZXovcXVlcnkuZmNnaT9jbWQ9UmV0cmlldmUmYW1w

O2RiPVB1Yk1lZCZhbXA7ZG9wdD1DaXRhdGlvbiZhbXA7bGlzdF91aWRzPTE5MjAwNjY2PC91cmw+

PC9yZWxhdGVkLXVybHM+PC91cmxzPjxlbGVjdHJvbmljLXJlc291cmNlLW51bT5TMDM3OC0xMTM1

KDA4KTAwNjA5LTMgW3BpaV0mI3hEOzEwLjEwMTYvai52ZXRtaWMuMjAwOC4xMi4wMjM8L2VsZWN0

cm9uaWMtcmVzb3VyY2UtbnVtPjxsYW5ndWFnZT5lbmc8L2xhbmd1YWdlPjwvcmVjb3JkPjwvQ2l0

ZT48Q2l0ZT48QXV0aG9yPkhpbmljPC9BdXRob3I+PFllYXI+MjAwOTwvWWVhcj48UmVjTnVtPjQw

NTwvUmVjTnVtPjxyZWNvcmQ+PHJlYy1udW1iZXI+NDA1PC9yZWMtbnVtYmVyPjxmb3JlaWduLWtl

eXM+PGtleSBhcHA9IkVOIiBkYi1pZD0id3g5MHI5cHQ4cnRyMjBlZnR2eXZ6MGE0dDAydjB6c3cw

Mnd2Ij40MDU8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iSm91cm5hbCBBcnRp

Y2xlIj4xNzwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPkhpbmljLCBW

LjwvYXV0aG9yPjxhdXRob3I+QnJvZGFyZCwgSS48L2F1dGhvcj48YXV0aG9yPlRob21hbm4sIEEu

PC9hdXRob3I+PGF1dGhvcj5Ib2x1YiwgTS48L2F1dGhvcj48YXV0aG9yPk1pc2VyZXosIFIuPC9h

dXRob3I+PGF1dGhvcj5BYnJpbCwgQy48L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+

PGF1dGgtYWRkcmVzcz5OYXRpb25hbCBDZW50cmUgZm9yIFpvb25vc2VzLCBCYWN0ZXJpYWwgQW5p

bWFsIERpc2Vhc2VzIGFuZCBBbnRpbWljcm9iaWFsIFJlc2lzdGFuY2UgKFpPQkEpLCBJbnN0aXR1

dGUgb2YgVmV0ZXJpbmFyeSBCYWN0ZXJpb2xvZ3ksIFVuaXZlcnNpdHkgb2YgQmVybiwgVmV0c3Vp

c3NlIEZhY3VsdHksIExhbmdnYXNzLVN0cmFzc2UgMTIyLCBQTyBCb3gsIENILTMwMDEgQmVybiwg

U3dpdHplcmxhbmQuIHZsYWRpbWlyYS5oaW5pY0B2YmkudW5pYmUuY2g8L2F1dGgtYWRkcmVzcz48

dGl0bGVzPjx0aXRsZT5JUzcxMS1iYXNlZCByZWFsLXRpbWUgUENSIGFzc2F5IGFzIGEgdG9vbCBm

b3IgZGV0ZWN0aW9uIG9mIEJydWNlbGxhIHNwcC4gaW4gd2lsZCBib2FycyBhbmQgY29tcGFyaXNv

biB3aXRoIGJhY3RlcmlhbCBpc29sYXRpb24gYW5kIHNlcm9sb2d5PC90aXRsZT48c2Vjb25kYXJ5

LXRpdGxlPkJNQyBWZXQgUmVzPC9zZWNvbmRhcnktdGl0bGU+PC90aXRsZXM+PHBlcmlvZGljYWw+

PGZ1bGwtdGl0bGU+Qk1DIFZldCBSZXM8L2Z1bGwtdGl0bGU+PC9wZXJpb2RpY2FsPjxwYWdlcz4y

MjwvcGFnZXM+PHZvbHVtZT41PC92b2x1bWU+PGVkaXRpb24+MjAwOS8wNy8xNjwvZWRpdGlvbj48

a2V5d29yZHM+PGtleXdvcmQ+QW5pbWFsczwva2V5d29yZD48a2V5d29yZD5CcnVjZWxsYS8qaXNv

bGF0aW9uICZhbXA7IHB1cmlmaWNhdGlvbjwva2V5d29yZD48a2V5d29yZD5CcnVjZWxsb3Npcy9i

bG9vZC9lcGlkZW1pb2xvZ3kvbWljcm9iaW9sb2d5Lyp2ZXRlcmluYXJ5PC9rZXl3b3JkPjxrZXl3

b3JkPkZlbWFsZTwva2V5d29yZD48a2V5d29yZD5NYWxlPC9rZXl3b3JkPjxrZXl3b3JkPlBvbHlt

ZXJhc2UgQ2hhaW4gUmVhY3Rpb24vKnZldGVyaW5hcnk8L2tleXdvcmQ+PGtleXdvcmQ+UmVwcm9k

dWNpYmlsaXR5IG9mIFJlc3VsdHM8L2tleXdvcmQ+PGtleXdvcmQ+U2Vuc2l0aXZpdHkgYW5kIFNw

ZWNpZmljaXR5PC9rZXl3b3JkPjxrZXl3b3JkPlNlcm9sb2dpYyBUZXN0czwva2V5d29yZD48a2V5

d29yZD5TcGxlZW4vbWljcm9iaW9sb2d5PC9rZXl3b3JkPjxrZXl3b3JkPlN3aW5lPC9rZXl3b3Jk

PjxrZXl3b3JkPlN3aW5lIERpc2Vhc2VzLypkaWFnbm9zaXMvbWljcm9iaW9sb2d5PC9rZXl3b3Jk

PjxrZXl3b3JkPlRlc3Rpcy9taWNyb2Jpb2xvZ3k8L2tleXdvcmQ+PGtleXdvcmQ+VXRlcnVzL21p

Y3JvYmlvbG9neTwva2V5d29yZD48L2tleXdvcmRzPjxkYXRlcz48eWVhcj4yMDA5PC95ZWFyPjwv

ZGF0ZXM+PGlzYm4+MTc0Ni02MTQ4IChFbGVjdHJvbmljKSYjeEQ7MTc0Ni02MTQ4IChMaW5raW5n

KTwvaXNibj48YWNjZXNzaW9uLW51bT4xOTYwMjI2NjwvYWNjZXNzaW9uLW51bT48dXJscz48cmVs

YXRlZC11cmxzPjx1cmw+aHR0cDovL3d3dy5uY2JpLm5sbS5uaWguZ292L2VudHJlei9xdWVyeS5m

Y2dpP2NtZD1SZXRyaWV2ZSZhbXA7ZGI9UHViTWVkJmFtcDtkb3B0PUNpdGF0aW9uJmFtcDtsaXN0

X3VpZHM9MTk2MDIyNjY8L3VybD48L3JlbGF0ZWQtdXJscz48L3VybHM+PGN1c3RvbTI+MjcxOTYy

NDwvY3VzdG9tMj48ZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+MTc0Ni02MTQ4LTUtMjIgW3BpaV0m

I3hEOzEwLjExODYvMTc0Ni02MTQ4LTUtMjI8L2VsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjxsYW5n

dWFnZT5lbmc8L2xhbmd1YWdlPjwvcmVjb3JkPjwvQ2l0ZT48L0VuZE5vdGU+

ADDIN EN.CITE.DATA [4, 5] and Multi-loci VNTR (variable-number tandem repeats) or MLVA PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5IZXI8L0F1dGhvcj48WWVhcj4yMDEwPC9ZZWFyPjxSZWNO

dW0+NDA3PC9SZWNOdW0+PERpc3BsYXlUZXh0Pls2LTldPC9EaXNwbGF5VGV4dD48cmVjb3JkPjxy

ZWMtbnVtYmVyPjQwNzwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGIt

aWQ9Ind4OTByOXB0OHJ0cjIwZWZ0dnl2ejBhNHQwMnYwenN3MDJ3diI+NDA3PC9rZXk+PC9mb3Jl

aWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBlPjxj

b250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5IZXIsIE0uPC9hdXRob3I+PGF1dGhvcj5LYW5n

LCBTLiBJLjwvYXV0aG9yPjxhdXRob3I+S2ltLCBKLiBXLjwvYXV0aG9yPjxhdXRob3I+S2ltLCBK

LiBZLjwvYXV0aG9yPjxhdXRob3I+SHdhbmcsIEkuIFkuPC9hdXRob3I+PGF1dGhvcj5KdW5nLCBT

LiBDLjwvYXV0aG9yPjxhdXRob3I+UGFyaywgUy4gSC48L2F1dGhvcj48YXV0aG9yPlBhcmssIE0u

IFkuPC9hdXRob3I+PGF1dGhvcj5Zb28sIEguPC9hdXRob3I+PC9hdXRob3JzPjwvY29udHJpYnV0

b3JzPjxhdXRoLWFkZHJlc3M+TmF0aW9uYWwgVmV0ZXJpbmFyeSBSZXNlYXJjaCBhbmQgUXVhcmFu

dGluZSBTZXJ2aWNlIChOVlJRUyksIEFueWFuZyA0MzAtODI0LCBLb3JlYS4gaGVybUBudnJxcy5n

by5rcjwvYXV0aC1hZGRyZXNzPjx0aXRsZXM+PHRpdGxlPkEgZ2VuZXRpYyBjb21wYXJpc29uIG9m

IEJydWNlbGxhIGFib3J0dXMgaXNvbGF0ZXMgZnJvbSBhbmltYWxzIGFuZCBodW1hbnMgYnkgdXNp

bmcgYW4gTUxWQSBhc3NheTwvdGl0bGU+PHNlY29uZGFyeS10aXRsZT5KIE1pY3JvYmlvbCBCaW90

ZWNobm9sPC9zZWNvbmRhcnktdGl0bGU+PC90aXRsZXM+PHBlcmlvZGljYWw+PGZ1bGwtdGl0bGU+

SiBNaWNyb2Jpb2wgQmlvdGVjaG5vbDwvZnVsbC10aXRsZT48L3BlcmlvZGljYWw+PHBhZ2VzPjE3

NTAtNTwvcGFnZXM+PHZvbHVtZT4yMDwvdm9sdW1lPjxudW1iZXI+MTI8L251bWJlcj48ZWRpdGlv

bj4yMDExLzAxLzA1PC9lZGl0aW9uPjxrZXl3b3Jkcz48a2V5d29yZD5BbmltYWxzPC9rZXl3b3Jk

PjxrZXl3b3JkPipCYWN0ZXJpYWwgVHlwaW5nIFRlY2huaXF1ZXM8L2tleXdvcmQ+PGtleXdvcmQ+

QnJ1Y2VsbGEgYWJvcnR1cy8qY2xhc3NpZmljYXRpb24vKmdlbmV0aWNzL2lzb2xhdGlvbiAmYW1w

OyBwdXJpZmljYXRpb248L2tleXdvcmQ+PGtleXdvcmQ+QnJ1Y2VsbG9zaXMvKm1pY3JvYmlvbG9n

eTwva2V5d29yZD48a2V5d29yZD5CcnVjZWxsb3NpcywgQm92aW5lLyptaWNyb2Jpb2xvZ3k8L2tl

eXdvcmQ+PGtleXdvcmQ+Q2F0dGxlPC9rZXl3b3JkPjxrZXl3b3JkPkNsdXN0ZXIgQW5hbHlzaXM8

L2tleXdvcmQ+PGtleXdvcmQ+RE5BIEZpbmdlcnByaW50aW5nPC9rZXl3b3JkPjxrZXl3b3JkPkRO

QSwgQmFjdGVyaWFsL2dlbmV0aWNzPC9rZXl3b3JkPjxrZXl3b3JkPipHZW5ldGljIFZhcmlhdGlv

bjwva2V5d29yZD48a2V5d29yZD5HZW5vdHlwZTwva2V5d29yZD48a2V5d29yZD5IdW1hbnM8L2tl

eXdvcmQ+PGtleXdvcmQ+TWluaXNhdGVsbGl0ZSBSZXBlYXRzPC9rZXl3b3JkPjxrZXl3b3JkPk1v

bGVjdWxhciBFcGlkZW1pb2xvZ3k8L2tleXdvcmQ+PGtleXdvcmQ+Kk1vbGVjdWxhciBUeXBpbmc8

L2tleXdvcmQ+PGtleXdvcmQ+UmVwdWJsaWMgb2YgS29yZWE8L2tleXdvcmQ+PGtleXdvcmQ+Wm9v

bm9zZXMvbWljcm9iaW9sb2d5PC9rZXl3b3JkPjwva2V5d29yZHM+PGRhdGVzPjx5ZWFyPjIwMTA8

L3llYXI+PHB1Yi1kYXRlcz48ZGF0ZT5EZWM8L2RhdGU+PC9wdWItZGF0ZXM+PC9kYXRlcz48aXNi

bj4xNzM4LTg4NzIgKEVsZWN0cm9uaWMpJiN4RDsxMDE3LTc4MjUgKExpbmtpbmcpPC9pc2JuPjxh

Y2Nlc3Npb24tbnVtPjIxMTkzODMzPC9hY2Nlc3Npb24tbnVtPjx1cmxzPjxyZWxhdGVkLXVybHM+

PHVybD5odHRwOi8vd3d3Lm5jYmkubmxtLm5paC5nb3YvZW50cmV6L3F1ZXJ5LmZjZ2k/Y21kPVJl

dHJpZXZlJmFtcDtkYj1QdWJNZWQmYW1wO2RvcHQ9Q2l0YXRpb24mYW1wO2xpc3RfdWlkcz0yMTE5

MzgzMzwvdXJsPjwvcmVsYXRlZC11cmxzPjwvdXJscz48ZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+

Sk1CMDIwLTEyLTIwIFtwaWldPC9lbGVjdHJvbmljLXJlc291cmNlLW51bT48bGFuZ3VhZ2U+ZW5n

PC9sYW5ndWFnZT48L3JlY29yZD48L0NpdGU+PENpdGU+PEF1dGhvcj5XaGF0bW9yZTwvQXV0aG9y

PjxZZWFyPjIwMDc8L1llYXI+PFJlY051bT40MTI8L1JlY051bT48cmVjb3JkPjxyZWMtbnVtYmVy

PjQxMjwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9Ind4OTBy

OXB0OHJ0cjIwZWZ0dnl2ejBhNHQwMnYwenN3MDJ3diI+NDEyPC9rZXk+PC9mb3JlaWduLWtleXM+

PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBlPjxjb250cmlidXRv

cnM+PGF1dGhvcnM+PGF1dGhvcj5XaGF0bW9yZSwgQS4gTS48L2F1dGhvcj48YXV0aG9yPlBlcnJl

dHQsIEwuIEwuPC9hdXRob3I+PGF1dGhvcj5NYWNNaWxsYW4sIEEuIFAuPC9hdXRob3I+PC9hdXRo

b3JzPjwvY29udHJpYnV0b3JzPjxhdXRoLWFkZHJlc3M+RGVwYXJ0bWVudCBvZiBTdGF0dXRvcnkg

YW5kIEV4b3RpYyBCYWN0ZXJpYWwgRGlzZWFzZXMsIFZldGVyaW5hcnkgTGFib3JhdG9yaWVzIEFn

ZW5jeSwgQWRkbGVzdG9uZSwgU3VycmV5LCBLVDE1IDNOQiwgVUsuIGEud2hhdG1vcmVAdmxhLmRl

ZnJhLmdzaS5nb3YudWs8L2F1dGgtYWRkcmVzcz48dGl0bGVzPjx0aXRsZT5DaGFyYWN0ZXJpc2F0

aW9uIG9mIHRoZSBnZW5ldGljIGRpdmVyc2l0eSBvZiBCcnVjZWxsYSBieSBtdWx0aWxvY3VzIHNl

cXVlbmNpbmc8L3RpdGxlPjxzZWNvbmRhcnktdGl0bGU+Qk1DIE1pY3JvYmlvbDwvc2Vjb25kYXJ5

LXRpdGxlPjwvdGl0bGVzPjxwZXJpb2RpY2FsPjxmdWxsLXRpdGxlPkJNQyBNaWNyb2Jpb2w8L2Z1

bGwtdGl0bGU+PC9wZXJpb2RpY2FsPjxwYWdlcz4zNDwvcGFnZXM+PHZvbHVtZT43PC92b2x1bWU+

PGVkaXRpb24+MjAwNy8wNC8yNDwvZWRpdGlvbj48a2V5d29yZHM+PGtleXdvcmQ+QW5pbWFsczwv

a2V5d29yZD48a2V5d29yZD5CYXNlIFNlcXVlbmNlPC9rZXl3b3JkPjxrZXl3b3JkPkJydWNlbGxh

LypjbGFzc2lmaWNhdGlvbi8qZ2VuZXRpY3MvaXNvbGF0aW9uICZhbXA7IHB1cmlmaWNhdGlvbjwv

a2V5d29yZD48a2V5d29yZD5CcnVjZWxsb3Npcy9taWNyb2Jpb2xvZ3kvdmV0ZXJpbmFyeTwva2V5

d29yZD48a2V5d29yZD5CcnVjZWxsb3NpcywgQm92aW5lL21pY3JvYmlvbG9neTwva2V5d29yZD48

a2V5d29yZD5DYXR0bGU8L2tleXdvcmQ+PGtleXdvcmQ+Q2x1c3RlciBBbmFseXNpczwva2V5d29y

ZD48a2V5d29yZD5ETkEsIEJhY3RlcmlhbC9nZW5ldGljczwva2V5d29yZD48a2V5d29yZD4qR2Vu

ZXRpYyBWYXJpYXRpb248L2tleXdvcmQ+PGtleXdvcmQ+SHVtYW5zPC9rZXl3b3JkPjxrZXl3b3Jk

Pk1vbGVjdWxhciBTZXF1ZW5jZSBEYXRhPC9rZXl3b3JkPjxrZXl3b3JkPlBoeWxvZ2VueTwva2V5

d29yZD48a2V5d29yZD5TZXF1ZW5jZSBBbmFseXNpcywgRE5BPC9rZXl3b3JkPjxrZXl3b3JkPlNl

cXVlbmNlIEhvbW9sb2d5PC9rZXl3b3JkPjwva2V5d29yZHM+PGRhdGVzPjx5ZWFyPjIwMDc8L3ll

YXI+PC9kYXRlcz48aXNibj4xNDcxLTIxODAgKEVsZWN0cm9uaWMpJiN4RDsxNDcxLTIxODAgKExp

bmtpbmcpPC9pc2JuPjxhY2Nlc3Npb24tbnVtPjE3NDQ4MjMyPC9hY2Nlc3Npb24tbnVtPjx1cmxz

PjxyZWxhdGVkLXVybHM+PHVybD5odHRwOi8vd3d3Lm5jYmkubmxtLm5paC5nb3YvZW50cmV6L3F1

ZXJ5LmZjZ2k/Y21kPVJldHJpZXZlJmFtcDtkYj1QdWJNZWQmYW1wO2RvcHQ9Q2l0YXRpb24mYW1w

O2xpc3RfdWlkcz0xNzQ0ODIzMjwvdXJsPjwvcmVsYXRlZC11cmxzPjwvdXJscz48Y3VzdG9tMj4x

ODc3ODEwPC9jdXN0b20yPjxlbGVjdHJvbmljLXJlc291cmNlLW51bT4xNDcxLTIxODAtNy0zNCBb

cGlpXSYjeEQ7MTAuMTE4Ni8xNDcxLTIxODAtNy0zNDwvZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+

PGxhbmd1YWdlPmVuZzwvbGFuZ3VhZ2U+PC9yZWNvcmQ+PC9DaXRlPjxDaXRlPjxBdXRob3I+QWJy

aWw8L0F1dGhvcj48WWVhcj4yMDExPC9ZZWFyPjxSZWNOdW0+NDE5PC9SZWNOdW0+PHJlY29yZD48

cmVjLW51bWJlcj40MTk8L3JlYy1udW1iZXI+PGZvcmVpZ24ta2V5cz48a2V5IGFwcD0iRU4iIGRi

LWlkPSJ3eDkwcjlwdDhydHIyMGVmdHZ5dnowYTR0MDJ2MHpzdzAyd3YiPjQxOTwva2V5PjwvZm9y

ZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJKb3VybmFsIEFydGljbGUiPjE3PC9yZWYtdHlwZT48

Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+QWJyaWwsIEMuPC9hdXRob3I+PGF1dGhvcj5U

aG9tYW5uLCBBLjwvYXV0aG9yPjxhdXRob3I+QnJvZGFyZCwgSS48L2F1dGhvcj48YXV0aG9yPld1

LCBOLjwvYXV0aG9yPjxhdXRob3I+UnlzZXItRGVnaW9yZ2lzLCBNLiBQLjwvYXV0aG9yPjxhdXRo

b3I+RnJleSwgSi48L2F1dGhvcj48YXV0aG9yPk92ZXJlc2NoLCBHLjwvYXV0aG9yPjwvYXV0aG9y

cz48L2NvbnRyaWJ1dG9ycz48YXV0aC1hZGRyZXNzPkNlbnRyZSBmb3IgWm9vbm9zZXMsIEJhY3Rl

cmlhbCBBbmltYWwgRGlzZWFzZXMgYW5kIEFudGltaWNyb2JpYWwgUmVzaXN0YW5jZSAoWk9CQSks

IExhbmdnYXNzLVN0cmFzc2UgMTIyLCBQb3N0ZmFjaCA4NDY2LCBDSC0zMDAxIEJlcm4sIFN3aXR6

ZXJsYW5kLjwvYXV0aC1hZGRyZXNzPjx0aXRsZXM+PHRpdGxlPkEgbm92ZWwgaXNvbGF0aW9uIG1l

dGhvZCBvZiBCcnVjZWxsYSBzcGVjaWVzIGFuZCBtb2xlY3VsYXIgdHJhY2tpbmcgb2YgQnJ1Y2Vs

bGEgc3VpcyBiaW92YXIgMiBpbiBkb21lc3RpYyBhbmQgd2lsZCBhbmltYWxzPC90aXRsZT48c2Vj

b25kYXJ5LXRpdGxlPlZldCBNaWNyb2Jpb2w8L3NlY29uZGFyeS10aXRsZT48L3RpdGxlcz48cGVy

aW9kaWNhbD48ZnVsbC10aXRsZT5WZXQgTWljcm9iaW9sPC9mdWxsLXRpdGxlPjwvcGVyaW9kaWNh

bD48ZWRpdGlvbj4yMDExLzA0LzA5PC9lZGl0aW9uPjxkYXRlcz48eWVhcj4yMDExPC95ZWFyPjxw

dWItZGF0ZXM+PGRhdGU+TWFyIDU8L2RhdGU+PC9wdWItZGF0ZXM+PC9kYXRlcz48aXNibj4xODcz

LTI1NDIgKEVsZWN0cm9uaWMpJiN4RDswMzc4LTExMzUgKExpbmtpbmcpPC9pc2JuPjxhY2Nlc3Np

b24tbnVtPjIxNDc0MjU2PC9hY2Nlc3Npb24tbnVtPjx1cmxzPjxyZWxhdGVkLXVybHM+PHVybD5o

dHRwOi8vd3d3Lm5jYmkubmxtLm5paC5nb3YvZW50cmV6L3F1ZXJ5LmZjZ2k/Y21kPVJldHJpZXZl

JmFtcDtkYj1QdWJNZWQmYW1wO2RvcHQ9Q2l0YXRpb24mYW1wO2xpc3RfdWlkcz0yMTQ3NDI1Njwv

dXJsPjwvcmVsYXRlZC11cmxzPjwvdXJscz48ZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+UzAzNzgt

MTEzNSgxMSkwMDEzOC02IFtwaWldJiN4RDsxMC4xMDE2L2oudmV0bWljLjIwMTEuMDIuMDU2PC9l

bGVjdHJvbmljLXJlc291cmNlLW51bT48bGFuZ3VhZ2U+RW5nPC9sYW5ndWFnZT48L3JlY29yZD48

L0NpdGU+PENpdGU+PEF1dGhvcj5EZSBTYW50aXM8L0F1dGhvcj48WWVhcj4yMDA5PC9ZZWFyPjxS

ZWNOdW0+NDI3PC9SZWNOdW0+PHJlY29yZD48cmVjLW51bWJlcj40Mjc8L3JlYy1udW1iZXI+PGZv

cmVpZ24ta2V5cz48a2V5IGFwcD0iRU4iIGRiLWlkPSJ3eDkwcjlwdDhydHIyMGVmdHZ5dnowYTR0

MDJ2MHpzdzAyd3YiPjQyNzwva2V5PjwvZm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJKb3Vy

bmFsIEFydGljbGUiPjE3PC9yZWYtdHlwZT48Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+

RGUgU2FudGlzLCBSLjwvYXV0aG9yPjxhdXRob3I+Q2lhbW1hcnVjb25pLCBBLjwvYXV0aG9yPjxh

dXRob3I+RmFnZ2lvbmksIEcuPC9hdXRob3I+PGF1dGhvcj5EJmFwb3M7QW1lbGlvLCBSLjwvYXV0

aG9yPjxhdXRob3I+TWFyaWFuZWxsaSwgQy48L2F1dGhvcj48YXV0aG9yPkxpc3RhLCBGLjwvYXV0

aG9yPjwvYXV0aG9ycz48L2NvbnRyaWJ1dG9ycz48YXV0aC1hZGRyZXNzPlNlemlvbmUgZGkgSXN0

b2xvZ2lhIGUgQmlvbG9naWEgbW9sZWNvbGFyZSwgQ2VudHJvIFN0dWRpIGUgUmljZXJjaGUgZGkg

U2FuaXRhIGUgVmV0ZXJpbmFyaWEgTWlsaXRhcmUsIFZpYSBTYW50byBTdGVmYW5vIFJvdG9uZG8g

NCwgUm9tZSwgSXRhbHkuIHJpY2NhcmRvLmRlc2FudGlzQGdtYWlsLmNvbTwvYXV0aC1hZGRyZXNz

Pjx0aXRsZXM+PHRpdGxlPkxhYiBvbiBhIGNoaXAgZ2Vub3R5cGluZyBmb3IgQnJ1Y2VsbGEgc3Bw

LiBiYXNlZCBvbiAxNS1sb2NpIG11bHRpIGxvY3VzIFZOVFIgYW5hbHlzaXM8L3RpdGxlPjxzZWNv

bmRhcnktdGl0bGU+Qk1DIE1pY3JvYmlvbDwvc2Vjb25kYXJ5LXRpdGxlPjwvdGl0bGVzPjxwZXJp

b2RpY2FsPjxmdWxsLXRpdGxlPkJNQyBNaWNyb2Jpb2w8L2Z1bGwtdGl0bGU+PC9wZXJpb2RpY2Fs

PjxwYWdlcz42NjwvcGFnZXM+PHZvbHVtZT45PC92b2x1bWU+PGVkaXRpb24+MjAwOS8wNC8wOTwv

ZWRpdGlvbj48a2V5d29yZHM+PGtleXdvcmQ+QmFjdGVyaWFsIFR5cGluZyBUZWNobmlxdWVzL2lu

c3RydW1lbnRhdGlvbi8qbWV0aG9kczwva2V5d29yZD48a2V5d29yZD5CcnVjZWxsYS9jbGFzc2lm

aWNhdGlvbi8qZ2VuZXRpY3M8L2tleXdvcmQ+PGtleXdvcmQ+QnJ1Y2VsbG9zaXMvbWljcm9iaW9s

b2d5PC9rZXl3b3JkPjxrZXl3b3JkPkROQSwgQmFjdGVyaWFsL2FuYWx5c2lzPC9rZXl3b3JkPjxr

ZXl3b3JkPkdlbmV0aWMgTWFya2Vyczwva2V5d29yZD48a2V5d29yZD5NaW5pc2F0ZWxsaXRlIFJl

cGVhdHMvKmdlbmV0aWNzPC9rZXl3b3JkPjxrZXl3b3JkPk1vbGVjdWxhciBFcGlkZW1pb2xvZ3k8

L2tleXdvcmQ+PGtleXdvcmQ+UmVwcm9kdWNpYmlsaXR5IG9mIFJlc3VsdHM8L2tleXdvcmQ+PGtl

eXdvcmQ+U2Vuc2l0aXZpdHkgYW5kIFNwZWNpZmljaXR5PC9rZXl3b3JkPjxrZXl3b3JkPlNlcXVl

bmNlIEFuYWx5c2lzLCBETkEvKm1ldGhvZHM8L2tleXdvcmQ+PC9rZXl3b3Jkcz48ZGF0ZXM+PHll

YXI+MjAwOTwveWVhcj48L2RhdGVzPjxpc2JuPjE0NzEtMjE4MCAoRWxlY3Ryb25pYykmI3hEOzE0

NzEtMjE4MCAoTGlua2luZyk8L2lzYm4+PGFjY2Vzc2lvbi1udW0+MTkzNTEzOTA8L2FjY2Vzc2lv

bi1udW0+PHVybHM+PHJlbGF0ZWQtdXJscz48dXJsPmh0dHA6Ly93d3cubmNiaS5ubG0ubmloLmdv

di9lbnRyZXovcXVlcnkuZmNnaT9jbWQ9UmV0cmlldmUmYW1wO2RiPVB1Yk1lZCZhbXA7ZG9wdD1D

aXRhdGlvbiZhbXA7bGlzdF91aWRzPTE5MzUxMzkwPC91cmw+PC9yZWxhdGVkLXVybHM+PC91cmxz

PjxjdXN0b20yPjI2NzQ0NDk8L2N1c3RvbTI+PGVsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjE0NzEt

MjE4MC05LTY2IFtwaWldJiN4RDsxMC4xMTg2LzE0NzEtMjE4MC05LTY2PC9lbGVjdHJvbmljLXJl

c291cmNlLW51bT48bGFuZ3VhZ2U+ZW5nPC9sYW5ndWFnZT48L3JlY29yZD48L0NpdGU+PC9FbmRO

b3RlPgB=

ADDIN EN.CITE PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5IZXI8L0F1dGhvcj48WWVhcj4yMDEwPC9ZZWFyPjxSZWNO

dW0+NDA3PC9SZWNOdW0+PERpc3BsYXlUZXh0Pls2LTldPC9EaXNwbGF5VGV4dD48cmVjb3JkPjxy

ZWMtbnVtYmVyPjQwNzwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGIt

aWQ9Ind4OTByOXB0OHJ0cjIwZWZ0dnl2ejBhNHQwMnYwenN3MDJ3diI+NDA3PC9rZXk+PC9mb3Jl

aWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBlPjxj

b250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5IZXIsIE0uPC9hdXRob3I+PGF1dGhvcj5LYW5n

LCBTLiBJLjwvYXV0aG9yPjxhdXRob3I+S2ltLCBKLiBXLjwvYXV0aG9yPjxhdXRob3I+S2ltLCBK

LiBZLjwvYXV0aG9yPjxhdXRob3I+SHdhbmcsIEkuIFkuPC9hdXRob3I+PGF1dGhvcj5KdW5nLCBT

LiBDLjwvYXV0aG9yPjxhdXRob3I+UGFyaywgUy4gSC48L2F1dGhvcj48YXV0aG9yPlBhcmssIE0u

IFkuPC9hdXRob3I+PGF1dGhvcj5Zb28sIEguPC9hdXRob3I+PC9hdXRob3JzPjwvY29udHJpYnV0

b3JzPjxhdXRoLWFkZHJlc3M+TmF0aW9uYWwgVmV0ZXJpbmFyeSBSZXNlYXJjaCBhbmQgUXVhcmFu

dGluZSBTZXJ2aWNlIChOVlJRUyksIEFueWFuZyA0MzAtODI0LCBLb3JlYS4gaGVybUBudnJxcy5n

by5rcjwvYXV0aC1hZGRyZXNzPjx0aXRsZXM+PHRpdGxlPkEgZ2VuZXRpYyBjb21wYXJpc29uIG9m

IEJydWNlbGxhIGFib3J0dXMgaXNvbGF0ZXMgZnJvbSBhbmltYWxzIGFuZCBodW1hbnMgYnkgdXNp

bmcgYW4gTUxWQSBhc3NheTwvdGl0bGU+PHNlY29uZGFyeS10aXRsZT5KIE1pY3JvYmlvbCBCaW90

ZWNobm9sPC9zZWNvbmRhcnktdGl0bGU+PC90aXRsZXM+PHBlcmlvZGljYWw+PGZ1bGwtdGl0bGU+

SiBNaWNyb2Jpb2wgQmlvdGVjaG5vbDwvZnVsbC10aXRsZT48L3BlcmlvZGljYWw+PHBhZ2VzPjE3

NTAtNTwvcGFnZXM+PHZvbHVtZT4yMDwvdm9sdW1lPjxudW1iZXI+MTI8L251bWJlcj48ZWRpdGlv

bj4yMDExLzAxLzA1PC9lZGl0aW9uPjxrZXl3b3Jkcz48a2V5d29yZD5BbmltYWxzPC9rZXl3b3Jk

PjxrZXl3b3JkPipCYWN0ZXJpYWwgVHlwaW5nIFRlY2huaXF1ZXM8L2tleXdvcmQ+PGtleXdvcmQ+

QnJ1Y2VsbGEgYWJvcnR1cy8qY2xhc3NpZmljYXRpb24vKmdlbmV0aWNzL2lzb2xhdGlvbiAmYW1w

OyBwdXJpZmljYXRpb248L2tleXdvcmQ+PGtleXdvcmQ+QnJ1Y2VsbG9zaXMvKm1pY3JvYmlvbG9n

eTwva2V5d29yZD48a2V5d29yZD5CcnVjZWxsb3NpcywgQm92aW5lLyptaWNyb2Jpb2xvZ3k8L2tl

eXdvcmQ+PGtleXdvcmQ+Q2F0dGxlPC9rZXl3b3JkPjxrZXl3b3JkPkNsdXN0ZXIgQW5hbHlzaXM8

L2tleXdvcmQ+PGtleXdvcmQ+RE5BIEZpbmdlcnByaW50aW5nPC9rZXl3b3JkPjxrZXl3b3JkPkRO

QSwgQmFjdGVyaWFsL2dlbmV0aWNzPC9rZXl3b3JkPjxrZXl3b3JkPipHZW5ldGljIFZhcmlhdGlv

bjwva2V5d29yZD48a2V5d29yZD5HZW5vdHlwZTwva2V5d29yZD48a2V5d29yZD5IdW1hbnM8L2tl

eXdvcmQ+PGtleXdvcmQ+TWluaXNhdGVsbGl0ZSBSZXBlYXRzPC9rZXl3b3JkPjxrZXl3b3JkPk1v

bGVjdWxhciBFcGlkZW1pb2xvZ3k8L2tleXdvcmQ+PGtleXdvcmQ+Kk1vbGVjdWxhciBUeXBpbmc8

L2tleXdvcmQ+PGtleXdvcmQ+UmVwdWJsaWMgb2YgS29yZWE8L2tleXdvcmQ+PGtleXdvcmQ+Wm9v

bm9zZXMvbWljcm9iaW9sb2d5PC9rZXl3b3JkPjwva2V5d29yZHM+PGRhdGVzPjx5ZWFyPjIwMTA8

L3llYXI+PHB1Yi1kYXRlcz48ZGF0ZT5EZWM8L2RhdGU+PC9wdWItZGF0ZXM+PC9kYXRlcz48aXNi

bj4xNzM4LTg4NzIgKEVsZWN0cm9uaWMpJiN4RDsxMDE3LTc4MjUgKExpbmtpbmcpPC9pc2JuPjxh

Y2Nlc3Npb24tbnVtPjIxMTkzODMzPC9hY2Nlc3Npb24tbnVtPjx1cmxzPjxyZWxhdGVkLXVybHM+

PHVybD5odHRwOi8vd3d3Lm5jYmkubmxtLm5paC5nb3YvZW50cmV6L3F1ZXJ5LmZjZ2k/Y21kPVJl

dHJpZXZlJmFtcDtkYj1QdWJNZWQmYW1wO2RvcHQ9Q2l0YXRpb24mYW1wO2xpc3RfdWlkcz0yMTE5

MzgzMzwvdXJsPjwvcmVsYXRlZC11cmxzPjwvdXJscz48ZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+

Sk1CMDIwLTEyLTIwIFtwaWldPC9lbGVjdHJvbmljLXJlc291cmNlLW51bT48bGFuZ3VhZ2U+ZW5n

PC9sYW5ndWFnZT48L3JlY29yZD48L0NpdGU+PENpdGU+PEF1dGhvcj5XaGF0bW9yZTwvQXV0aG9y

PjxZZWFyPjIwMDc8L1llYXI+PFJlY051bT40MTI8L1JlY051bT48cmVjb3JkPjxyZWMtbnVtYmVy

PjQxMjwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9Ind4OTBy

OXB0OHJ0cjIwZWZ0dnl2ejBhNHQwMnYwenN3MDJ3diI+NDEyPC9rZXk+PC9mb3JlaWduLWtleXM+

PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBlPjxjb250cmlidXRv

cnM+PGF1dGhvcnM+PGF1dGhvcj5XaGF0bW9yZSwgQS4gTS48L2F1dGhvcj48YXV0aG9yPlBlcnJl

dHQsIEwuIEwuPC9hdXRob3I+PGF1dGhvcj5NYWNNaWxsYW4sIEEuIFAuPC9hdXRob3I+PC9hdXRo

b3JzPjwvY29udHJpYnV0b3JzPjxhdXRoLWFkZHJlc3M+RGVwYXJ0bWVudCBvZiBTdGF0dXRvcnkg

YW5kIEV4b3RpYyBCYWN0ZXJpYWwgRGlzZWFzZXMsIFZldGVyaW5hcnkgTGFib3JhdG9yaWVzIEFn

ZW5jeSwgQWRkbGVzdG9uZSwgU3VycmV5LCBLVDE1IDNOQiwgVUsuIGEud2hhdG1vcmVAdmxhLmRl

ZnJhLmdzaS5nb3YudWs8L2F1dGgtYWRkcmVzcz48dGl0bGVzPjx0aXRsZT5DaGFyYWN0ZXJpc2F0

aW9uIG9mIHRoZSBnZW5ldGljIGRpdmVyc2l0eSBvZiBCcnVjZWxsYSBieSBtdWx0aWxvY3VzIHNl

cXVlbmNpbmc8L3RpdGxlPjxzZWNvbmRhcnktdGl0bGU+Qk1DIE1pY3JvYmlvbDwvc2Vjb25kYXJ5

LXRpdGxlPjwvdGl0bGVzPjxwZXJpb2RpY2FsPjxmdWxsLXRpdGxlPkJNQyBNaWNyb2Jpb2w8L2Z1

bGwtdGl0bGU+PC9wZXJpb2RpY2FsPjxwYWdlcz4zNDwvcGFnZXM+PHZvbHVtZT43PC92b2x1bWU+

PGVkaXRpb24+MjAwNy8wNC8yNDwvZWRpdGlvbj48a2V5d29yZHM+PGtleXdvcmQ+QW5pbWFsczwv

a2V5d29yZD48a2V5d29yZD5CYXNlIFNlcXVlbmNlPC9rZXl3b3JkPjxrZXl3b3JkPkJydWNlbGxh

LypjbGFzc2lmaWNhdGlvbi8qZ2VuZXRpY3MvaXNvbGF0aW9uICZhbXA7IHB1cmlmaWNhdGlvbjwv

a2V5d29yZD48a2V5d29yZD5CcnVjZWxsb3Npcy9taWNyb2Jpb2xvZ3kvdmV0ZXJpbmFyeTwva2V5

d29yZD48a2V5d29yZD5CcnVjZWxsb3NpcywgQm92aW5lL21pY3JvYmlvbG9neTwva2V5d29yZD48

a2V5d29yZD5DYXR0bGU8L2tleXdvcmQ+PGtleXdvcmQ+Q2x1c3RlciBBbmFseXNpczwva2V5d29y

ZD48a2V5d29yZD5ETkEsIEJhY3RlcmlhbC9nZW5ldGljczwva2V5d29yZD48a2V5d29yZD4qR2Vu

ZXRpYyBWYXJpYXRpb248L2tleXdvcmQ+PGtleXdvcmQ+SHVtYW5zPC9rZXl3b3JkPjxrZXl3b3Jk

Pk1vbGVjdWxhciBTZXF1ZW5jZSBEYXRhPC9rZXl3b3JkPjxrZXl3b3JkPlBoeWxvZ2VueTwva2V5

d29yZD48a2V5d29yZD5TZXF1ZW5jZSBBbmFseXNpcywgRE5BPC9rZXl3b3JkPjxrZXl3b3JkPlNl

cXVlbmNlIEhvbW9sb2d5PC9rZXl3b3JkPjwva2V5d29yZHM+PGRhdGVzPjx5ZWFyPjIwMDc8L3ll

YXI+PC9kYXRlcz48aXNibj4xNDcxLTIxODAgKEVsZWN0cm9uaWMpJiN4RDsxNDcxLTIxODAgKExp

bmtpbmcpPC9pc2JuPjxhY2Nlc3Npb24tbnVtPjE3NDQ4MjMyPC9hY2Nlc3Npb24tbnVtPjx1cmxz

PjxyZWxhdGVkLXVybHM+PHVybD5odHRwOi8vd3d3Lm5jYmkubmxtLm5paC5nb3YvZW50cmV6L3F1

ZXJ5LmZjZ2k/Y21kPVJldHJpZXZlJmFtcDtkYj1QdWJNZWQmYW1wO2RvcHQ9Q2l0YXRpb24mYW1w

O2xpc3RfdWlkcz0xNzQ0ODIzMjwvdXJsPjwvcmVsYXRlZC11cmxzPjwvdXJscz48Y3VzdG9tMj4x

ODc3ODEwPC9jdXN0b20yPjxlbGVjdHJvbmljLXJlc291cmNlLW51bT4xNDcxLTIxODAtNy0zNCBb

cGlpXSYjeEQ7MTAuMTE4Ni8xNDcxLTIxODAtNy0zNDwvZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+

PGxhbmd1YWdlPmVuZzwvbGFuZ3VhZ2U+PC9yZWNvcmQ+PC9DaXRlPjxDaXRlPjxBdXRob3I+QWJy

aWw8L0F1dGhvcj48WWVhcj4yMDExPC9ZZWFyPjxSZWNOdW0+NDE5PC9SZWNOdW0+PHJlY29yZD48

cmVjLW51bWJlcj40MTk8L3JlYy1udW1iZXI+PGZvcmVpZ24ta2V5cz48a2V5IGFwcD0iRU4iIGRi

LWlkPSJ3eDkwcjlwdDhydHIyMGVmdHZ5dnowYTR0MDJ2MHpzdzAyd3YiPjQxOTwva2V5PjwvZm9y

ZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJKb3VybmFsIEFydGljbGUiPjE3PC9yZWYtdHlwZT48

Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+QWJyaWwsIEMuPC9hdXRob3I+PGF1dGhvcj5U

aG9tYW5uLCBBLjwvYXV0aG9yPjxhdXRob3I+QnJvZGFyZCwgSS48L2F1dGhvcj48YXV0aG9yPld1

LCBOLjwvYXV0aG9yPjxhdXRob3I+UnlzZXItRGVnaW9yZ2lzLCBNLiBQLjwvYXV0aG9yPjxhdXRo

b3I+RnJleSwgSi48L2F1dGhvcj48YXV0aG9yPk92ZXJlc2NoLCBHLjwvYXV0aG9yPjwvYXV0aG9y

cz48L2NvbnRyaWJ1dG9ycz48YXV0aC1hZGRyZXNzPkNlbnRyZSBmb3IgWm9vbm9zZXMsIEJhY3Rl

cmlhbCBBbmltYWwgRGlzZWFzZXMgYW5kIEFudGltaWNyb2JpYWwgUmVzaXN0YW5jZSAoWk9CQSks

IExhbmdnYXNzLVN0cmFzc2UgMTIyLCBQb3N0ZmFjaCA4NDY2LCBDSC0zMDAxIEJlcm4sIFN3aXR6

ZXJsYW5kLjwvYXV0aC1hZGRyZXNzPjx0aXRsZXM+PHRpdGxlPkEgbm92ZWwgaXNvbGF0aW9uIG1l

dGhvZCBvZiBCcnVjZWxsYSBzcGVjaWVzIGFuZCBtb2xlY3VsYXIgdHJhY2tpbmcgb2YgQnJ1Y2Vs

bGEgc3VpcyBiaW92YXIgMiBpbiBkb21lc3RpYyBhbmQgd2lsZCBhbmltYWxzPC90aXRsZT48c2Vj

b25kYXJ5LXRpdGxlPlZldCBNaWNyb2Jpb2w8L3NlY29uZGFyeS10aXRsZT48L3RpdGxlcz48cGVy

aW9kaWNhbD48ZnVsbC10aXRsZT5WZXQgTWljcm9iaW9sPC9mdWxsLXRpdGxlPjwvcGVyaW9kaWNh

bD48ZWRpdGlvbj4yMDExLzA0LzA5PC9lZGl0aW9uPjxkYXRlcz48eWVhcj4yMDExPC95ZWFyPjxw

dWItZGF0ZXM+PGRhdGU+TWFyIDU8L2RhdGU+PC9wdWItZGF0ZXM+PC9kYXRlcz48aXNibj4xODcz

LTI1NDIgKEVsZWN0cm9uaWMpJiN4RDswMzc4LTExMzUgKExpbmtpbmcpPC9pc2JuPjxhY2Nlc3Np

b24tbnVtPjIxNDc0MjU2PC9hY2Nlc3Npb24tbnVtPjx1cmxzPjxyZWxhdGVkLXVybHM+PHVybD5o

dHRwOi8vd3d3Lm5jYmkubmxtLm5paC5nb3YvZW50cmV6L3F1ZXJ5LmZjZ2k/Y21kPVJldHJpZXZl

JmFtcDtkYj1QdWJNZWQmYW1wO2RvcHQ9Q2l0YXRpb24mYW1wO2xpc3RfdWlkcz0yMTQ3NDI1Njwv

dXJsPjwvcmVsYXRlZC11cmxzPjwvdXJscz48ZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+UzAzNzgt

MTEzNSgxMSkwMDEzOC02IFtwaWldJiN4RDsxMC4xMDE2L2oudmV0bWljLjIwMTEuMDIuMDU2PC9l

bGVjdHJvbmljLXJlc291cmNlLW51bT48bGFuZ3VhZ2U+RW5nPC9sYW5ndWFnZT48L3JlY29yZD48

L0NpdGU+PENpdGU+PEF1dGhvcj5EZSBTYW50aXM8L0F1dGhvcj48WWVhcj4yMDA5PC9ZZWFyPjxS

ZWNOdW0+NDI3PC9SZWNOdW0+PHJlY29yZD48cmVjLW51bWJlcj40Mjc8L3JlYy1udW1iZXI+PGZv

cmVpZ24ta2V5cz48a2V5IGFwcD0iRU4iIGRiLWlkPSJ3eDkwcjlwdDhydHIyMGVmdHZ5dnowYTR0

MDJ2MHpzdzAyd3YiPjQyNzwva2V5PjwvZm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJKb3Vy

bmFsIEFydGljbGUiPjE3PC9yZWYtdHlwZT48Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+

RGUgU2FudGlzLCBSLjwvYXV0aG9yPjxhdXRob3I+Q2lhbW1hcnVjb25pLCBBLjwvYXV0aG9yPjxh

dXRob3I+RmFnZ2lvbmksIEcuPC9hdXRob3I+PGF1dGhvcj5EJmFwb3M7QW1lbGlvLCBSLjwvYXV0

aG9yPjxhdXRob3I+TWFyaWFuZWxsaSwgQy48L2F1dGhvcj48YXV0aG9yPkxpc3RhLCBGLjwvYXV0

aG9yPjwvYXV0aG9ycz48L2NvbnRyaWJ1dG9ycz48YXV0aC1hZGRyZXNzPlNlemlvbmUgZGkgSXN0

b2xvZ2lhIGUgQmlvbG9naWEgbW9sZWNvbGFyZSwgQ2VudHJvIFN0dWRpIGUgUmljZXJjaGUgZGkg

U2FuaXRhIGUgVmV0ZXJpbmFyaWEgTWlsaXRhcmUsIFZpYSBTYW50byBTdGVmYW5vIFJvdG9uZG8g

NCwgUm9tZSwgSXRhbHkuIHJpY2NhcmRvLmRlc2FudGlzQGdtYWlsLmNvbTwvYXV0aC1hZGRyZXNz

Pjx0aXRsZXM+PHRpdGxlPkxhYiBvbiBhIGNoaXAgZ2Vub3R5cGluZyBmb3IgQnJ1Y2VsbGEgc3Bw

LiBiYXNlZCBvbiAxNS1sb2NpIG11bHRpIGxvY3VzIFZOVFIgYW5hbHlzaXM8L3RpdGxlPjxzZWNv

bmRhcnktdGl0bGU+Qk1DIE1pY3JvYmlvbDwvc2Vjb25kYXJ5LXRpdGxlPjwvdGl0bGVzPjxwZXJp

b2RpY2FsPjxmdWxsLXRpdGxlPkJNQyBNaWNyb2Jpb2w8L2Z1bGwtdGl0bGU+PC9wZXJpb2RpY2Fs

PjxwYWdlcz42NjwvcGFnZXM+PHZvbHVtZT45PC92b2x1bWU+PGVkaXRpb24+MjAwOS8wNC8wOTwv

ZWRpdGlvbj48a2V5d29yZHM+PGtleXdvcmQ+QmFjdGVyaWFsIFR5cGluZyBUZWNobmlxdWVzL2lu

c3RydW1lbnRhdGlvbi8qbWV0aG9kczwva2V5d29yZD48a2V5d29yZD5CcnVjZWxsYS9jbGFzc2lm

aWNhdGlvbi8qZ2VuZXRpY3M8L2tleXdvcmQ+PGtleXdvcmQ+QnJ1Y2VsbG9zaXMvbWljcm9iaW9s

b2d5PC9rZXl3b3JkPjxrZXl3b3JkPkROQSwgQmFjdGVyaWFsL2FuYWx5c2lzPC9rZXl3b3JkPjxr

ZXl3b3JkPkdlbmV0aWMgTWFya2Vyczwva2V5d29yZD48a2V5d29yZD5NaW5pc2F0ZWxsaXRlIFJl

cGVhdHMvKmdlbmV0aWNzPC9rZXl3b3JkPjxrZXl3b3JkPk1vbGVjdWxhciBFcGlkZW1pb2xvZ3k8

L2tleXdvcmQ+PGtleXdvcmQ+UmVwcm9kdWNpYmlsaXR5IG9mIFJlc3VsdHM8L2tleXdvcmQ+PGtl

eXdvcmQ+U2Vuc2l0aXZpdHkgYW5kIFNwZWNpZmljaXR5PC9rZXl3b3JkPjxrZXl3b3JkPlNlcXVl

bmNlIEFuYWx5c2lzLCBETkEvKm1ldGhvZHM8L2tleXdvcmQ+PC9rZXl3b3Jkcz48ZGF0ZXM+PHll

YXI+MjAwOTwveWVhcj48L2RhdGVzPjxpc2JuPjE0NzEtMjE4MCAoRWxlY3Ryb25pYykmI3hEOzE0

NzEtMjE4MCAoTGlua2luZyk8L2lzYm4+PGFjY2Vzc2lvbi1udW0+MTkzNTEzOTA8L2FjY2Vzc2lv

bi1udW0+PHVybHM+PHJlbGF0ZWQtdXJscz48dXJsPmh0dHA6Ly93d3cubmNiaS5ubG0ubmloLmdv

di9lbnRyZXovcXVlcnkuZmNnaT9jbWQ9UmV0cmlldmUmYW1wO2RiPVB1Yk1lZCZhbXA7ZG9wdD1D

aXRhdGlvbiZhbXA7bGlzdF91aWRzPTE5MzUxMzkwPC91cmw+PC9yZWxhdGVkLXVybHM+PC91cmxz

PjxjdXN0b20yPjI2NzQ0NDk8L2N1c3RvbTI+PGVsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjE0NzEt

MjE4MC05LTY2IFtwaWldJiN4RDsxMC4xMTg2LzE0NzEtMjE4MC05LTY2PC9lbGVjdHJvbmljLXJl

c291cmNlLW51bT48bGFuZ3VhZ2U+ZW5nPC9sYW5ndWFnZT48L3JlY29yZD48L0NpdGU+PC9FbmRO

b3RlPgB=

ADDIN EN.CITE.DATA [6-9]. Although bacteriological culture of Brucella spp. from blood, milk, fetal fluids and tissues, or other host tissues remain the ‘gold standard’ for diagnosis, bacteriologic culture has reduced sensitivity, is labour intensive, time consuming, typically requiring two weeks, and is a risk for laboratory personnel PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5IaW5pYzwvQXV0aG9yPjxZZWFyPjIwMDk8L1llYXI+PFJl

Y051bT40MDU8L1JlY051bT48RGlzcGxheVRleHQ+WzVdPC9EaXNwbGF5VGV4dD48cmVjb3JkPjxy

ZWMtbnVtYmVyPjQwNTwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGIt

aWQ9Ind4OTByOXB0OHJ0cjIwZWZ0dnl2ejBhNHQwMnYwenN3MDJ3diI+NDA1PC9rZXk+PC9mb3Jl

aWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBlPjxj

b250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5IaW5pYywgVi48L2F1dGhvcj48YXV0aG9yPkJy

b2RhcmQsIEkuPC9hdXRob3I+PGF1dGhvcj5UaG9tYW5uLCBBLjwvYXV0aG9yPjxhdXRob3I+SG9s

dWIsIE0uPC9hdXRob3I+PGF1dGhvcj5NaXNlcmV6LCBSLjwvYXV0aG9yPjxhdXRob3I+QWJyaWws

IEMuPC9hdXRob3I+PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjxhdXRoLWFkZHJlc3M+TmF0aW9u

YWwgQ2VudHJlIGZvciBab29ub3NlcywgQmFjdGVyaWFsIEFuaW1hbCBEaXNlYXNlcyBhbmQgQW50

aW1pY3JvYmlhbCBSZXNpc3RhbmNlIChaT0JBKSwgSW5zdGl0dXRlIG9mIFZldGVyaW5hcnkgQmFj

dGVyaW9sb2d5LCBVbml2ZXJzaXR5IG9mIEJlcm4sIFZldHN1aXNzZSBGYWN1bHR5LCBMYW5nZ2Fz

cy1TdHJhc3NlIDEyMiwgUE8gQm94LCBDSC0zMDAxIEJlcm4sIFN3aXR6ZXJsYW5kLiB2bGFkaW1p

cmEuaGluaWNAdmJpLnVuaWJlLmNoPC9hdXRoLWFkZHJlc3M+PHRpdGxlcz48dGl0bGU+SVM3MTEt

YmFzZWQgcmVhbC10aW1lIFBDUiBhc3NheSBhcyBhIHRvb2wgZm9yIGRldGVjdGlvbiBvZiBCcnVj

ZWxsYSBzcHAuIGluIHdpbGQgYm9hcnMgYW5kIGNvbXBhcmlzb24gd2l0aCBiYWN0ZXJpYWwgaXNv

bGF0aW9uIGFuZCBzZXJvbG9neTwvdGl0bGU+PHNlY29uZGFyeS10aXRsZT5CTUMgVmV0IFJlczwv

c2Vjb25kYXJ5LXRpdGxlPjwvdGl0bGVzPjxwZXJpb2RpY2FsPjxmdWxsLXRpdGxlPkJNQyBWZXQg

UmVzPC9mdWxsLXRpdGxlPjwvcGVyaW9kaWNhbD48cGFnZXM+MjI8L3BhZ2VzPjx2b2x1bWU+NTwv

dm9sdW1lPjxlZGl0aW9uPjIwMDkvMDcvMTY8L2VkaXRpb24+PGtleXdvcmRzPjxrZXl3b3JkPkFu

aW1hbHM8L2tleXdvcmQ+PGtleXdvcmQ+QnJ1Y2VsbGEvKmlzb2xhdGlvbiAmYW1wOyBwdXJpZmlj

YXRpb248L2tleXdvcmQ+PGtleXdvcmQ+QnJ1Y2VsbG9zaXMvYmxvb2QvZXBpZGVtaW9sb2d5L21p

Y3JvYmlvbG9neS8qdmV0ZXJpbmFyeTwva2V5d29yZD48a2V5d29yZD5GZW1hbGU8L2tleXdvcmQ+

PGtleXdvcmQ+TWFsZTwva2V5d29yZD48a2V5d29yZD5Qb2x5bWVyYXNlIENoYWluIFJlYWN0aW9u

Lyp2ZXRlcmluYXJ5PC9rZXl3b3JkPjxrZXl3b3JkPlJlcHJvZHVjaWJpbGl0eSBvZiBSZXN1bHRz

PC9rZXl3b3JkPjxrZXl3b3JkPlNlbnNpdGl2aXR5IGFuZCBTcGVjaWZpY2l0eTwva2V5d29yZD48

a2V5d29yZD5TZXJvbG9naWMgVGVzdHM8L2tleXdvcmQ+PGtleXdvcmQ+U3BsZWVuL21pY3JvYmlv

bG9neTwva2V5d29yZD48a2V5d29yZD5Td2luZTwva2V5d29yZD48a2V5d29yZD5Td2luZSBEaXNl

YXNlcy8qZGlhZ25vc2lzL21pY3JvYmlvbG9neTwva2V5d29yZD48a2V5d29yZD5UZXN0aXMvbWlj

cm9iaW9sb2d5PC9rZXl3b3JkPjxrZXl3b3JkPlV0ZXJ1cy9taWNyb2Jpb2xvZ3k8L2tleXdvcmQ+

PC9rZXl3b3Jkcz48ZGF0ZXM+PHllYXI+MjAwOTwveWVhcj48L2RhdGVzPjxpc2JuPjE3NDYtNjE0

OCAoRWxlY3Ryb25pYykmI3hEOzE3NDYtNjE0OCAoTGlua2luZyk8L2lzYm4+PGFjY2Vzc2lvbi1u

dW0+MTk2MDIyNjY8L2FjY2Vzc2lvbi1udW0+PHVybHM+PHJlbGF0ZWQtdXJscz48dXJsPmh0dHA6

Ly93d3cubmNiaS5ubG0ubmloLmdvdi9lbnRyZXovcXVlcnkuZmNnaT9jbWQ9UmV0cmlldmUmYW1w

O2RiPVB1Yk1lZCZhbXA7ZG9wdD1DaXRhdGlvbiZhbXA7bGlzdF91aWRzPTE5NjAyMjY2PC91cmw+

PC9yZWxhdGVkLXVybHM+PC91cmxzPjxjdXN0b20yPjI3MTk2MjQ8L2N1c3RvbTI+PGVsZWN0cm9u

aWMtcmVzb3VyY2UtbnVtPjE3NDYtNjE0OC01LTIyIFtwaWldJiN4RDsxMC4xMTg2LzE3NDYtNjE0

OC01LTIyPC9lbGVjdHJvbmljLXJlc291cmNlLW51bT48bGFuZ3VhZ2U+ZW5nPC9sYW5ndWFnZT48

L3JlY29yZD48L0NpdGU+PC9FbmROb3RlPgB=

ADDIN EN.CITE PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5IaW5pYzwvQXV0aG9yPjxZZWFyPjIwMDk8L1llYXI+PFJl

Y051bT40MDU8L1JlY051bT48RGlzcGxheVRleHQ+WzVdPC9EaXNwbGF5VGV4dD48cmVjb3JkPjxy

ZWMtbnVtYmVyPjQwNTwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGIt

aWQ9Ind4OTByOXB0OHJ0cjIwZWZ0dnl2ejBhNHQwMnYwenN3MDJ3diI+NDA1PC9rZXk+PC9mb3Jl

aWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBlPjxj

b250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5IaW5pYywgVi48L2F1dGhvcj48YXV0aG9yPkJy

b2RhcmQsIEkuPC9hdXRob3I+PGF1dGhvcj5UaG9tYW5uLCBBLjwvYXV0aG9yPjxhdXRob3I+SG9s

dWIsIE0uPC9hdXRob3I+PGF1dGhvcj5NaXNlcmV6LCBSLjwvYXV0aG9yPjxhdXRob3I+QWJyaWws

IEMuPC9hdXRob3I+PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjxhdXRoLWFkZHJlc3M+TmF0aW9u

YWwgQ2VudHJlIGZvciBab29ub3NlcywgQmFjdGVyaWFsIEFuaW1hbCBEaXNlYXNlcyBhbmQgQW50

aW1pY3JvYmlhbCBSZXNpc3RhbmNlIChaT0JBKSwgSW5zdGl0dXRlIG9mIFZldGVyaW5hcnkgQmFj

dGVyaW9sb2d5LCBVbml2ZXJzaXR5IG9mIEJlcm4sIFZldHN1aXNzZSBGYWN1bHR5LCBMYW5nZ2Fz

cy1TdHJhc3NlIDEyMiwgUE8gQm94LCBDSC0zMDAxIEJlcm4sIFN3aXR6ZXJsYW5kLiB2bGFkaW1p

cmEuaGluaWNAdmJpLnVuaWJlLmNoPC9hdXRoLWFkZHJlc3M+PHRpdGxlcz48dGl0bGU+SVM3MTEt

YmFzZWQgcmVhbC10aW1lIFBDUiBhc3NheSBhcyBhIHRvb2wgZm9yIGRldGVjdGlvbiBvZiBCcnVj

ZWxsYSBzcHAuIGluIHdpbGQgYm9hcnMgYW5kIGNvbXBhcmlzb24gd2l0aCBiYWN0ZXJpYWwgaXNv

bGF0aW9uIGFuZCBzZXJvbG9neTwvdGl0bGU+PHNlY29uZGFyeS10aXRsZT5CTUMgVmV0IFJlczwv

c2Vjb25kYXJ5LXRpdGxlPjwvdGl0bGVzPjxwZXJpb2RpY2FsPjxmdWxsLXRpdGxlPkJNQyBWZXQg

UmVzPC9mdWxsLXRpdGxlPjwvcGVyaW9kaWNhbD48cGFnZXM+MjI8L3BhZ2VzPjx2b2x1bWU+NTwv

dm9sdW1lPjxlZGl0aW9uPjIwMDkvMDcvMTY8L2VkaXRpb24+PGtleXdvcmRzPjxrZXl3b3JkPkFu

aW1hbHM8L2tleXdvcmQ+PGtleXdvcmQ+QnJ1Y2VsbGEvKmlzb2xhdGlvbiAmYW1wOyBwdXJpZmlj

YXRpb248L2tleXdvcmQ+PGtleXdvcmQ+QnJ1Y2VsbG9zaXMvYmxvb2QvZXBpZGVtaW9sb2d5L21p

Y3JvYmlvbG9neS8qdmV0ZXJpbmFyeTwva2V5d29yZD48a2V5d29yZD5GZW1hbGU8L2tleXdvcmQ+

PGtleXdvcmQ+TWFsZTwva2V5d29yZD48a2V5d29yZD5Qb2x5bWVyYXNlIENoYWluIFJlYWN0aW9u

Lyp2ZXRlcmluYXJ5PC9rZXl3b3JkPjxrZXl3b3JkPlJlcHJvZHVjaWJpbGl0eSBvZiBSZXN1bHRz

PC9rZXl3b3JkPjxrZXl3b3JkPlNlbnNpdGl2aXR5IGFuZCBTcGVjaWZpY2l0eTwva2V5d29yZD48

a2V5d29yZD5TZXJvbG9naWMgVGVzdHM8L2tleXdvcmQ+PGtleXdvcmQ+U3BsZWVuL21pY3JvYmlv

bG9neTwva2V5d29yZD48a2V5d29yZD5Td2luZTwva2V5d29yZD48a2V5d29yZD5Td2luZSBEaXNl

YXNlcy8qZGlhZ25vc2lzL21pY3JvYmlvbG9neTwva2V5d29yZD48a2V5d29yZD5UZXN0aXMvbWlj

cm9iaW9sb2d5PC9rZXl3b3JkPjxrZXl3b3JkPlV0ZXJ1cy9taWNyb2Jpb2xvZ3k8L2tleXdvcmQ+

PC9rZXl3b3Jkcz48ZGF0ZXM+PHllYXI+MjAwOTwveWVhcj48L2RhdGVzPjxpc2JuPjE3NDYtNjE0

OCAoRWxlY3Ryb25pYykmI3hEOzE3NDYtNjE0OCAoTGlua2luZyk8L2lzYm4+PGFjY2Vzc2lvbi1u

dW0+MTk2MDIyNjY8L2FjY2Vzc2lvbi1udW0+PHVybHM+PHJlbGF0ZWQtdXJscz48dXJsPmh0dHA6

Ly93d3cubmNiaS5ubG0ubmloLmdvdi9lbnRyZXovcXVlcnkuZmNnaT9jbWQ9UmV0cmlldmUmYW1w

O2RiPVB1Yk1lZCZhbXA7ZG9wdD1DaXRhdGlvbiZhbXA7bGlzdF91aWRzPTE5NjAyMjY2PC91cmw+

PC9yZWxhdGVkLXVybHM+PC91cmxzPjxjdXN0b20yPjI3MTk2MjQ8L2N1c3RvbTI+PGVsZWN0cm9u

aWMtcmVzb3VyY2UtbnVtPjE3NDYtNjE0OC01LTIyIFtwaWldJiN4RDsxMC4xMTg2LzE3NDYtNjE0

OC01LTIyPC9lbGVjdHJvbmljLXJlc291cmNlLW51bT48bGFuZ3VhZ2U+ZW5nPC9sYW5ndWFnZT48

L3JlY29yZD48L0NpdGU+PC9FbmROb3RlPgB=

ADDIN EN.CITE.DATA [5]. Serological assays, such as Rose Bengal, a rapid plate agglutination diagnostic test, is currently used for diagnosing infection with Brucella species in the field PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5SdWl6LU1lc2E8L0F1dGhvcj48WWVhcj4yMDA1PC9ZZWFy

PjxSZWNOdW0+Mzk4PC9SZWNOdW0+PERpc3BsYXlUZXh0PlsyXTwvRGlzcGxheVRleHQ+PHJlY29y

ZD48cmVjLW51bWJlcj4zOTg8L3JlYy1udW1iZXI+PGZvcmVpZ24ta2V5cz48a2V5IGFwcD0iRU4i

IGRiLWlkPSJ3eDkwcjlwdDhydHIyMGVmdHZ5dnowYTR0MDJ2MHpzdzAyd3YiPjM5ODwva2V5Pjwv

Zm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJKb3VybmFsIEFydGljbGUiPjE3PC9yZWYtdHlw

ZT48Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+UnVpei1NZXNhLCBKLiBELjwvYXV0aG9y

PjxhdXRob3I+U2FuY2hlei1Hb256YWxleiwgSi48L2F1dGhvcj48YXV0aG9yPlJlZ3VlcmEsIEou

IE0uPC9hdXRob3I+PGF1dGhvcj5NYXJ0aW4sIEwuPC9hdXRob3I+PGF1dGhvcj5Mb3Blei1QYWxt

ZXJvLCBTLjwvYXV0aG9yPjxhdXRob3I+Q29sbWVuZXJvLCBKLiBELjwvYXV0aG9yPjwvYXV0aG9y

cz48L2NvbnRyaWJ1dG9ycz48YXV0aC1hZGRyZXNzPkluZmVjdGlvdXMgRGlzZWFzZXMgVW5pdCwg

SW50ZXJuYWwgTWVkaWNpbmUgRGVwYXJ0bWVudCwgQ2FybG9zIEhheWEgVW5pdmVyc2l0eSwgMjkw

MTAgTWFsYWdhLCBTcGFpbi48L2F1dGgtYWRkcmVzcz48dGl0bGVzPjx0aXRsZT5Sb3NlIEJlbmdh

bCB0ZXN0OiBkaWFnbm9zdGljIHlpZWxkIGFuZCB1c2UgZm9yIHRoZSByYXBpZCBkaWFnbm9zaXMg

b2YgaHVtYW4gYnJ1Y2VsbG9zaXMgaW4gZW1lcmdlbmN5IGRlcGFydG1lbnRzIGluIGVuZGVtaWMg

YXJlYXM8L3RpdGxlPjxzZWNvbmRhcnktdGl0bGU+Q2xpbiBNaWNyb2Jpb2wgSW5mZWN0PC9zZWNv

bmRhcnktdGl0bGU+PC90aXRsZXM+PHBlcmlvZGljYWw+PGZ1bGwtdGl0bGU+Q2xpbiBNaWNyb2Jp

b2wgSW5mZWN0PC9mdWxsLXRpdGxlPjwvcGVyaW9kaWNhbD48cGFnZXM+MjIxLTU8L3BhZ2VzPjx2

b2x1bWU+MTE8L3ZvbHVtZT48bnVtYmVyPjM8L251bWJlcj48ZWRpdGlvbj4yMDA1LzAyLzE4PC9l

ZGl0aW9uPjxrZXl3b3Jkcz48a2V5d29yZD5BZG9sZXNjZW50PC9rZXl3b3JkPjxrZXl3b3JkPkFk

dWx0PC9rZXl3b3JkPjxrZXl3b3JkPkFnZWQ8L2tleXdvcmQ+PGtleXdvcmQ+QWdlZCwgODAgYW5k

IG92ZXI8L2tleXdvcmQ+PGtleXdvcmQ+QWdnbHV0aW5hdGlvbiBUZXN0cy8qbWV0aG9kczwva2V5

d29yZD48a2V5d29yZD5CcnVjZWxsb3Npcy8qZGlhZ25vc2lzL2VwaWRlbWlvbG9neTwva2V5d29y

ZD48a2V5d29yZD5FbWVyZ2VuY3kgTWVkaWNhbCBTZXJ2aWNlczwva2V5d29yZD48a2V5d29yZD5F

bWVyZ2VuY3kgU2VydmljZSwgSG9zcGl0YWw8L2tleXdvcmQ+PGtleXdvcmQ+RmVtYWxlPC9rZXl3

b3JkPjxrZXl3b3JkPkh1bWFuczwva2V5d29yZD48a2V5d29yZD5NYWxlPC9rZXl3b3JkPjxrZXl3

b3JkPk1pZGRsZSBBZ2VkPC9rZXl3b3JkPjxrZXl3b3JkPipSb3NlIEJlbmdhbDwva2V5d29yZD48

a2V5d29yZD5TZW5zaXRpdml0eSBhbmQgU3BlY2lmaWNpdHk8L2tleXdvcmQ+PGtleXdvcmQ+U3Bh

aW4vZXBpZGVtaW9sb2d5PC9rZXl3b3JkPjxrZXl3b3JkPlN0YWluaW5nIGFuZCBMYWJlbGluZzwv

a2V5d29yZD48L2tleXdvcmRzPjxkYXRlcz48eWVhcj4yMDA1PC95ZWFyPjxwdWItZGF0ZXM+PGRh

dGU+TWFyPC9kYXRlPjwvcHViLWRhdGVzPjwvZGF0ZXM+PGlzYm4+MTE5OC03NDNYIChQcmludCkm

I3hEOzExOTgtNzQzWCAoTGlua2luZyk8L2lzYm4+PGFjY2Vzc2lvbi1udW0+MTU3MTU3MjA8L2Fj

Y2Vzc2lvbi1udW0+PHVybHM+PHJlbGF0ZWQtdXJscz48dXJsPmh0dHA6Ly93d3cubmNiaS5ubG0u

bmloLmdvdi9lbnRyZXovcXVlcnkuZmNnaT9jbWQ9UmV0cmlldmUmYW1wO2RiPVB1Yk1lZCZhbXA7

ZG9wdD1DaXRhdGlvbiZhbXA7bGlzdF91aWRzPTE1NzE1NzIwPC91cmw+PC9yZWxhdGVkLXVybHM+

PC91cmxzPjxlbGVjdHJvbmljLXJlc291cmNlLW51bT5DTE0xMDYzIFtwaWldJiN4RDsxMC4xMTEx

L2ouMTQ2OS0wNjkxLjIwMDQuMDEwNjMueDwvZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+PGxhbmd1

YWdlPmVuZzwvbGFuZ3VhZ2U+PC9yZWNvcmQ+PC9DaXRlPjwvRW5kTm90ZT5=

ADDIN EN.CITE PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5SdWl6LU1lc2E8L0F1dGhvcj48WWVhcj4yMDA1PC9ZZWFy

PjxSZWNOdW0+Mzk4PC9SZWNOdW0+PERpc3BsYXlUZXh0PlsyXTwvRGlzcGxheVRleHQ+PHJlY29y

ZD48cmVjLW51bWJlcj4zOTg8L3JlYy1udW1iZXI+PGZvcmVpZ24ta2V5cz48a2V5IGFwcD0iRU4i

IGRiLWlkPSJ3eDkwcjlwdDhydHIyMGVmdHZ5dnowYTR0MDJ2MHpzdzAyd3YiPjM5ODwva2V5Pjwv

Zm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJKb3VybmFsIEFydGljbGUiPjE3PC9yZWYtdHlw

ZT48Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+UnVpei1NZXNhLCBKLiBELjwvYXV0aG9y

PjxhdXRob3I+U2FuY2hlei1Hb256YWxleiwgSi48L2F1dGhvcj48YXV0aG9yPlJlZ3VlcmEsIEou

IE0uPC9hdXRob3I+PGF1dGhvcj5NYXJ0aW4sIEwuPC9hdXRob3I+PGF1dGhvcj5Mb3Blei1QYWxt

ZXJvLCBTLjwvYXV0aG9yPjxhdXRob3I+Q29sbWVuZXJvLCBKLiBELjwvYXV0aG9yPjwvYXV0aG9y

cz48L2NvbnRyaWJ1dG9ycz48YXV0aC1hZGRyZXNzPkluZmVjdGlvdXMgRGlzZWFzZXMgVW5pdCwg

SW50ZXJuYWwgTWVkaWNpbmUgRGVwYXJ0bWVudCwgQ2FybG9zIEhheWEgVW5pdmVyc2l0eSwgMjkw

MTAgTWFsYWdhLCBTcGFpbi48L2F1dGgtYWRkcmVzcz48dGl0bGVzPjx0aXRsZT5Sb3NlIEJlbmdh

bCB0ZXN0OiBkaWFnbm9zdGljIHlpZWxkIGFuZCB1c2UgZm9yIHRoZSByYXBpZCBkaWFnbm9zaXMg

b2YgaHVtYW4gYnJ1Y2VsbG9zaXMgaW4gZW1lcmdlbmN5IGRlcGFydG1lbnRzIGluIGVuZGVtaWMg

YXJlYXM8L3RpdGxlPjxzZWNvbmRhcnktdGl0bGU+Q2xpbiBNaWNyb2Jpb2wgSW5mZWN0PC9zZWNv

bmRhcnktdGl0bGU+PC90aXRsZXM+PHBlcmlvZGljYWw+PGZ1bGwtdGl0bGU+Q2xpbiBNaWNyb2Jp

b2wgSW5mZWN0PC9mdWxsLXRpdGxlPjwvcGVyaW9kaWNhbD48cGFnZXM+MjIxLTU8L3BhZ2VzPjx2

b2x1bWU+MTE8L3ZvbHVtZT48bnVtYmVyPjM8L251bWJlcj48ZWRpdGlvbj4yMDA1LzAyLzE4PC9l

ZGl0aW9uPjxrZXl3b3Jkcz48a2V5d29yZD5BZG9sZXNjZW50PC9rZXl3b3JkPjxrZXl3b3JkPkFk

dWx0PC9rZXl3b3JkPjxrZXl3b3JkPkFnZWQ8L2tleXdvcmQ+PGtleXdvcmQ+QWdlZCwgODAgYW5k

IG92ZXI8L2tleXdvcmQ+PGtleXdvcmQ+QWdnbHV0aW5hdGlvbiBUZXN0cy8qbWV0aG9kczwva2V5

d29yZD48a2V5d29yZD5CcnVjZWxsb3Npcy8qZGlhZ25vc2lzL2VwaWRlbWlvbG9neTwva2V5d29y

ZD48a2V5d29yZD5FbWVyZ2VuY3kgTWVkaWNhbCBTZXJ2aWNlczwva2V5d29yZD48a2V5d29yZD5F

bWVyZ2VuY3kgU2VydmljZSwgSG9zcGl0YWw8L2tleXdvcmQ+PGtleXdvcmQ+RmVtYWxlPC9rZXl3

b3JkPjxrZXl3b3JkPkh1bWFuczwva2V5d29yZD48a2V5d29yZD5NYWxlPC9rZXl3b3JkPjxrZXl3

b3JkPk1pZGRsZSBBZ2VkPC9rZXl3b3JkPjxrZXl3b3JkPipSb3NlIEJlbmdhbDwva2V5d29yZD48

a2V5d29yZD5TZW5zaXRpdml0eSBhbmQgU3BlY2lmaWNpdHk8L2tleXdvcmQ+PGtleXdvcmQ+U3Bh

aW4vZXBpZGVtaW9sb2d5PC9rZXl3b3JkPjxrZXl3b3JkPlN0YWluaW5nIGFuZCBMYWJlbGluZzwv

a2V5d29yZD48L2tleXdvcmRzPjxkYXRlcz48eWVhcj4yMDA1PC95ZWFyPjxwdWItZGF0ZXM+PGRh

dGU+TWFyPC9kYXRlPjwvcHViLWRhdGVzPjwvZGF0ZXM+PGlzYm4+MTE5OC03NDNYIChQcmludCkm

I3hEOzExOTgtNzQzWCAoTGlua2luZyk8L2lzYm4+PGFjY2Vzc2lvbi1udW0+MTU3MTU3MjA8L2Fj

Y2Vzc2lvbi1udW0+PHVybHM+PHJlbGF0ZWQtdXJscz48dXJsPmh0dHA6Ly93d3cubmNiaS5ubG0u

bmloLmdvdi9lbnRyZXovcXVlcnkuZmNnaT9jbWQ9UmV0cmlldmUmYW1wO2RiPVB1Yk1lZCZhbXA7

ZG9wdD1DaXRhdGlvbiZhbXA7bGlzdF91aWRzPTE1NzE1NzIwPC91cmw+PC9yZWxhdGVkLXVybHM+

PC91cmxzPjxlbGVjdHJvbmljLXJlc291cmNlLW51bT5DTE0xMDYzIFtwaWldJiN4RDsxMC4xMTEx

L2ouMTQ2OS0wNjkxLjIwMDQuMDEwNjMueDwvZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+PGxhbmd1

YWdlPmVuZzwvbGFuZ3VhZ2U+PC9yZWNvcmQ+PC9DaXRlPjwvRW5kTm90ZT5=

ADDIN EN.CITE.DATA [2], however serological tests frequently have reduced specificity due to cross reactivity with other bacteria. Specific antibodies are required to be present at sufficiently high level and may require several weeks to develop before they are detectable. PCR based methods are used for epidemiological trace back and strain specific identification ADDIN EN.CITE <EndNote><Cite><Author>Bricker</Author><Year>2002</Year><RecNum>402</RecNum><DisplayText>[3]</DisplayText><record><rec-number>402</rec-number><foreign-keys><key app="EN" db-id="wx90r9pt8rtr20eftvyvz0a4t02v0zsw02wv">402</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Bricker, B. J.</author></authors></contributors><auth-address>United States Department of Agriculture, Agricultural Research Service, National Animal Disease Center, 2300 Dayton Road, Ames, IA 50010, USA. bbricker@nadc.ars.</auth-address><titles><title>PCR as a diagnostic tool for brucellosis</title><secondary-title>Vet Microbiol</secondary-title></titles><periodical><full-title>Vet Microbiol</full-title></periodical><pages>435-46</pages><volume>90</volume><number>1-4</number><edition>2002/11/05</edition><keywords><keyword>Animals</keyword><keyword>Brucella/genetics/*isolation &amp; purification</keyword><keyword>Brucellosis/*diagnosis/*microbiology</keyword><keyword>DNA Primers</keyword><keyword>Polymerase Chain Reaction/methods</keyword></keywords><dates><year>2002</year><pub-dates><date>Dec 20</date></pub-dates></dates><isbn>0378-1135 (Print)&#xD;0378-1135 (Linking)</isbn><accession-num>12414163</accession-num><urls><related-urls><url> [pii]</electronic-resource-num><language>eng</language></record></Cite></EndNote>[3]. Although rapid in nature, specific primers are required for specific genes from these genomes or 16S rRNA genes or VNTR (variable-number tandem repeats) in a given genome. Real time PCR based methods have been used to identify Brucella species using IS711, bcsp31 and per target genes PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5Cb3VuYWFkamE8L0F1dGhvcj48WWVhcj4yMDA5PC9ZZWFy

PjxSZWNOdW0+NDAzPC9SZWNOdW0+PERpc3BsYXlUZXh0Pls0LCA1XTwvRGlzcGxheVRleHQ+PHJl

Y29yZD48cmVjLW51bWJlcj40MDM8L3JlYy1udW1iZXI+PGZvcmVpZ24ta2V5cz48a2V5IGFwcD0i

RU4iIGRiLWlkPSJ3eDkwcjlwdDhydHIyMGVmdHZ5dnowYTR0MDJ2MHpzdzAyd3YiPjQwMzwva2V5

PjwvZm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJKb3VybmFsIEFydGljbGUiPjE3PC9yZWYt

dHlwZT48Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+Qm91bmFhZGphLCBMLjwvYXV0aG9y

PjxhdXRob3I+QWxiZXJ0LCBELjwvYXV0aG9yPjxhdXRob3I+Q2hlbmFpcywgQi48L2F1dGhvcj48

YXV0aG9yPkhlbmF1bHQsIFMuPC9hdXRob3I+PGF1dGhvcj5aeWdtdW50LCBNLiBTLjwvYXV0aG9y

PjxhdXRob3I+UG9saWFrLCBTLjwvYXV0aG9yPjxhdXRob3I+R2FyaW4tQmFzdHVqaSwgQi48L2F1

dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PGF1dGgtYWRkcmVzcz5Vbml2ZXJzaXRlIGR1

IE1haW5lLCBMYWJvcmF0b2lyZSBkZSBCaW9sb2dpZSBldCBHZW5ldGlxdWUgRXZvbHV0aXZlLCBF

QTIxNjAgTWVyIE1vbGVjdWxlcyBTYW50ZSwgNzIwODUgTGUgTWFucywgRnJhbmNlLjwvYXV0aC1h

ZGRyZXNzPjx0aXRsZXM+PHRpdGxlPlJlYWwtdGltZSBQQ1IgZm9yIGlkZW50aWZpY2F0aW9uIG9m

IEJydWNlbGxhIHNwcC46IGEgY29tcGFyYXRpdmUgc3R1ZHkgb2YgSVM3MTEsIGJjc3AzMSBhbmQg

cGVyIHRhcmdldCBnZW5lczwvdGl0bGU+PHNlY29uZGFyeS10aXRsZT5WZXQgTWljcm9iaW9sPC9z

ZWNvbmRhcnktdGl0bGU+PC90aXRsZXM+PHBlcmlvZGljYWw+PGZ1bGwtdGl0bGU+VmV0IE1pY3Jv

YmlvbDwvZnVsbC10aXRsZT48L3BlcmlvZGljYWw+PHBhZ2VzPjE1Ni02NDwvcGFnZXM+PHZvbHVt

ZT4xMzc8L3ZvbHVtZT48bnVtYmVyPjEtMjwvbnVtYmVyPjxlZGl0aW9uPjIwMDkvMDIvMTA8L2Vk

aXRpb24+PGtleXdvcmRzPjxrZXl3b3JkPkJydWNlbGxhLypnZW5ldGljcy8qaXNvbGF0aW9uICZh

bXA7IHB1cmlmaWNhdGlvbjwva2V5d29yZD48a2V5d29yZD5ETkEsIEJhY3RlcmlhbC9nZW5ldGlj

czwva2V5d29yZD48a2V5d29yZD4qR2VuZXMsIEJhY3RlcmlhbDwva2V5d29yZD48a2V5d29yZD5Q

b2x5bWVyYXNlIENoYWluIFJlYWN0aW9uLyptZXRob2RzPC9rZXl3b3JkPjxrZXl3b3JkPlJlcHJv

ZHVjaWJpbGl0eSBvZiBSZXN1bHRzPC9rZXl3b3JkPjxrZXl3b3JkPlNlbnNpdGl2aXR5IGFuZCBT

cGVjaWZpY2l0eTwva2V5d29yZD48L2tleXdvcmRzPjxkYXRlcz48eWVhcj4yMDA5PC95ZWFyPjxw

dWItZGF0ZXM+PGRhdGU+TWF5IDI4PC9kYXRlPjwvcHViLWRhdGVzPjwvZGF0ZXM+PGlzYm4+MDM3

OC0xMTM1IChQcmludCkmI3hEOzAzNzgtMTEzNSAoTGlua2luZyk8L2lzYm4+PGFjY2Vzc2lvbi1u

dW0+MTkyMDA2NjY8L2FjY2Vzc2lvbi1udW0+PHVybHM+PHJlbGF0ZWQtdXJscz48dXJsPmh0dHA6

Ly93d3cubmNiaS5ubG0ubmloLmdvdi9lbnRyZXovcXVlcnkuZmNnaT9jbWQ9UmV0cmlldmUmYW1w

O2RiPVB1Yk1lZCZhbXA7ZG9wdD1DaXRhdGlvbiZhbXA7bGlzdF91aWRzPTE5MjAwNjY2PC91cmw+

PC9yZWxhdGVkLXVybHM+PC91cmxzPjxlbGVjdHJvbmljLXJlc291cmNlLW51bT5TMDM3OC0xMTM1

KDA4KTAwNjA5LTMgW3BpaV0mI3hEOzEwLjEwMTYvai52ZXRtaWMuMjAwOC4xMi4wMjM8L2VsZWN0

cm9uaWMtcmVzb3VyY2UtbnVtPjxsYW5ndWFnZT5lbmc8L2xhbmd1YWdlPjwvcmVjb3JkPjwvQ2l0

ZT48Q2l0ZT48QXV0aG9yPkhpbmljPC9BdXRob3I+PFllYXI+MjAwOTwvWWVhcj48UmVjTnVtPjQw

NTwvUmVjTnVtPjxyZWNvcmQ+PHJlYy1udW1iZXI+NDA1PC9yZWMtbnVtYmVyPjxmb3JlaWduLWtl

eXM+PGtleSBhcHA9IkVOIiBkYi1pZD0id3g5MHI5cHQ4cnRyMjBlZnR2eXZ6MGE0dDAydjB6c3cw

Mnd2Ij40MDU8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iSm91cm5hbCBBcnRp

Y2xlIj4xNzwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPkhpbmljLCBW

LjwvYXV0aG9yPjxhdXRob3I+QnJvZGFyZCwgSS48L2F1dGhvcj48YXV0aG9yPlRob21hbm4sIEEu

PC9hdXRob3I+PGF1dGhvcj5Ib2x1YiwgTS48L2F1dGhvcj48YXV0aG9yPk1pc2VyZXosIFIuPC9h

dXRob3I+PGF1dGhvcj5BYnJpbCwgQy48L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+

PGF1dGgtYWRkcmVzcz5OYXRpb25hbCBDZW50cmUgZm9yIFpvb25vc2VzLCBCYWN0ZXJpYWwgQW5p

bWFsIERpc2Vhc2VzIGFuZCBBbnRpbWljcm9iaWFsIFJlc2lzdGFuY2UgKFpPQkEpLCBJbnN0aXR1

dGUgb2YgVmV0ZXJpbmFyeSBCYWN0ZXJpb2xvZ3ksIFVuaXZlcnNpdHkgb2YgQmVybiwgVmV0c3Vp

c3NlIEZhY3VsdHksIExhbmdnYXNzLVN0cmFzc2UgMTIyLCBQTyBCb3gsIENILTMwMDEgQmVybiwg

U3dpdHplcmxhbmQuIHZsYWRpbWlyYS5oaW5pY0B2YmkudW5pYmUuY2g8L2F1dGgtYWRkcmVzcz48

dGl0bGVzPjx0aXRsZT5JUzcxMS1iYXNlZCByZWFsLXRpbWUgUENSIGFzc2F5IGFzIGEgdG9vbCBm

b3IgZGV0ZWN0aW9uIG9mIEJydWNlbGxhIHNwcC4gaW4gd2lsZCBib2FycyBhbmQgY29tcGFyaXNv

biB3aXRoIGJhY3RlcmlhbCBpc29sYXRpb24gYW5kIHNlcm9sb2d5PC90aXRsZT48c2Vjb25kYXJ5

LXRpdGxlPkJNQyBWZXQgUmVzPC9zZWNvbmRhcnktdGl0bGU+PC90aXRsZXM+PHBlcmlvZGljYWw+

PGZ1bGwtdGl0bGU+Qk1DIFZldCBSZXM8L2Z1bGwtdGl0bGU+PC9wZXJpb2RpY2FsPjxwYWdlcz4y

MjwvcGFnZXM+PHZvbHVtZT41PC92b2x1bWU+PGVkaXRpb24+MjAwOS8wNy8xNjwvZWRpdGlvbj48

a2V5d29yZHM+PGtleXdvcmQ+QW5pbWFsczwva2V5d29yZD48a2V5d29yZD5CcnVjZWxsYS8qaXNv

bGF0aW9uICZhbXA7IHB1cmlmaWNhdGlvbjwva2V5d29yZD48a2V5d29yZD5CcnVjZWxsb3Npcy9i

bG9vZC9lcGlkZW1pb2xvZ3kvbWljcm9iaW9sb2d5Lyp2ZXRlcmluYXJ5PC9rZXl3b3JkPjxrZXl3

b3JkPkZlbWFsZTwva2V5d29yZD48a2V5d29yZD5NYWxlPC9rZXl3b3JkPjxrZXl3b3JkPlBvbHlt

ZXJhc2UgQ2hhaW4gUmVhY3Rpb24vKnZldGVyaW5hcnk8L2tleXdvcmQ+PGtleXdvcmQ+UmVwcm9k

dWNpYmlsaXR5IG9mIFJlc3VsdHM8L2tleXdvcmQ+PGtleXdvcmQ+U2Vuc2l0aXZpdHkgYW5kIFNw

ZWNpZmljaXR5PC9rZXl3b3JkPjxrZXl3b3JkPlNlcm9sb2dpYyBUZXN0czwva2V5d29yZD48a2V5

d29yZD5TcGxlZW4vbWljcm9iaW9sb2d5PC9rZXl3b3JkPjxrZXl3b3JkPlN3aW5lPC9rZXl3b3Jk

PjxrZXl3b3JkPlN3aW5lIERpc2Vhc2VzLypkaWFnbm9zaXMvbWljcm9iaW9sb2d5PC9rZXl3b3Jk

PjxrZXl3b3JkPlRlc3Rpcy9taWNyb2Jpb2xvZ3k8L2tleXdvcmQ+PGtleXdvcmQ+VXRlcnVzL21p

Y3JvYmlvbG9neTwva2V5d29yZD48L2tleXdvcmRzPjxkYXRlcz48eWVhcj4yMDA5PC95ZWFyPjwv

ZGF0ZXM+PGlzYm4+MTc0Ni02MTQ4IChFbGVjdHJvbmljKSYjeEQ7MTc0Ni02MTQ4IChMaW5raW5n

KTwvaXNibj48YWNjZXNzaW9uLW51bT4xOTYwMjI2NjwvYWNjZXNzaW9uLW51bT48dXJscz48cmVs

YXRlZC11cmxzPjx1cmw+aHR0cDovL3d3dy5uY2JpLm5sbS5uaWguZ292L2VudHJlei9xdWVyeS5m

Y2dpP2NtZD1SZXRyaWV2ZSZhbXA7ZGI9UHViTWVkJmFtcDtkb3B0PUNpdGF0aW9uJmFtcDtsaXN0

X3VpZHM9MTk2MDIyNjY8L3VybD48L3JlbGF0ZWQtdXJscz48L3VybHM+PGN1c3RvbTI+MjcxOTYy

NDwvY3VzdG9tMj48ZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+MTc0Ni02MTQ4LTUtMjIgW3BpaV0m

I3hEOzEwLjExODYvMTc0Ni02MTQ4LTUtMjI8L2VsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjxsYW5n

dWFnZT5lbmc8L2xhbmd1YWdlPjwvcmVjb3JkPjwvQ2l0ZT48L0VuZE5vdGU+

ADDIN EN.CITE PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5Cb3VuYWFkamE8L0F1dGhvcj48WWVhcj4yMDA5PC9ZZWFy

PjxSZWNOdW0+NDAzPC9SZWNOdW0+PERpc3BsYXlUZXh0Pls0LCA1XTwvRGlzcGxheVRleHQ+PHJl

Y29yZD48cmVjLW51bWJlcj40MDM8L3JlYy1udW1iZXI+PGZvcmVpZ24ta2V5cz48a2V5IGFwcD0i

RU4iIGRiLWlkPSJ3eDkwcjlwdDhydHIyMGVmdHZ5dnowYTR0MDJ2MHpzdzAyd3YiPjQwMzwva2V5

PjwvZm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJKb3VybmFsIEFydGljbGUiPjE3PC9yZWYt

dHlwZT48Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+Qm91bmFhZGphLCBMLjwvYXV0aG9y

PjxhdXRob3I+QWxiZXJ0LCBELjwvYXV0aG9yPjxhdXRob3I+Q2hlbmFpcywgQi48L2F1dGhvcj48

YXV0aG9yPkhlbmF1bHQsIFMuPC9hdXRob3I+PGF1dGhvcj5aeWdtdW50LCBNLiBTLjwvYXV0aG9y

PjxhdXRob3I+UG9saWFrLCBTLjwvYXV0aG9yPjxhdXRob3I+R2FyaW4tQmFzdHVqaSwgQi48L2F1

dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PGF1dGgtYWRkcmVzcz5Vbml2ZXJzaXRlIGR1

IE1haW5lLCBMYWJvcmF0b2lyZSBkZSBCaW9sb2dpZSBldCBHZW5ldGlxdWUgRXZvbHV0aXZlLCBF

QTIxNjAgTWVyIE1vbGVjdWxlcyBTYW50ZSwgNzIwODUgTGUgTWFucywgRnJhbmNlLjwvYXV0aC1h

ZGRyZXNzPjx0aXRsZXM+PHRpdGxlPlJlYWwtdGltZSBQQ1IgZm9yIGlkZW50aWZpY2F0aW9uIG9m

IEJydWNlbGxhIHNwcC46IGEgY29tcGFyYXRpdmUgc3R1ZHkgb2YgSVM3MTEsIGJjc3AzMSBhbmQg

cGVyIHRhcmdldCBnZW5lczwvdGl0bGU+PHNlY29uZGFyeS10aXRsZT5WZXQgTWljcm9iaW9sPC9z

ZWNvbmRhcnktdGl0bGU+PC90aXRsZXM+PHBlcmlvZGljYWw+PGZ1bGwtdGl0bGU+VmV0IE1pY3Jv

YmlvbDwvZnVsbC10aXRsZT48L3BlcmlvZGljYWw+PHBhZ2VzPjE1Ni02NDwvcGFnZXM+PHZvbHVt

ZT4xMzc8L3ZvbHVtZT48bnVtYmVyPjEtMjwvbnVtYmVyPjxlZGl0aW9uPjIwMDkvMDIvMTA8L2Vk

aXRpb24+PGtleXdvcmRzPjxrZXl3b3JkPkJydWNlbGxhLypnZW5ldGljcy8qaXNvbGF0aW9uICZh

bXA7IHB1cmlmaWNhdGlvbjwva2V5d29yZD48a2V5d29yZD5ETkEsIEJhY3RlcmlhbC9nZW5ldGlj

czwva2V5d29yZD48a2V5d29yZD4qR2VuZXMsIEJhY3RlcmlhbDwva2V5d29yZD48a2V5d29yZD5Q

b2x5bWVyYXNlIENoYWluIFJlYWN0aW9uLyptZXRob2RzPC9rZXl3b3JkPjxrZXl3b3JkPlJlcHJv

ZHVjaWJpbGl0eSBvZiBSZXN1bHRzPC9rZXl3b3JkPjxrZXl3b3JkPlNlbnNpdGl2aXR5IGFuZCBT

cGVjaWZpY2l0eTwva2V5d29yZD48L2tleXdvcmRzPjxkYXRlcz48eWVhcj4yMDA5PC95ZWFyPjxw

dWItZGF0ZXM+PGRhdGU+TWF5IDI4PC9kYXRlPjwvcHViLWRhdGVzPjwvZGF0ZXM+PGlzYm4+MDM3

OC0xMTM1IChQcmludCkmI3hEOzAzNzgtMTEzNSAoTGlua2luZyk8L2lzYm4+PGFjY2Vzc2lvbi1u

dW0+MTkyMDA2NjY8L2FjY2Vzc2lvbi1udW0+PHVybHM+PHJlbGF0ZWQtdXJscz48dXJsPmh0dHA6

Ly93d3cubmNiaS5ubG0ubmloLmdvdi9lbnRyZXovcXVlcnkuZmNnaT9jbWQ9UmV0cmlldmUmYW1w

O2RiPVB1Yk1lZCZhbXA7ZG9wdD1DaXRhdGlvbiZhbXA7bGlzdF91aWRzPTE5MjAwNjY2PC91cmw+

PC9yZWxhdGVkLXVybHM+PC91cmxzPjxlbGVjdHJvbmljLXJlc291cmNlLW51bT5TMDM3OC0xMTM1

KDA4KTAwNjA5LTMgW3BpaV0mI3hEOzEwLjEwMTYvai52ZXRtaWMuMjAwOC4xMi4wMjM8L2VsZWN0

cm9uaWMtcmVzb3VyY2UtbnVtPjxsYW5ndWFnZT5lbmc8L2xhbmd1YWdlPjwvcmVjb3JkPjwvQ2l0

ZT48Q2l0ZT48QXV0aG9yPkhpbmljPC9BdXRob3I+PFllYXI+MjAwOTwvWWVhcj48UmVjTnVtPjQw

NTwvUmVjTnVtPjxyZWNvcmQ+PHJlYy1udW1iZXI+NDA1PC9yZWMtbnVtYmVyPjxmb3JlaWduLWtl

eXM+PGtleSBhcHA9IkVOIiBkYi1pZD0id3g5MHI5cHQ4cnRyMjBlZnR2eXZ6MGE0dDAydjB6c3cw

Mnd2Ij40MDU8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iSm91cm5hbCBBcnRp

Y2xlIj4xNzwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPkhpbmljLCBW

LjwvYXV0aG9yPjxhdXRob3I+QnJvZGFyZCwgSS48L2F1dGhvcj48YXV0aG9yPlRob21hbm4sIEEu

PC9hdXRob3I+PGF1dGhvcj5Ib2x1YiwgTS48L2F1dGhvcj48YXV0aG9yPk1pc2VyZXosIFIuPC9h

dXRob3I+PGF1dGhvcj5BYnJpbCwgQy48L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+

PGF1dGgtYWRkcmVzcz5OYXRpb25hbCBDZW50cmUgZm9yIFpvb25vc2VzLCBCYWN0ZXJpYWwgQW5p

bWFsIERpc2Vhc2VzIGFuZCBBbnRpbWljcm9iaWFsIFJlc2lzdGFuY2UgKFpPQkEpLCBJbnN0aXR1

dGUgb2YgVmV0ZXJpbmFyeSBCYWN0ZXJpb2xvZ3ksIFVuaXZlcnNpdHkgb2YgQmVybiwgVmV0c3Vp

c3NlIEZhY3VsdHksIExhbmdnYXNzLVN0cmFzc2UgMTIyLCBQTyBCb3gsIENILTMwMDEgQmVybiwg

U3dpdHplcmxhbmQuIHZsYWRpbWlyYS5oaW5pY0B2YmkudW5pYmUuY2g8L2F1dGgtYWRkcmVzcz48

dGl0bGVzPjx0aXRsZT5JUzcxMS1iYXNlZCByZWFsLXRpbWUgUENSIGFzc2F5IGFzIGEgdG9vbCBm

b3IgZGV0ZWN0aW9uIG9mIEJydWNlbGxhIHNwcC4gaW4gd2lsZCBib2FycyBhbmQgY29tcGFyaXNv

biB3aXRoIGJhY3RlcmlhbCBpc29sYXRpb24gYW5kIHNlcm9sb2d5PC90aXRsZT48c2Vjb25kYXJ5

LXRpdGxlPkJNQyBWZXQgUmVzPC9zZWNvbmRhcnktdGl0bGU+PC90aXRsZXM+PHBlcmlvZGljYWw+

PGZ1bGwtdGl0bGU+Qk1DIFZldCBSZXM8L2Z1bGwtdGl0bGU+PC9wZXJpb2RpY2FsPjxwYWdlcz4y

MjwvcGFnZXM+PHZvbHVtZT41PC92b2x1bWU+PGVkaXRpb24+MjAwOS8wNy8xNjwvZWRpdGlvbj48

a2V5d29yZHM+PGtleXdvcmQ+QW5pbWFsczwva2V5d29yZD48a2V5d29yZD5CcnVjZWxsYS8qaXNv

bGF0aW9uICZhbXA7IHB1cmlmaWNhdGlvbjwva2V5d29yZD48a2V5d29yZD5CcnVjZWxsb3Npcy9i

bG9vZC9lcGlkZW1pb2xvZ3kvbWljcm9iaW9sb2d5Lyp2ZXRlcmluYXJ5PC9rZXl3b3JkPjxrZXl3

b3JkPkZlbWFsZTwva2V5d29yZD48a2V5d29yZD5NYWxlPC9rZXl3b3JkPjxrZXl3b3JkPlBvbHlt

ZXJhc2UgQ2hhaW4gUmVhY3Rpb24vKnZldGVyaW5hcnk8L2tleXdvcmQ+PGtleXdvcmQ+UmVwcm9k

dWNpYmlsaXR5IG9mIFJlc3VsdHM8L2tleXdvcmQ+PGtleXdvcmQ+U2Vuc2l0aXZpdHkgYW5kIFNw

ZWNpZmljaXR5PC9rZXl3b3JkPjxrZXl3b3JkPlNlcm9sb2dpYyBUZXN0czwva2V5d29yZD48a2V5

d29yZD5TcGxlZW4vbWljcm9iaW9sb2d5PC9rZXl3b3JkPjxrZXl3b3JkPlN3aW5lPC9rZXl3b3Jk

PjxrZXl3b3JkPlN3aW5lIERpc2Vhc2VzLypkaWFnbm9zaXMvbWljcm9iaW9sb2d5PC9rZXl3b3Jk

PjxrZXl3b3JkPlRlc3Rpcy9taWNyb2Jpb2xvZ3k8L2tleXdvcmQ+PGtleXdvcmQ+VXRlcnVzL21p

Y3JvYmlvbG9neTwva2V5d29yZD48L2tleXdvcmRzPjxkYXRlcz48eWVhcj4yMDA5PC95ZWFyPjwv

ZGF0ZXM+PGlzYm4+MTc0Ni02MTQ4IChFbGVjdHJvbmljKSYjeEQ7MTc0Ni02MTQ4IChMaW5raW5n

KTwvaXNibj48YWNjZXNzaW9uLW51bT4xOTYwMjI2NjwvYWNjZXNzaW9uLW51bT48dXJscz48cmVs

YXRlZC11cmxzPjx1cmw+aHR0cDovL3d3dy5uY2JpLm5sbS5uaWguZ292L2VudHJlei9xdWVyeS5m

Y2dpP2NtZD1SZXRyaWV2ZSZhbXA7ZGI9UHViTWVkJmFtcDtkb3B0PUNpdGF0aW9uJmFtcDtsaXN0

X3VpZHM9MTk2MDIyNjY8L3VybD48L3JlbGF0ZWQtdXJscz48L3VybHM+PGN1c3RvbTI+MjcxOTYy

NDwvY3VzdG9tMj48ZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+MTc0Ni02MTQ4LTUtMjIgW3BpaV0m

I3hEOzEwLjExODYvMTc0Ni02MTQ4LTUtMjI8L2VsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjxsYW5n

dWFnZT5lbmc8L2xhbmd1YWdlPjwvcmVjb3JkPjwvQ2l0ZT48L0VuZE5vdGU+

ADDIN EN.CITE.DATA [4, 5]. In addition, assays based on single-nucleotide polymorphisms have been developed for identification of Brucella isolates at the species level. These SNPs have been used to classify isolates into known Brucella species ADDIN EN.CITE <EndNote><Cite><Author>Scott</Author><Year>2007</Year><RecNum>430</RecNum><DisplayText>[10]</DisplayText><record><rec-number>430</rec-number><foreign-keys><key app="EN" db-id="wx90r9pt8rtr20eftvyvz0a4t02v0zsw02wv">430</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Scott, J. C.</author><author>Koylass, M. S.</author><author>Stubberfield, M. R.</author><author>Whatmore, A. M.</author></authors></contributors><auth-address>Department of Statutory and Exotic Bacterial Diseases, Veterinary Laboratories Agency, Addlestone, Surrey KT15 3NB, United Kingdom.</auth-address><titles><title>Multiplex assay based on single-nucleotide polymorphisms for rapid identification of Brucella isolates at the species level</title><secondary-title>Appl Environ Microbiol</secondary-title></titles><periodical><full-title>Appl Environ Microbiol</full-title></periodical><pages>7331-7</pages><volume>73</volume><number>22</number><edition>2007/09/25</edition><keywords><keyword>Bacterial Proteins/genetics</keyword><keyword>Base Sequence</keyword><keyword>Brucella/classification/*genetics</keyword><keyword>DNA, Bacterial/*genetics</keyword><keyword>Molecular Sequence Data</keyword><keyword>Polymerase Chain Reaction/methods</keyword><keyword>*Polymorphism, Single Nucleotide</keyword><keyword>Reproducibility of Results</keyword><keyword>Sequence Homology, Nucleic Acid</keyword><keyword>Species Specificity</keyword></keywords><dates><year>2007</year><pub-dates><date>Nov</date></pub-dates></dates><isbn>0099-2240 (Print)&#xD;0099-2240 (Linking)</isbn><accession-num>17890328</accession-num><urls><related-urls><url> [pii]&#xD;10.1128/AEM.00976-07</electronic-resource-num><language>eng</language></record></Cite></EndNote>[10]. Recently MLVA or multi-loci VNTR (Variable-number tandem repeats) a genotype-based typing method and has been used as an epidemiological classification and SNP identification method for Brucella isolates in a field population PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5BYnJpbDwvQXV0aG9yPjxZZWFyPjIwMTE8L1llYXI+PFJl

Y051bT40MTk8L1JlY051bT48RGlzcGxheVRleHQ+WzYtOV08L0Rpc3BsYXlUZXh0PjxyZWNvcmQ+

PHJlYy1udW1iZXI+NDE5PC9yZWMtbnVtYmVyPjxmb3JlaWduLWtleXM+PGtleSBhcHA9IkVOIiBk

Yi1pZD0id3g5MHI5cHQ4cnRyMjBlZnR2eXZ6MGE0dDAydjB6c3cwMnd2Ij40MTk8L2tleT48L2Zv

cmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwvcmVmLXR5cGU+

PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPkFicmlsLCBDLjwvYXV0aG9yPjxhdXRob3I+

VGhvbWFubiwgQS48L2F1dGhvcj48YXV0aG9yPkJyb2RhcmQsIEkuPC9hdXRob3I+PGF1dGhvcj5X

dSwgTi48L2F1dGhvcj48YXV0aG9yPlJ5c2VyLURlZ2lvcmdpcywgTS4gUC48L2F1dGhvcj48YXV0

aG9yPkZyZXksIEouPC9hdXRob3I+PGF1dGhvcj5PdmVyZXNjaCwgRy48L2F1dGhvcj48L2F1dGhv

cnM+PC9jb250cmlidXRvcnM+PGF1dGgtYWRkcmVzcz5DZW50cmUgZm9yIFpvb25vc2VzLCBCYWN0

ZXJpYWwgQW5pbWFsIERpc2Vhc2VzIGFuZCBBbnRpbWljcm9iaWFsIFJlc2lzdGFuY2UgKFpPQkEp

LCBMYW5nZ2Fzcy1TdHJhc3NlIDEyMiwgUG9zdGZhY2ggODQ2NiwgQ0gtMzAwMSBCZXJuLCBTd2l0

emVybGFuZC48L2F1dGgtYWRkcmVzcz48dGl0bGVzPjx0aXRsZT5BIG5vdmVsIGlzb2xhdGlvbiBt

ZXRob2Qgb2YgQnJ1Y2VsbGEgc3BlY2llcyBhbmQgbW9sZWN1bGFyIHRyYWNraW5nIG9mIEJydWNl

bGxhIHN1aXMgYmlvdmFyIDIgaW4gZG9tZXN0aWMgYW5kIHdpbGQgYW5pbWFsczwvdGl0bGU+PHNl

Y29uZGFyeS10aXRsZT5WZXQgTWljcm9iaW9sPC9zZWNvbmRhcnktdGl0bGU+PC90aXRsZXM+PHBl

cmlvZGljYWw+PGZ1bGwtdGl0bGU+VmV0IE1pY3JvYmlvbDwvZnVsbC10aXRsZT48L3BlcmlvZGlj

YWw+PGVkaXRpb24+MjAxMS8wNC8wOTwvZWRpdGlvbj48ZGF0ZXM+PHllYXI+MjAxMTwveWVhcj48

cHViLWRhdGVzPjxkYXRlPk1hciA1PC9kYXRlPjwvcHViLWRhdGVzPjwvZGF0ZXM+PGlzYm4+MTg3

My0yNTQyIChFbGVjdHJvbmljKSYjeEQ7MDM3OC0xMTM1IChMaW5raW5nKTwvaXNibj48YWNjZXNz

aW9uLW51bT4yMTQ3NDI1NjwvYWNjZXNzaW9uLW51bT48dXJscz48cmVsYXRlZC11cmxzPjx1cmw+

aHR0cDovL3d3dy5uY2JpLm5sbS5uaWguZ292L2VudHJlei9xdWVyeS5mY2dpP2NtZD1SZXRyaWV2

ZSZhbXA7ZGI9UHViTWVkJmFtcDtkb3B0PUNpdGF0aW9uJmFtcDtsaXN0X3VpZHM9MjE0NzQyNTY8

L3VybD48L3JlbGF0ZWQtdXJscz48L3VybHM+PGVsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPlMwMzc4

LTExMzUoMTEpMDAxMzgtNiBbcGlpXSYjeEQ7MTAuMTAxNi9qLnZldG1pYy4yMDExLjAyLjA1Njwv

ZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+PGxhbmd1YWdlPkVuZzwvbGFuZ3VhZ2U+PC9yZWNvcmQ+

PC9DaXRlPjxDaXRlPjxBdXRob3I+RGUgU2FudGlzPC9BdXRob3I+PFllYXI+MjAwOTwvWWVhcj48

UmVjTnVtPjQyNzwvUmVjTnVtPjxyZWNvcmQ+PHJlYy1udW1iZXI+NDI3PC9yZWMtbnVtYmVyPjxm

b3JlaWduLWtleXM+PGtleSBhcHA9IkVOIiBkYi1pZD0id3g5MHI5cHQ4cnRyMjBlZnR2eXZ6MGE0

dDAydjB6c3cwMnd2Ij40Mjc8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iSm91

cm5hbCBBcnRpY2xlIj4xNzwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9y

PkRlIFNhbnRpcywgUi48L2F1dGhvcj48YXV0aG9yPkNpYW1tYXJ1Y29uaSwgQS48L2F1dGhvcj48

YXV0aG9yPkZhZ2dpb25pLCBHLjwvYXV0aG9yPjxhdXRob3I+RCZhcG9zO0FtZWxpbywgUi48L2F1

dGhvcj48YXV0aG9yPk1hcmlhbmVsbGksIEMuPC9hdXRob3I+PGF1dGhvcj5MaXN0YSwgRi48L2F1

dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PGF1dGgtYWRkcmVzcz5TZXppb25lIGRpIElz

dG9sb2dpYSBlIEJpb2xvZ2lhIG1vbGVjb2xhcmUsIENlbnRybyBTdHVkaSBlIFJpY2VyY2hlIGRp

IFNhbml0YSBlIFZldGVyaW5hcmlhIE1pbGl0YXJlLCBWaWEgU2FudG8gU3RlZmFubyBSb3RvbmRv

IDQsIFJvbWUsIEl0YWx5LiByaWNjYXJkby5kZXNhbnRpc0BnbWFpbC5jb208L2F1dGgtYWRkcmVz

cz48dGl0bGVzPjx0aXRsZT5MYWIgb24gYSBjaGlwIGdlbm90eXBpbmcgZm9yIEJydWNlbGxhIHNw

cC4gYmFzZWQgb24gMTUtbG9jaSBtdWx0aSBsb2N1cyBWTlRSIGFuYWx5c2lzPC90aXRsZT48c2Vj

b25kYXJ5LXRpdGxlPkJNQyBNaWNyb2Jpb2w8L3NlY29uZGFyeS10aXRsZT48L3RpdGxlcz48cGVy

aW9kaWNhbD48ZnVsbC10aXRsZT5CTUMgTWljcm9iaW9sPC9mdWxsLXRpdGxlPjwvcGVyaW9kaWNh

bD48cGFnZXM+NjY8L3BhZ2VzPjx2b2x1bWU+OTwvdm9sdW1lPjxlZGl0aW9uPjIwMDkvMDQvMDk8

L2VkaXRpb24+PGtleXdvcmRzPjxrZXl3b3JkPkJhY3RlcmlhbCBUeXBpbmcgVGVjaG5pcXVlcy9p

bnN0cnVtZW50YXRpb24vKm1ldGhvZHM8L2tleXdvcmQ+PGtleXdvcmQ+QnJ1Y2VsbGEvY2xhc3Np

ZmljYXRpb24vKmdlbmV0aWNzPC9rZXl3b3JkPjxrZXl3b3JkPkJydWNlbGxvc2lzL21pY3JvYmlv

bG9neTwva2V5d29yZD48a2V5d29yZD5ETkEsIEJhY3RlcmlhbC9hbmFseXNpczwva2V5d29yZD48

a2V5d29yZD5HZW5ldGljIE1hcmtlcnM8L2tleXdvcmQ+PGtleXdvcmQ+TWluaXNhdGVsbGl0ZSBS

ZXBlYXRzLypnZW5ldGljczwva2V5d29yZD48a2V5d29yZD5Nb2xlY3VsYXIgRXBpZGVtaW9sb2d5

PC9rZXl3b3JkPjxrZXl3b3JkPlJlcHJvZHVjaWJpbGl0eSBvZiBSZXN1bHRzPC9rZXl3b3JkPjxr

ZXl3b3JkPlNlbnNpdGl2aXR5IGFuZCBTcGVjaWZpY2l0eTwva2V5d29yZD48a2V5d29yZD5TZXF1

ZW5jZSBBbmFseXNpcywgRE5BLyptZXRob2RzPC9rZXl3b3JkPjwva2V5d29yZHM+PGRhdGVzPjx5

ZWFyPjIwMDk8L3llYXI+PC9kYXRlcz48aXNibj4xNDcxLTIxODAgKEVsZWN0cm9uaWMpJiN4RDsx

NDcxLTIxODAgKExpbmtpbmcpPC9pc2JuPjxhY2Nlc3Npb24tbnVtPjE5MzUxMzkwPC9hY2Nlc3Np

b24tbnVtPjx1cmxzPjxyZWxhdGVkLXVybHM+PHVybD5odHRwOi8vd3d3Lm5jYmkubmxtLm5paC5n

b3YvZW50cmV6L3F1ZXJ5LmZjZ2k/Y21kPVJldHJpZXZlJmFtcDtkYj1QdWJNZWQmYW1wO2RvcHQ9

Q2l0YXRpb24mYW1wO2xpc3RfdWlkcz0xOTM1MTM5MDwvdXJsPjwvcmVsYXRlZC11cmxzPjwvdXJs

cz48Y3VzdG9tMj4yNjc0NDQ5PC9jdXN0b20yPjxlbGVjdHJvbmljLXJlc291cmNlLW51bT4xNDcx

LTIxODAtOS02NiBbcGlpXSYjeEQ7MTAuMTE4Ni8xNDcxLTIxODAtOS02NjwvZWxlY3Ryb25pYy1y

ZXNvdXJjZS1udW0+PGxhbmd1YWdlPmVuZzwvbGFuZ3VhZ2U+PC9yZWNvcmQ+PC9DaXRlPjxDaXRl

PjxBdXRob3I+SGVyPC9BdXRob3I+PFllYXI+MjAxMDwvWWVhcj48UmVjTnVtPjQwNzwvUmVjTnVt

PjxyZWNvcmQ+PHJlYy1udW1iZXI+NDA3PC9yZWMtbnVtYmVyPjxmb3JlaWduLWtleXM+PGtleSBh

cHA9IkVOIiBkYi1pZD0id3g5MHI5cHQ4cnRyMjBlZnR2eXZ6MGE0dDAydjB6c3cwMnd2Ij40MDc8

L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwv

cmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPkhlciwgTS48L2F1dGhvcj48

YXV0aG9yPkthbmcsIFMuIEkuPC9hdXRob3I+PGF1dGhvcj5LaW0sIEouIFcuPC9hdXRob3I+PGF1

dGhvcj5LaW0sIEouIFkuPC9hdXRob3I+PGF1dGhvcj5Id2FuZywgSS4gWS48L2F1dGhvcj48YXV0

aG9yPkp1bmcsIFMuIEMuPC9hdXRob3I+PGF1dGhvcj5QYXJrLCBTLiBILjwvYXV0aG9yPjxhdXRo

b3I+UGFyaywgTS4gWS48L2F1dGhvcj48YXV0aG9yPllvbywgSC48L2F1dGhvcj48L2F1dGhvcnM+

PC9jb250cmlidXRvcnM+PGF1dGgtYWRkcmVzcz5OYXRpb25hbCBWZXRlcmluYXJ5IFJlc2VhcmNo

IGFuZCBRdWFyYW50aW5lIFNlcnZpY2UgKE5WUlFTKSwgQW55YW5nIDQzMC04MjQsIEtvcmVhLiBo

ZXJtQG52cnFzLmdvLmtyPC9hdXRoLWFkZHJlc3M+PHRpdGxlcz48dGl0bGU+QSBnZW5ldGljIGNv

bXBhcmlzb24gb2YgQnJ1Y2VsbGEgYWJvcnR1cyBpc29sYXRlcyBmcm9tIGFuaW1hbHMgYW5kIGh1

bWFucyBieSB1c2luZyBhbiBNTFZBIGFzc2F5PC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPkogTWlj

cm9iaW9sIEJpb3RlY2hub2w8L3NlY29uZGFyeS10aXRsZT48L3RpdGxlcz48cGVyaW9kaWNhbD48

ZnVsbC10aXRsZT5KIE1pY3JvYmlvbCBCaW90ZWNobm9sPC9mdWxsLXRpdGxlPjwvcGVyaW9kaWNh

bD48cGFnZXM+MTc1MC01PC9wYWdlcz48dm9sdW1lPjIwPC92b2x1bWU+PG51bWJlcj4xMjwvbnVt

YmVyPjxlZGl0aW9uPjIwMTEvMDEvMDU8L2VkaXRpb24+PGtleXdvcmRzPjxrZXl3b3JkPkFuaW1h

bHM8L2tleXdvcmQ+PGtleXdvcmQ+KkJhY3RlcmlhbCBUeXBpbmcgVGVjaG5pcXVlczwva2V5d29y

ZD48a2V5d29yZD5CcnVjZWxsYSBhYm9ydHVzLypjbGFzc2lmaWNhdGlvbi8qZ2VuZXRpY3MvaXNv

bGF0aW9uICZhbXA7IHB1cmlmaWNhdGlvbjwva2V5d29yZD48a2V5d29yZD5CcnVjZWxsb3Npcy8q

bWljcm9iaW9sb2d5PC9rZXl3b3JkPjxrZXl3b3JkPkJydWNlbGxvc2lzLCBCb3ZpbmUvKm1pY3Jv

YmlvbG9neTwva2V5d29yZD48a2V5d29yZD5DYXR0bGU8L2tleXdvcmQ+PGtleXdvcmQ+Q2x1c3Rl

ciBBbmFseXNpczwva2V5d29yZD48a2V5d29yZD5ETkEgRmluZ2VycHJpbnRpbmc8L2tleXdvcmQ+

PGtleXdvcmQ+RE5BLCBCYWN0ZXJpYWwvZ2VuZXRpY3M8L2tleXdvcmQ+PGtleXdvcmQ+KkdlbmV0

aWMgVmFyaWF0aW9uPC9rZXl3b3JkPjxrZXl3b3JkPkdlbm90eXBlPC9rZXl3b3JkPjxrZXl3b3Jk

Pkh1bWFuczwva2V5d29yZD48a2V5d29yZD5NaW5pc2F0ZWxsaXRlIFJlcGVhdHM8L2tleXdvcmQ+

PGtleXdvcmQ+TW9sZWN1bGFyIEVwaWRlbWlvbG9neTwva2V5d29yZD48a2V5d29yZD4qTW9sZWN1

bGFyIFR5cGluZzwva2V5d29yZD48a2V5d29yZD5SZXB1YmxpYyBvZiBLb3JlYTwva2V5d29yZD48

a2V5d29yZD5ab29ub3Nlcy9taWNyb2Jpb2xvZ3k8L2tleXdvcmQ+PC9rZXl3b3Jkcz48ZGF0ZXM+

PHllYXI+MjAxMDwveWVhcj48cHViLWRhdGVzPjxkYXRlPkRlYzwvZGF0ZT48L3B1Yi1kYXRlcz48

L2RhdGVzPjxpc2JuPjE3MzgtODg3MiAoRWxlY3Ryb25pYykmI3hEOzEwMTctNzgyNSAoTGlua2lu

Zyk8L2lzYm4+PGFjY2Vzc2lvbi1udW0+MjExOTM4MzM8L2FjY2Vzc2lvbi1udW0+PHVybHM+PHJl

bGF0ZWQtdXJscz48dXJsPmh0dHA6Ly93d3cubmNiaS5ubG0ubmloLmdvdi9lbnRyZXovcXVlcnku

ZmNnaT9jbWQ9UmV0cmlldmUmYW1wO2RiPVB1Yk1lZCZhbXA7ZG9wdD1DaXRhdGlvbiZhbXA7bGlz

dF91aWRzPTIxMTkzODMzPC91cmw+PC9yZWxhdGVkLXVybHM+PC91cmxzPjxlbGVjdHJvbmljLXJl

c291cmNlLW51bT5KTUIwMjAtMTItMjAgW3BpaV08L2VsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjxs

YW5ndWFnZT5lbmc8L2xhbmd1YWdlPjwvcmVjb3JkPjwvQ2l0ZT48Q2l0ZT48QXV0aG9yPldoYXRt

b3JlPC9BdXRob3I+PFllYXI+MjAwNzwvWWVhcj48UmVjTnVtPjQxMjwvUmVjTnVtPjxyZWNvcmQ+

PHJlYy1udW1iZXI+NDEyPC9yZWMtbnVtYmVyPjxmb3JlaWduLWtleXM+PGtleSBhcHA9IkVOIiBk

Yi1pZD0id3g5MHI5cHQ4cnRyMjBlZnR2eXZ6MGE0dDAydjB6c3cwMnd2Ij40MTI8L2tleT48L2Zv

cmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwvcmVmLXR5cGU+

PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPldoYXRtb3JlLCBBLiBNLjwvYXV0aG9yPjxh

dXRob3I+UGVycmV0dCwgTC4gTC48L2F1dGhvcj48YXV0aG9yPk1hY01pbGxhbiwgQS4gUC48L2F1

dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PGF1dGgtYWRkcmVzcz5EZXBhcnRtZW50IG9m

IFN0YXR1dG9yeSBhbmQgRXhvdGljIEJhY3RlcmlhbCBEaXNlYXNlcywgVmV0ZXJpbmFyeSBMYWJv

cmF0b3JpZXMgQWdlbmN5LCBBZGRsZXN0b25lLCBTdXJyZXksIEtUMTUgM05CLCBVSy4gYS53aGF0

bW9yZUB2bGEuZGVmcmEuZ3NpLmdvdi51azwvYXV0aC1hZGRyZXNzPjx0aXRsZXM+PHRpdGxlPkNo

YXJhY3RlcmlzYXRpb24gb2YgdGhlIGdlbmV0aWMgZGl2ZXJzaXR5IG9mIEJydWNlbGxhIGJ5IG11

bHRpbG9jdXMgc2VxdWVuY2luZzwvdGl0bGU+PHNlY29uZGFyeS10aXRsZT5CTUMgTWljcm9iaW9s

PC9zZWNvbmRhcnktdGl0bGU+PC90aXRsZXM+PHBlcmlvZGljYWw+PGZ1bGwtdGl0bGU+Qk1DIE1p

Y3JvYmlvbDwvZnVsbC10aXRsZT48L3BlcmlvZGljYWw+PHBhZ2VzPjM0PC9wYWdlcz48dm9sdW1l

Pjc8L3ZvbHVtZT48ZWRpdGlvbj4yMDA3LzA0LzI0PC9lZGl0aW9uPjxrZXl3b3Jkcz48a2V5d29y

ZD5BbmltYWxzPC9rZXl3b3JkPjxrZXl3b3JkPkJhc2UgU2VxdWVuY2U8L2tleXdvcmQ+PGtleXdv

cmQ+QnJ1Y2VsbGEvKmNsYXNzaWZpY2F0aW9uLypnZW5ldGljcy9pc29sYXRpb24gJmFtcDsgcHVy

aWZpY2F0aW9uPC9rZXl3b3JkPjxrZXl3b3JkPkJydWNlbGxvc2lzL21pY3JvYmlvbG9neS92ZXRl

cmluYXJ5PC9rZXl3b3JkPjxrZXl3b3JkPkJydWNlbGxvc2lzLCBCb3ZpbmUvbWljcm9iaW9sb2d5

PC9rZXl3b3JkPjxrZXl3b3JkPkNhdHRsZTwva2V5d29yZD48a2V5d29yZD5DbHVzdGVyIEFuYWx5

c2lzPC9rZXl3b3JkPjxrZXl3b3JkPkROQSwgQmFjdGVyaWFsL2dlbmV0aWNzPC9rZXl3b3JkPjxr

ZXl3b3JkPipHZW5ldGljIFZhcmlhdGlvbjwva2V5d29yZD48a2V5d29yZD5IdW1hbnM8L2tleXdv

cmQ+PGtleXdvcmQ+TW9sZWN1bGFyIFNlcXVlbmNlIERhdGE8L2tleXdvcmQ+PGtleXdvcmQ+UGh5

bG9nZW55PC9rZXl3b3JkPjxrZXl3b3JkPlNlcXVlbmNlIEFuYWx5c2lzLCBETkE8L2tleXdvcmQ+

PGtleXdvcmQ+U2VxdWVuY2UgSG9tb2xvZ3k8L2tleXdvcmQ+PC9rZXl3b3Jkcz48ZGF0ZXM+PHll

YXI+MjAwNzwveWVhcj48L2RhdGVzPjxpc2JuPjE0NzEtMjE4MCAoRWxlY3Ryb25pYykmI3hEOzE0

NzEtMjE4MCAoTGlua2luZyk8L2lzYm4+PGFjY2Vzc2lvbi1udW0+MTc0NDgyMzI8L2FjY2Vzc2lv

bi1udW0+PHVybHM+PHJlbGF0ZWQtdXJscz48dXJsPmh0dHA6Ly93d3cubmNiaS5ubG0ubmloLmdv

di9lbnRyZXovcXVlcnkuZmNnaT9jbWQ9UmV0cmlldmUmYW1wO2RiPVB1Yk1lZCZhbXA7ZG9wdD1D

aXRhdGlvbiZhbXA7bGlzdF91aWRzPTE3NDQ4MjMyPC91cmw+PC9yZWxhdGVkLXVybHM+PC91cmxz

PjxjdXN0b20yPjE4Nzc4MTA8L2N1c3RvbTI+PGVsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjE0NzEt

MjE4MC03LTM0IFtwaWldJiN4RDsxMC4xMTg2LzE0NzEtMjE4MC03LTM0PC9lbGVjdHJvbmljLXJl

c291cmNlLW51bT48bGFuZ3VhZ2U+ZW5nPC9sYW5ndWFnZT48L3JlY29yZD48L0NpdGU+PC9FbmRO

b3RlPgB=

ADDIN EN.CITE PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5BYnJpbDwvQXV0aG9yPjxZZWFyPjIwMTE8L1llYXI+PFJl

Y051bT40MTk8L1JlY051bT48RGlzcGxheVRleHQ+WzYtOV08L0Rpc3BsYXlUZXh0PjxyZWNvcmQ+

PHJlYy1udW1iZXI+NDE5PC9yZWMtbnVtYmVyPjxmb3JlaWduLWtleXM+PGtleSBhcHA9IkVOIiBk

Yi1pZD0id3g5MHI5cHQ4cnRyMjBlZnR2eXZ6MGE0dDAydjB6c3cwMnd2Ij40MTk8L2tleT48L2Zv

cmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwvcmVmLXR5cGU+

PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPkFicmlsLCBDLjwvYXV0aG9yPjxhdXRob3I+

VGhvbWFubiwgQS48L2F1dGhvcj48YXV0aG9yPkJyb2RhcmQsIEkuPC9hdXRob3I+PGF1dGhvcj5X

dSwgTi48L2F1dGhvcj48YXV0aG9yPlJ5c2VyLURlZ2lvcmdpcywgTS4gUC48L2F1dGhvcj48YXV0

aG9yPkZyZXksIEouPC9hdXRob3I+PGF1dGhvcj5PdmVyZXNjaCwgRy48L2F1dGhvcj48L2F1dGhv

cnM+PC9jb250cmlidXRvcnM+PGF1dGgtYWRkcmVzcz5DZW50cmUgZm9yIFpvb25vc2VzLCBCYWN0

ZXJpYWwgQW5pbWFsIERpc2Vhc2VzIGFuZCBBbnRpbWljcm9iaWFsIFJlc2lzdGFuY2UgKFpPQkEp

LCBMYW5nZ2Fzcy1TdHJhc3NlIDEyMiwgUG9zdGZhY2ggODQ2NiwgQ0gtMzAwMSBCZXJuLCBTd2l0

emVybGFuZC48L2F1dGgtYWRkcmVzcz48dGl0bGVzPjx0aXRsZT5BIG5vdmVsIGlzb2xhdGlvbiBt

ZXRob2Qgb2YgQnJ1Y2VsbGEgc3BlY2llcyBhbmQgbW9sZWN1bGFyIHRyYWNraW5nIG9mIEJydWNl

bGxhIHN1aXMgYmlvdmFyIDIgaW4gZG9tZXN0aWMgYW5kIHdpbGQgYW5pbWFsczwvdGl0bGU+PHNl

Y29uZGFyeS10aXRsZT5WZXQgTWljcm9iaW9sPC9zZWNvbmRhcnktdGl0bGU+PC90aXRsZXM+PHBl

cmlvZGljYWw+PGZ1bGwtdGl0bGU+VmV0IE1pY3JvYmlvbDwvZnVsbC10aXRsZT48L3BlcmlvZGlj

YWw+PGVkaXRpb24+MjAxMS8wNC8wOTwvZWRpdGlvbj48ZGF0ZXM+PHllYXI+MjAxMTwveWVhcj48

cHViLWRhdGVzPjxkYXRlPk1hciA1PC9kYXRlPjwvcHViLWRhdGVzPjwvZGF0ZXM+PGlzYm4+MTg3

My0yNTQyIChFbGVjdHJvbmljKSYjeEQ7MDM3OC0xMTM1IChMaW5raW5nKTwvaXNibj48YWNjZXNz

aW9uLW51bT4yMTQ3NDI1NjwvYWNjZXNzaW9uLW51bT48dXJscz48cmVsYXRlZC11cmxzPjx1cmw+

aHR0cDovL3d3dy5uY2JpLm5sbS5uaWguZ292L2VudHJlei9xdWVyeS5mY2dpP2NtZD1SZXRyaWV2

ZSZhbXA7ZGI9UHViTWVkJmFtcDtkb3B0PUNpdGF0aW9uJmFtcDtsaXN0X3VpZHM9MjE0NzQyNTY8

L3VybD48L3JlbGF0ZWQtdXJscz48L3VybHM+PGVsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPlMwMzc4

LTExMzUoMTEpMDAxMzgtNiBbcGlpXSYjeEQ7MTAuMTAxNi9qLnZldG1pYy4yMDExLjAyLjA1Njwv

ZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+PGxhbmd1YWdlPkVuZzwvbGFuZ3VhZ2U+PC9yZWNvcmQ+

PC9DaXRlPjxDaXRlPjxBdXRob3I+RGUgU2FudGlzPC9BdXRob3I+PFllYXI+MjAwOTwvWWVhcj48

UmVjTnVtPjQyNzwvUmVjTnVtPjxyZWNvcmQ+PHJlYy1udW1iZXI+NDI3PC9yZWMtbnVtYmVyPjxm

b3JlaWduLWtleXM+PGtleSBhcHA9IkVOIiBkYi1pZD0id3g5MHI5cHQ4cnRyMjBlZnR2eXZ6MGE0

dDAydjB6c3cwMnd2Ij40Mjc8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iSm91

cm5hbCBBcnRpY2xlIj4xNzwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9y

PkRlIFNhbnRpcywgUi48L2F1dGhvcj48YXV0aG9yPkNpYW1tYXJ1Y29uaSwgQS48L2F1dGhvcj48

YXV0aG9yPkZhZ2dpb25pLCBHLjwvYXV0aG9yPjxhdXRob3I+RCZhcG9zO0FtZWxpbywgUi48L2F1

dGhvcj48YXV0aG9yPk1hcmlhbmVsbGksIEMuPC9hdXRob3I+PGF1dGhvcj5MaXN0YSwgRi48L2F1

dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PGF1dGgtYWRkcmVzcz5TZXppb25lIGRpIElz

dG9sb2dpYSBlIEJpb2xvZ2lhIG1vbGVjb2xhcmUsIENlbnRybyBTdHVkaSBlIFJpY2VyY2hlIGRp

IFNhbml0YSBlIFZldGVyaW5hcmlhIE1pbGl0YXJlLCBWaWEgU2FudG8gU3RlZmFubyBSb3RvbmRv

IDQsIFJvbWUsIEl0YWx5LiByaWNjYXJkby5kZXNhbnRpc0BnbWFpbC5jb208L2F1dGgtYWRkcmVz

cz48dGl0bGVzPjx0aXRsZT5MYWIgb24gYSBjaGlwIGdlbm90eXBpbmcgZm9yIEJydWNlbGxhIHNw

cC4gYmFzZWQgb24gMTUtbG9jaSBtdWx0aSBsb2N1cyBWTlRSIGFuYWx5c2lzPC90aXRsZT48c2Vj

b25kYXJ5LXRpdGxlPkJNQyBNaWNyb2Jpb2w8L3NlY29uZGFyeS10aXRsZT48L3RpdGxlcz48cGVy

aW9kaWNhbD48ZnVsbC10aXRsZT5CTUMgTWljcm9iaW9sPC9mdWxsLXRpdGxlPjwvcGVyaW9kaWNh

bD48cGFnZXM+NjY8L3BhZ2VzPjx2b2x1bWU+OTwvdm9sdW1lPjxlZGl0aW9uPjIwMDkvMDQvMDk8

L2VkaXRpb24+PGtleXdvcmRzPjxrZXl3b3JkPkJhY3RlcmlhbCBUeXBpbmcgVGVjaG5pcXVlcy9p

bnN0cnVtZW50YXRpb24vKm1ldGhvZHM8L2tleXdvcmQ+PGtleXdvcmQ+QnJ1Y2VsbGEvY2xhc3Np

ZmljYXRpb24vKmdlbmV0aWNzPC9rZXl3b3JkPjxrZXl3b3JkPkJydWNlbGxvc2lzL21pY3JvYmlv

bG9neTwva2V5d29yZD48a2V5d29yZD5ETkEsIEJhY3RlcmlhbC9hbmFseXNpczwva2V5d29yZD48

a2V5d29yZD5HZW5ldGljIE1hcmtlcnM8L2tleXdvcmQ+PGtleXdvcmQ+TWluaXNhdGVsbGl0ZSBS

ZXBlYXRzLypnZW5ldGljczwva2V5d29yZD48a2V5d29yZD5Nb2xlY3VsYXIgRXBpZGVtaW9sb2d5

PC9rZXl3b3JkPjxrZXl3b3JkPlJlcHJvZHVjaWJpbGl0eSBvZiBSZXN1bHRzPC9rZXl3b3JkPjxr

ZXl3b3JkPlNlbnNpdGl2aXR5IGFuZCBTcGVjaWZpY2l0eTwva2V5d29yZD48a2V5d29yZD5TZXF1

ZW5jZSBBbmFseXNpcywgRE5BLyptZXRob2RzPC9rZXl3b3JkPjwva2V5d29yZHM+PGRhdGVzPjx5

ZWFyPjIwMDk8L3llYXI+PC9kYXRlcz48aXNibj4xNDcxLTIxODAgKEVsZWN0cm9uaWMpJiN4RDsx

NDcxLTIxODAgKExpbmtpbmcpPC9pc2JuPjxhY2Nlc3Npb24tbnVtPjE5MzUxMzkwPC9hY2Nlc3Np

b24tbnVtPjx1cmxzPjxyZWxhdGVkLXVybHM+PHVybD5odHRwOi8vd3d3Lm5jYmkubmxtLm5paC5n

b3YvZW50cmV6L3F1ZXJ5LmZjZ2k/Y21kPVJldHJpZXZlJmFtcDtkYj1QdWJNZWQmYW1wO2RvcHQ9

Q2l0YXRpb24mYW1wO2xpc3RfdWlkcz0xOTM1MTM5MDwvdXJsPjwvcmVsYXRlZC11cmxzPjwvdXJs

cz48Y3VzdG9tMj4yNjc0NDQ5PC9jdXN0b20yPjxlbGVjdHJvbmljLXJlc291cmNlLW51bT4xNDcx

LTIxODAtOS02NiBbcGlpXSYjeEQ7MTAuMTE4Ni8xNDcxLTIxODAtOS02NjwvZWxlY3Ryb25pYy1y

ZXNvdXJjZS1udW0+PGxhbmd1YWdlPmVuZzwvbGFuZ3VhZ2U+PC9yZWNvcmQ+PC9DaXRlPjxDaXRl

PjxBdXRob3I+SGVyPC9BdXRob3I+PFllYXI+MjAxMDwvWWVhcj48UmVjTnVtPjQwNzwvUmVjTnVt

PjxyZWNvcmQ+PHJlYy1udW1iZXI+NDA3PC9yZWMtbnVtYmVyPjxmb3JlaWduLWtleXM+PGtleSBh

cHA9IkVOIiBkYi1pZD0id3g5MHI5cHQ4cnRyMjBlZnR2eXZ6MGE0dDAydjB6c3cwMnd2Ij40MDc8

L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwv

cmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPkhlciwgTS48L2F1dGhvcj48

YXV0aG9yPkthbmcsIFMuIEkuPC9hdXRob3I+PGF1dGhvcj5LaW0sIEouIFcuPC9hdXRob3I+PGF1

dGhvcj5LaW0sIEouIFkuPC9hdXRob3I+PGF1dGhvcj5Id2FuZywgSS4gWS48L2F1dGhvcj48YXV0

aG9yPkp1bmcsIFMuIEMuPC9hdXRob3I+PGF1dGhvcj5QYXJrLCBTLiBILjwvYXV0aG9yPjxhdXRo

b3I+UGFyaywgTS4gWS48L2F1dGhvcj48YXV0aG9yPllvbywgSC48L2F1dGhvcj48L2F1dGhvcnM+

PC9jb250cmlidXRvcnM+PGF1dGgtYWRkcmVzcz5OYXRpb25hbCBWZXRlcmluYXJ5IFJlc2VhcmNo

IGFuZCBRdWFyYW50aW5lIFNlcnZpY2UgKE5WUlFTKSwgQW55YW5nIDQzMC04MjQsIEtvcmVhLiBo

ZXJtQG52cnFzLmdvLmtyPC9hdXRoLWFkZHJlc3M+PHRpdGxlcz48dGl0bGU+QSBnZW5ldGljIGNv

bXBhcmlzb24gb2YgQnJ1Y2VsbGEgYWJvcnR1cyBpc29sYXRlcyBmcm9tIGFuaW1hbHMgYW5kIGh1

bWFucyBieSB1c2luZyBhbiBNTFZBIGFzc2F5PC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPkogTWlj

cm9iaW9sIEJpb3RlY2hub2w8L3NlY29uZGFyeS10aXRsZT48L3RpdGxlcz48cGVyaW9kaWNhbD48

ZnVsbC10aXRsZT5KIE1pY3JvYmlvbCBCaW90ZWNobm9sPC9mdWxsLXRpdGxlPjwvcGVyaW9kaWNh

bD48cGFnZXM+MTc1MC01PC9wYWdlcz48dm9sdW1lPjIwPC92b2x1bWU+PG51bWJlcj4xMjwvbnVt

YmVyPjxlZGl0aW9uPjIwMTEvMDEvMDU8L2VkaXRpb24+PGtleXdvcmRzPjxrZXl3b3JkPkFuaW1h

bHM8L2tleXdvcmQ+PGtleXdvcmQ+KkJhY3RlcmlhbCBUeXBpbmcgVGVjaG5pcXVlczwva2V5d29y

ZD48a2V5d29yZD5CcnVjZWxsYSBhYm9ydHVzLypjbGFzc2lmaWNhdGlvbi8qZ2VuZXRpY3MvaXNv

bGF0aW9uICZhbXA7IHB1cmlmaWNhdGlvbjwva2V5d29yZD48a2V5d29yZD5CcnVjZWxsb3Npcy8q

bWljcm9iaW9sb2d5PC9rZXl3b3JkPjxrZXl3b3JkPkJydWNlbGxvc2lzLCBCb3ZpbmUvKm1pY3Jv

YmlvbG9neTwva2V5d29yZD48a2V5d29yZD5DYXR0bGU8L2tleXdvcmQ+PGtleXdvcmQ+Q2x1c3Rl

ciBBbmFseXNpczwva2V5d29yZD48a2V5d29yZD5ETkEgRmluZ2VycHJpbnRpbmc8L2tleXdvcmQ+

PGtleXdvcmQ+RE5BLCBCYWN0ZXJpYWwvZ2VuZXRpY3M8L2tleXdvcmQ+PGtleXdvcmQ+KkdlbmV0

aWMgVmFyaWF0aW9uPC9rZXl3b3JkPjxrZXl3b3JkPkdlbm90eXBlPC9rZXl3b3JkPjxrZXl3b3Jk

Pkh1bWFuczwva2V5d29yZD48a2V5d29yZD5NaW5pc2F0ZWxsaXRlIFJlcGVhdHM8L2tleXdvcmQ+

PGtleXdvcmQ+TW9sZWN1bGFyIEVwaWRlbWlvbG9neTwva2V5d29yZD48a2V5d29yZD4qTW9sZWN1

bGFyIFR5cGluZzwva2V5d29yZD48a2V5d29yZD5SZXB1YmxpYyBvZiBLb3JlYTwva2V5d29yZD48

a2V5d29yZD5ab29ub3Nlcy9taWNyb2Jpb2xvZ3k8L2tleXdvcmQ+PC9rZXl3b3Jkcz48ZGF0ZXM+

PHllYXI+MjAxMDwveWVhcj48cHViLWRhdGVzPjxkYXRlPkRlYzwvZGF0ZT48L3B1Yi1kYXRlcz48

L2RhdGVzPjxpc2JuPjE3MzgtODg3MiAoRWxlY3Ryb25pYykmI3hEOzEwMTctNzgyNSAoTGlua2lu

Zyk8L2lzYm4+PGFjY2Vzc2lvbi1udW0+MjExOTM4MzM8L2FjY2Vzc2lvbi1udW0+PHVybHM+PHJl

bGF0ZWQtdXJscz48dXJsPmh0dHA6Ly93d3cubmNiaS5ubG0ubmloLmdvdi9lbnRyZXovcXVlcnku

ZmNnaT9jbWQ9UmV0cmlldmUmYW1wO2RiPVB1Yk1lZCZhbXA7ZG9wdD1DaXRhdGlvbiZhbXA7bGlz

dF91aWRzPTIxMTkzODMzPC91cmw+PC9yZWxhdGVkLXVybHM+PC91cmxzPjxlbGVjdHJvbmljLXJl

c291cmNlLW51bT5KTUIwMjAtMTItMjAgW3BpaV08L2VsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjxs

YW5ndWFnZT5lbmc8L2xhbmd1YWdlPjwvcmVjb3JkPjwvQ2l0ZT48Q2l0ZT48QXV0aG9yPldoYXRt

b3JlPC9BdXRob3I+PFllYXI+MjAwNzwvWWVhcj48UmVjTnVtPjQxMjwvUmVjTnVtPjxyZWNvcmQ+

PHJlYy1udW1iZXI+NDEyPC9yZWMtbnVtYmVyPjxmb3JlaWduLWtleXM+PGtleSBhcHA9IkVOIiBk

Yi1pZD0id3g5MHI5cHQ4cnRyMjBlZnR2eXZ6MGE0dDAydjB6c3cwMnd2Ij40MTI8L2tleT48L2Zv

cmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwvcmVmLXR5cGU+

PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPldoYXRtb3JlLCBBLiBNLjwvYXV0aG9yPjxh

dXRob3I+UGVycmV0dCwgTC4gTC48L2F1dGhvcj48YXV0aG9yPk1hY01pbGxhbiwgQS4gUC48L2F1

dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PGF1dGgtYWRkcmVzcz5EZXBhcnRtZW50IG9m

IFN0YXR1dG9yeSBhbmQgRXhvdGljIEJhY3RlcmlhbCBEaXNlYXNlcywgVmV0ZXJpbmFyeSBMYWJv

cmF0b3JpZXMgQWdlbmN5LCBBZGRsZXN0b25lLCBTdXJyZXksIEtUMTUgM05CLCBVSy4gYS53aGF0

bW9yZUB2bGEuZGVmcmEuZ3NpLmdvdi51azwvYXV0aC1hZGRyZXNzPjx0aXRsZXM+PHRpdGxlPkNo

YXJhY3RlcmlzYXRpb24gb2YgdGhlIGdlbmV0aWMgZGl2ZXJzaXR5IG9mIEJydWNlbGxhIGJ5IG11

bHRpbG9jdXMgc2VxdWVuY2luZzwvdGl0bGU+PHNlY29uZGFyeS10aXRsZT5CTUMgTWljcm9iaW9s

PC9zZWNvbmRhcnktdGl0bGU+PC90aXRsZXM+PHBlcmlvZGljYWw+PGZ1bGwtdGl0bGU+Qk1DIE1p

Y3JvYmlvbDwvZnVsbC10aXRsZT48L3BlcmlvZGljYWw+PHBhZ2VzPjM0PC9wYWdlcz48dm9sdW1l

Pjc8L3ZvbHVtZT48ZWRpdGlvbj4yMDA3LzA0LzI0PC9lZGl0aW9uPjxrZXl3b3Jkcz48a2V5d29y

ZD5BbmltYWxzPC9rZXl3b3JkPjxrZXl3b3JkPkJhc2UgU2VxdWVuY2U8L2tleXdvcmQ+PGtleXdv

cmQ+QnJ1Y2VsbGEvKmNsYXNzaWZpY2F0aW9uLypnZW5ldGljcy9pc29sYXRpb24gJmFtcDsgcHVy

aWZpY2F0aW9uPC9rZXl3b3JkPjxrZXl3b3JkPkJydWNlbGxvc2lzL21pY3JvYmlvbG9neS92ZXRl

cmluYXJ5PC9rZXl3b3JkPjxrZXl3b3JkPkJydWNlbGxvc2lzLCBCb3ZpbmUvbWljcm9iaW9sb2d5

PC9rZXl3b3JkPjxrZXl3b3JkPkNhdHRsZTwva2V5d29yZD48a2V5d29yZD5DbHVzdGVyIEFuYWx5

c2lzPC9rZXl3b3JkPjxrZXl3b3JkPkROQSwgQmFjdGVyaWFsL2dlbmV0aWNzPC9rZXl3b3JkPjxr

ZXl3b3JkPipHZW5ldGljIFZhcmlhdGlvbjwva2V5d29yZD48a2V5d29yZD5IdW1hbnM8L2tleXdv

cmQ+PGtleXdvcmQ+TW9sZWN1bGFyIFNlcXVlbmNlIERhdGE8L2tleXdvcmQ+PGtleXdvcmQ+UGh5

bG9nZW55PC9rZXl3b3JkPjxrZXl3b3JkPlNlcXVlbmNlIEFuYWx5c2lzLCBETkE8L2tleXdvcmQ+

PGtleXdvcmQ+U2VxdWVuY2UgSG9tb2xvZ3k8L2tleXdvcmQ+PC9rZXl3b3Jkcz48ZGF0ZXM+PHll

YXI+MjAwNzwveWVhcj48L2RhdGVzPjxpc2JuPjE0NzEtMjE4MCAoRWxlY3Ryb25pYykmI3hEOzE0

NzEtMjE4MCAoTGlua2luZyk8L2lzYm4+PGFjY2Vzc2lvbi1udW0+MTc0NDgyMzI8L2FjY2Vzc2lv

bi1udW0+PHVybHM+PHJlbGF0ZWQtdXJscz48dXJsPmh0dHA6Ly93d3cubmNiaS5ubG0ubmloLmdv

di9lbnRyZXovcXVlcnkuZmNnaT9jbWQ9UmV0cmlldmUmYW1wO2RiPVB1Yk1lZCZhbXA7ZG9wdD1D

aXRhdGlvbiZhbXA7bGlzdF91aWRzPTE3NDQ4MjMyPC91cmw+PC9yZWxhdGVkLXVybHM+PC91cmxz

PjxjdXN0b20yPjE4Nzc4MTA8L2N1c3RvbTI+PGVsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjE0NzEt

MjE4MC03LTM0IFtwaWldJiN4RDsxMC4xMTg2LzE0NzEtMjE4MC03LTM0PC9lbGVjdHJvbmljLXJl

c291cmNlLW51bT48bGFuZ3VhZ2U+ZW5nPC9sYW5ndWFnZT48L3JlY29yZD48L0NpdGU+PC9FbmRO

b3RlPgB=

ADDIN EN.CITE.DATA [6-9]. MLVA method is used to understand the genetic diversity in polymorphic loci and to establish taxonomic relationships between different biovars of Brucella. It is used for microbial typing and epidemiologic studies by amplifying loci which are specific to a given genome and sequencing these regions. This is a powerful approach and is being used to create phylogenetic relationships and discovery of single nucleotide polymorphisms in independent loci from different Brucella isolates ADDIN EN.CITE <EndNote><Cite><Author>Whatmore</Author><Year>2007</Year><RecNum>412</RecNum><DisplayText>[7]</DisplayText><record><rec-number>412</rec-number><foreign-keys><key app="EN" db-id="wx90r9pt8rtr20eftvyvz0a4t02v0zsw02wv">412</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Whatmore, A. M.</author><author>Perrett, L. L.</author><author>MacMillan, A. P.</author></authors></contributors><auth-address>Department of Statutory and Exotic Bacterial Diseases, Veterinary Laboratories Agency, Addlestone, Surrey, KT15 3NB, UK. a.whatmore@vla.defra..uk</auth-address><titles><title>Characterisation of the genetic diversity of Brucella by multilocus sequencing</title><secondary-title>BMC Microbiol</secondary-title></titles><periodical><full-title>BMC Microbiol</full-title></periodical><pages>34</pages><volume>7</volume><edition>2007/04/24</edition><keywords><keyword>Animals</keyword><keyword>Base Sequence</keyword><keyword>Brucella/*classification/*genetics/isolation &amp; purification</keyword><keyword>Brucellosis/microbiology/veterinary</keyword><keyword>Brucellosis, Bovine/microbiology</keyword><keyword>Cattle</keyword><keyword>Cluster Analysis</keyword><keyword>DNA, Bacterial/genetics</keyword><keyword>*Genetic Variation</keyword><keyword>Humans</keyword><keyword>Molecular Sequence Data</keyword><keyword>Phylogeny</keyword><keyword>Sequence Analysis, DNA</keyword><keyword>Sequence Homology</keyword></keywords><dates><year>2007</year></dates><isbn>1471-2180 (Electronic)&#xD;1471-2180 (Linking)</isbn><accession-num>17448232</accession-num><urls><related-urls><url> [pii]&#xD;10.1186/1471-2180-7-34</electronic-resource-num><language>eng</language></record></Cite></EndNote>[7]. Array based approaches for forensic detection utilizes genome specific ribosomal RNA genes, genome specific PCR markers or oligonucleotide probes. Arrays from rRNA are derived from a combination of rRNA genes from a given set of organisms of high priority. Universal PCR is used to amplify one or more universal genes, including 16S, 18S and 23S as well as screen for pathogen-specific polymorphisms ADDIN EN.CITE <EndNote><Cite><Author>Call</Author><Year>2005</Year><RecNum>10</RecNum><DisplayText>[11]</DisplayText><record><rec-number>10</rec-number><foreign-keys><key app="EN" db-id="wx90r9pt8rtr20eftvyvz0a4t02v0zsw02wv">10</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Call, D. R.</author></authors></contributors><auth-address>Department of Veterinary Microbiology and Pathology and Center for Reproductive Biology, Washington State University, Pullman, Washington 99164-7040, USA. drcall@wsu.edu</auth-address><titles><title>Challenges and opportunities for pathogen detection using DNA microarrays</title><secondary-title>Crit Rev Microbiol</secondary-title></titles><pages>91-9</pages><volume>31</volume><number>2</number><edition>2005/07/02</edition><keywords><keyword>Animals</keyword><keyword>Bacteria/genetics/*isolation &amp; purification</keyword><keyword>Bacterial Infections/*diagnosis</keyword><keyword>Humans</keyword><keyword>Infection/*diagnosis</keyword><keyword>Nucleic Acid Hybridization</keyword><keyword>Oligonucleotide Array Sequence Analysis/*methods</keyword><keyword>Polymorphism, Genetic</keyword><keyword>Sensitivity and Specificity</keyword></keywords><dates><year>2005</year></dates><isbn>1040-841X (Print)&#xD;1040-841X (Linking)</isbn><accession-num>15988839</accession-num><urls><related-urls><url>;[11]. One of the challenges of this approach is the frequent and unexpected amplification of contaminating template DNA, as observed in control reactions. Another potential problem with targeting 16S rRNA pathogen specific sequences is unexpected polymorphisms. Hence, naturally occurring variants may not be represented on the microarray, and failure to detect the variants would represent false negatives ADDIN EN.CITE <EndNote><Cite><Author>Call</Author><Year>2005</Year><RecNum>10</RecNum><DisplayText>[11]</DisplayText><record><rec-number>10</rec-number><foreign-keys><key app="EN" db-id="wx90r9pt8rtr20eftvyvz0a4t02v0zsw02wv">10</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Call, D. R.</author></authors></contributors><auth-address>Department of Veterinary Microbiology and Pathology and Center for Reproductive Biology, Washington State University, Pullman, Washington 99164-7040, USA. drcall@wsu.edu</auth-address><titles><title>Challenges and opportunities for pathogen detection using DNA microarrays</title><secondary-title>Crit Rev Microbiol</secondary-title></titles><pages>91-9</pages><volume>31</volume><number>2</number><edition>2005/07/02</edition><keywords><keyword>Animals</keyword><keyword>Bacteria/genetics/*isolation &amp; purification</keyword><keyword>Bacterial Infections/*diagnosis</keyword><keyword>Humans</keyword><keyword>Infection/*diagnosis</keyword><keyword>Nucleic Acid Hybridization</keyword><keyword>Oligonucleotide Array Sequence Analysis/*methods</keyword><keyword>Polymorphism, Genetic</keyword><keyword>Sensitivity and Specificity</keyword></keywords><dates><year>2005</year></dates><isbn>1040-841X (Print)&#xD;1040-841X (Linking)</isbn><accession-num>15988839</accession-num><urls><related-urls><url>;[11]. Another common PCR based approach detects pathogen type by amplification of a specific set of genetic markers that are measured on an array that has several probes for genes from a set of organisms. Such tests have been used for food-borne bacteria such as E. coli O157:H7 ADDIN EN.CITE <EndNote><Cite><Author>Call</Author><Year>2001</Year><RecNum>19</RecNum><DisplayText>[12]</DisplayText><record><rec-number>19</rec-number><foreign-keys><key app="EN" db-id="wx90r9pt8rtr20eftvyvz0a4t02v0zsw02wv">19</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Call, D. R.</author><author>Brockman, F. J.</author><author>Chandler, D. P.</author></authors></contributors><auth-address>Environmental Microbiology, Pacific Northwest National Laboratory, Richland, WA 99352, USA. drcall@wsu.edu</auth-address><titles><title>Detecting and genotyping Escherichia coli O157:H7 using multiplexed PCR and nucleic acid microarrays</title><secondary-title>Int J Food Microbiol</secondary-title></titles><pages>71-80</pages><volume>67</volume><number>1-2</number><edition>2001/08/03</edition><keywords><keyword>Animals</keyword><keyword>Chickens/*microbiology</keyword><keyword>Colony Count, Microbial</keyword><keyword>DNA, Bacterial/*analysis</keyword><keyword>Electrophoresis, Agar Gel</keyword><keyword>Escherichia coli O157/*classification/genetics/*isolation &amp; purification</keyword><keyword>*Food Microbiology</keyword><keyword>Gene Amplification</keyword><keyword>Genotype</keyword><keyword>Oligonucleotide Array Sequence Analysis/methods</keyword><keyword>Polymerase Chain Reaction/methods</keyword><keyword>Sensitivity and Specificity</keyword></keywords><dates><year>2001</year><pub-dates><date>Jul 20</date></pub-dates></dates><isbn>0168-1605 (Print)&#xD;0168-1605 (Linking)</isbn><accession-num>11482571</accession-num><urls><related-urls><url>;[12], viruses PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5DaGl6aGlrb3Y8L0F1dGhvcj48WWVhcj4yMDAyPC9ZZWFy

PjxSZWNOdW0+NDk8L1JlY051bT48RGlzcGxheVRleHQ+WzEzXTwvRGlzcGxheVRleHQ+PHJlY29y

ZD48cmVjLW51bWJlcj40OTwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIg

ZGItaWQ9Ind4OTByOXB0OHJ0cjIwZWZ0dnl2ejBhNHQwMnYwenN3MDJ3diI+NDk8L2tleT48L2Zv

cmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwvcmVmLXR5cGU+

PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPkNoaXpoaWtvdiwgVi48L2F1dGhvcj48YXV0

aG9yPldhZ25lciwgTS48L2F1dGhvcj48YXV0aG9yPkl2c2hpbmEsIEEuPC9hdXRob3I+PGF1dGhv

cj5Ib3NoaW5vLCBZLjwvYXV0aG9yPjxhdXRob3I+S2FwaWtpYW4sIEEuIFouPC9hdXRob3I+PGF1

dGhvcj5DaHVtYWtvdiwgSy48L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PGF1dGgt

YWRkcmVzcz5MYWJvcmF0b3J5IG9mIE1ldGhvZCBEZXZlbG9wbWVudCwgQ2VudGVyIGZvciBCaW9s

b2dpY3MgRXZhbHVhdGlvbiBhbmQgUmVzZWFyY2gsIEZvb2QgYW5kIERydWcgQWRtaW5pc3RyYXRp

b24sIEtlbnNpbmd0b24sIE1hcnlsYW5kIDIwODk1LCBVU0EuIGNoaXpoaWtvdkBjYmVyLmZkYS5n

b3Y8L2F1dGgtYWRkcmVzcz48dGl0bGVzPjx0aXRsZT5EZXRlY3Rpb24gYW5kIGdlbm90eXBpbmcg

b2YgaHVtYW4gZ3JvdXAgQSByb3RhdmlydXNlcyBieSBvbGlnb251Y2xlb3RpZGUgbWljcm9hcnJh

eSBoeWJyaWRpemF0aW9uPC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPkogQ2xpbiBNaWNyb2Jpb2w8

L3NlY29uZGFyeS10aXRsZT48L3RpdGxlcz48cGVyaW9kaWNhbD48ZnVsbC10aXRsZT5KIENsaW4g

TWljcm9iaW9sPC9mdWxsLXRpdGxlPjwvcGVyaW9kaWNhbD48cGFnZXM+MjM5OC00MDc8L3BhZ2Vz

Pjx2b2x1bWU+NDA8L3ZvbHVtZT48bnVtYmVyPjc8L251bWJlcj48ZWRpdGlvbj4yMDAyLzA2LzI5

PC9lZGl0aW9uPjxrZXl3b3Jkcz48a2V5d29yZD4qQW50aWdlbnMsIFZpcmFsPC9rZXl3b3JkPjxr

ZXl3b3JkPkJhc2UgU2VxdWVuY2U8L2tleXdvcmQ+PGtleXdvcmQ+Q2Fwc2lkL2dlbmV0aWNzPC9r

ZXl3b3JkPjxrZXl3b3JkPipDYXBzaWQgUHJvdGVpbnM8L2tleXdvcmQ+PGtleXdvcmQ+RE5BIFBy

aW1lcnMvZ2VuZXRpY3M8L2tleXdvcmQ+PGtleXdvcmQ+RE5BLCBWaXJhbC9nZW5ldGljcy9pc29s

YXRpb24gJmFtcDsgcHVyaWZpY2F0aW9uPC9rZXl3b3JkPjxrZXl3b3JkPkRydWcgRGVzaWduPC9r

ZXl3b3JkPjxrZXl3b3JkPkdlbmVzLCBWaXJhbDwva2V5d29yZD48a2V5d29yZD5HZW5vdHlwZTwv

a2V5d29yZD48a2V5d29yZD5IdW1hbnM8L2tleXdvcmQ+PGtleXdvcmQ+TW9sZWN1bGFyIFByb2Jl

IFRlY2huaXF1ZXM8L2tleXdvcmQ+PGtleXdvcmQ+TXV0YXRpb248L2tleXdvcmQ+PGtleXdvcmQ+

T2xpZ29udWNsZW90aWRlIEFycmF5IFNlcXVlbmNlIEFuYWx5c2lzLyptZXRob2RzPC9rZXl3b3Jk

PjxrZXl3b3JkPk9saWdvbnVjbGVvdGlkZSBQcm9iZXMvZ2VuZXRpY3M8L2tleXdvcmQ+PGtleXdv

cmQ+Um90YXZpcnVzL2NsYXNzaWZpY2F0aW9uLypnZW5ldGljcy8qaXNvbGF0aW9uICZhbXA7IHB1

cmlmaWNhdGlvbjwva2V5d29yZD48a2V5d29yZD5TcGVjaWVzIFNwZWNpZmljaXR5PC9rZXl3b3Jk

PjxrZXl3b3JkPlZpcm9sb2d5L21ldGhvZHM8L2tleXdvcmQ+PC9rZXl3b3Jkcz48ZGF0ZXM+PHll

YXI+MjAwMjwveWVhcj48cHViLWRhdGVzPjxkYXRlPkp1bDwvZGF0ZT48L3B1Yi1kYXRlcz48L2Rh

dGVzPjxpc2JuPjAwOTUtMTEzNyAoUHJpbnQpJiN4RDswMDk1LTExMzcgKExpbmtpbmcpPC9pc2Ju

PjxhY2Nlc3Npb24tbnVtPjEyMDg5MjU0PC9hY2Nlc3Npb24tbnVtPjx1cmxzPjxyZWxhdGVkLXVy

bHM+PHVybD5odHRwOi8vd3d3Lm5jYmkubmxtLm5paC5nb3YvZW50cmV6L3F1ZXJ5LmZjZ2k/Y21k

PVJldHJpZXZlJmFtcDtkYj1QdWJNZWQmYW1wO2RvcHQ9Q2l0YXRpb24mYW1wO2xpc3RfdWlkcz0x

MjA4OTI1NDwvdXJsPjwvcmVsYXRlZC11cmxzPjwvdXJscz48Y3VzdG9tMj4xMjA1Njc8L2N1c3Rv

bTI+PGxhbmd1YWdlPmVuZzwvbGFuZ3VhZ2U+PC9yZWNvcmQ+PC9DaXRlPjwvRW5kTm90ZT5=

ADDIN EN.CITE PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5DaGl6aGlrb3Y8L0F1dGhvcj48WWVhcj4yMDAyPC9ZZWFy

PjxSZWNOdW0+NDk8L1JlY051bT48RGlzcGxheVRleHQ+WzEzXTwvRGlzcGxheVRleHQ+PHJlY29y

ZD48cmVjLW51bWJlcj40OTwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIg

ZGItaWQ9Ind4OTByOXB0OHJ0cjIwZWZ0dnl2ejBhNHQwMnYwenN3MDJ3diI+NDk8L2tleT48L2Zv

cmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwvcmVmLXR5cGU+

PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPkNoaXpoaWtvdiwgVi48L2F1dGhvcj48YXV0

aG9yPldhZ25lciwgTS48L2F1dGhvcj48YXV0aG9yPkl2c2hpbmEsIEEuPC9hdXRob3I+PGF1dGhv

cj5Ib3NoaW5vLCBZLjwvYXV0aG9yPjxhdXRob3I+S2FwaWtpYW4sIEEuIFouPC9hdXRob3I+PGF1

dGhvcj5DaHVtYWtvdiwgSy48L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PGF1dGgt

YWRkcmVzcz5MYWJvcmF0b3J5IG9mIE1ldGhvZCBEZXZlbG9wbWVudCwgQ2VudGVyIGZvciBCaW9s

b2dpY3MgRXZhbHVhdGlvbiBhbmQgUmVzZWFyY2gsIEZvb2QgYW5kIERydWcgQWRtaW5pc3RyYXRp

b24sIEtlbnNpbmd0b24sIE1hcnlsYW5kIDIwODk1LCBVU0EuIGNoaXpoaWtvdkBjYmVyLmZkYS5n

b3Y8L2F1dGgtYWRkcmVzcz48dGl0bGVzPjx0aXRsZT5EZXRlY3Rpb24gYW5kIGdlbm90eXBpbmcg

b2YgaHVtYW4gZ3JvdXAgQSByb3RhdmlydXNlcyBieSBvbGlnb251Y2xlb3RpZGUgbWljcm9hcnJh

eSBoeWJyaWRpemF0aW9uPC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPkogQ2xpbiBNaWNyb2Jpb2w8

L3NlY29uZGFyeS10aXRsZT48L3RpdGxlcz48cGVyaW9kaWNhbD48ZnVsbC10aXRsZT5KIENsaW4g

TWljcm9iaW9sPC9mdWxsLXRpdGxlPjwvcGVyaW9kaWNhbD48cGFnZXM+MjM5OC00MDc8L3BhZ2Vz

Pjx2b2x1bWU+NDA8L3ZvbHVtZT48bnVtYmVyPjc8L251bWJlcj48ZWRpdGlvbj4yMDAyLzA2LzI5

PC9lZGl0aW9uPjxrZXl3b3Jkcz48a2V5d29yZD4qQW50aWdlbnMsIFZpcmFsPC9rZXl3b3JkPjxr

ZXl3b3JkPkJhc2UgU2VxdWVuY2U8L2tleXdvcmQ+PGtleXdvcmQ+Q2Fwc2lkL2dlbmV0aWNzPC9r

ZXl3b3JkPjxrZXl3b3JkPipDYXBzaWQgUHJvdGVpbnM8L2tleXdvcmQ+PGtleXdvcmQ+RE5BIFBy

aW1lcnMvZ2VuZXRpY3M8L2tleXdvcmQ+PGtleXdvcmQ+RE5BLCBWaXJhbC9nZW5ldGljcy9pc29s

YXRpb24gJmFtcDsgcHVyaWZpY2F0aW9uPC9rZXl3b3JkPjxrZXl3b3JkPkRydWcgRGVzaWduPC9r

ZXl3b3JkPjxrZXl3b3JkPkdlbmVzLCBWaXJhbDwva2V5d29yZD48a2V5d29yZD5HZW5vdHlwZTwv

a2V5d29yZD48a2V5d29yZD5IdW1hbnM8L2tleXdvcmQ+PGtleXdvcmQ+TW9sZWN1bGFyIFByb2Jl

IFRlY2huaXF1ZXM8L2tleXdvcmQ+PGtleXdvcmQ+TXV0YXRpb248L2tleXdvcmQ+PGtleXdvcmQ+

T2xpZ29udWNsZW90aWRlIEFycmF5IFNlcXVlbmNlIEFuYWx5c2lzLyptZXRob2RzPC9rZXl3b3Jk

PjxrZXl3b3JkPk9saWdvbnVjbGVvdGlkZSBQcm9iZXMvZ2VuZXRpY3M8L2tleXdvcmQ+PGtleXdv

cmQ+Um90YXZpcnVzL2NsYXNzaWZpY2F0aW9uLypnZW5ldGljcy8qaXNvbGF0aW9uICZhbXA7IHB1

cmlmaWNhdGlvbjwva2V5d29yZD48a2V5d29yZD5TcGVjaWVzIFNwZWNpZmljaXR5PC9rZXl3b3Jk

PjxrZXl3b3JkPlZpcm9sb2d5L21ldGhvZHM8L2tleXdvcmQ+PC9rZXl3b3Jkcz48ZGF0ZXM+PHll

YXI+MjAwMjwveWVhcj48cHViLWRhdGVzPjxkYXRlPkp1bDwvZGF0ZT48L3B1Yi1kYXRlcz48L2Rh

dGVzPjxpc2JuPjAwOTUtMTEzNyAoUHJpbnQpJiN4RDswMDk1LTExMzcgKExpbmtpbmcpPC9pc2Ju

PjxhY2Nlc3Npb24tbnVtPjEyMDg5MjU0PC9hY2Nlc3Npb24tbnVtPjx1cmxzPjxyZWxhdGVkLXVy

bHM+PHVybD5odHRwOi8vd3d3Lm5jYmkubmxtLm5paC5nb3YvZW50cmV6L3F1ZXJ5LmZjZ2k/Y21k

PVJldHJpZXZlJmFtcDtkYj1QdWJNZWQmYW1wO2RvcHQ9Q2l0YXRpb24mYW1wO2xpc3RfdWlkcz0x

MjA4OTI1NDwvdXJsPjwvcmVsYXRlZC11cmxzPjwvdXJscz48Y3VzdG9tMj4xMjA1Njc8L2N1c3Rv

bTI+PGxhbmd1YWdlPmVuZzwvbGFuZ3VhZ2U+PC9yZWNvcmQ+PC9DaXRlPjwvRW5kTm90ZT5=

ADDIN EN.CITE.DATA [13] and mixtures of pathogens PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5XaWxzb248L0F1dGhvcj48WWVhcj4yMDAyPC9ZZWFyPjxS

ZWNOdW0+NTQ8L1JlY051bT48RGlzcGxheVRleHQ+WzE0XTwvRGlzcGxheVRleHQ+PHJlY29yZD48

cmVjLW51bWJlcj41NDwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGIt

aWQ9Ind4OTByOXB0OHJ0cjIwZWZ0dnl2ejBhNHQwMnYwenN3MDJ3diI+NTQ8L2tleT48L2ZvcmVp

Z24ta2V5cz48cmVmLXR5cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwvcmVmLXR5cGU+PGNv

bnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPldpbHNvbiwgVy4gSi48L2F1dGhvcj48YXV0aG9y

PlN0cm91dCwgQy4gTC48L2F1dGhvcj48YXV0aG9yPkRlU2FudGlzLCBULiBaLjwvYXV0aG9yPjxh

dXRob3I+U3RpbHdlbGwsIEouIEwuPC9hdXRob3I+PGF1dGhvcj5DYXJyYW5vLCBBLiBWLjwvYXV0

aG9yPjxhdXRob3I+QW5kZXJzZW4sIEcuIEwuPC9hdXRob3I+PC9hdXRob3JzPjwvY29udHJpYnV0

b3JzPjxhdXRoLWFkZHJlc3M+QmlvbG9neSBhbmQgQmlvdGVjaG5vbG9neSBSZXNlYXJjaCBQcm9n

cmFtLCBMYXdyZW5jZSBMaXZlcm1vcmUgTmF0aW9uYWwgTGFib3JhdG9yeSwgTGl2ZXJtb3JlLCBD

QSA5NDU1MSwgVVNBLjwvYXV0aC1hZGRyZXNzPjx0aXRsZXM+PHRpdGxlPlNlcXVlbmNlLXNwZWNp

ZmljIGlkZW50aWZpY2F0aW9uIG9mIDE4IHBhdGhvZ2VuaWMgbWljcm9vcmdhbmlzbXMgdXNpbmcg

bWljcm9hcnJheSB0ZWNobm9sb2d5PC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPk1vbCBDZWxsIFBy

b2Jlczwvc2Vjb25kYXJ5LXRpdGxlPjwvdGl0bGVzPjxwYWdlcz4xMTktMjc8L3BhZ2VzPjx2b2x1

bWU+MTY8L3ZvbHVtZT48bnVtYmVyPjI8L251bWJlcj48ZWRpdGlvbj4yMDAyLzA1LzI5PC9lZGl0

aW9uPjxrZXl3b3Jkcz48a2V5d29yZD5BbmltYWxzPC9rZXl3b3JkPjxrZXl3b3JkPkJhY3Rlcmlh

LypjbGFzc2lmaWNhdGlvbi9nZW5ldGljcy9wYXRob2dlbmljaXR5PC9rZXl3b3JkPjxrZXl3b3Jk

PkJpb3RlcnJvcmlzbTwva2V5d29yZD48a2V5d29yZD5ETkEsIEJhY3RlcmlhbC9hbmFseXNpczwv

a2V5d29yZD48a2V5d29yZD5ETkEsIEZ1bmdhbC9hbmFseXNpczwva2V5d29yZD48a2V5d29yZD5E

TkEsIFByb3Rvem9hbi9hbmFseXNpczwva2V5d29yZD48a2V5d29yZD5ETkEsIFZpcmFsL2FuYWx5

c2lzPC9rZXl3b3JkPjxrZXl3b3JkPkRpbm9mbGFnZWxsaWRhLypjbGFzc2lmaWNhdGlvbi9nZW5l

dGljcy9wYXRob2dlbmljaXR5PC9rZXl3b3JkPjxrZXl3b3JkPkZ1c2FyaXVtLypjbGFzc2lmaWNh

dGlvbi9nZW5ldGljcy9wYXRob2dlbmljaXR5PC9rZXl3b3JkPjxrZXl3b3JkPkh1bWFuczwva2V5

d29yZD48a2V5d29yZD5PbGlnb251Y2xlb3RpZGUgQXJyYXkgU2VxdWVuY2UgQW5hbHlzaXMvKm1l

dGhvZHM8L2tleXdvcmQ+PGtleXdvcmQ+T2xpZ29udWNsZW90aWRlIFByb2Jlczwva2V5d29yZD48

a2V5d29yZD5STkEgVmlydXNlcy8qY2xhc3NpZmljYXRpb24vZ2VuZXRpY3MvcGF0aG9nZW5pY2l0

eTwva2V5d29yZD48a2V5d29yZD5TZW5zaXRpdml0eSBhbmQgU3BlY2lmaWNpdHk8L2tleXdvcmQ+

PGtleXdvcmQ+VmlydWxlbmNlPC9rZXl3b3JkPjwva2V5d29yZHM+PGRhdGVzPjx5ZWFyPjIwMDI8

L3llYXI+PHB1Yi1kYXRlcz48ZGF0ZT5BcHI8L2RhdGU+PC9wdWItZGF0ZXM+PC9kYXRlcz48aXNi

bj4wODkwLTg1MDggKFByaW50KSYjeEQ7MDg5MC04NTA4IChMaW5raW5nKTwvaXNibj48YWNjZXNz

aW9uLW51bT4xMjAzMDc2MjwvYWNjZXNzaW9uLW51bT48dXJscz48cmVsYXRlZC11cmxzPjx1cmw+

aHR0cDovL3d3dy5uY2JpLm5sbS5uaWguZ292L2VudHJlei9xdWVyeS5mY2dpP2NtZD1SZXRyaWV2

ZSZhbXA7ZGI9UHViTWVkJmFtcDtkb3B0PUNpdGF0aW9uJmFtcDtsaXN0X3VpZHM9MTIwMzA3NjI8

L3VybD48L3JlbGF0ZWQtdXJscz48L3VybHM+PGVsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjEwLjEw

MDYvbWNwci4yMDAxLjAzOTcmI3hEO1MwODkwODUwODAxOTAzOTc0IFtwaWldPC9lbGVjdHJvbmlj

LXJlc291cmNlLW51bT48bGFuZ3VhZ2U+ZW5nPC9sYW5ndWFnZT48L3JlY29yZD48L0NpdGU+PC9F

bmROb3RlPn==

ADDIN EN.CITE PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5XaWxzb248L0F1dGhvcj48WWVhcj4yMDAyPC9ZZWFyPjxS

ZWNOdW0+NTQ8L1JlY051bT48RGlzcGxheVRleHQ+WzE0XTwvRGlzcGxheVRleHQ+PHJlY29yZD48

cmVjLW51bWJlcj41NDwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGIt

aWQ9Ind4OTByOXB0OHJ0cjIwZWZ0dnl2ejBhNHQwMnYwenN3MDJ3diI+NTQ8L2tleT48L2ZvcmVp

Z24ta2V5cz48cmVmLXR5cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwvcmVmLXR5cGU+PGNv

bnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPldpbHNvbiwgVy4gSi48L2F1dGhvcj48YXV0aG9y

PlN0cm91dCwgQy4gTC48L2F1dGhvcj48YXV0aG9yPkRlU2FudGlzLCBULiBaLjwvYXV0aG9yPjxh

dXRob3I+U3RpbHdlbGwsIEouIEwuPC9hdXRob3I+PGF1dGhvcj5DYXJyYW5vLCBBLiBWLjwvYXV0

aG9yPjxhdXRob3I+QW5kZXJzZW4sIEcuIEwuPC9hdXRob3I+PC9hdXRob3JzPjwvY29udHJpYnV0

b3JzPjxhdXRoLWFkZHJlc3M+QmlvbG9neSBhbmQgQmlvdGVjaG5vbG9neSBSZXNlYXJjaCBQcm9n

cmFtLCBMYXdyZW5jZSBMaXZlcm1vcmUgTmF0aW9uYWwgTGFib3JhdG9yeSwgTGl2ZXJtb3JlLCBD

QSA5NDU1MSwgVVNBLjwvYXV0aC1hZGRyZXNzPjx0aXRsZXM+PHRpdGxlPlNlcXVlbmNlLXNwZWNp

ZmljIGlkZW50aWZpY2F0aW9uIG9mIDE4IHBhdGhvZ2VuaWMgbWljcm9vcmdhbmlzbXMgdXNpbmcg

bWljcm9hcnJheSB0ZWNobm9sb2d5PC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPk1vbCBDZWxsIFBy

b2Jlczwvc2Vjb25kYXJ5LXRpdGxlPjwvdGl0bGVzPjxwYWdlcz4xMTktMjc8L3BhZ2VzPjx2b2x1

bWU+MTY8L3ZvbHVtZT48bnVtYmVyPjI8L251bWJlcj48ZWRpdGlvbj4yMDAyLzA1LzI5PC9lZGl0

aW9uPjxrZXl3b3Jkcz48a2V5d29yZD5BbmltYWxzPC9rZXl3b3JkPjxrZXl3b3JkPkJhY3Rlcmlh

LypjbGFzc2lmaWNhdGlvbi9nZW5ldGljcy9wYXRob2dlbmljaXR5PC9rZXl3b3JkPjxrZXl3b3Jk

PkJpb3RlcnJvcmlzbTwva2V5d29yZD48a2V5d29yZD5ETkEsIEJhY3RlcmlhbC9hbmFseXNpczwv

a2V5d29yZD48a2V5d29yZD5ETkEsIEZ1bmdhbC9hbmFseXNpczwva2V5d29yZD48a2V5d29yZD5E

TkEsIFByb3Rvem9hbi9hbmFseXNpczwva2V5d29yZD48a2V5d29yZD5ETkEsIFZpcmFsL2FuYWx5

c2lzPC9rZXl3b3JkPjxrZXl3b3JkPkRpbm9mbGFnZWxsaWRhLypjbGFzc2lmaWNhdGlvbi9nZW5l

dGljcy9wYXRob2dlbmljaXR5PC9rZXl3b3JkPjxrZXl3b3JkPkZ1c2FyaXVtLypjbGFzc2lmaWNh

dGlvbi9nZW5ldGljcy9wYXRob2dlbmljaXR5PC9rZXl3b3JkPjxrZXl3b3JkPkh1bWFuczwva2V5

d29yZD48a2V5d29yZD5PbGlnb251Y2xlb3RpZGUgQXJyYXkgU2VxdWVuY2UgQW5hbHlzaXMvKm1l

dGhvZHM8L2tleXdvcmQ+PGtleXdvcmQ+T2xpZ29udWNsZW90aWRlIFByb2Jlczwva2V5d29yZD48

a2V5d29yZD5STkEgVmlydXNlcy8qY2xhc3NpZmljYXRpb24vZ2VuZXRpY3MvcGF0aG9nZW5pY2l0

eTwva2V5d29yZD48a2V5d29yZD5TZW5zaXRpdml0eSBhbmQgU3BlY2lmaWNpdHk8L2tleXdvcmQ+

PGtleXdvcmQ+VmlydWxlbmNlPC9rZXl3b3JkPjwva2V5d29yZHM+PGRhdGVzPjx5ZWFyPjIwMDI8

L3llYXI+PHB1Yi1kYXRlcz48ZGF0ZT5BcHI8L2RhdGU+PC9wdWItZGF0ZXM+PC9kYXRlcz48aXNi

bj4wODkwLTg1MDggKFByaW50KSYjeEQ7MDg5MC04NTA4IChMaW5raW5nKTwvaXNibj48YWNjZXNz

aW9uLW51bT4xMjAzMDc2MjwvYWNjZXNzaW9uLW51bT48dXJscz48cmVsYXRlZC11cmxzPjx1cmw+

aHR0cDovL3d3dy5uY2JpLm5sbS5uaWguZ292L2VudHJlei9xdWVyeS5mY2dpP2NtZD1SZXRyaWV2

ZSZhbXA7ZGI9UHViTWVkJmFtcDtkb3B0PUNpdGF0aW9uJmFtcDtsaXN0X3VpZHM9MTIwMzA3NjI8

L3VybD48L3JlbGF0ZWQtdXJscz48L3VybHM+PGVsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjEwLjEw

MDYvbWNwci4yMDAxLjAzOTcmI3hEO1MwODkwODUwODAxOTAzOTc0IFtwaWldPC9lbGVjdHJvbmlj

LXJlc291cmNlLW51bT48bGFuZ3VhZ2U+ZW5nPC9sYW5ndWFnZT48L3JlY29yZD48L0NpdGU+PC9F

bmROb3RlPn==

ADDIN EN.CITE.DATA [14]. The drawback of using this approach with multiplex PCR primers sets is the generation of spurious products ADDIN EN.CITE <EndNote><Cite><Author>Call</Author><Year>2005</Year><RecNum>10</RecNum><DisplayText>[11]</DisplayText><record><rec-number>10</rec-number><foreign-keys><key app="EN" db-id="wx90r9pt8rtr20eftvyvz0a4t02v0zsw02wv">10</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Call, D. R.</author></authors></contributors><auth-address>Department of Veterinary Microbiology and Pathology and Center for Reproductive Biology, Washington State University, Pullman, Washington 99164-7040, USA. drcall@wsu.edu</auth-address><titles><title>Challenges and opportunities for pathogen detection using DNA microarrays</title><secondary-title>Crit Rev Microbiol</secondary-title></titles><pages>91-9</pages><volume>31</volume><number>2</number><edition>2005/07/02</edition><keywords><keyword>Animals</keyword><keyword>Bacteria/genetics/*isolation &amp; purification</keyword><keyword>Bacterial Infections/*diagnosis</keyword><keyword>Humans</keyword><keyword>Infection/*diagnosis</keyword><keyword>Nucleic Acid Hybridization</keyword><keyword>Oligonucleotide Array Sequence Analysis/*methods</keyword><keyword>Polymorphism, Genetic</keyword><keyword>Sensitivity and Specificity</keyword></keywords><dates><year>2005</year></dates><isbn>1040-841X (Print)&#xD;1040-841X (Linking)</isbn><accession-num>15988839</accession-num><urls><related-urls><url>;[11]. Array based technologies using 70-mer oligonucleotide probes derived from pathogen specific genes have similar factors that require consideration. For instance, viral detection using a microarray composed of 1,600 unique viral oligonucleotides (70-mers) derived from 140 distinct viral genomes has been previously demonstrated PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5XYW5nPC9BdXRob3I+PFllYXI+MjAwMjwvWWVhcj48UmVj

TnVtPjUxPC9SZWNOdW0+PERpc3BsYXlUZXh0PlsxNV08L0Rpc3BsYXlUZXh0PjxyZWNvcmQ+PHJl

Yy1udW1iZXI+NTE8L3JlYy1udW1iZXI+PGZvcmVpZ24ta2V5cz48a2V5IGFwcD0iRU4iIGRiLWlk

PSJ3eDkwcjlwdDhydHIyMGVmdHZ5dnowYTR0MDJ2MHpzdzAyd3YiPjUxPC9rZXk+PC9mb3JlaWdu

LWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBlPjxjb250

cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5XYW5nLCBELjwvYXV0aG9yPjxhdXRob3I+Q29zY295

LCBMLjwvYXV0aG9yPjxhdXRob3I+WnlsYmVyYmVyZywgTS48L2F1dGhvcj48YXV0aG9yPkF2aWxh

LCBQLiBDLjwvYXV0aG9yPjxhdXRob3I+Qm91c2hleSwgSC4gQS48L2F1dGhvcj48YXV0aG9yPkdh

bmVtLCBELjwvYXV0aG9yPjxhdXRob3I+RGVSaXNpLCBKLiBMLjwvYXV0aG9yPjwvYXV0aG9ycz48

L2NvbnRyaWJ1dG9ycz48YXV0aC1hZGRyZXNzPkRlcGFydG1lbnQgb2YgQmlvY2hlbWlzdHJ5IGFu

ZCBCaW9waHlzaWNzLCBVbml2ZXJzaXR5IG9mIENhbGlmb3JuaWEsIFNhbiBGcmFuY2lzY28gOTQx

NDMsIFVTQS48L2F1dGgtYWRkcmVzcz48dGl0bGVzPjx0aXRsZT5NaWNyb2FycmF5LWJhc2VkIGRl

dGVjdGlvbiBhbmQgZ2Vub3R5cGluZyBvZiB2aXJhbCBwYXRob2dlbnM8L3RpdGxlPjxzZWNvbmRh

cnktdGl0bGU+UHJvYyBOYXRsIEFjYWQgU2NpIFUgUyBBPC9zZWNvbmRhcnktdGl0bGU+PC90aXRs

ZXM+PHBlcmlvZGljYWw+PGZ1bGwtdGl0bGU+UHJvYyBOYXRsIEFjYWQgU2NpIFUgUyBBPC9mdWxs

LXRpdGxlPjwvcGVyaW9kaWNhbD48cGFnZXM+MTU2ODctOTI8L3BhZ2VzPjx2b2x1bWU+OTk8L3Zv

bHVtZT48bnVtYmVyPjI0PC9udW1iZXI+PGVkaXRpb24+MjAwMi8xMS8xNDwvZWRpdGlvbj48a2V5

d29yZHM+PGtleXdvcmQ+RE5BIFZpcnVzZXMvY2xhc3NpZmljYXRpb24vZ2VuZXRpY3MvaXNvbGF0

aW9uICZhbXA7IHB1cmlmaWNhdGlvbjwva2V5d29yZD48a2V5d29yZD4qR2Vub21lLCBWaXJhbDwv

a2V5d29yZD48a2V5d29yZD5HZW5vdHlwZTwva2V5d29yZD48a2V5d29yZD5IZWxhIENlbGxzL3Zp

cm9sb2d5PC9rZXl3b3JkPjxrZXl3b3JkPkhlcnBlc3ZpcnVzIDgsIEh1bWFuL2dlbmV0aWNzL2lz

b2xhdGlvbiAmYW1wOyBwdXJpZmljYXRpb248L2tleXdvcmQ+PGtleXdvcmQ+SHVtYW5zPC9rZXl3

b3JkPjxrZXl3b3JkPklycmlnYXRpb248L2tleXdvcmQ+PGtleXdvcmQ+TW9sZWN1bGFyIFdlaWdo

dDwva2V5d29yZD48a2V5d29yZD5OYXNhbCBDYXZpdHkvdmlyb2xvZ3k8L2tleXdvcmQ+PGtleXdv

cmQ+T2xpZ29kZW94eXJpYm9udWNsZW90aWRlczwva2V5d29yZD48a2V5d29yZD4qT2xpZ29udWNs

ZW90aWRlIEFycmF5IFNlcXVlbmNlIEFuYWx5c2lzPC9rZXl3b3JkPjxrZXl3b3JkPlBvbHltZXJh

c2UgQ2hhaW4gUmVhY3Rpb248L2tleXdvcmQ+PGtleXdvcmQ+Uk5BIFZpcnVzZXMvY2xhc3NpZmlj

YXRpb24vZ2VuZXRpY3MvaXNvbGF0aW9uICZhbXA7IHB1cmlmaWNhdGlvbjwva2V5d29yZD48a2V5

d29yZD5SZXNwaXJhdG9yeSBTeW5jeXRpYWwgVmlydXNlcy9nZW5ldGljcy9pc29sYXRpb24gJmFt

cDsgcHVyaWZpY2F0aW9uPC9rZXl3b3JkPjxrZXl3b3JkPlJoaW5vdmlydXMvY2xhc3NpZmljYXRp

b24vZ2VuZXRpY3MvaXNvbGF0aW9uICZhbXA7IHB1cmlmaWNhdGlvbjwva2V5d29yZD48a2V5d29y

ZD5WaXJvbG9neS9pbnN0cnVtZW50YXRpb24vKm1ldGhvZHM8L2tleXdvcmQ+PGtleXdvcmQ+Vmly

dXNlcy8qZ2VuZXRpY3MvaXNvbGF0aW9uICZhbXA7IHB1cmlmaWNhdGlvbjwva2V5d29yZD48L2tl

eXdvcmRzPjxkYXRlcz48eWVhcj4yMDAyPC95ZWFyPjxwdWItZGF0ZXM+PGRhdGU+Tm92IDI2PC9k

YXRlPjwvcHViLWRhdGVzPjwvZGF0ZXM+PGlzYm4+MDAyNy04NDI0IChQcmludCkmI3hEOzAwMjct

ODQyNCAoTGlua2luZyk8L2lzYm4+PGFjY2Vzc2lvbi1udW0+MTI0Mjk4NTI8L2FjY2Vzc2lvbi1u

dW0+PHVybHM+PHJlbGF0ZWQtdXJscz48dXJsPmh0dHA6Ly93d3cubmNiaS5ubG0ubmloLmdvdi9l

bnRyZXovcXVlcnkuZmNnaT9jbWQ9UmV0cmlldmUmYW1wO2RiPVB1Yk1lZCZhbXA7ZG9wdD1DaXRh

dGlvbiZhbXA7bGlzdF91aWRzPTEyNDI5ODUyPC91cmw+PC9yZWxhdGVkLXVybHM+PC91cmxzPjxj

dXN0b20yPjEzNzc3NzwvY3VzdG9tMj48ZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+MTAuMTA3My9w

bmFzLjI0MjU3OTY5OSYjeEQ7MjQyNTc5Njk5IFtwaWldPC9lbGVjdHJvbmljLXJlc291cmNlLW51

bT48bGFuZ3VhZ2U+ZW5nPC9sYW5ndWFnZT48L3JlY29yZD48L0NpdGU+PC9FbmROb3RlPgB=

ADDIN EN.CITE PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5XYW5nPC9BdXRob3I+PFllYXI+MjAwMjwvWWVhcj48UmVj

TnVtPjUxPC9SZWNOdW0+PERpc3BsYXlUZXh0PlsxNV08L0Rpc3BsYXlUZXh0PjxyZWNvcmQ+PHJl

Yy1udW1iZXI+NTE8L3JlYy1udW1iZXI+PGZvcmVpZ24ta2V5cz48a2V5IGFwcD0iRU4iIGRiLWlk

PSJ3eDkwcjlwdDhydHIyMGVmdHZ5dnowYTR0MDJ2MHpzdzAyd3YiPjUxPC9rZXk+PC9mb3JlaWdu

LWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBlPjxjb250

cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5XYW5nLCBELjwvYXV0aG9yPjxhdXRob3I+Q29zY295

LCBMLjwvYXV0aG9yPjxhdXRob3I+WnlsYmVyYmVyZywgTS48L2F1dGhvcj48YXV0aG9yPkF2aWxh

LCBQLiBDLjwvYXV0aG9yPjxhdXRob3I+Qm91c2hleSwgSC4gQS48L2F1dGhvcj48YXV0aG9yPkdh

bmVtLCBELjwvYXV0aG9yPjxhdXRob3I+RGVSaXNpLCBKLiBMLjwvYXV0aG9yPjwvYXV0aG9ycz48

L2NvbnRyaWJ1dG9ycz48YXV0aC1hZGRyZXNzPkRlcGFydG1lbnQgb2YgQmlvY2hlbWlzdHJ5IGFu

ZCBCaW9waHlzaWNzLCBVbml2ZXJzaXR5IG9mIENhbGlmb3JuaWEsIFNhbiBGcmFuY2lzY28gOTQx

NDMsIFVTQS48L2F1dGgtYWRkcmVzcz48dGl0bGVzPjx0aXRsZT5NaWNyb2FycmF5LWJhc2VkIGRl

dGVjdGlvbiBhbmQgZ2Vub3R5cGluZyBvZiB2aXJhbCBwYXRob2dlbnM8L3RpdGxlPjxzZWNvbmRh

cnktdGl0bGU+UHJvYyBOYXRsIEFjYWQgU2NpIFUgUyBBPC9zZWNvbmRhcnktdGl0bGU+PC90aXRs

ZXM+PHBlcmlvZGljYWw+PGZ1bGwtdGl0bGU+UHJvYyBOYXRsIEFjYWQgU2NpIFUgUyBBPC9mdWxs

LXRpdGxlPjwvcGVyaW9kaWNhbD48cGFnZXM+MTU2ODctOTI8L3BhZ2VzPjx2b2x1bWU+OTk8L3Zv

bHVtZT48bnVtYmVyPjI0PC9udW1iZXI+PGVkaXRpb24+MjAwMi8xMS8xNDwvZWRpdGlvbj48a2V5

d29yZHM+PGtleXdvcmQ+RE5BIFZpcnVzZXMvY2xhc3NpZmljYXRpb24vZ2VuZXRpY3MvaXNvbGF0

aW9uICZhbXA7IHB1cmlmaWNhdGlvbjwva2V5d29yZD48a2V5d29yZD4qR2Vub21lLCBWaXJhbDwv

a2V5d29yZD48a2V5d29yZD5HZW5vdHlwZTwva2V5d29yZD48a2V5d29yZD5IZWxhIENlbGxzL3Zp

cm9sb2d5PC9rZXl3b3JkPjxrZXl3b3JkPkhlcnBlc3ZpcnVzIDgsIEh1bWFuL2dlbmV0aWNzL2lz

b2xhdGlvbiAmYW1wOyBwdXJpZmljYXRpb248L2tleXdvcmQ+PGtleXdvcmQ+SHVtYW5zPC9rZXl3

b3JkPjxrZXl3b3JkPklycmlnYXRpb248L2tleXdvcmQ+PGtleXdvcmQ+TW9sZWN1bGFyIFdlaWdo

dDwva2V5d29yZD48a2V5d29yZD5OYXNhbCBDYXZpdHkvdmlyb2xvZ3k8L2tleXdvcmQ+PGtleXdv

cmQ+T2xpZ29kZW94eXJpYm9udWNsZW90aWRlczwva2V5d29yZD48a2V5d29yZD4qT2xpZ29udWNs

ZW90aWRlIEFycmF5IFNlcXVlbmNlIEFuYWx5c2lzPC9rZXl3b3JkPjxrZXl3b3JkPlBvbHltZXJh

c2UgQ2hhaW4gUmVhY3Rpb248L2tleXdvcmQ+PGtleXdvcmQ+Uk5BIFZpcnVzZXMvY2xhc3NpZmlj

YXRpb24vZ2VuZXRpY3MvaXNvbGF0aW9uICZhbXA7IHB1cmlmaWNhdGlvbjwva2V5d29yZD48a2V5

d29yZD5SZXNwaXJhdG9yeSBTeW5jeXRpYWwgVmlydXNlcy9nZW5ldGljcy9pc29sYXRpb24gJmFt

cDsgcHVyaWZpY2F0aW9uPC9rZXl3b3JkPjxrZXl3b3JkPlJoaW5vdmlydXMvY2xhc3NpZmljYXRp

b24vZ2VuZXRpY3MvaXNvbGF0aW9uICZhbXA7IHB1cmlmaWNhdGlvbjwva2V5d29yZD48a2V5d29y

ZD5WaXJvbG9neS9pbnN0cnVtZW50YXRpb24vKm1ldGhvZHM8L2tleXdvcmQ+PGtleXdvcmQ+Vmly

dXNlcy8qZ2VuZXRpY3MvaXNvbGF0aW9uICZhbXA7IHB1cmlmaWNhdGlvbjwva2V5d29yZD48L2tl

eXdvcmRzPjxkYXRlcz48eWVhcj4yMDAyPC95ZWFyPjxwdWItZGF0ZXM+PGRhdGU+Tm92IDI2PC9k

YXRlPjwvcHViLWRhdGVzPjwvZGF0ZXM+PGlzYm4+MDAyNy04NDI0IChQcmludCkmI3hEOzAwMjct

ODQyNCAoTGlua2luZyk8L2lzYm4+PGFjY2Vzc2lvbi1udW0+MTI0Mjk4NTI8L2FjY2Vzc2lvbi1u

dW0+PHVybHM+PHJlbGF0ZWQtdXJscz48dXJsPmh0dHA6Ly93d3cubmNiaS5ubG0ubmloLmdvdi9l

bnRyZXovcXVlcnkuZmNnaT9jbWQ9UmV0cmlldmUmYW1wO2RiPVB1Yk1lZCZhbXA7ZG9wdD1DaXRh

dGlvbiZhbXA7bGlzdF91aWRzPTEyNDI5ODUyPC91cmw+PC9yZWxhdGVkLXVybHM+PC91cmxzPjxj

dXN0b20yPjEzNzc3NzwvY3VzdG9tMj48ZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+MTAuMTA3My9w

bmFzLjI0MjU3OTY5OSYjeEQ7MjQyNTc5Njk5IFtwaWldPC9lbGVjdHJvbmljLXJlc291cmNlLW51

bT48bGFuZ3VhZ2U+ZW5nPC9sYW5ndWFnZT48L3JlY29yZD48L0NpdGU+PC9FbmROb3RlPgB=

ADDIN EN.CITE.DATA [15] as a powerful viral detection mechanism, but the drawback of this strategy is that only the group of known pathogen-specific genes will be queried. Given the enormous spectrum of genetic possibilities, only a highly parallel field deployable technology that is universal in nature has near-term potential to address these needs. The initial vision for a universal DNA microarray was a matrix of oligonucleotide containing features with unique n-mer probes ADDIN EN.CITE <EndNote><Cite><Author>Pease</Author><Year>1994</Year><RecNum>3</RecNum><DisplayText>[16]</DisplayText><record><rec-number>3</rec-number><foreign-keys><key app="EN" db-id="wx90r9pt8rtr20eftvyvz0a4t02v0zsw02wv">3</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Pease, A. C.</author><author>Solas, D.</author><author>Sullivan, E. J.</author><author>Cronin, M. T.</author><author>Holmes, C. P.</author><author>Fodor, S. P.</author></authors></contributors><auth-address>Affymetrix, Santa Clara, CA 95051.</auth-address><titles><title>Light-generated oligonucleotide arrays for rapid DNA sequence analysis</title><secondary-title>Proc Natl Acad Sci U S A</secondary-title></titles><periodical><full-title>Proc Natl Acad Sci U S A</full-title></periodical><pages>5022-6</pages><volume>91</volume><number>11</number><edition>1994/05/24</edition><keywords><keyword>Base Sequence</keyword><keyword>Humans</keyword><keyword>*Light</keyword><keyword>Microscopy, Fluorescence</keyword><keyword>Molecular Sequence Data</keyword><keyword>Molecular Structure</keyword><keyword>Nucleic Acid Hybridization</keyword><keyword>Oligodeoxyribonucleotides/radiation effects</keyword><keyword>Oligonucleotide Probes</keyword><keyword>Sequence Analysis, DNA/*methods</keyword></keywords><dates><year>1994</year><pub-dates><date>May 24</date></pub-dates></dates><isbn>0027-8424 (Print)&#xD;0027-8424 (Linking)</isbn><accession-num>8197176</accession-num><urls><related-urls><url>;[16]. This matrix could in theory be used to query a biological sample for the presence of any nucleic acid sequence. This technique requires constructing an array that contains 4n features. Larger values of n infuse greater specificity into the arrayed probes, but as n increases the number of required features grows rapidly. This universality is obtained by synthesizing a combinatorial n-mer array containing all 4n possible sequences of length n ADDIN EN.CITE <EndNote><Cite><Author>Royce</Author><Year>2007</Year><RecNum>61</RecNum><DisplayText>[17]</DisplayText><record><rec-number>61</rec-number><foreign-keys><key app="EN" db-id="wx90r9pt8rtr20eftvyvz0a4t02v0zsw02wv">61</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Royce, T. E.</author><author>Rozowsky, J. S.</author><author>Gerstein, M. B.</author></authors></contributors><auth-address>Interdepartmental Program in Computational Biology and Bioinformatics, Yale University, USA.</auth-address><titles><title>Toward a universal microarray: prediction of gene expression through nearest-neighbor probe sequence identification</title><secondary-title>Nucleic Acids Res</secondary-title></titles><periodical><full-title>Nucleic Acids Res</full-title></periodical><pages>e99</pages><volume>35</volume><number>15</number><edition>2007/08/10</edition><keywords><keyword>Gene Expression Profiling/*methods</keyword><keyword>Genome, Human</keyword><keyword>Humans</keyword><keyword>Oligonucleotide Array Sequence Analysis/*methods</keyword><keyword>Oligonucleotide Probes/*chemistry</keyword><keyword>Sequence Analysis, DNA</keyword><keyword>Transcription, Genetic</keyword></keywords><dates><year>2007</year></dates><isbn>1362-4962 (Electronic)&#xD;0305-1048 (Linking)</isbn><accession-num>17686789</accession-num><urls><related-urls><url> [pii]&#xD;10.1093/nar/gkm549</electronic-resource-num><language>eng</language></record></Cite></EndNote>[17]. The key issue is to find a value of n that is large enough to afford sufficient hybridization specificity, yet small enough to be practically fabricated and analyzed.We have previously demonstrated the utility of a genome sequence-independent microarray for identifying genetic differences PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5CZWxvc2x1ZHRzZXY8L0F1dGhvcj48WWVhcj4yMDA0PC9Z

ZWFyPjxSZWNOdW0+Njc8L1JlY051bT48RGlzcGxheVRleHQ+WzE4LCAxOV08L0Rpc3BsYXlUZXh0

PjxyZWNvcmQ+PHJlYy1udW1iZXI+Njc8L3JlYy1udW1iZXI+PGZvcmVpZ24ta2V5cz48a2V5IGFw

cD0iRU4iIGRiLWlkPSJ3eDkwcjlwdDhydHIyMGVmdHZ5dnowYTR0MDJ2MHpzdzAyd3YiPjY3PC9r

ZXk+PC9mb3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3Jl

Zi10eXBlPjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5CZWxvc2x1ZHRzZXYsIFkuIFku

PC9hdXRob3I+PGF1dGhvcj5Cb3dlcm1hbiwgRC48L2F1dGhvcj48YXV0aG9yPldlaWwsIFIuPC9h

dXRob3I+PGF1dGhvcj5NYXJ0aGFuZGFuLCBOLjwvYXV0aG9yPjxhdXRob3I+QmFsb2csIFIuPC9h

dXRob3I+PGF1dGhvcj5MdWVia2UsIEsuPC9hdXRob3I+PGF1dGhvcj5MYXdzb24sIEouPC9hdXRo

b3I+PGF1dGhvcj5Kb2huc3RvbiwgUy4gQS48L2F1dGhvcj48YXV0aG9yPkx5b25zLCBDLiBSLjwv

YXV0aG9yPjxhdXRob3I+T2JyaWVuLCBLLjwvYXV0aG9yPjxhdXRob3I+R2FybmVyLCBILiBSLjwv

YXV0aG9yPjxhdXRob3I+UG93ZHJpbGwsIFQuIEYuPC9hdXRob3I+PC9hdXRob3JzPjwvY29udHJp

YnV0b3JzPjxhdXRoLWFkZHJlc3M+Vml0cnV2aXVzIEJpb3NjaWVuY2VzLCBUaGUgV29vZGxhbmRz

LCBVU0EuPC9hdXRoLWFkZHJlc3M+PHRpdGxlcz48dGl0bGU+T3JnYW5pc20gaWRlbnRpZmljYXRp

b24gdXNpbmcgYSBnZW5vbWUgc2VxdWVuY2UtaW5kZXBlbmRlbnQgdW5pdmVyc2FsIG1pY3JvYXJy

YXkgcHJvYmUgc2V0PC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPkJpb3RlY2huaXF1ZXM8L3NlY29u

ZGFyeS10aXRsZT48L3RpdGxlcz48cGFnZXM+NjU0LTgsIDY2MDwvcGFnZXM+PHZvbHVtZT4zNzwv

dm9sdW1lPjxudW1iZXI+NDwvbnVtYmVyPjxlZGl0aW9uPjIwMDQvMTEvMDM8L2VkaXRpb24+PGtl

eXdvcmRzPjxrZXl3b3JkPkJhY2lsbHVzIGFudGhyYWNpcy9nZW5ldGljczwva2V5d29yZD48a2V5

d29yZD5CYWNpbGx1cyBzdWJ0aWxpcy9nZW5ldGljczwva2V5d29yZD48a2V5d29yZD5CaW90ZXJy

b3Jpc208L2tleXdvcmQ+PGtleXdvcmQ+KkROQSBQcm9iZXM8L2tleXdvcmQ+PGtleXdvcmQ+RE5B

LCBCYWN0ZXJpYWwvKmdlbmV0aWNzPC9rZXl3b3JkPjxrZXl3b3JkPkdlbmUgRXhwcmVzc2lvbiBQ

cm9maWxpbmcvaW5zdHJ1bWVudGF0aW9uLyptZXRob2RzPC9rZXl3b3JkPjxrZXl3b3JkPk1vbGVj

dWxhciBTZXF1ZW5jZSBEYXRhPC9rZXl3b3JkPjxrZXl3b3JkPk51Y2xlaWMgQWNpZCBIeWJyaWRp

emF0aW9uL21ldGhvZHM8L2tleXdvcmQ+PGtleXdvcmQ+T2xpZ29udWNsZW90aWRlIEFycmF5IFNl

cXVlbmNlIEFuYWx5c2lzLyppbnN0cnVtZW50YXRpb24vbWV0aG9kczwva2V5d29yZD48a2V5d29y

ZD4qT2xpZ29udWNsZW90aWRlIFByb2Jlczwva2V5d29yZD48a2V5d29yZD5TdHJlcHRvY29jY3Vz

IHBuZXVtb25pYWUvZ2VuZXRpY3M8L2tleXdvcmQ+PGtleXdvcmQ+WWVyc2luaWEgcGVzdGlzL2dl

bmV0aWNzPC9rZXl3b3JkPjwva2V5d29yZHM+PGRhdGVzPjx5ZWFyPjIwMDQ8L3llYXI+PHB1Yi1k

YXRlcz48ZGF0ZT5PY3Q8L2RhdGU+PC9wdWItZGF0ZXM+PC9kYXRlcz48aXNibj4wNzM2LTYyMDUg

KFByaW50KSYjeEQ7MDczNi02MjA1IChMaW5raW5nKTwvaXNibj48YWNjZXNzaW9uLW51bT4xNTUx

Nzk3NzwvYWNjZXNzaW9uLW51bT48dXJscz48cmVsYXRlZC11cmxzPjx1cmw+aHR0cDovL3d3dy5u

Y2JpLm5sbS5uaWguZ292L2VudHJlei9xdWVyeS5mY2dpP2NtZD1SZXRyaWV2ZSZhbXA7ZGI9UHVi

TWVkJmFtcDtkb3B0PUNpdGF0aW9uJmFtcDtsaXN0X3VpZHM9MTU1MTc5Nzc8L3VybD48L3JlbGF0

ZWQtdXJscz48L3VybHM+PGxhbmd1YWdlPmVuZzwvbGFuZ3VhZ2U+PC9yZWNvcmQ+PC9DaXRlPjxD

aXRlPjxBdXRob3I+R2FsaW5kbzwvQXV0aG9yPjxZZWFyPjIwMDk8L1llYXI+PFJlY051bT4zNjQ8

L1JlY051bT48cmVjb3JkPjxyZWMtbnVtYmVyPjM2NDwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlz

PjxrZXkgYXBwPSJFTiIgZGItaWQ9Ind4OTByOXB0OHJ0cjIwZWZ0dnl2ejBhNHQwMnYwenN3MDJ3

diI+MzY0PC9rZXk+PC9mb3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNs

ZSI+MTc8L3JlZi10eXBlPjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5HYWxpbmRvLCBD

LiBMLjwvYXV0aG9yPjxhdXRob3I+TWNJdmVyLCBMLiBKLjwvYXV0aG9yPjxhdXRob3I+TWNDb3Jt

aWNrLCBKLiBGLjwvYXV0aG9yPjxhdXRob3I+U2tpbm5lciwgTS4gQS48L2F1dGhvcj48YXV0aG9y

PlhpZSwgWS48L2F1dGhvcj48YXV0aG9yPkdlbGhhdXNlbiwgUi4gQS48L2F1dGhvcj48YXV0aG9y

Pk5nLCBLLjwvYXV0aG9yPjxhdXRob3I+S3VtYXIsIE4uIE0uPC9hdXRob3I+PGF1dGhvcj5HYXJu

ZXIsIEguIFIuPC9hdXRob3I+PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjxhdXRoLWFkZHJlc3M+

TWNEZXJtb3R0IENlbnRlciBmb3IgSHVtYW4gR3Jvd3RoIGFuZCBEZXZlbG9wbWVudCBvZiB0aGUg

VW5pdmVyc2l0eSBvZiBUZXhhcyBTb3V0aHdlc3Rlcm4gTWVkaWNhbCBDZW50ZXIsIERhbGxhcywg

VGV4YXMsIFVTQS4gQ3Jpc3RpLmdhbGluZG9AdXRzb3V0aHdlc3Rlcm4uZWR1PC9hdXRoLWFkZHJl

c3M+PHRpdGxlcz48dGl0bGU+R2xvYmFsIG1pY3Jvc2F0ZWxsaXRlIGNvbnRlbnQgZGlzdGluZ3Vp

c2hlcyBodW1hbnMsIHByaW1hdGVzLCBhbmltYWxzLCBhbmQgcGxhbnRzPC90aXRsZT48c2Vjb25k

YXJ5LXRpdGxlPk1vbCBCaW9sIEV2b2w8L3NlY29uZGFyeS10aXRsZT48L3RpdGxlcz48cGVyaW9k

aWNhbD48ZnVsbC10aXRsZT5Nb2wgQmlvbCBFdm9sPC9mdWxsLXRpdGxlPjwvcGVyaW9kaWNhbD48

cGFnZXM+MjgwOS0xOTwvcGFnZXM+PHZvbHVtZT4yNjwvdm9sdW1lPjxudW1iZXI+MTI8L251bWJl

cj48ZWRpdGlvbj4yMDA5LzA5LzAxPC9lZGl0aW9uPjxrZXl3b3Jkcz48a2V5d29yZD5BbmltYWxz

PC9rZXl3b3JkPjxrZXl3b3JkPkJhc2UgQ29tcG9zaXRpb24vKmdlbmV0aWNzPC9rZXl3b3JkPjxr

ZXl3b3JkPkdlbmV0aWMgTG9jaS9nZW5ldGljczwva2V5d29yZD48a2V5d29yZD5HZW5vbWUvZ2Vu

ZXRpY3M8L2tleXdvcmQ+PGtleXdvcmQ+SHVtYW5zPC9rZXl3b3JkPjxrZXl3b3JkPk1pY3Jvc2F0

ZWxsaXRlIFJlcGVhdHMvKmdlbmV0aWNzPC9rZXl3b3JkPjxrZXl3b3JkPk51Y2xlaWMgQWNpZCBI

eWJyaWRpemF0aW9uL2dlbmV0aWNzPC9rZXl3b3JkPjxrZXl3b3JkPk9saWdvbnVjbGVvdGlkZSBB

cnJheSBTZXF1ZW5jZSBBbmFseXNpczwva2V5d29yZD48a2V5d29yZD5QYW4gdHJvZ2xvZHl0ZXMv

Z2VuZXRpY3M8L2tleXdvcmQ+PGtleXdvcmQ+UGxhbnRzLypnZW5ldGljczwva2V5d29yZD48a2V5

d29yZD5QcmltYXRlcy8qZ2VuZXRpY3M8L2tleXdvcmQ+PGtleXdvcmQ+U3BlY2llcyBTcGVjaWZp

Y2l0eTwva2V5d29yZD48L2tleXdvcmRzPjxkYXRlcz48eWVhcj4yMDA5PC95ZWFyPjxwdWItZGF0

ZXM+PGRhdGU+RGVjPC9kYXRlPjwvcHViLWRhdGVzPjwvZGF0ZXM+PGlzYm4+MTUzNy0xNzE5IChF

bGVjdHJvbmljKSYjeEQ7MDczNy00MDM4IChMaW5raW5nKTwvaXNibj48YWNjZXNzaW9uLW51bT4x

OTcxNzUyNjwvYWNjZXNzaW9uLW51bT48dXJscz48cmVsYXRlZC11cmxzPjx1cmw+aHR0cDovL3d3

dy5uY2JpLm5sbS5uaWguZ292L2VudHJlei9xdWVyeS5mY2dpP2NtZD1SZXRyaWV2ZSZhbXA7ZGI9

UHViTWVkJmFtcDtkb3B0PUNpdGF0aW9uJmFtcDtsaXN0X3VpZHM9MTk3MTc1MjY8L3VybD48L3Jl

bGF0ZWQtdXJscz48L3VybHM+PGN1c3RvbTI+Mjc4MjMyNzwvY3VzdG9tMj48ZWxlY3Ryb25pYy1y

ZXNvdXJjZS1udW0+bXNwMTkyIFtwaWldJiN4RDsxMC4xMDkzL21vbGJldi9tc3AxOTI8L2VsZWN0

cm9uaWMtcmVzb3VyY2UtbnVtPjxsYW5ndWFnZT5lbmc8L2xhbmd1YWdlPjwvcmVjb3JkPjwvQ2l0

ZT48L0VuZE5vdGU+AG==

ADDIN EN.CITE PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5CZWxvc2x1ZHRzZXY8L0F1dGhvcj48WWVhcj4yMDA0PC9Z

ZWFyPjxSZWNOdW0+Njc8L1JlY051bT48RGlzcGxheVRleHQ+WzE4LCAxOV08L0Rpc3BsYXlUZXh0

PjxyZWNvcmQ+PHJlYy1udW1iZXI+Njc8L3JlYy1udW1iZXI+PGZvcmVpZ24ta2V5cz48a2V5IGFw

cD0iRU4iIGRiLWlkPSJ3eDkwcjlwdDhydHIyMGVmdHZ5dnowYTR0MDJ2MHpzdzAyd3YiPjY3PC9r

ZXk+PC9mb3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3Jl

Zi10eXBlPjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5CZWxvc2x1ZHRzZXYsIFkuIFku

PC9hdXRob3I+PGF1dGhvcj5Cb3dlcm1hbiwgRC48L2F1dGhvcj48YXV0aG9yPldlaWwsIFIuPC9h

dXRob3I+PGF1dGhvcj5NYXJ0aGFuZGFuLCBOLjwvYXV0aG9yPjxhdXRob3I+QmFsb2csIFIuPC9h

dXRob3I+PGF1dGhvcj5MdWVia2UsIEsuPC9hdXRob3I+PGF1dGhvcj5MYXdzb24sIEouPC9hdXRo

b3I+PGF1dGhvcj5Kb2huc3RvbiwgUy4gQS48L2F1dGhvcj48YXV0aG9yPkx5b25zLCBDLiBSLjwv

YXV0aG9yPjxhdXRob3I+T2JyaWVuLCBLLjwvYXV0aG9yPjxhdXRob3I+R2FybmVyLCBILiBSLjwv

YXV0aG9yPjxhdXRob3I+UG93ZHJpbGwsIFQuIEYuPC9hdXRob3I+PC9hdXRob3JzPjwvY29udHJp

YnV0b3JzPjxhdXRoLWFkZHJlc3M+Vml0cnV2aXVzIEJpb3NjaWVuY2VzLCBUaGUgV29vZGxhbmRz

LCBVU0EuPC9hdXRoLWFkZHJlc3M+PHRpdGxlcz48dGl0bGU+T3JnYW5pc20gaWRlbnRpZmljYXRp

b24gdXNpbmcgYSBnZW5vbWUgc2VxdWVuY2UtaW5kZXBlbmRlbnQgdW5pdmVyc2FsIG1pY3JvYXJy

YXkgcHJvYmUgc2V0PC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPkJpb3RlY2huaXF1ZXM8L3NlY29u

ZGFyeS10aXRsZT48L3RpdGxlcz48cGFnZXM+NjU0LTgsIDY2MDwvcGFnZXM+PHZvbHVtZT4zNzwv

dm9sdW1lPjxudW1iZXI+NDwvbnVtYmVyPjxlZGl0aW9uPjIwMDQvMTEvMDM8L2VkaXRpb24+PGtl

eXdvcmRzPjxrZXl3b3JkPkJhY2lsbHVzIGFudGhyYWNpcy9nZW5ldGljczwva2V5d29yZD48a2V5

d29yZD5CYWNpbGx1cyBzdWJ0aWxpcy9nZW5ldGljczwva2V5d29yZD48a2V5d29yZD5CaW90ZXJy

b3Jpc208L2tleXdvcmQ+PGtleXdvcmQ+KkROQSBQcm9iZXM8L2tleXdvcmQ+PGtleXdvcmQ+RE5B

LCBCYWN0ZXJpYWwvKmdlbmV0aWNzPC9rZXl3b3JkPjxrZXl3b3JkPkdlbmUgRXhwcmVzc2lvbiBQ

cm9maWxpbmcvaW5zdHJ1bWVudGF0aW9uLyptZXRob2RzPC9rZXl3b3JkPjxrZXl3b3JkPk1vbGVj

dWxhciBTZXF1ZW5jZSBEYXRhPC9rZXl3b3JkPjxrZXl3b3JkPk51Y2xlaWMgQWNpZCBIeWJyaWRp

emF0aW9uL21ldGhvZHM8L2tleXdvcmQ+PGtleXdvcmQ+T2xpZ29udWNsZW90aWRlIEFycmF5IFNl

cXVlbmNlIEFuYWx5c2lzLyppbnN0cnVtZW50YXRpb24vbWV0aG9kczwva2V5d29yZD48a2V5d29y

ZD4qT2xpZ29udWNsZW90aWRlIFByb2Jlczwva2V5d29yZD48a2V5d29yZD5TdHJlcHRvY29jY3Vz

IHBuZXVtb25pYWUvZ2VuZXRpY3M8L2tleXdvcmQ+PGtleXdvcmQ+WWVyc2luaWEgcGVzdGlzL2dl

bmV0aWNzPC9rZXl3b3JkPjwva2V5d29yZHM+PGRhdGVzPjx5ZWFyPjIwMDQ8L3llYXI+PHB1Yi1k

YXRlcz48ZGF0ZT5PY3Q8L2RhdGU+PC9wdWItZGF0ZXM+PC9kYXRlcz48aXNibj4wNzM2LTYyMDUg

KFByaW50KSYjeEQ7MDczNi02MjA1IChMaW5raW5nKTwvaXNibj48YWNjZXNzaW9uLW51bT4xNTUx

Nzk3NzwvYWNjZXNzaW9uLW51bT48dXJscz48cmVsYXRlZC11cmxzPjx1cmw+aHR0cDovL3d3dy5u

Y2JpLm5sbS5uaWguZ292L2VudHJlei9xdWVyeS5mY2dpP2NtZD1SZXRyaWV2ZSZhbXA7ZGI9UHVi

TWVkJmFtcDtkb3B0PUNpdGF0aW9uJmFtcDtsaXN0X3VpZHM9MTU1MTc5Nzc8L3VybD48L3JlbGF0

ZWQtdXJscz48L3VybHM+PGxhbmd1YWdlPmVuZzwvbGFuZ3VhZ2U+PC9yZWNvcmQ+PC9DaXRlPjxD

aXRlPjxBdXRob3I+R2FsaW5kbzwvQXV0aG9yPjxZZWFyPjIwMDk8L1llYXI+PFJlY051bT4zNjQ8

L1JlY051bT48cmVjb3JkPjxyZWMtbnVtYmVyPjM2NDwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlz

PjxrZXkgYXBwPSJFTiIgZGItaWQ9Ind4OTByOXB0OHJ0cjIwZWZ0dnl2ejBhNHQwMnYwenN3MDJ3

diI+MzY0PC9rZXk+PC9mb3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNs

ZSI+MTc8L3JlZi10eXBlPjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5HYWxpbmRvLCBD

LiBMLjwvYXV0aG9yPjxhdXRob3I+TWNJdmVyLCBMLiBKLjwvYXV0aG9yPjxhdXRob3I+TWNDb3Jt

aWNrLCBKLiBGLjwvYXV0aG9yPjxhdXRob3I+U2tpbm5lciwgTS4gQS48L2F1dGhvcj48YXV0aG9y

PlhpZSwgWS48L2F1dGhvcj48YXV0aG9yPkdlbGhhdXNlbiwgUi4gQS48L2F1dGhvcj48YXV0aG9y

Pk5nLCBLLjwvYXV0aG9yPjxhdXRob3I+S3VtYXIsIE4uIE0uPC9hdXRob3I+PGF1dGhvcj5HYXJu

ZXIsIEguIFIuPC9hdXRob3I+PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjxhdXRoLWFkZHJlc3M+

TWNEZXJtb3R0IENlbnRlciBmb3IgSHVtYW4gR3Jvd3RoIGFuZCBEZXZlbG9wbWVudCBvZiB0aGUg

VW5pdmVyc2l0eSBvZiBUZXhhcyBTb3V0aHdlc3Rlcm4gTWVkaWNhbCBDZW50ZXIsIERhbGxhcywg

VGV4YXMsIFVTQS4gQ3Jpc3RpLmdhbGluZG9AdXRzb3V0aHdlc3Rlcm4uZWR1PC9hdXRoLWFkZHJl

c3M+PHRpdGxlcz48dGl0bGU+R2xvYmFsIG1pY3Jvc2F0ZWxsaXRlIGNvbnRlbnQgZGlzdGluZ3Vp

c2hlcyBodW1hbnMsIHByaW1hdGVzLCBhbmltYWxzLCBhbmQgcGxhbnRzPC90aXRsZT48c2Vjb25k

YXJ5LXRpdGxlPk1vbCBCaW9sIEV2b2w8L3NlY29uZGFyeS10aXRsZT48L3RpdGxlcz48cGVyaW9k

aWNhbD48ZnVsbC10aXRsZT5Nb2wgQmlvbCBFdm9sPC9mdWxsLXRpdGxlPjwvcGVyaW9kaWNhbD48

cGFnZXM+MjgwOS0xOTwvcGFnZXM+PHZvbHVtZT4yNjwvdm9sdW1lPjxudW1iZXI+MTI8L251bWJl

cj48ZWRpdGlvbj4yMDA5LzA5LzAxPC9lZGl0aW9uPjxrZXl3b3Jkcz48a2V5d29yZD5BbmltYWxz

PC9rZXl3b3JkPjxrZXl3b3JkPkJhc2UgQ29tcG9zaXRpb24vKmdlbmV0aWNzPC9rZXl3b3JkPjxr

ZXl3b3JkPkdlbmV0aWMgTG9jaS9nZW5ldGljczwva2V5d29yZD48a2V5d29yZD5HZW5vbWUvZ2Vu

ZXRpY3M8L2tleXdvcmQ+PGtleXdvcmQ+SHVtYW5zPC9rZXl3b3JkPjxrZXl3b3JkPk1pY3Jvc2F0

ZWxsaXRlIFJlcGVhdHMvKmdlbmV0aWNzPC9rZXl3b3JkPjxrZXl3b3JkPk51Y2xlaWMgQWNpZCBI

eWJyaWRpemF0aW9uL2dlbmV0aWNzPC9rZXl3b3JkPjxrZXl3b3JkPk9saWdvbnVjbGVvdGlkZSBB

cnJheSBTZXF1ZW5jZSBBbmFseXNpczwva2V5d29yZD48a2V5d29yZD5QYW4gdHJvZ2xvZHl0ZXMv

Z2VuZXRpY3M8L2tleXdvcmQ+PGtleXdvcmQ+UGxhbnRzLypnZW5ldGljczwva2V5d29yZD48a2V5

d29yZD5QcmltYXRlcy8qZ2VuZXRpY3M8L2tleXdvcmQ+PGtleXdvcmQ+U3BlY2llcyBTcGVjaWZp

Y2l0eTwva2V5d29yZD48L2tleXdvcmRzPjxkYXRlcz48eWVhcj4yMDA5PC95ZWFyPjxwdWItZGF0

ZXM+PGRhdGU+RGVjPC9kYXRlPjwvcHViLWRhdGVzPjwvZGF0ZXM+PGlzYm4+MTUzNy0xNzE5IChF

bGVjdHJvbmljKSYjeEQ7MDczNy00MDM4IChMaW5raW5nKTwvaXNibj48YWNjZXNzaW9uLW51bT4x

OTcxNzUyNjwvYWNjZXNzaW9uLW51bT48dXJscz48cmVsYXRlZC11cmxzPjx1cmw+aHR0cDovL3d3

dy5uY2JpLm5sbS5uaWguZ292L2VudHJlei9xdWVyeS5mY2dpP2NtZD1SZXRyaWV2ZSZhbXA7ZGI9

UHViTWVkJmFtcDtkb3B0PUNpdGF0aW9uJmFtcDtsaXN0X3VpZHM9MTk3MTc1MjY8L3VybD48L3Jl

bGF0ZWQtdXJscz48L3VybHM+PGN1c3RvbTI+Mjc4MjMyNzwvY3VzdG9tMj48ZWxlY3Ryb25pYy1y

ZXNvdXJjZS1udW0+bXNwMTkyIFtwaWldJiN4RDsxMC4xMDkzL21vbGJldi9tc3AxOTI8L2VsZWN0

cm9uaWMtcmVzb3VyY2UtbnVtPjxsYW5ndWFnZT5lbmc8L2xhbmd1YWdlPjwvcmVjb3JkPjwvQ2l0

ZT48L0VuZE5vdGU+AG==

ADDIN EN.CITE.DATA [18, 19]. The initial prototype of universal arrays used oligonucleotide probe lengths of 12 and 13 bases. From 412 possible probes, a subset of 14,283 probes was synthesized using in situ synthesis technology and digital optical chemistry (DOC) PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5MdWVia2U8L0F1dGhvcj48WWVhcj4yMDAyPC9ZZWFyPjxS

ZWNOdW0+Nzc8L1JlY051bT48RGlzcGxheVRleHQ+WzIwLTIyXTwvRGlzcGxheVRleHQ+PHJlY29y

ZD48cmVjLW51bWJlcj43NzwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIg

ZGItaWQ9Ind4OTByOXB0OHJ0cjIwZWZ0dnl2ejBhNHQwMnYwenN3MDJ3diI+Nzc8L2tleT48L2Zv

cmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwvcmVmLXR5cGU+

PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPkx1ZWJrZSwgSy4gSi48L2F1dGhvcj48YXV0

aG9yPkJhbG9nLCBSLiBQLjwvYXV0aG9yPjxhdXRob3I+TWl0dGVsbWFuLCBELjwvYXV0aG9yPjxh

dXRob3I+R2FybmVyLCBILiBSLjwvYXV0aG9yPjwvYXV0aG9ycz48L2NvbnRyaWJ1dG9ycz48YXV0

aC1hZGRyZXNzPkx1ZWJrZSwgS0omI3hEO1VuaXYgVGV4YXMsIFNXIE1lZCBDdHIsIEN0ciBCaW9t

ZWQgSW52ZW50LCA1MzIzIEhhcnJ5IEhpbmVzIEJsdmQsIERhbGxhcywgVFggNzUzOTAgVVNBJiN4

RDtVbml2IFRleGFzLCBTVyBNZWQgQ3RyLCBDdHIgQmlvbWVkIEludmVudCwgNTMyMyBIYXJyeSBI

aW5lcyBCbHZkLCBEYWxsYXMsIFRYIDc1MzkwIFVTQSYjeEQ7VW5pdiBUZXhhcywgU1cgTWVkIEN0

ciwgQ3RyIEJpb21lZCBJbnZlbnQsIERhbGxhcywgVFggNzUzOTAgVVNBJiN4RDtVbml2IFRleGFz

LCBTVyBNZWQgQ3RyLCBNY0Rlcm1vdHQgQ3RyIEh1bWFuIEdyb3d0aCAmYW1wOyBEZXYsIERhbGxh

cywgVFggNzUzOTAgVVNBPC9hdXRoLWFkZHJlc3M+PHRpdGxlcz48dGl0bGU+RGlnaXRhbCBvcHRp

Y2FsIGNoZW1pc3RyeTogQSBub3ZlbCBzeXN0ZW0gZm9yIHRoZSByYXBpZCBmYWJyaWNhdGlvbiBv

ZiBjdXN0b20gb2xpZ29udWNsZW90aWRlIGFycmF5czwvdGl0bGU+PHNlY29uZGFyeS10aXRsZT5N

aWNyb2ZhYnJpY2F0ZWQgU2Vuc29yczwvc2Vjb25kYXJ5LXRpdGxlPjxhbHQtdGl0bGU+QWNzIFN5

bSBTZXI8L2FsdC10aXRsZT48L3RpdGxlcz48cGFnZXM+ODctMTA2PC9wYWdlcz48dm9sdW1lPjgx

NTwvdm9sdW1lPjxrZXl3b3Jkcz48a2V5d29yZD5nbGFzcyBzdXBwb3J0czwva2V5d29yZD48a2V5

d29yZD5ETkEgYXJyYXlzPC9rZXl3b3JkPjxrZXl3b3JkPm1pY3JvYXJyYXlzPC9rZXl3b3JkPjxr

ZXl3b3JkPmdlbm9tZTwva2V5d29yZD48a2V5d29yZD5wb2x5bW9ycGhpc21zPC9rZXl3b3JkPjxr

ZXl3b3JkPmh5YnJpZGl6YXRpb248L2tleXdvcmQ+PC9rZXl3b3Jkcz48ZGF0ZXM+PHllYXI+MjAw

MjwveWVhcj48L2RhdGVzPjxpc2JuPjAwOTctNjE1NjwvaXNibj48YWNjZXNzaW9uLW51bT5JU0k6

MDAwMTc1NzQ1NTAwMDA2PC9hY2Nlc3Npb24tbnVtPjx1cmxzPjxyZWxhdGVkLXVybHM+PHVybD4m

bHQ7R28gdG8gSVNJJmd0OzovLzAwMDE3NTc0NTUwMDAwNjwvdXJsPjwvcmVsYXRlZC11cmxzPjwv

dXJscz48bGFuZ3VhZ2U+RW5nbGlzaDwvbGFuZ3VhZ2U+PC9yZWNvcmQ+PC9DaXRlPjxDaXRlPjxB

dXRob3I+THVlYmtlPC9BdXRob3I+PFllYXI+MjAwMzwvWWVhcj48UmVjTnVtPjEwNDwvUmVjTnVt

PjxyZWNvcmQ+PHJlYy1udW1iZXI+MTA0PC9yZWMtbnVtYmVyPjxmb3JlaWduLWtleXM+PGtleSBh

cHA9IkVOIiBkYi1pZD0id3g5MHI5cHQ4cnRyMjBlZnR2eXZ6MGE0dDAydjB6c3cwMnd2Ij4xMDQ8

L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwv

cmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPkx1ZWJrZSwgSy4gSi48L2F1

dGhvcj48YXV0aG9yPkJhbG9nLCBSLiBQLjwvYXV0aG9yPjxhdXRob3I+R2FybmVyLCBILiBSLjwv

YXV0aG9yPjwvYXV0aG9ycz48L2NvbnRyaWJ1dG9ycz48YXV0aC1hZGRyZXNzPkx1ZWJrZSwgS0om

I3hEO1VuaXYgVGV4YXMsIFNXIE1lZCBDdHIsIEN0ciBCaW9tZWQgSW52ZW50LCBEYWxsYXMsIFRY

IDc1MzkwIFVTQSYjeEQ7VW5pdiBUZXhhcywgU1cgTWVkIEN0ciwgQ3RyIEJpb21lZCBJbnZlbnQs

IERhbGxhcywgVFggNzUzOTAgVVNBJiN4RDtVbml2IFRleGFzLCBTVyBNZWQgQ3RyLCBDdHIgQmlv

bWVkIEludmVudCwgRGFsbGFzLCBUWCA3NTM5MCBVU0EmI3hEO1VuaXYgVGV4YXMsIFNXIE1lZCBD

dHIsIE1jRGVybW90dCBDdHIgSHVtYW4gR3Jvd3RoICZhbXA7IERldiwgRGFsbGFzLCBUWCA3NTM5

MCBVU0E8L2F1dGgtYWRkcmVzcz48dGl0bGVzPjx0aXRsZT5Qcmlvcml0aXplZCBzZWxlY3Rpb24g

b2Ygb2xpZ29kZW94eXJpYm9udWNsZW90aWRlIHByb2JlcyBmb3IgZWZmaWNpZW50IGh5YnJpZGl6

YXRpb24gdG8gUk5BIHRyYW5zY3JpcHRzPC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPk51Y2xlaWMg

QWNpZHMgUmVzZWFyY2g8L3NlY29uZGFyeS10aXRsZT48YWx0LXRpdGxlPk51Y2xlaWMgQWNpZHMg

UmVzPC9hbHQtdGl0bGU+PC90aXRsZXM+PGFsdC1wZXJpb2RpY2FsPjxmdWxsLXRpdGxlPk51Y2xl

aWMgQWNpZHMgUmVzPC9mdWxsLXRpdGxlPjwvYWx0LXBlcmlvZGljYWw+PHBhZ2VzPjc1MC03NTg8

L3BhZ2VzPjx2b2x1bWU+MzE8L3ZvbHVtZT48bnVtYmVyPjI8L251bWJlcj48a2V5d29yZHM+PGtl

eXdvcmQ+ZGVuc2l0eSBvbGlnb251Y2xlb3RpZGUgYXJyYXlzPC9rZXl3b3JkPjxrZXl3b3JkPmVm

ZmVjdGl2ZSBhbnRpc2Vuc2UgcmVhZ2VudHM8L2tleXdvcmQ+PGtleXdvcmQ+dGhlcm1vZHluYW1p

YyBwYXJhbWV0ZXJzPC9rZXl3b3JkPjxrZXl3b3JkPnNlY29uZGFyeSBzdHJ1Y3R1cmU8L2tleXdv

cmQ+PGtleXdvcmQ+c2Nhbm5pbmcgYXJyYXlzPC9rZXl3b3JkPjxrZXl3b3JkPm1lc3Nlbmdlci1y

bmE8L2tleXdvcmQ+PGtleXdvcmQ+aW4tdml2bzwva2V5d29yZD48a2V5d29yZD5ETkE8L2tleXdv

cmQ+PGtleXdvcmQ+ZXhwcmVzc2lvbjwva2V5d29yZD48a2V5d29yZD5taWNyb2FycmF5czwva2V5

d29yZD48L2tleXdvcmRzPjxkYXRlcz48eWVhcj4yMDAzPC95ZWFyPjxwdWItZGF0ZXM+PGRhdGU+

SmFuIDE1PC9kYXRlPjwvcHViLWRhdGVzPjwvZGF0ZXM+PGlzYm4+MDMwNS0xMDQ4PC9pc2JuPjxh

Y2Nlc3Npb24tbnVtPklTSTowMDAxODEwODE1MDAwMjc8L2FjY2Vzc2lvbi1udW0+PHVybHM+PHJl

bGF0ZWQtdXJscz48dXJsPiZsdDtHbyB0byBJU0kmZ3Q7Oi8vMDAwMTgxMDgxNTAwMDI3PC91cmw+

PC9yZWxhdGVkLXVybHM+PC91cmxzPjxlbGVjdHJvbmljLXJlc291cmNlLW51bT5Eb2kgMTAuMTA5

My9OYXIvR2tnMTMzPC9lbGVjdHJvbmljLXJlc291cmNlLW51bT48bGFuZ3VhZ2U+RW5nbGlzaDwv

bGFuZ3VhZ2U+PC9yZWNvcmQ+PC9DaXRlPjxDaXRlPjxBdXRob3I+THVlYmtlPC9BdXRob3I+PFll

YXI+MjAwMjwvWWVhcj48UmVjTnVtPjc3PC9SZWNOdW0+PHJlY29yZD48cmVjLW51bWJlcj43Nzwv

cmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9Ind4OTByOXB0OHJ0

cjIwZWZ0dnl2ejBhNHQwMnYwenN3MDJ3diI+Nzc8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5

cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0

aG9ycz48YXV0aG9yPkx1ZWJrZSwgSy4gSi48L2F1dGhvcj48YXV0aG9yPkJhbG9nLCBSLiBQLjwv

YXV0aG9yPjxhdXRob3I+TWl0dGVsbWFuLCBELjwvYXV0aG9yPjxhdXRob3I+R2FybmVyLCBILiBS

LjwvYXV0aG9yPjwvYXV0aG9ycz48L2NvbnRyaWJ1dG9ycz48YXV0aC1hZGRyZXNzPkx1ZWJrZSwg

S0omI3hEO1VuaXYgVGV4YXMsIFNXIE1lZCBDdHIsIEN0ciBCaW9tZWQgSW52ZW50LCA1MzIzIEhh

cnJ5IEhpbmVzIEJsdmQsIERhbGxhcywgVFggNzUzOTAgVVNBJiN4RDtVbml2IFRleGFzLCBTVyBN

ZWQgQ3RyLCBDdHIgQmlvbWVkIEludmVudCwgNTMyMyBIYXJyeSBIaW5lcyBCbHZkLCBEYWxsYXMs

IFRYIDc1MzkwIFVTQSYjeEQ7VW5pdiBUZXhhcywgU1cgTWVkIEN0ciwgQ3RyIEJpb21lZCBJbnZl

bnQsIERhbGxhcywgVFggNzUzOTAgVVNBJiN4RDtVbml2IFRleGFzLCBTVyBNZWQgQ3RyLCBNY0Rl

cm1vdHQgQ3RyIEh1bWFuIEdyb3d0aCAmYW1wOyBEZXYsIERhbGxhcywgVFggNzUzOTAgVVNBPC9h

dXRoLWFkZHJlc3M+PHRpdGxlcz48dGl0bGU+RGlnaXRhbCBvcHRpY2FsIGNoZW1pc3RyeTogQSBu

b3ZlbCBzeXN0ZW0gZm9yIHRoZSByYXBpZCBmYWJyaWNhdGlvbiBvZiBjdXN0b20gb2xpZ29udWNs

ZW90aWRlIGFycmF5czwvdGl0bGU+PHNlY29uZGFyeS10aXRsZT5NaWNyb2ZhYnJpY2F0ZWQgU2Vu

c29yczwvc2Vjb25kYXJ5LXRpdGxlPjxhbHQtdGl0bGU+QWNzIFN5bSBTZXI8L2FsdC10aXRsZT48

L3RpdGxlcz48cGFnZXM+ODctMTA2PC9wYWdlcz48dm9sdW1lPjgxNTwvdm9sdW1lPjxrZXl3b3Jk

cz48a2V5d29yZD5nbGFzcyBzdXBwb3J0czwva2V5d29yZD48a2V5d29yZD5ETkEgYXJyYXlzPC9r

ZXl3b3JkPjxrZXl3b3JkPm1pY3JvYXJyYXlzPC9rZXl3b3JkPjxrZXl3b3JkPmdlbm9tZTwva2V5

d29yZD48a2V5d29yZD5wb2x5bW9ycGhpc21zPC9rZXl3b3JkPjxrZXl3b3JkPmh5YnJpZGl6YXRp

b248L2tleXdvcmQ+PC9rZXl3b3Jkcz48ZGF0ZXM+PHllYXI+MjAwMjwveWVhcj48L2RhdGVzPjxp

c2JuPjAwOTctNjE1NjwvaXNibj48YWNjZXNzaW9uLW51bT5JU0k6MDAwMTc1NzQ1NTAwMDA2PC9h

Y2Nlc3Npb24tbnVtPjx1cmxzPjxyZWxhdGVkLXVybHM+PHVybD4mbHQ7R28gdG8gSVNJJmd0Ozov

LzAwMDE3NTc0NTUwMDAwNjwvdXJsPjwvcmVsYXRlZC11cmxzPjwvdXJscz48bGFuZ3VhZ2U+RW5n

bGlzaDwvbGFuZ3VhZ2U+PC9yZWNvcmQ+PC9DaXRlPjxDaXRlPjxBdXRob3I+QmFsb2c8L0F1dGhv

cj48WWVhcj4yMDAyPC9ZZWFyPjxSZWNOdW0+MTA4PC9SZWNOdW0+PHJlY29yZD48cmVjLW51bWJl

cj4xMDg8L3JlYy1udW1iZXI+PGZvcmVpZ24ta2V5cz48a2V5IGFwcD0iRU4iIGRiLWlkPSJ3eDkw

cjlwdDhydHIyMGVmdHZ5dnowYTR0MDJ2MHpzdzAyd3YiPjEwODwva2V5PjwvZm9yZWlnbi1rZXlz

PjxyZWYtdHlwZSBuYW1lPSJKb3VybmFsIEFydGljbGUiPjE3PC9yZWYtdHlwZT48Y29udHJpYnV0

b3JzPjxhdXRob3JzPjxhdXRob3I+QmFsb2csIFIuPC9hdXRob3I+PGF1dGhvcj5IZWRoaWxpLCBN

LiBOLjwvYXV0aG9yPjxhdXRob3I+Qm91cm5lbCwgRi48L2F1dGhvcj48YXV0aG9yPlBlbm5vLCBN

LjwvYXV0aG9yPjxhdXRob3I+VHJvbmMsIE0uPC9hdXRob3I+PGF1dGhvcj5BenJpYSwgUi48L2F1

dGhvcj48YXV0aG9yPklsbGVuYmVyZ2VyLCBFLjwvYXV0aG9yPjwvYXV0aG9ycz48L2NvbnRyaWJ1

dG9ycz48YXV0aC1hZGRyZXNzPkJhbG9nLCBSJiN4RDtGcmVlIFVuaXYgQmVybGluLCBJbnN0IENo

ZW0gUGh5cyAmYW1wOyBUaGVvcmV0IENoZW0sIFRha3VzdHIgMywgRC0xNDE5NSBCZXJsaW4sIEdl

cm1hbnkmI3hEO0ZyZWUgVW5pdiBCZXJsaW4sIEluc3QgQ2hlbSBQaHlzICZhbXA7IFRoZW9yZXQg

Q2hlbSwgVGFrdXN0ciAzLCBELTE0MTk1IEJlcmxpbiwgR2VybWFueSYjeEQ7RnJlZSBVbml2IEJl

cmxpbiwgSW5zdCBDaGVtIFBoeXMgJmFtcDsgVGhlb3JldCBDaGVtLCBELTE0MTk1IEJlcmxpbiwg

R2VybWFueSYjeEQ7VW5pdiBQYXJpcyAxMSwgQ29sbGlzIEF0b20gJmFtcDsgTW9sIExhYiwgRi05

MTQwNSBPcnNheSwgRnJhbmNlJiN4RDtVbml2IFBhcmlzIDExLCBDTlJTLCBGLTkxNDA1IE9yc2F5

LCBGcmFuY2UmI3hEO1VuaXYgUGFyaXMgMDYsIExhYiBDaGltIFBoeXMgTWF0ICZhbXA7IFJheW9u

bmVtZW50LCBGLTc1MjMxIFBhcmlzIDA1LCBGcmFuY2UmI3hEO0ZhYyBTY2kgVHVuaXMsIFBoeXMg

TWF0IENvbmRlbnNlZSBMYWIsIFR1bmlzIDEwNjAsIFR1bmlzaWE8L2F1dGgtYWRkcmVzcz48dGl0

bGVzPjx0aXRsZT5TeW50aGVzaXMgb2YgQ2wtMiBpbmR1Y2VkIGJ5IGxvdyBlbmVyZ3kgKDAtMTgg

ZVYpIGVsZWN0cm9uIGltcGFjdCB0byBjb25kZW5zZWQgMSwyLUMyRjRDbDIgbW9sZWN1bGVzPC90

aXRsZT48c2Vjb25kYXJ5LXRpdGxlPlBoeXNpY2FsIENoZW1pc3RyeSBDaGVtaWNhbCBQaHlzaWNz

PC9zZWNvbmRhcnktdGl0bGU+PGFsdC10aXRsZT5QaHlzIENoZW0gQ2hlbSBQaHlzPC9hbHQtdGl0

bGU+PC90aXRsZXM+PHBhZ2VzPjMzNTAtMzM1NTwvcGFnZXM+PHZvbHVtZT40PC92b2x1bWU+PG51

bWJlcj4xNDwvbnVtYmVyPjxrZXl3b3Jkcz48a2V5d29yZD5zdGltdWxhdGVkIGRlc29ycHRpb248

L2tleXdvcmQ+PGtleXdvcmQ+Y3ljbG9wcm9wYW5lPC9rZXl3b3JkPjxrZXl3b3JkPmF0dGFjaG1l

bnQ8L2tleXdvcmQ+PGtleXdvcmQ+ZmlsbXM8L2tleXdvcmQ+PGtleXdvcmQ+ZGlzc29jaWF0aW9u

PC9rZXl3b3JkPjxrZXl3b3JkPmFjdGl2YXRpb248L2tleXdvcmQ+PGtleXdvcmQ+Y2hlbWlzdHJ5

PC9rZXl3b3JkPjxrZXl3b3JkPmh5ZHJvZ2VuPC9rZXl3b3JkPjxrZXl3b3JkPnN1cmZhY2U8L2tl

eXdvcmQ+PGtleXdvcmQ+bWF0cml4PC9rZXl3b3JkPjwva2V5d29yZHM+PGRhdGVzPjx5ZWFyPjIw

MDI8L3llYXI+PC9kYXRlcz48aXNibj4xNDYzLTkwNzY8L2lzYm4+PGFjY2Vzc2lvbi1udW0+SVNJ

OjAwMDE3NjU0NDIwMDAyODwvYWNjZXNzaW9uLW51bT48dXJscz48cmVsYXRlZC11cmxzPjx1cmw+

Jmx0O0dvIHRvIElTSSZndDs6Ly8wMDAxNzY1NDQyMDAwMjg8L3VybD48L3JlbGF0ZWQtdXJscz48

L3VybHM+PGVsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPkRvaSAxMC4xMDM5L0IxMTAwMzliPC9lbGVj

dHJvbmljLXJlc291cmNlLW51bT48bGFuZ3VhZ2U+RW5nbGlzaDwvbGFuZ3VhZ2U+PC9yZWNvcmQ+

PC9DaXRlPjxDaXRlPjxBdXRob3I+THVlYmtlPC9BdXRob3I+PFllYXI+MjAwMzwvWWVhcj48UmVj

TnVtPjEwNDwvUmVjTnVtPjxyZWNvcmQ+PHJlYy1udW1iZXI+MTA0PC9yZWMtbnVtYmVyPjxmb3Jl

aWduLWtleXM+PGtleSBhcHA9IkVOIiBkYi1pZD0id3g5MHI5cHQ4cnRyMjBlZnR2eXZ6MGE0dDAy

djB6c3cwMnd2Ij4xMDQ8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iSm91cm5h

bCBBcnRpY2xlIj4xNzwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPkx1

ZWJrZSwgSy4gSi48L2F1dGhvcj48YXV0aG9yPkJhbG9nLCBSLiBQLjwvYXV0aG9yPjxhdXRob3I+

R2FybmVyLCBILiBSLjwvYXV0aG9yPjwvYXV0aG9ycz48L2NvbnRyaWJ1dG9ycz48YXV0aC1hZGRy

ZXNzPkx1ZWJrZSwgS0omI3hEO1VuaXYgVGV4YXMsIFNXIE1lZCBDdHIsIEN0ciBCaW9tZWQgSW52

ZW50LCBEYWxsYXMsIFRYIDc1MzkwIFVTQSYjeEQ7VW5pdiBUZXhhcywgU1cgTWVkIEN0ciwgQ3Ry

IEJpb21lZCBJbnZlbnQsIERhbGxhcywgVFggNzUzOTAgVVNBJiN4RDtVbml2IFRleGFzLCBTVyBN

ZWQgQ3RyLCBDdHIgQmlvbWVkIEludmVudCwgRGFsbGFzLCBUWCA3NTM5MCBVU0EmI3hEO1VuaXYg

VGV4YXMsIFNXIE1lZCBDdHIsIE1jRGVybW90dCBDdHIgSHVtYW4gR3Jvd3RoICZhbXA7IERldiwg

RGFsbGFzLCBUWCA3NTM5MCBVU0E8L2F1dGgtYWRkcmVzcz48dGl0bGVzPjx0aXRsZT5Qcmlvcml0

aXplZCBzZWxlY3Rpb24gb2Ygb2xpZ29kZW94eXJpYm9udWNsZW90aWRlIHByb2JlcyBmb3IgZWZm

aWNpZW50IGh5YnJpZGl6YXRpb24gdG8gUk5BIHRyYW5zY3JpcHRzPC90aXRsZT48c2Vjb25kYXJ5

LXRpdGxlPk51Y2xlaWMgQWNpZHMgUmVzZWFyY2g8L3NlY29uZGFyeS10aXRsZT48YWx0LXRpdGxl

Pk51Y2xlaWMgQWNpZHMgUmVzPC9hbHQtdGl0bGU+PC90aXRsZXM+PGFsdC1wZXJpb2RpY2FsPjxm

dWxsLXRpdGxlPk51Y2xlaWMgQWNpZHMgUmVzPC9mdWxsLXRpdGxlPjwvYWx0LXBlcmlvZGljYWw+

PHBhZ2VzPjc1MC03NTg8L3BhZ2VzPjx2b2x1bWU+MzE8L3ZvbHVtZT48bnVtYmVyPjI8L251bWJl

cj48a2V5d29yZHM+PGtleXdvcmQ+ZGVuc2l0eSBvbGlnb251Y2xlb3RpZGUgYXJyYXlzPC9rZXl3

b3JkPjxrZXl3b3JkPmVmZmVjdGl2ZSBhbnRpc2Vuc2UgcmVhZ2VudHM8L2tleXdvcmQ+PGtleXdv

cmQ+dGhlcm1vZHluYW1pYyBwYXJhbWV0ZXJzPC9rZXl3b3JkPjxrZXl3b3JkPnNlY29uZGFyeSBz

dHJ1Y3R1cmU8L2tleXdvcmQ+PGtleXdvcmQ+c2Nhbm5pbmcgYXJyYXlzPC9rZXl3b3JkPjxrZXl3

b3JkPm1lc3Nlbmdlci1ybmE8L2tleXdvcmQ+PGtleXdvcmQ+aW4tdml2bzwva2V5d29yZD48a2V5

d29yZD5ETkE8L2tleXdvcmQ+PGtleXdvcmQ+ZXhwcmVzc2lvbjwva2V5d29yZD48a2V5d29yZD5t

aWNyb2FycmF5czwva2V5d29yZD48L2tleXdvcmRzPjxkYXRlcz48eWVhcj4yMDAzPC95ZWFyPjxw

dWItZGF0ZXM+PGRhdGU+SmFuIDE1PC9kYXRlPjwvcHViLWRhdGVzPjwvZGF0ZXM+PGlzYm4+MDMw

NS0xMDQ4PC9pc2JuPjxhY2Nlc3Npb24tbnVtPklTSTowMDAxODEwODE1MDAwMjc8L2FjY2Vzc2lv

bi1udW0+PHVybHM+PHJlbGF0ZWQtdXJscz48dXJsPiZsdDtHbyB0byBJU0kmZ3Q7Oi8vMDAwMTgx

MDgxNTAwMDI3PC91cmw+PC9yZWxhdGVkLXVybHM+PC91cmxzPjxlbGVjdHJvbmljLXJlc291cmNl

LW51bT5Eb2kgMTAuMTA5My9OYXIvR2tnMTMzPC9lbGVjdHJvbmljLXJlc291cmNlLW51bT48bGFu

Z3VhZ2U+RW5nbGlzaDwvbGFuZ3VhZ2U+PC9yZWNvcmQ+PC9DaXRlPjxDaXRlPjxBdXRob3I+THVl

YmtlPC9BdXRob3I+PFllYXI+MjAwMjwvWWVhcj48UmVjTnVtPjc3PC9SZWNOdW0+PHJlY29yZD48

cmVjLW51bWJlcj43NzwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGIt

aWQ9Ind4OTByOXB0OHJ0cjIwZWZ0dnl2ejBhNHQwMnYwenN3MDJ3diI+Nzc8L2tleT48L2ZvcmVp

Z24ta2V5cz48cmVmLXR5cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwvcmVmLXR5cGU+PGNv

bnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPkx1ZWJrZSwgSy4gSi48L2F1dGhvcj48YXV0aG9y

PkJhbG9nLCBSLiBQLjwvYXV0aG9yPjxhdXRob3I+TWl0dGVsbWFuLCBELjwvYXV0aG9yPjxhdXRo

b3I+R2FybmVyLCBILiBSLjwvYXV0aG9yPjwvYXV0aG9ycz48L2NvbnRyaWJ1dG9ycz48YXV0aC1h

ZGRyZXNzPkx1ZWJrZSwgS0omI3hEO1VuaXYgVGV4YXMsIFNXIE1lZCBDdHIsIEN0ciBCaW9tZWQg

SW52ZW50LCA1MzIzIEhhcnJ5IEhpbmVzIEJsdmQsIERhbGxhcywgVFggNzUzOTAgVVNBJiN4RDtV

bml2IFRleGFzLCBTVyBNZWQgQ3RyLCBDdHIgQmlvbWVkIEludmVudCwgNTMyMyBIYXJyeSBIaW5l

cyBCbHZkLCBEYWxsYXMsIFRYIDc1MzkwIFVTQSYjeEQ7VW5pdiBUZXhhcywgU1cgTWVkIEN0ciwg

Q3RyIEJpb21lZCBJbnZlbnQsIERhbGxhcywgVFggNzUzOTAgVVNBJiN4RDtVbml2IFRleGFzLCBT

VyBNZWQgQ3RyLCBNY0Rlcm1vdHQgQ3RyIEh1bWFuIEdyb3d0aCAmYW1wOyBEZXYsIERhbGxhcywg

VFggNzUzOTAgVVNBPC9hdXRoLWFkZHJlc3M+PHRpdGxlcz48dGl0bGU+RGlnaXRhbCBvcHRpY2Fs

IGNoZW1pc3RyeTogQSBub3ZlbCBzeXN0ZW0gZm9yIHRoZSByYXBpZCBmYWJyaWNhdGlvbiBvZiBj

dXN0b20gb2xpZ29udWNsZW90aWRlIGFycmF5czwvdGl0bGU+PHNlY29uZGFyeS10aXRsZT5NaWNy

b2ZhYnJpY2F0ZWQgU2Vuc29yczwvc2Vjb25kYXJ5LXRpdGxlPjxhbHQtdGl0bGU+QWNzIFN5bSBT

ZXI8L2FsdC10aXRsZT48L3RpdGxlcz48cGFnZXM+ODctMTA2PC9wYWdlcz48dm9sdW1lPjgxNTwv

dm9sdW1lPjxrZXl3b3Jkcz48a2V5d29yZD5nbGFzcyBzdXBwb3J0czwva2V5d29yZD48a2V5d29y

ZD5ETkEgYXJyYXlzPC9rZXl3b3JkPjxrZXl3b3JkPm1pY3JvYXJyYXlzPC9rZXl3b3JkPjxrZXl3

b3JkPmdlbm9tZTwva2V5d29yZD48a2V5d29yZD5wb2x5bW9ycGhpc21zPC9rZXl3b3JkPjxrZXl3

b3JkPmh5YnJpZGl6YXRpb248L2tleXdvcmQ+PC9rZXl3b3Jkcz48ZGF0ZXM+PHllYXI+MjAwMjwv

eWVhcj48L2RhdGVzPjxpc2JuPjAwOTctNjE1NjwvaXNibj48YWNjZXNzaW9uLW51bT5JU0k6MDAw

MTc1NzQ1NTAwMDA2PC9hY2Nlc3Npb24tbnVtPjx1cmxzPjxyZWxhdGVkLXVybHM+PHVybD4mbHQ7

R28gdG8gSVNJJmd0OzovLzAwMDE3NTc0NTUwMDAwNjwvdXJsPjwvcmVsYXRlZC11cmxzPjwvdXJs

cz48bGFuZ3VhZ2U+RW5nbGlzaDwvbGFuZ3VhZ2U+PC9yZWNvcmQ+PC9DaXRlPjwvRW5kTm90ZT5=

ADDIN EN.CITE PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5MdWVia2U8L0F1dGhvcj48WWVhcj4yMDAyPC9ZZWFyPjxS

ZWNOdW0+Nzc8L1JlY051bT48RGlzcGxheVRleHQ+WzIwLTIyXTwvRGlzcGxheVRleHQ+PHJlY29y

ZD48cmVjLW51bWJlcj43NzwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIg

ZGItaWQ9Ind4OTByOXB0OHJ0cjIwZWZ0dnl2ejBhNHQwMnYwenN3MDJ3diI+Nzc8L2tleT48L2Zv

cmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwvcmVmLXR5cGU+

PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPkx1ZWJrZSwgSy4gSi48L2F1dGhvcj48YXV0

aG9yPkJhbG9nLCBSLiBQLjwvYXV0aG9yPjxhdXRob3I+TWl0dGVsbWFuLCBELjwvYXV0aG9yPjxh

dXRob3I+R2FybmVyLCBILiBSLjwvYXV0aG9yPjwvYXV0aG9ycz48L2NvbnRyaWJ1dG9ycz48YXV0

aC1hZGRyZXNzPkx1ZWJrZSwgS0omI3hEO1VuaXYgVGV4YXMsIFNXIE1lZCBDdHIsIEN0ciBCaW9t

ZWQgSW52ZW50LCA1MzIzIEhhcnJ5IEhpbmVzIEJsdmQsIERhbGxhcywgVFggNzUzOTAgVVNBJiN4

RDtVbml2IFRleGFzLCBTVyBNZWQgQ3RyLCBDdHIgQmlvbWVkIEludmVudCwgNTMyMyBIYXJyeSBI

aW5lcyBCbHZkLCBEYWxsYXMsIFRYIDc1MzkwIFVTQSYjeEQ7VW5pdiBUZXhhcywgU1cgTWVkIEN0

ciwgQ3RyIEJpb21lZCBJbnZlbnQsIERhbGxhcywgVFggNzUzOTAgVVNBJiN4RDtVbml2IFRleGFz

LCBTVyBNZWQgQ3RyLCBNY0Rlcm1vdHQgQ3RyIEh1bWFuIEdyb3d0aCAmYW1wOyBEZXYsIERhbGxh

cywgVFggNzUzOTAgVVNBPC9hdXRoLWFkZHJlc3M+PHRpdGxlcz48dGl0bGU+RGlnaXRhbCBvcHRp

Y2FsIGNoZW1pc3RyeTogQSBub3ZlbCBzeXN0ZW0gZm9yIHRoZSByYXBpZCBmYWJyaWNhdGlvbiBv

ZiBjdXN0b20gb2xpZ29udWNsZW90aWRlIGFycmF5czwvdGl0bGU+PHNlY29uZGFyeS10aXRsZT5N

aWNyb2ZhYnJpY2F0ZWQgU2Vuc29yczwvc2Vjb25kYXJ5LXRpdGxlPjxhbHQtdGl0bGU+QWNzIFN5

bSBTZXI8L2FsdC10aXRsZT48L3RpdGxlcz48cGFnZXM+ODctMTA2PC9wYWdlcz48dm9sdW1lPjgx

NTwvdm9sdW1lPjxrZXl3b3Jkcz48a2V5d29yZD5nbGFzcyBzdXBwb3J0czwva2V5d29yZD48a2V5

d29yZD5ETkEgYXJyYXlzPC9rZXl3b3JkPjxrZXl3b3JkPm1pY3JvYXJyYXlzPC9rZXl3b3JkPjxr

ZXl3b3JkPmdlbm9tZTwva2V5d29yZD48a2V5d29yZD5wb2x5bW9ycGhpc21zPC9rZXl3b3JkPjxr

ZXl3b3JkPmh5YnJpZGl6YXRpb248L2tleXdvcmQ+PC9rZXl3b3Jkcz48ZGF0ZXM+PHllYXI+MjAw

MjwveWVhcj48L2RhdGVzPjxpc2JuPjAwOTctNjE1NjwvaXNibj48YWNjZXNzaW9uLW51bT5JU0k6

MDAwMTc1NzQ1NTAwMDA2PC9hY2Nlc3Npb24tbnVtPjx1cmxzPjxyZWxhdGVkLXVybHM+PHVybD4m

bHQ7R28gdG8gSVNJJmd0OzovLzAwMDE3NTc0NTUwMDAwNjwvdXJsPjwvcmVsYXRlZC11cmxzPjwv

dXJscz48bGFuZ3VhZ2U+RW5nbGlzaDwvbGFuZ3VhZ2U+PC9yZWNvcmQ+PC9DaXRlPjxDaXRlPjxB

dXRob3I+THVlYmtlPC9BdXRob3I+PFllYXI+MjAwMzwvWWVhcj48UmVjTnVtPjEwNDwvUmVjTnVt

PjxyZWNvcmQ+PHJlYy1udW1iZXI+MTA0PC9yZWMtbnVtYmVyPjxmb3JlaWduLWtleXM+PGtleSBh

cHA9IkVOIiBkYi1pZD0id3g5MHI5cHQ4cnRyMjBlZnR2eXZ6MGE0dDAydjB6c3cwMnd2Ij4xMDQ8

L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwv

cmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPkx1ZWJrZSwgSy4gSi48L2F1

dGhvcj48YXV0aG9yPkJhbG9nLCBSLiBQLjwvYXV0aG9yPjxhdXRob3I+R2FybmVyLCBILiBSLjwv

YXV0aG9yPjwvYXV0aG9ycz48L2NvbnRyaWJ1dG9ycz48YXV0aC1hZGRyZXNzPkx1ZWJrZSwgS0om

I3hEO1VuaXYgVGV4YXMsIFNXIE1lZCBDdHIsIEN0ciBCaW9tZWQgSW52ZW50LCBEYWxsYXMsIFRY

IDc1MzkwIFVTQSYjeEQ7VW5pdiBUZXhhcywgU1cgTWVkIEN0ciwgQ3RyIEJpb21lZCBJbnZlbnQs

IERhbGxhcywgVFggNzUzOTAgVVNBJiN4RDtVbml2IFRleGFzLCBTVyBNZWQgQ3RyLCBDdHIgQmlv

bWVkIEludmVudCwgRGFsbGFzLCBUWCA3NTM5MCBVU0EmI3hEO1VuaXYgVGV4YXMsIFNXIE1lZCBD

dHIsIE1jRGVybW90dCBDdHIgSHVtYW4gR3Jvd3RoICZhbXA7IERldiwgRGFsbGFzLCBUWCA3NTM5

MCBVU0E8L2F1dGgtYWRkcmVzcz48dGl0bGVzPjx0aXRsZT5Qcmlvcml0aXplZCBzZWxlY3Rpb24g

b2Ygb2xpZ29kZW94eXJpYm9udWNsZW90aWRlIHByb2JlcyBmb3IgZWZmaWNpZW50IGh5YnJpZGl6

YXRpb24gdG8gUk5BIHRyYW5zY3JpcHRzPC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPk51Y2xlaWMg

QWNpZHMgUmVzZWFyY2g8L3NlY29uZGFyeS10aXRsZT48YWx0LXRpdGxlPk51Y2xlaWMgQWNpZHMg

UmVzPC9hbHQtdGl0bGU+PC90aXRsZXM+PGFsdC1wZXJpb2RpY2FsPjxmdWxsLXRpdGxlPk51Y2xl

aWMgQWNpZHMgUmVzPC9mdWxsLXRpdGxlPjwvYWx0LXBlcmlvZGljYWw+PHBhZ2VzPjc1MC03NTg8

L3BhZ2VzPjx2b2x1bWU+MzE8L3ZvbHVtZT48bnVtYmVyPjI8L251bWJlcj48a2V5d29yZHM+PGtl

eXdvcmQ+ZGVuc2l0eSBvbGlnb251Y2xlb3RpZGUgYXJyYXlzPC9rZXl3b3JkPjxrZXl3b3JkPmVm

ZmVjdGl2ZSBhbnRpc2Vuc2UgcmVhZ2VudHM8L2tleXdvcmQ+PGtleXdvcmQ+dGhlcm1vZHluYW1p

YyBwYXJhbWV0ZXJzPC9rZXl3b3JkPjxrZXl3b3JkPnNlY29uZGFyeSBzdHJ1Y3R1cmU8L2tleXdv

cmQ+PGtleXdvcmQ+c2Nhbm5pbmcgYXJyYXlzPC9rZXl3b3JkPjxrZXl3b3JkPm1lc3Nlbmdlci1y

bmE8L2tleXdvcmQ+PGtleXdvcmQ+aW4tdml2bzwva2V5d29yZD48a2V5d29yZD5ETkE8L2tleXdv

cmQ+PGtleXdvcmQ+ZXhwcmVzc2lvbjwva2V5d29yZD48a2V5d29yZD5taWNyb2FycmF5czwva2V5

d29yZD48L2tleXdvcmRzPjxkYXRlcz48eWVhcj4yMDAzPC95ZWFyPjxwdWItZGF0ZXM+PGRhdGU+

SmFuIDE1PC9kYXRlPjwvcHViLWRhdGVzPjwvZGF0ZXM+PGlzYm4+MDMwNS0xMDQ4PC9pc2JuPjxh

Y2Nlc3Npb24tbnVtPklTSTowMDAxODEwODE1MDAwMjc8L2FjY2Vzc2lvbi1udW0+PHVybHM+PHJl

bGF0ZWQtdXJscz48dXJsPiZsdDtHbyB0byBJU0kmZ3Q7Oi8vMDAwMTgxMDgxNTAwMDI3PC91cmw+

PC9yZWxhdGVkLXVybHM+PC91cmxzPjxlbGVjdHJvbmljLXJlc291cmNlLW51bT5Eb2kgMTAuMTA5

My9OYXIvR2tnMTMzPC9lbGVjdHJvbmljLXJlc291cmNlLW51bT48bGFuZ3VhZ2U+RW5nbGlzaDwv

bGFuZ3VhZ2U+PC9yZWNvcmQ+PC9DaXRlPjxDaXRlPjxBdXRob3I+THVlYmtlPC9BdXRob3I+PFll

YXI+MjAwMjwvWWVhcj48UmVjTnVtPjc3PC9SZWNOdW0+PHJlY29yZD48cmVjLW51bWJlcj43Nzwv

cmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9Ind4OTByOXB0OHJ0

cjIwZWZ0dnl2ejBhNHQwMnYwenN3MDJ3diI+Nzc8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5

cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0

aG9ycz48YXV0aG9yPkx1ZWJrZSwgSy4gSi48L2F1dGhvcj48YXV0aG9yPkJhbG9nLCBSLiBQLjwv

YXV0aG9yPjxhdXRob3I+TWl0dGVsbWFuLCBELjwvYXV0aG9yPjxhdXRob3I+R2FybmVyLCBILiBS

LjwvYXV0aG9yPjwvYXV0aG9ycz48L2NvbnRyaWJ1dG9ycz48YXV0aC1hZGRyZXNzPkx1ZWJrZSwg

S0omI3hEO1VuaXYgVGV4YXMsIFNXIE1lZCBDdHIsIEN0ciBCaW9tZWQgSW52ZW50LCA1MzIzIEhh

cnJ5IEhpbmVzIEJsdmQsIERhbGxhcywgVFggNzUzOTAgVVNBJiN4RDtVbml2IFRleGFzLCBTVyBN

ZWQgQ3RyLCBDdHIgQmlvbWVkIEludmVudCwgNTMyMyBIYXJyeSBIaW5lcyBCbHZkLCBEYWxsYXMs

IFRYIDc1MzkwIFVTQSYjeEQ7VW5pdiBUZXhhcywgU1cgTWVkIEN0ciwgQ3RyIEJpb21lZCBJbnZl

bnQsIERhbGxhcywgVFggNzUzOTAgVVNBJiN4RDtVbml2IFRleGFzLCBTVyBNZWQgQ3RyLCBNY0Rl

cm1vdHQgQ3RyIEh1bWFuIEdyb3d0aCAmYW1wOyBEZXYsIERhbGxhcywgVFggNzUzOTAgVVNBPC9h

dXRoLWFkZHJlc3M+PHRpdGxlcz48dGl0bGU+RGlnaXRhbCBvcHRpY2FsIGNoZW1pc3RyeTogQSBu

b3ZlbCBzeXN0ZW0gZm9yIHRoZSByYXBpZCBmYWJyaWNhdGlvbiBvZiBjdXN0b20gb2xpZ29udWNs

ZW90aWRlIGFycmF5czwvdGl0bGU+PHNlY29uZGFyeS10aXRsZT5NaWNyb2ZhYnJpY2F0ZWQgU2Vu

c29yczwvc2Vjb25kYXJ5LXRpdGxlPjxhbHQtdGl0bGU+QWNzIFN5bSBTZXI8L2FsdC10aXRsZT48

L3RpdGxlcz48cGFnZXM+ODctMTA2PC9wYWdlcz48dm9sdW1lPjgxNTwvdm9sdW1lPjxrZXl3b3Jk

cz48a2V5d29yZD5nbGFzcyBzdXBwb3J0czwva2V5d29yZD48a2V5d29yZD5ETkEgYXJyYXlzPC9r

ZXl3b3JkPjxrZXl3b3JkPm1pY3JvYXJyYXlzPC9rZXl3b3JkPjxrZXl3b3JkPmdlbm9tZTwva2V5

d29yZD48a2V5d29yZD5wb2x5bW9ycGhpc21zPC9rZXl3b3JkPjxrZXl3b3JkPmh5YnJpZGl6YXRp

b248L2tleXdvcmQ+PC9rZXl3b3Jkcz48ZGF0ZXM+PHllYXI+MjAwMjwveWVhcj48L2RhdGVzPjxp

c2JuPjAwOTctNjE1NjwvaXNibj48YWNjZXNzaW9uLW51bT5JU0k6MDAwMTc1NzQ1NTAwMDA2PC9h

Y2Nlc3Npb24tbnVtPjx1cmxzPjxyZWxhdGVkLXVybHM+PHVybD4mbHQ7R28gdG8gSVNJJmd0Ozov

LzAwMDE3NTc0NTUwMDAwNjwvdXJsPjwvcmVsYXRlZC11cmxzPjwvdXJscz48bGFuZ3VhZ2U+RW5n

bGlzaDwvbGFuZ3VhZ2U+PC9yZWNvcmQ+PC9DaXRlPjxDaXRlPjxBdXRob3I+QmFsb2c8L0F1dGhv

cj48WWVhcj4yMDAyPC9ZZWFyPjxSZWNOdW0+MTA4PC9SZWNOdW0+PHJlY29yZD48cmVjLW51bWJl

cj4xMDg8L3JlYy1udW1iZXI+PGZvcmVpZ24ta2V5cz48a2V5IGFwcD0iRU4iIGRiLWlkPSJ3eDkw

cjlwdDhydHIyMGVmdHZ5dnowYTR0MDJ2MHpzdzAyd3YiPjEwODwva2V5PjwvZm9yZWlnbi1rZXlz

PjxyZWYtdHlwZSBuYW1lPSJKb3VybmFsIEFydGljbGUiPjE3PC9yZWYtdHlwZT48Y29udHJpYnV0

b3JzPjxhdXRob3JzPjxhdXRob3I+QmFsb2csIFIuPC9hdXRob3I+PGF1dGhvcj5IZWRoaWxpLCBN

LiBOLjwvYXV0aG9yPjxhdXRob3I+Qm91cm5lbCwgRi48L2F1dGhvcj48YXV0aG9yPlBlbm5vLCBN

LjwvYXV0aG9yPjxhdXRob3I+VHJvbmMsIE0uPC9hdXRob3I+PGF1dGhvcj5BenJpYSwgUi48L2F1

dGhvcj48YXV0aG9yPklsbGVuYmVyZ2VyLCBFLjwvYXV0aG9yPjwvYXV0aG9ycz48L2NvbnRyaWJ1

dG9ycz48YXV0aC1hZGRyZXNzPkJhbG9nLCBSJiN4RDtGcmVlIFVuaXYgQmVybGluLCBJbnN0IENo

ZW0gUGh5cyAmYW1wOyBUaGVvcmV0IENoZW0sIFRha3VzdHIgMywgRC0xNDE5NSBCZXJsaW4sIEdl

cm1hbnkmI3hEO0ZyZWUgVW5pdiBCZXJsaW4sIEluc3QgQ2hlbSBQaHlzICZhbXA7IFRoZW9yZXQg

Q2hlbSwgVGFrdXN0ciAzLCBELTE0MTk1IEJlcmxpbiwgR2VybWFueSYjeEQ7RnJlZSBVbml2IEJl

cmxpbiwgSW5zdCBDaGVtIFBoeXMgJmFtcDsgVGhlb3JldCBDaGVtLCBELTE0MTk1IEJlcmxpbiwg

R2VybWFueSYjeEQ7VW5pdiBQYXJpcyAxMSwgQ29sbGlzIEF0b20gJmFtcDsgTW9sIExhYiwgRi05

MTQwNSBPcnNheSwgRnJhbmNlJiN4RDtVbml2IFBhcmlzIDExLCBDTlJTLCBGLTkxNDA1IE9yc2F5

LCBGcmFuY2UmI3hEO1VuaXYgUGFyaXMgMDYsIExhYiBDaGltIFBoeXMgTWF0ICZhbXA7IFJheW9u

bmVtZW50LCBGLTc1MjMxIFBhcmlzIDA1LCBGcmFuY2UmI3hEO0ZhYyBTY2kgVHVuaXMsIFBoeXMg

TWF0IENvbmRlbnNlZSBMYWIsIFR1bmlzIDEwNjAsIFR1bmlzaWE8L2F1dGgtYWRkcmVzcz48dGl0

bGVzPjx0aXRsZT5TeW50aGVzaXMgb2YgQ2wtMiBpbmR1Y2VkIGJ5IGxvdyBlbmVyZ3kgKDAtMTgg

ZVYpIGVsZWN0cm9uIGltcGFjdCB0byBjb25kZW5zZWQgMSwyLUMyRjRDbDIgbW9sZWN1bGVzPC90

aXRsZT48c2Vjb25kYXJ5LXRpdGxlPlBoeXNpY2FsIENoZW1pc3RyeSBDaGVtaWNhbCBQaHlzaWNz

PC9zZWNvbmRhcnktdGl0bGU+PGFsdC10aXRsZT5QaHlzIENoZW0gQ2hlbSBQaHlzPC9hbHQtdGl0

bGU+PC90aXRsZXM+PHBhZ2VzPjMzNTAtMzM1NTwvcGFnZXM+PHZvbHVtZT40PC92b2x1bWU+PG51

bWJlcj4xNDwvbnVtYmVyPjxrZXl3b3Jkcz48a2V5d29yZD5zdGltdWxhdGVkIGRlc29ycHRpb248

L2tleXdvcmQ+PGtleXdvcmQ+Y3ljbG9wcm9wYW5lPC9rZXl3b3JkPjxrZXl3b3JkPmF0dGFjaG1l

bnQ8L2tleXdvcmQ+PGtleXdvcmQ+ZmlsbXM8L2tleXdvcmQ+PGtleXdvcmQ+ZGlzc29jaWF0aW9u

PC9rZXl3b3JkPjxrZXl3b3JkPmFjdGl2YXRpb248L2tleXdvcmQ+PGtleXdvcmQ+Y2hlbWlzdHJ5

PC9rZXl3b3JkPjxrZXl3b3JkPmh5ZHJvZ2VuPC9rZXl3b3JkPjxrZXl3b3JkPnN1cmZhY2U8L2tl

eXdvcmQ+PGtleXdvcmQ+bWF0cml4PC9rZXl3b3JkPjwva2V5d29yZHM+PGRhdGVzPjx5ZWFyPjIw

MDI8L3llYXI+PC9kYXRlcz48aXNibj4xNDYzLTkwNzY8L2lzYm4+PGFjY2Vzc2lvbi1udW0+SVNJ

OjAwMDE3NjU0NDIwMDAyODwvYWNjZXNzaW9uLW51bT48dXJscz48cmVsYXRlZC11cmxzPjx1cmw+

Jmx0O0dvIHRvIElTSSZndDs6Ly8wMDAxNzY1NDQyMDAwMjg8L3VybD48L3JlbGF0ZWQtdXJscz48

L3VybHM+PGVsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPkRvaSAxMC4xMDM5L0IxMTAwMzliPC9lbGVj

dHJvbmljLXJlc291cmNlLW51bT48bGFuZ3VhZ2U+RW5nbGlzaDwvbGFuZ3VhZ2U+PC9yZWNvcmQ+

PC9DaXRlPjxDaXRlPjxBdXRob3I+THVlYmtlPC9BdXRob3I+PFllYXI+MjAwMzwvWWVhcj48UmVj

TnVtPjEwNDwvUmVjTnVtPjxyZWNvcmQ+PHJlYy1udW1iZXI+MTA0PC9yZWMtbnVtYmVyPjxmb3Jl

aWduLWtleXM+PGtleSBhcHA9IkVOIiBkYi1pZD0id3g5MHI5cHQ4cnRyMjBlZnR2eXZ6MGE0dDAy

djB6c3cwMnd2Ij4xMDQ8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iSm91cm5h

bCBBcnRpY2xlIj4xNzwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPkx1

ZWJrZSwgSy4gSi48L2F1dGhvcj48YXV0aG9yPkJhbG9nLCBSLiBQLjwvYXV0aG9yPjxhdXRob3I+

R2FybmVyLCBILiBSLjwvYXV0aG9yPjwvYXV0aG9ycz48L2NvbnRyaWJ1dG9ycz48YXV0aC1hZGRy

ZXNzPkx1ZWJrZSwgS0omI3hEO1VuaXYgVGV4YXMsIFNXIE1lZCBDdHIsIEN0ciBCaW9tZWQgSW52

ZW50LCBEYWxsYXMsIFRYIDc1MzkwIFVTQSYjeEQ7VW5pdiBUZXhhcywgU1cgTWVkIEN0ciwgQ3Ry

IEJpb21lZCBJbnZlbnQsIERhbGxhcywgVFggNzUzOTAgVVNBJiN4RDtVbml2IFRleGFzLCBTVyBN

ZWQgQ3RyLCBDdHIgQmlvbWVkIEludmVudCwgRGFsbGFzLCBUWCA3NTM5MCBVU0EmI3hEO1VuaXYg

VGV4YXMsIFNXIE1lZCBDdHIsIE1jRGVybW90dCBDdHIgSHVtYW4gR3Jvd3RoICZhbXA7IERldiwg

RGFsbGFzLCBUWCA3NTM5MCBVU0E8L2F1dGgtYWRkcmVzcz48dGl0bGVzPjx0aXRsZT5Qcmlvcml0

aXplZCBzZWxlY3Rpb24gb2Ygb2xpZ29kZW94eXJpYm9udWNsZW90aWRlIHByb2JlcyBmb3IgZWZm

aWNpZW50IGh5YnJpZGl6YXRpb24gdG8gUk5BIHRyYW5zY3JpcHRzPC90aXRsZT48c2Vjb25kYXJ5

LXRpdGxlPk51Y2xlaWMgQWNpZHMgUmVzZWFyY2g8L3NlY29uZGFyeS10aXRsZT48YWx0LXRpdGxl

Pk51Y2xlaWMgQWNpZHMgUmVzPC9hbHQtdGl0bGU+PC90aXRsZXM+PGFsdC1wZXJpb2RpY2FsPjxm

dWxsLXRpdGxlPk51Y2xlaWMgQWNpZHMgUmVzPC9mdWxsLXRpdGxlPjwvYWx0LXBlcmlvZGljYWw+

PHBhZ2VzPjc1MC03NTg8L3BhZ2VzPjx2b2x1bWU+MzE8L3ZvbHVtZT48bnVtYmVyPjI8L251bWJl

cj48a2V5d29yZHM+PGtleXdvcmQ+ZGVuc2l0eSBvbGlnb251Y2xlb3RpZGUgYXJyYXlzPC9rZXl3

b3JkPjxrZXl3b3JkPmVmZmVjdGl2ZSBhbnRpc2Vuc2UgcmVhZ2VudHM8L2tleXdvcmQ+PGtleXdv

cmQ+dGhlcm1vZHluYW1pYyBwYXJhbWV0ZXJzPC9rZXl3b3JkPjxrZXl3b3JkPnNlY29uZGFyeSBz

dHJ1Y3R1cmU8L2tleXdvcmQ+PGtleXdvcmQ+c2Nhbm5pbmcgYXJyYXlzPC9rZXl3b3JkPjxrZXl3

b3JkPm1lc3Nlbmdlci1ybmE8L2tleXdvcmQ+PGtleXdvcmQ+aW4tdml2bzwva2V5d29yZD48a2V5

d29yZD5ETkE8L2tleXdvcmQ+PGtleXdvcmQ+ZXhwcmVzc2lvbjwva2V5d29yZD48a2V5d29yZD5t

aWNyb2FycmF5czwva2V5d29yZD48L2tleXdvcmRzPjxkYXRlcz48eWVhcj4yMDAzPC95ZWFyPjxw

dWItZGF0ZXM+PGRhdGU+SmFuIDE1PC9kYXRlPjwvcHViLWRhdGVzPjwvZGF0ZXM+PGlzYm4+MDMw

NS0xMDQ4PC9pc2JuPjxhY2Nlc3Npb24tbnVtPklTSTowMDAxODEwODE1MDAwMjc8L2FjY2Vzc2lv

bi1udW0+PHVybHM+PHJlbGF0ZWQtdXJscz48dXJsPiZsdDtHbyB0byBJU0kmZ3Q7Oi8vMDAwMTgx

MDgxNTAwMDI3PC91cmw+PC9yZWxhdGVkLXVybHM+PC91cmxzPjxlbGVjdHJvbmljLXJlc291cmNl

LW51bT5Eb2kgMTAuMTA5My9OYXIvR2tnMTMzPC9lbGVjdHJvbmljLXJlc291cmNlLW51bT48bGFu

Z3VhZ2U+RW5nbGlzaDwvbGFuZ3VhZ2U+PC9yZWNvcmQ+PC9DaXRlPjxDaXRlPjxBdXRob3I+THVl

YmtlPC9BdXRob3I+PFllYXI+MjAwMjwvWWVhcj48UmVjTnVtPjc3PC9SZWNOdW0+PHJlY29yZD48

cmVjLW51bWJlcj43NzwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGIt

aWQ9Ind4OTByOXB0OHJ0cjIwZWZ0dnl2ejBhNHQwMnYwenN3MDJ3diI+Nzc8L2tleT48L2ZvcmVp

Z24ta2V5cz48cmVmLXR5cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwvcmVmLXR5cGU+PGNv

bnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPkx1ZWJrZSwgSy4gSi48L2F1dGhvcj48YXV0aG9y

PkJhbG9nLCBSLiBQLjwvYXV0aG9yPjxhdXRob3I+TWl0dGVsbWFuLCBELjwvYXV0aG9yPjxhdXRo

b3I+R2FybmVyLCBILiBSLjwvYXV0aG9yPjwvYXV0aG9ycz48L2NvbnRyaWJ1dG9ycz48YXV0aC1h

ZGRyZXNzPkx1ZWJrZSwgS0omI3hEO1VuaXYgVGV4YXMsIFNXIE1lZCBDdHIsIEN0ciBCaW9tZWQg

SW52ZW50LCA1MzIzIEhhcnJ5IEhpbmVzIEJsdmQsIERhbGxhcywgVFggNzUzOTAgVVNBJiN4RDtV

bml2IFRleGFzLCBTVyBNZWQgQ3RyLCBDdHIgQmlvbWVkIEludmVudCwgNTMyMyBIYXJyeSBIaW5l

cyBCbHZkLCBEYWxsYXMsIFRYIDc1MzkwIFVTQSYjeEQ7VW5pdiBUZXhhcywgU1cgTWVkIEN0ciwg

Q3RyIEJpb21lZCBJbnZlbnQsIERhbGxhcywgVFggNzUzOTAgVVNBJiN4RDtVbml2IFRleGFzLCBT

VyBNZWQgQ3RyLCBNY0Rlcm1vdHQgQ3RyIEh1bWFuIEdyb3d0aCAmYW1wOyBEZXYsIERhbGxhcywg

VFggNzUzOTAgVVNBPC9hdXRoLWFkZHJlc3M+PHRpdGxlcz48dGl0bGU+RGlnaXRhbCBvcHRpY2Fs

IGNoZW1pc3RyeTogQSBub3ZlbCBzeXN0ZW0gZm9yIHRoZSByYXBpZCBmYWJyaWNhdGlvbiBvZiBj

dXN0b20gb2xpZ29udWNsZW90aWRlIGFycmF5czwvdGl0bGU+PHNlY29uZGFyeS10aXRsZT5NaWNy

b2ZhYnJpY2F0ZWQgU2Vuc29yczwvc2Vjb25kYXJ5LXRpdGxlPjxhbHQtdGl0bGU+QWNzIFN5bSBT

ZXI8L2FsdC10aXRsZT48L3RpdGxlcz48cGFnZXM+ODctMTA2PC9wYWdlcz48dm9sdW1lPjgxNTwv

dm9sdW1lPjxrZXl3b3Jkcz48a2V5d29yZD5nbGFzcyBzdXBwb3J0czwva2V5d29yZD48a2V5d29y

ZD5ETkEgYXJyYXlzPC9rZXl3b3JkPjxrZXl3b3JkPm1pY3JvYXJyYXlzPC9rZXl3b3JkPjxrZXl3

b3JkPmdlbm9tZTwva2V5d29yZD48a2V5d29yZD5wb2x5bW9ycGhpc21zPC9rZXl3b3JkPjxrZXl3

b3JkPmh5YnJpZGl6YXRpb248L2tleXdvcmQ+PC9rZXl3b3Jkcz48ZGF0ZXM+PHllYXI+MjAwMjwv

eWVhcj48L2RhdGVzPjxpc2JuPjAwOTctNjE1NjwvaXNibj48YWNjZXNzaW9uLW51bT5JU0k6MDAw

MTc1NzQ1NTAwMDA2PC9hY2Nlc3Npb24tbnVtPjx1cmxzPjxyZWxhdGVkLXVybHM+PHVybD4mbHQ7

R28gdG8gSVNJJmd0OzovLzAwMDE3NTc0NTUwMDAwNjwvdXJsPjwvcmVsYXRlZC11cmxzPjwvdXJs

cz48bGFuZ3VhZ2U+RW5nbGlzaDwvbGFuZ3VhZ2U+PC9yZWNvcmQ+PC9DaXRlPjwvRW5kTm90ZT5=

ADDIN EN.CITE.DATA [20-22]. Fluorescently labelled genomic DNA was hybridized to produce unique informative patterns (i.e. bio-signatures) on a test set of pathogens and host (Bacillus subtilis, Yersinia pestis, Streptococcus peumoniae, Bacillus anthracis, and Homo sapiens). In addition, we have shown that a custom microsatellite microarray can be used to demonstrate global differences between species by measuring hybridization intensities for every possible repetitive nucleotide motif from 1-mers to 6-mers PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5HYWxpbmRvPC9BdXRob3I+PFllYXI+MjAwOTwvWWVhcj48

UmVjTnVtPjM2NDwvUmVjTnVtPjxEaXNwbGF5VGV4dD5bMTldPC9EaXNwbGF5VGV4dD48cmVjb3Jk

PjxyZWMtbnVtYmVyPjM2NDwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIg

ZGItaWQ9Ind4OTByOXB0OHJ0cjIwZWZ0dnl2ejBhNHQwMnYwenN3MDJ3diI+MzY0PC9rZXk+PC9m

b3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBl

Pjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5HYWxpbmRvLCBDLiBMLjwvYXV0aG9yPjxh

dXRob3I+TWNJdmVyLCBMLiBKLjwvYXV0aG9yPjxhdXRob3I+TWNDb3JtaWNrLCBKLiBGLjwvYXV0

aG9yPjxhdXRob3I+U2tpbm5lciwgTS4gQS48L2F1dGhvcj48YXV0aG9yPlhpZSwgWS48L2F1dGhv

cj48YXV0aG9yPkdlbGhhdXNlbiwgUi4gQS48L2F1dGhvcj48YXV0aG9yPk5nLCBLLjwvYXV0aG9y

PjxhdXRob3I+S3VtYXIsIE4uIE0uPC9hdXRob3I+PGF1dGhvcj5HYXJuZXIsIEguIFIuPC9hdXRo

b3I+PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjxhdXRoLWFkZHJlc3M+TWNEZXJtb3R0IENlbnRl

ciBmb3IgSHVtYW4gR3Jvd3RoIGFuZCBEZXZlbG9wbWVudCBvZiB0aGUgVW5pdmVyc2l0eSBvZiBU

ZXhhcyBTb3V0aHdlc3Rlcm4gTWVkaWNhbCBDZW50ZXIsIERhbGxhcywgVGV4YXMsIFVTQS4gQ3Jp

c3RpLmdhbGluZG9AdXRzb3V0aHdlc3Rlcm4uZWR1PC9hdXRoLWFkZHJlc3M+PHRpdGxlcz48dGl0

bGU+R2xvYmFsIG1pY3Jvc2F0ZWxsaXRlIGNvbnRlbnQgZGlzdGluZ3Vpc2hlcyBodW1hbnMsIHBy

aW1hdGVzLCBhbmltYWxzLCBhbmQgcGxhbnRzPC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPk1vbCBC

aW9sIEV2b2w8L3NlY29uZGFyeS10aXRsZT48L3RpdGxlcz48cGVyaW9kaWNhbD48ZnVsbC10aXRs

ZT5Nb2wgQmlvbCBFdm9sPC9mdWxsLXRpdGxlPjwvcGVyaW9kaWNhbD48cGFnZXM+MjgwOS0xOTwv

cGFnZXM+PHZvbHVtZT4yNjwvdm9sdW1lPjxudW1iZXI+MTI8L251bWJlcj48ZWRpdGlvbj4yMDA5

LzA5LzAxPC9lZGl0aW9uPjxrZXl3b3Jkcz48a2V5d29yZD5BbmltYWxzPC9rZXl3b3JkPjxrZXl3

b3JkPkJhc2UgQ29tcG9zaXRpb24vKmdlbmV0aWNzPC9rZXl3b3JkPjxrZXl3b3JkPkdlbmV0aWMg

TG9jaS9nZW5ldGljczwva2V5d29yZD48a2V5d29yZD5HZW5vbWUvZ2VuZXRpY3M8L2tleXdvcmQ+

PGtleXdvcmQ+SHVtYW5zPC9rZXl3b3JkPjxrZXl3b3JkPk1pY3Jvc2F0ZWxsaXRlIFJlcGVhdHMv

KmdlbmV0aWNzPC9rZXl3b3JkPjxrZXl3b3JkPk51Y2xlaWMgQWNpZCBIeWJyaWRpemF0aW9uL2dl

bmV0aWNzPC9rZXl3b3JkPjxrZXl3b3JkPk9saWdvbnVjbGVvdGlkZSBBcnJheSBTZXF1ZW5jZSBB

bmFseXNpczwva2V5d29yZD48a2V5d29yZD5QYW4gdHJvZ2xvZHl0ZXMvZ2VuZXRpY3M8L2tleXdv

cmQ+PGtleXdvcmQ+UGxhbnRzLypnZW5ldGljczwva2V5d29yZD48a2V5d29yZD5QcmltYXRlcy8q

Z2VuZXRpY3M8L2tleXdvcmQ+PGtleXdvcmQ+U3BlY2llcyBTcGVjaWZpY2l0eTwva2V5d29yZD48

L2tleXdvcmRzPjxkYXRlcz48eWVhcj4yMDA5PC95ZWFyPjxwdWItZGF0ZXM+PGRhdGU+RGVjPC9k

YXRlPjwvcHViLWRhdGVzPjwvZGF0ZXM+PGlzYm4+MTUzNy0xNzE5IChFbGVjdHJvbmljKSYjeEQ7

MDczNy00MDM4IChMaW5raW5nKTwvaXNibj48YWNjZXNzaW9uLW51bT4xOTcxNzUyNjwvYWNjZXNz

aW9uLW51bT48dXJscz48cmVsYXRlZC11cmxzPjx1cmw+aHR0cDovL3d3dy5uY2JpLm5sbS5uaWgu

Z292L2VudHJlei9xdWVyeS5mY2dpP2NtZD1SZXRyaWV2ZSZhbXA7ZGI9UHViTWVkJmFtcDtkb3B0

PUNpdGF0aW9uJmFtcDtsaXN0X3VpZHM9MTk3MTc1MjY8L3VybD48L3JlbGF0ZWQtdXJscz48L3Vy

bHM+PGN1c3RvbTI+Mjc4MjMyNzwvY3VzdG9tMj48ZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+bXNw

MTkyIFtwaWldJiN4RDsxMC4xMDkzL21vbGJldi9tc3AxOTI8L2VsZWN0cm9uaWMtcmVzb3VyY2Ut

bnVtPjxsYW5ndWFnZT5lbmc8L2xhbmd1YWdlPjwvcmVjb3JkPjwvQ2l0ZT48L0VuZE5vdGU+

ADDIN EN.CITE PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5HYWxpbmRvPC9BdXRob3I+PFllYXI+MjAwOTwvWWVhcj48

UmVjTnVtPjM2NDwvUmVjTnVtPjxEaXNwbGF5VGV4dD5bMTldPC9EaXNwbGF5VGV4dD48cmVjb3Jk

PjxyZWMtbnVtYmVyPjM2NDwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIg

ZGItaWQ9Ind4OTByOXB0OHJ0cjIwZWZ0dnl2ejBhNHQwMnYwenN3MDJ3diI+MzY0PC9rZXk+PC9m

b3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBl

Pjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5HYWxpbmRvLCBDLiBMLjwvYXV0aG9yPjxh

dXRob3I+TWNJdmVyLCBMLiBKLjwvYXV0aG9yPjxhdXRob3I+TWNDb3JtaWNrLCBKLiBGLjwvYXV0

aG9yPjxhdXRob3I+U2tpbm5lciwgTS4gQS48L2F1dGhvcj48YXV0aG9yPlhpZSwgWS48L2F1dGhv

cj48YXV0aG9yPkdlbGhhdXNlbiwgUi4gQS48L2F1dGhvcj48YXV0aG9yPk5nLCBLLjwvYXV0aG9y

PjxhdXRob3I+S3VtYXIsIE4uIE0uPC9hdXRob3I+PGF1dGhvcj5HYXJuZXIsIEguIFIuPC9hdXRo

b3I+PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjxhdXRoLWFkZHJlc3M+TWNEZXJtb3R0IENlbnRl

ciBmb3IgSHVtYW4gR3Jvd3RoIGFuZCBEZXZlbG9wbWVudCBvZiB0aGUgVW5pdmVyc2l0eSBvZiBU

ZXhhcyBTb3V0aHdlc3Rlcm4gTWVkaWNhbCBDZW50ZXIsIERhbGxhcywgVGV4YXMsIFVTQS4gQ3Jp

c3RpLmdhbGluZG9AdXRzb3V0aHdlc3Rlcm4uZWR1PC9hdXRoLWFkZHJlc3M+PHRpdGxlcz48dGl0

bGU+R2xvYmFsIG1pY3Jvc2F0ZWxsaXRlIGNvbnRlbnQgZGlzdGluZ3Vpc2hlcyBodW1hbnMsIHBy

aW1hdGVzLCBhbmltYWxzLCBhbmQgcGxhbnRzPC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPk1vbCBC

aW9sIEV2b2w8L3NlY29uZGFyeS10aXRsZT48L3RpdGxlcz48cGVyaW9kaWNhbD48ZnVsbC10aXRs

ZT5Nb2wgQmlvbCBFdm9sPC9mdWxsLXRpdGxlPjwvcGVyaW9kaWNhbD48cGFnZXM+MjgwOS0xOTwv

cGFnZXM+PHZvbHVtZT4yNjwvdm9sdW1lPjxudW1iZXI+MTI8L251bWJlcj48ZWRpdGlvbj4yMDA5

LzA5LzAxPC9lZGl0aW9uPjxrZXl3b3Jkcz48a2V5d29yZD5BbmltYWxzPC9rZXl3b3JkPjxrZXl3

b3JkPkJhc2UgQ29tcG9zaXRpb24vKmdlbmV0aWNzPC9rZXl3b3JkPjxrZXl3b3JkPkdlbmV0aWMg

TG9jaS9nZW5ldGljczwva2V5d29yZD48a2V5d29yZD5HZW5vbWUvZ2VuZXRpY3M8L2tleXdvcmQ+

PGtleXdvcmQ+SHVtYW5zPC9rZXl3b3JkPjxrZXl3b3JkPk1pY3Jvc2F0ZWxsaXRlIFJlcGVhdHMv

KmdlbmV0aWNzPC9rZXl3b3JkPjxrZXl3b3JkPk51Y2xlaWMgQWNpZCBIeWJyaWRpemF0aW9uL2dl

bmV0aWNzPC9rZXl3b3JkPjxrZXl3b3JkPk9saWdvbnVjbGVvdGlkZSBBcnJheSBTZXF1ZW5jZSBB

bmFseXNpczwva2V5d29yZD48a2V5d29yZD5QYW4gdHJvZ2xvZHl0ZXMvZ2VuZXRpY3M8L2tleXdv

cmQ+PGtleXdvcmQ+UGxhbnRzLypnZW5ldGljczwva2V5d29yZD48a2V5d29yZD5QcmltYXRlcy8q

Z2VuZXRpY3M8L2tleXdvcmQ+PGtleXdvcmQ+U3BlY2llcyBTcGVjaWZpY2l0eTwva2V5d29yZD48

L2tleXdvcmRzPjxkYXRlcz48eWVhcj4yMDA5PC95ZWFyPjxwdWItZGF0ZXM+PGRhdGU+RGVjPC9k

YXRlPjwvcHViLWRhdGVzPjwvZGF0ZXM+PGlzYm4+MTUzNy0xNzE5IChFbGVjdHJvbmljKSYjeEQ7

MDczNy00MDM4IChMaW5raW5nKTwvaXNibj48YWNjZXNzaW9uLW51bT4xOTcxNzUyNjwvYWNjZXNz

aW9uLW51bT48dXJscz48cmVsYXRlZC11cmxzPjx1cmw+aHR0cDovL3d3dy5uY2JpLm5sbS5uaWgu

Z292L2VudHJlei9xdWVyeS5mY2dpP2NtZD1SZXRyaWV2ZSZhbXA7ZGI9UHViTWVkJmFtcDtkb3B0

PUNpdGF0aW9uJmFtcDtsaXN0X3VpZHM9MTk3MTc1MjY8L3VybD48L3JlbGF0ZWQtdXJscz48L3Vy

bHM+PGN1c3RvbTI+Mjc4MjMyNzwvY3VzdG9tMj48ZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+bXNw

MTkyIFtwaWldJiN4RDsxMC4xMDkzL21vbGJldi9tc3AxOTI8L2VsZWN0cm9uaWMtcmVzb3VyY2Ut

bnVtPjxsYW5ndWFnZT5lbmc8L2xhbmd1YWdlPjwvcmVjb3JkPjwvQ2l0ZT48L0VuZE5vdGU+

ADDIN EN.CITE.DATA [19]. Further we have used genome sequence independent microsatellites to identify global differences in the genomes of 93 cancer, cancer-free and high risk patient cell line samples ADDIN EN.CITE <EndNote><Cite><Author>Galindo</Author><Year>2010</Year><RecNum>372</RecNum><DisplayText>[23]</DisplayText><record><rec-number>372</rec-number><foreign-keys><key app="EN" db-id="wx90r9pt8rtr20eftvyvz0a4t02v0zsw02wv">372</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>C.L. Galindo </author></authors></contributors><titles><title>Sporadic breast cancer patient&apos;s germline DNA exhibit an AT-rich microsatellite signature</title><secondary-title>Genes, Chromosomes and Cancer </secondary-title></titles><periodical><full-title>Genes, Chromosomes and Cancer</full-title></periodical><volume>accepted</volume><dates><year>2010</year></dates><urls></urls></record></Cite></EndNote>[23]. This paper describes a larger high density oligonucleotide microarray with 370,000 elements, called Universal Bio-signature Detection Array (UBDA), designed by our laboratory and commercially produced by Roche-Nimblegen (Madison, WI) using light-directed photolithography PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5NY0dhbGw8L0F1dGhvcj48WWVhcj4yMDAxPC9ZZWFyPjxS

ZWNOdW0+MTM4PC9SZWNOdW0+PERpc3BsYXlUZXh0PlsxNiwgMjRdPC9EaXNwbGF5VGV4dD48cmVj

b3JkPjxyZWMtbnVtYmVyPjEzODwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJF

TiIgZGItaWQ9Ind4OTByOXB0OHJ0cjIwZWZ0dnl2ejBhNHQwMnYwenN3MDJ3diI+MTM4PC9rZXk+

PC9mb3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10

eXBlPjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5NY0dhbGwsIEcuIEguPC9hdXRob3I+

PGF1dGhvcj5GaWRhbnphLCBKLiBBLjwvYXV0aG9yPjwvYXV0aG9ycz48L2NvbnRyaWJ1dG9ycz48

YXV0aC1hZGRyZXNzPkFmZnltZXRyaXggSW5jLiwgU2FudGEgQ2xhcmEsIENBLCBVU0EuPC9hdXRo

LWFkZHJlc3M+PHRpdGxlcz48dGl0bGU+UGhvdG9saXRob2dyYXBoaWMgc3ludGhlc2lzIG9mIGhp

Z2gtZGVuc2l0eSBvbGlnb251Y2xlb3RpZGUgYXJyYXlzPC90aXRsZT48c2Vjb25kYXJ5LXRpdGxl

Pk1ldGhvZHMgTW9sIEJpb2w8L3NlY29uZGFyeS10aXRsZT48L3RpdGxlcz48cGVyaW9kaWNhbD48

ZnVsbC10aXRsZT5NZXRob2RzIE1vbCBCaW9sPC9mdWxsLXRpdGxlPjwvcGVyaW9kaWNhbD48cGFn

ZXM+NzEtMTAxPC9wYWdlcz48dm9sdW1lPjE3MDwvdm9sdW1lPjxlZGl0aW9uPjIwMDEvMDUvMTk8

L2VkaXRpb24+PGtleXdvcmRzPjxrZXl3b3JkPjItQW1pbm9wdXJpbmUvKmFuYWxvZ3MgJmFtcDsg

ZGVyaXZhdGl2ZXMvY2hlbWlzdHJ5L3JhZGlhdGlvbiBlZmZlY3RzPC9rZXl3b3JkPjxrZXl3b3Jk

PkFtaWRlcy9jaGVtaXN0cnkvcmFkaWF0aW9uIGVmZmVjdHM8L2tleXdvcmQ+PGtleXdvcmQ+Q29t

YmluYXRvcmlhbCBDaGVtaXN0cnkgVGVjaG5pcXVlcy9pbnN0cnVtZW50YXRpb248L2tleXdvcmQ+

PGtleXdvcmQ+TWVtYnJhbmUgR2x5Y29wcm90ZWluczwva2V5d29yZD48a2V5d29yZD5PbGlnb251

Y2xlb3RpZGUgQXJyYXkgU2VxdWVuY2UgQW5hbHlzaXMvKm1ldGhvZHM8L2tleXdvcmQ+PGtleXdv

cmQ+T2xpZ29udWNsZW90aWRlcy9jaGVtaWNhbCBzeW50aGVzaXMvcmFkaWF0aW9uIGVmZmVjdHM8

L2tleXdvcmQ+PGtleXdvcmQ+UGhvc3Bob3JpYyBBY2lkcy9jaGVtaXN0cnkvcmFkaWF0aW9uIGVm

ZmVjdHM8L2tleXdvcmQ+PGtleXdvcmQ+UGhvdG9seXNpczwva2V5d29yZD48a2V5d29yZD5QdXJp

bmUgTnVjbGVvc2lkZXMvY2hlbWlzdHJ5L3JhZGlhdGlvbiBlZmZlY3RzPC9rZXl3b3JkPjwva2V5

d29yZHM+PGRhdGVzPjx5ZWFyPjIwMDE8L3llYXI+PC9kYXRlcz48aXNibj4xMDY0LTM3NDUgKFBy

aW50KSYjeEQ7MTA2NC0zNzQ1IChMaW5raW5nKTwvaXNibj48YWNjZXNzaW9uLW51bT4xMTM1NzY5

MDwvYWNjZXNzaW9uLW51bT48dXJscz48cmVsYXRlZC11cmxzPjx1cmw+aHR0cDovL3d3dy5uY2Jp

Lm5sbS5uaWguZ292L2VudHJlei9xdWVyeS5mY2dpP2NtZD1SZXRyaWV2ZSZhbXA7ZGI9UHViTWVk

JmFtcDtkb3B0PUNpdGF0aW9uJmFtcDtsaXN0X3VpZHM9MTEzNTc2OTA8L3VybD48L3JlbGF0ZWQt

dXJscz48L3VybHM+PGVsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjEtNTkyNTktMjM0LTEtNzEgW3Bp

aV0mI3hEOzEwLjEzODUvMS01OTI1OS0yMzQtMTo3MTwvZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+

PGxhbmd1YWdlPmVuZzwvbGFuZ3VhZ2U+PC9yZWNvcmQ+PC9DaXRlPjxDaXRlPjxBdXRob3I+TWNH

YWxsPC9BdXRob3I+PFllYXI+MjAwMTwvWWVhcj48UmVjTnVtPjEzODwvUmVjTnVtPjxyZWNvcmQ+

PHJlYy1udW1iZXI+MTM4PC9yZWMtbnVtYmVyPjxmb3JlaWduLWtleXM+PGtleSBhcHA9IkVOIiBk

Yi1pZD0id3g5MHI5cHQ4cnRyMjBlZnR2eXZ6MGE0dDAydjB6c3cwMnd2Ij4xMzg8L2tleT48L2Zv

cmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwvcmVmLXR5cGU+

PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPk1jR2FsbCwgRy4gSC48L2F1dGhvcj48YXV0

aG9yPkZpZGFuemEsIEouIEEuPC9hdXRob3I+PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjxhdXRo

LWFkZHJlc3M+QWZmeW1ldHJpeCBJbmMuLCBTYW50YSBDbGFyYSwgQ0EsIFVTQS48L2F1dGgtYWRk

cmVzcz48dGl0bGVzPjx0aXRsZT5QaG90b2xpdGhvZ3JhcGhpYyBzeW50aGVzaXMgb2YgaGlnaC1k

ZW5zaXR5IG9saWdvbnVjbGVvdGlkZSBhcnJheXM8L3RpdGxlPjxzZWNvbmRhcnktdGl0bGU+TWV0

aG9kcyBNb2wgQmlvbDwvc2Vjb25kYXJ5LXRpdGxlPjwvdGl0bGVzPjxwZXJpb2RpY2FsPjxmdWxs

LXRpdGxlPk1ldGhvZHMgTW9sIEJpb2w8L2Z1bGwtdGl0bGU+PC9wZXJpb2RpY2FsPjxwYWdlcz43

MS0xMDE8L3BhZ2VzPjx2b2x1bWU+MTcwPC92b2x1bWU+PGVkaXRpb24+MjAwMS8wNS8xOTwvZWRp

dGlvbj48a2V5d29yZHM+PGtleXdvcmQ+Mi1BbWlub3B1cmluZS8qYW5hbG9ncyAmYW1wOyBkZXJp

dmF0aXZlcy9jaGVtaXN0cnkvcmFkaWF0aW9uIGVmZmVjdHM8L2tleXdvcmQ+PGtleXdvcmQ+QW1p

ZGVzL2NoZW1pc3RyeS9yYWRpYXRpb24gZWZmZWN0czwva2V5d29yZD48a2V5d29yZD5Db21iaW5h

dG9yaWFsIENoZW1pc3RyeSBUZWNobmlxdWVzL2luc3RydW1lbnRhdGlvbjwva2V5d29yZD48a2V5

d29yZD5NZW1icmFuZSBHbHljb3Byb3RlaW5zPC9rZXl3b3JkPjxrZXl3b3JkPk9saWdvbnVjbGVv

dGlkZSBBcnJheSBTZXF1ZW5jZSBBbmFseXNpcy8qbWV0aG9kczwva2V5d29yZD48a2V5d29yZD5P

bGlnb251Y2xlb3RpZGVzL2NoZW1pY2FsIHN5bnRoZXNpcy9yYWRpYXRpb24gZWZmZWN0czwva2V5

d29yZD48a2V5d29yZD5QaG9zcGhvcmljIEFjaWRzL2NoZW1pc3RyeS9yYWRpYXRpb24gZWZmZWN0

czwva2V5d29yZD48a2V5d29yZD5QaG90b2x5c2lzPC9rZXl3b3JkPjxrZXl3b3JkPlB1cmluZSBO

dWNsZW9zaWRlcy9jaGVtaXN0cnkvcmFkaWF0aW9uIGVmZmVjdHM8L2tleXdvcmQ+PC9rZXl3b3Jk

cz48ZGF0ZXM+PHllYXI+MjAwMTwveWVhcj48L2RhdGVzPjxpc2JuPjEwNjQtMzc0NSAoUHJpbnQp

JiN4RDsxMDY0LTM3NDUgKExpbmtpbmcpPC9pc2JuPjxhY2Nlc3Npb24tbnVtPjExMzU3NjkwPC9h

Y2Nlc3Npb24tbnVtPjx1cmxzPjxyZWxhdGVkLXVybHM+PHVybD5odHRwOi8vd3d3Lm5jYmkubmxt

Lm5paC5nb3YvZW50cmV6L3F1ZXJ5LmZjZ2k/Y21kPVJldHJpZXZlJmFtcDtkYj1QdWJNZWQmYW1w

O2RvcHQ9Q2l0YXRpb24mYW1wO2xpc3RfdWlkcz0xMTM1NzY5MDwvdXJsPjwvcmVsYXRlZC11cmxz

PjwvdXJscz48ZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+MS01OTI1OS0yMzQtMS03MSBbcGlpXSYj

eEQ7MTAuMTM4NS8xLTU5MjU5LTIzNC0xOjcxPC9lbGVjdHJvbmljLXJlc291cmNlLW51bT48bGFu

Z3VhZ2U+ZW5nPC9sYW5ndWFnZT48L3JlY29yZD48L0NpdGU+PENpdGU+PEF1dGhvcj5QZWFzZTwv

QXV0aG9yPjxZZWFyPjE5OTQ8L1llYXI+PFJlY051bT4zPC9SZWNOdW0+PHJlY29yZD48cmVjLW51

bWJlcj4zPC9yZWMtbnVtYmVyPjxmb3JlaWduLWtleXM+PGtleSBhcHA9IkVOIiBkYi1pZD0id3g5

MHI5cHQ4cnRyMjBlZnR2eXZ6MGE0dDAydjB6c3cwMnd2Ij4zPC9rZXk+PC9mb3JlaWduLWtleXM+

PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBlPjxjb250cmlidXRv

cnM+PGF1dGhvcnM+PGF1dGhvcj5QZWFzZSwgQS4gQy48L2F1dGhvcj48YXV0aG9yPlNvbGFzLCBE

LjwvYXV0aG9yPjxhdXRob3I+U3VsbGl2YW4sIEUuIEouPC9hdXRob3I+PGF1dGhvcj5Dcm9uaW4s

IE0uIFQuPC9hdXRob3I+PGF1dGhvcj5Ib2xtZXMsIEMuIFAuPC9hdXRob3I+PGF1dGhvcj5Gb2Rv

ciwgUy4gUC48L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PGF1dGgtYWRkcmVzcz5B

ZmZ5bWV0cml4LCBTYW50YSBDbGFyYSwgQ0EgOTUwNTEuPC9hdXRoLWFkZHJlc3M+PHRpdGxlcz48

dGl0bGU+TGlnaHQtZ2VuZXJhdGVkIG9saWdvbnVjbGVvdGlkZSBhcnJheXMgZm9yIHJhcGlkIERO

QSBzZXF1ZW5jZSBhbmFseXNpczwvdGl0bGU+PHNlY29uZGFyeS10aXRsZT5Qcm9jIE5hdGwgQWNh

ZCBTY2kgVSBTIEE8L3NlY29uZGFyeS10aXRsZT48L3RpdGxlcz48cGVyaW9kaWNhbD48ZnVsbC10

aXRsZT5Qcm9jIE5hdGwgQWNhZCBTY2kgVSBTIEE8L2Z1bGwtdGl0bGU+PC9wZXJpb2RpY2FsPjxw

YWdlcz41MDIyLTY8L3BhZ2VzPjx2b2x1bWU+OTE8L3ZvbHVtZT48bnVtYmVyPjExPC9udW1iZXI+

PGVkaXRpb24+MTk5NC8wNS8yNDwvZWRpdGlvbj48a2V5d29yZHM+PGtleXdvcmQ+QmFzZSBTZXF1

ZW5jZTwva2V5d29yZD48a2V5d29yZD5IdW1hbnM8L2tleXdvcmQ+PGtleXdvcmQ+KkxpZ2h0PC9r

ZXl3b3JkPjxrZXl3b3JkPk1pY3Jvc2NvcHksIEZsdW9yZXNjZW5jZTwva2V5d29yZD48a2V5d29y

ZD5Nb2xlY3VsYXIgU2VxdWVuY2UgRGF0YTwva2V5d29yZD48a2V5d29yZD5Nb2xlY3VsYXIgU3Ry

dWN0dXJlPC9rZXl3b3JkPjxrZXl3b3JkPk51Y2xlaWMgQWNpZCBIeWJyaWRpemF0aW9uPC9rZXl3

b3JkPjxrZXl3b3JkPk9saWdvZGVveHlyaWJvbnVjbGVvdGlkZXMvcmFkaWF0aW9uIGVmZmVjdHM8

L2tleXdvcmQ+PGtleXdvcmQ+T2xpZ29udWNsZW90aWRlIFByb2Jlczwva2V5d29yZD48a2V5d29y

ZD5TZXF1ZW5jZSBBbmFseXNpcywgRE5BLyptZXRob2RzPC9rZXl3b3JkPjwva2V5d29yZHM+PGRh

dGVzPjx5ZWFyPjE5OTQ8L3llYXI+PHB1Yi1kYXRlcz48ZGF0ZT5NYXkgMjQ8L2RhdGU+PC9wdWIt

ZGF0ZXM+PC9kYXRlcz48aXNibj4wMDI3LTg0MjQgKFByaW50KSYjeEQ7MDAyNy04NDI0IChMaW5r

aW5nKTwvaXNibj48YWNjZXNzaW9uLW51bT44MTk3MTc2PC9hY2Nlc3Npb24tbnVtPjx1cmxzPjxy

ZWxhdGVkLXVybHM+PHVybD5odHRwOi8vd3d3Lm5jYmkubmxtLm5paC5nb3YvZW50cmV6L3F1ZXJ5

LmZjZ2k/Y21kPVJldHJpZXZlJmFtcDtkYj1QdWJNZWQmYW1wO2RvcHQ9Q2l0YXRpb24mYW1wO2xp

c3RfdWlkcz04MTk3MTc2PC91cmw+PC9yZWxhdGVkLXVybHM+PC91cmxzPjxjdXN0b20yPjQzOTIy

PC9jdXN0b20yPjxsYW5ndWFnZT5lbmc8L2xhbmd1YWdlPjwvcmVjb3JkPjwvQ2l0ZT48L0VuZE5v

dGU+AG==

ADDIN EN.CITE PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5NY0dhbGw8L0F1dGhvcj48WWVhcj4yMDAxPC9ZZWFyPjxS

ZWNOdW0+MTM4PC9SZWNOdW0+PERpc3BsYXlUZXh0PlsxNiwgMjRdPC9EaXNwbGF5VGV4dD48cmVj

b3JkPjxyZWMtbnVtYmVyPjEzODwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJF

TiIgZGItaWQ9Ind4OTByOXB0OHJ0cjIwZWZ0dnl2ejBhNHQwMnYwenN3MDJ3diI+MTM4PC9rZXk+

PC9mb3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10

eXBlPjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5NY0dhbGwsIEcuIEguPC9hdXRob3I+

PGF1dGhvcj5GaWRhbnphLCBKLiBBLjwvYXV0aG9yPjwvYXV0aG9ycz48L2NvbnRyaWJ1dG9ycz48

YXV0aC1hZGRyZXNzPkFmZnltZXRyaXggSW5jLiwgU2FudGEgQ2xhcmEsIENBLCBVU0EuPC9hdXRo

LWFkZHJlc3M+PHRpdGxlcz48dGl0bGU+UGhvdG9saXRob2dyYXBoaWMgc3ludGhlc2lzIG9mIGhp

Z2gtZGVuc2l0eSBvbGlnb251Y2xlb3RpZGUgYXJyYXlzPC90aXRsZT48c2Vjb25kYXJ5LXRpdGxl

Pk1ldGhvZHMgTW9sIEJpb2w8L3NlY29uZGFyeS10aXRsZT48L3RpdGxlcz48cGVyaW9kaWNhbD48

ZnVsbC10aXRsZT5NZXRob2RzIE1vbCBCaW9sPC9mdWxsLXRpdGxlPjwvcGVyaW9kaWNhbD48cGFn

ZXM+NzEtMTAxPC9wYWdlcz48dm9sdW1lPjE3MDwvdm9sdW1lPjxlZGl0aW9uPjIwMDEvMDUvMTk8

L2VkaXRpb24+PGtleXdvcmRzPjxrZXl3b3JkPjItQW1pbm9wdXJpbmUvKmFuYWxvZ3MgJmFtcDsg

ZGVyaXZhdGl2ZXMvY2hlbWlzdHJ5L3JhZGlhdGlvbiBlZmZlY3RzPC9rZXl3b3JkPjxrZXl3b3Jk

PkFtaWRlcy9jaGVtaXN0cnkvcmFkaWF0aW9uIGVmZmVjdHM8L2tleXdvcmQ+PGtleXdvcmQ+Q29t

YmluYXRvcmlhbCBDaGVtaXN0cnkgVGVjaG5pcXVlcy9pbnN0cnVtZW50YXRpb248L2tleXdvcmQ+

PGtleXdvcmQ+TWVtYnJhbmUgR2x5Y29wcm90ZWluczwva2V5d29yZD48a2V5d29yZD5PbGlnb251

Y2xlb3RpZGUgQXJyYXkgU2VxdWVuY2UgQW5hbHlzaXMvKm1ldGhvZHM8L2tleXdvcmQ+PGtleXdv

cmQ+T2xpZ29udWNsZW90aWRlcy9jaGVtaWNhbCBzeW50aGVzaXMvcmFkaWF0aW9uIGVmZmVjdHM8

L2tleXdvcmQ+PGtleXdvcmQ+UGhvc3Bob3JpYyBBY2lkcy9jaGVtaXN0cnkvcmFkaWF0aW9uIGVm

ZmVjdHM8L2tleXdvcmQ+PGtleXdvcmQ+UGhvdG9seXNpczwva2V5d29yZD48a2V5d29yZD5QdXJp

bmUgTnVjbGVvc2lkZXMvY2hlbWlzdHJ5L3JhZGlhdGlvbiBlZmZlY3RzPC9rZXl3b3JkPjwva2V5

d29yZHM+PGRhdGVzPjx5ZWFyPjIwMDE8L3llYXI+PC9kYXRlcz48aXNibj4xMDY0LTM3NDUgKFBy

aW50KSYjeEQ7MTA2NC0zNzQ1IChMaW5raW5nKTwvaXNibj48YWNjZXNzaW9uLW51bT4xMTM1NzY5

MDwvYWNjZXNzaW9uLW51bT48dXJscz48cmVsYXRlZC11cmxzPjx1cmw+aHR0cDovL3d3dy5uY2Jp

Lm5sbS5uaWguZ292L2VudHJlei9xdWVyeS5mY2dpP2NtZD1SZXRyaWV2ZSZhbXA7ZGI9UHViTWVk

JmFtcDtkb3B0PUNpdGF0aW9uJmFtcDtsaXN0X3VpZHM9MTEzNTc2OTA8L3VybD48L3JlbGF0ZWQt

dXJscz48L3VybHM+PGVsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjEtNTkyNTktMjM0LTEtNzEgW3Bp

aV0mI3hEOzEwLjEzODUvMS01OTI1OS0yMzQtMTo3MTwvZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+

PGxhbmd1YWdlPmVuZzwvbGFuZ3VhZ2U+PC9yZWNvcmQ+PC9DaXRlPjxDaXRlPjxBdXRob3I+TWNH

YWxsPC9BdXRob3I+PFllYXI+MjAwMTwvWWVhcj48UmVjTnVtPjEzODwvUmVjTnVtPjxyZWNvcmQ+

PHJlYy1udW1iZXI+MTM4PC9yZWMtbnVtYmVyPjxmb3JlaWduLWtleXM+PGtleSBhcHA9IkVOIiBk

Yi1pZD0id3g5MHI5cHQ4cnRyMjBlZnR2eXZ6MGE0dDAydjB6c3cwMnd2Ij4xMzg8L2tleT48L2Zv

cmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwvcmVmLXR5cGU+

PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPk1jR2FsbCwgRy4gSC48L2F1dGhvcj48YXV0

aG9yPkZpZGFuemEsIEouIEEuPC9hdXRob3I+PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjxhdXRo

LWFkZHJlc3M+QWZmeW1ldHJpeCBJbmMuLCBTYW50YSBDbGFyYSwgQ0EsIFVTQS48L2F1dGgtYWRk

cmVzcz48dGl0bGVzPjx0aXRsZT5QaG90b2xpdGhvZ3JhcGhpYyBzeW50aGVzaXMgb2YgaGlnaC1k

ZW5zaXR5IG9saWdvbnVjbGVvdGlkZSBhcnJheXM8L3RpdGxlPjxzZWNvbmRhcnktdGl0bGU+TWV0

aG9kcyBNb2wgQmlvbDwvc2Vjb25kYXJ5LXRpdGxlPjwvdGl0bGVzPjxwZXJpb2RpY2FsPjxmdWxs

LXRpdGxlPk1ldGhvZHMgTW9sIEJpb2w8L2Z1bGwtdGl0bGU+PC9wZXJpb2RpY2FsPjxwYWdlcz43

MS0xMDE8L3BhZ2VzPjx2b2x1bWU+MTcwPC92b2x1bWU+PGVkaXRpb24+MjAwMS8wNS8xOTwvZWRp

dGlvbj48a2V5d29yZHM+PGtleXdvcmQ+Mi1BbWlub3B1cmluZS8qYW5hbG9ncyAmYW1wOyBkZXJp

dmF0aXZlcy9jaGVtaXN0cnkvcmFkaWF0aW9uIGVmZmVjdHM8L2tleXdvcmQ+PGtleXdvcmQ+QW1p

ZGVzL2NoZW1pc3RyeS9yYWRpYXRpb24gZWZmZWN0czwva2V5d29yZD48a2V5d29yZD5Db21iaW5h

dG9yaWFsIENoZW1pc3RyeSBUZWNobmlxdWVzL2luc3RydW1lbnRhdGlvbjwva2V5d29yZD48a2V5

d29yZD5NZW1icmFuZSBHbHljb3Byb3RlaW5zPC9rZXl3b3JkPjxrZXl3b3JkPk9saWdvbnVjbGVv

dGlkZSBBcnJheSBTZXF1ZW5jZSBBbmFseXNpcy8qbWV0aG9kczwva2V5d29yZD48a2V5d29yZD5P

bGlnb251Y2xlb3RpZGVzL2NoZW1pY2FsIHN5bnRoZXNpcy9yYWRpYXRpb24gZWZmZWN0czwva2V5

d29yZD48a2V5d29yZD5QaG9zcGhvcmljIEFjaWRzL2NoZW1pc3RyeS9yYWRpYXRpb24gZWZmZWN0

czwva2V5d29yZD48a2V5d29yZD5QaG90b2x5c2lzPC9rZXl3b3JkPjxrZXl3b3JkPlB1cmluZSBO

dWNsZW9zaWRlcy9jaGVtaXN0cnkvcmFkaWF0aW9uIGVmZmVjdHM8L2tleXdvcmQ+PC9rZXl3b3Jk

cz48ZGF0ZXM+PHllYXI+MjAwMTwveWVhcj48L2RhdGVzPjxpc2JuPjEwNjQtMzc0NSAoUHJpbnQp

JiN4RDsxMDY0LTM3NDUgKExpbmtpbmcpPC9pc2JuPjxhY2Nlc3Npb24tbnVtPjExMzU3NjkwPC9h

Y2Nlc3Npb24tbnVtPjx1cmxzPjxyZWxhdGVkLXVybHM+PHVybD5odHRwOi8vd3d3Lm5jYmkubmxt

Lm5paC5nb3YvZW50cmV6L3F1ZXJ5LmZjZ2k/Y21kPVJldHJpZXZlJmFtcDtkYj1QdWJNZWQmYW1w

O2RvcHQ9Q2l0YXRpb24mYW1wO2xpc3RfdWlkcz0xMTM1NzY5MDwvdXJsPjwvcmVsYXRlZC11cmxz

PjwvdXJscz48ZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+MS01OTI1OS0yMzQtMS03MSBbcGlpXSYj

eEQ7MTAuMTM4NS8xLTU5MjU5LTIzNC0xOjcxPC9lbGVjdHJvbmljLXJlc291cmNlLW51bT48bGFu

Z3VhZ2U+ZW5nPC9sYW5ndWFnZT48L3JlY29yZD48L0NpdGU+PENpdGU+PEF1dGhvcj5QZWFzZTwv

QXV0aG9yPjxZZWFyPjE5OTQ8L1llYXI+PFJlY051bT4zPC9SZWNOdW0+PHJlY29yZD48cmVjLW51

bWJlcj4zPC9yZWMtbnVtYmVyPjxmb3JlaWduLWtleXM+PGtleSBhcHA9IkVOIiBkYi1pZD0id3g5

MHI5cHQ4cnRyMjBlZnR2eXZ6MGE0dDAydjB6c3cwMnd2Ij4zPC9rZXk+PC9mb3JlaWduLWtleXM+

PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBlPjxjb250cmlidXRv

cnM+PGF1dGhvcnM+PGF1dGhvcj5QZWFzZSwgQS4gQy48L2F1dGhvcj48YXV0aG9yPlNvbGFzLCBE

LjwvYXV0aG9yPjxhdXRob3I+U3VsbGl2YW4sIEUuIEouPC9hdXRob3I+PGF1dGhvcj5Dcm9uaW4s

IE0uIFQuPC9hdXRob3I+PGF1dGhvcj5Ib2xtZXMsIEMuIFAuPC9hdXRob3I+PGF1dGhvcj5Gb2Rv

ciwgUy4gUC48L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PGF1dGgtYWRkcmVzcz5B

ZmZ5bWV0cml4LCBTYW50YSBDbGFyYSwgQ0EgOTUwNTEuPC9hdXRoLWFkZHJlc3M+PHRpdGxlcz48

dGl0bGU+TGlnaHQtZ2VuZXJhdGVkIG9saWdvbnVjbGVvdGlkZSBhcnJheXMgZm9yIHJhcGlkIERO

QSBzZXF1ZW5jZSBhbmFseXNpczwvdGl0bGU+PHNlY29uZGFyeS10aXRsZT5Qcm9jIE5hdGwgQWNh

ZCBTY2kgVSBTIEE8L3NlY29uZGFyeS10aXRsZT48L3RpdGxlcz48cGVyaW9kaWNhbD48ZnVsbC10

aXRsZT5Qcm9jIE5hdGwgQWNhZCBTY2kgVSBTIEE8L2Z1bGwtdGl0bGU+PC9wZXJpb2RpY2FsPjxw

YWdlcz41MDIyLTY8L3BhZ2VzPjx2b2x1bWU+OTE8L3ZvbHVtZT48bnVtYmVyPjExPC9udW1iZXI+

PGVkaXRpb24+MTk5NC8wNS8yNDwvZWRpdGlvbj48a2V5d29yZHM+PGtleXdvcmQ+QmFzZSBTZXF1

ZW5jZTwva2V5d29yZD48a2V5d29yZD5IdW1hbnM8L2tleXdvcmQ+PGtleXdvcmQ+KkxpZ2h0PC9r

ZXl3b3JkPjxrZXl3b3JkPk1pY3Jvc2NvcHksIEZsdW9yZXNjZW5jZTwva2V5d29yZD48a2V5d29y

ZD5Nb2xlY3VsYXIgU2VxdWVuY2UgRGF0YTwva2V5d29yZD48a2V5d29yZD5Nb2xlY3VsYXIgU3Ry

dWN0dXJlPC9rZXl3b3JkPjxrZXl3b3JkPk51Y2xlaWMgQWNpZCBIeWJyaWRpemF0aW9uPC9rZXl3

b3JkPjxrZXl3b3JkPk9saWdvZGVveHlyaWJvbnVjbGVvdGlkZXMvcmFkaWF0aW9uIGVmZmVjdHM8

L2tleXdvcmQ+PGtleXdvcmQ+T2xpZ29udWNsZW90aWRlIFByb2Jlczwva2V5d29yZD48a2V5d29y

ZD5TZXF1ZW5jZSBBbmFseXNpcywgRE5BLyptZXRob2RzPC9rZXl3b3JkPjwva2V5d29yZHM+PGRh

dGVzPjx5ZWFyPjE5OTQ8L3llYXI+PHB1Yi1kYXRlcz48ZGF0ZT5NYXkgMjQ8L2RhdGU+PC9wdWIt

ZGF0ZXM+PC9kYXRlcz48aXNibj4wMDI3LTg0MjQgKFByaW50KSYjeEQ7MDAyNy04NDI0IChMaW5r

aW5nKTwvaXNibj48YWNjZXNzaW9uLW51bT44MTk3MTc2PC9hY2Nlc3Npb24tbnVtPjx1cmxzPjxy

ZWxhdGVkLXVybHM+PHVybD5odHRwOi8vd3d3Lm5jYmkubmxtLm5paC5nb3YvZW50cmV6L3F1ZXJ5

LmZjZ2k/Y21kPVJldHJpZXZlJmFtcDtkYj1QdWJNZWQmYW1wO2RvcHQ9Q2l0YXRpb24mYW1wO2xp

c3RfdWlkcz04MTk3MTc2PC91cmw+PC9yZWxhdGVkLXVybHM+PC91cmxzPjxjdXN0b20yPjQzOTIy

PC9jdXN0b20yPjxsYW5ndWFnZT5lbmc8L2xhbmd1YWdlPjwvcmVjb3JkPjwvQ2l0ZT48L0VuZE5v

dGU+AG==

ADDIN EN.CITE.DATA [16, 24]. The platform design which consists mainly of probes, that are tailored to be genome independent, is mathematically derived and therefore unbiased (Additional file 1, Table S1).This strategy exploits the unique signature of a sample in the form of a pattern generated from hybridization of any unknown genome (DNA or cDNA) to a very high-density species-independent oligonucleotide microarray. Brucella species and several other pathogens were used as examples to demonstrate this forensics technology platform. Hybridization patterns are unique to a genome, and potentially to different isolates or a mixture of organisms. These techniques may be especially useful in evaluating and differentiating species whose genome has not yet been sequenced.2.3 Results 2.3.1 UBDA array sensitivity and specificity of probe hybridizationDNA microarrays using oligonucleotides are widely used in biological research and are usually sequence specific. Two primary types of parameters are required to evaluate the robustness and sensitivity of DNA microarray experiments- labelling and hybridization [16]. Sensitivity of a given array platform is often defined as the minimum signal detected by the array scanning system ADDIN EN.CITE <EndNote><Cite><Author>Kane</Author><Year>2000</Year><RecNum>351</RecNum><DisplayText>[25]</DisplayText><record><rec-number>351</rec-number><foreign-keys><key app="EN" db-id="wx90r9pt8rtr20eftvyvz0a4t02v0zsw02wv">351</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Kane, M. D.</author><author>Jatkoe, T. A.</author><author>Stumpf, C. R.</author><author>Lu, J.</author><author>Thomas, J. D.</author><author>Madore, S. J.</author></authors></contributors><auth-address>Department of Molecular Biology and Genomics and Department of Infectious Diseases, Pfizer Global Research and Development, Ann Arbor, MI 48105, USA.</auth-address><titles><title>Assessment of the sensitivity and specificity of oligonucleotide (50mer) microarrays</title><secondary-title>Nucleic Acids Res</secondary-title></titles><periodical><full-title>Nucleic Acids Res</full-title></periodical><pages>4552-7</pages><volume>28</volume><number>22</number><edition>2000/11/10</edition><keywords><keyword>Animals</keyword><keyword>Bacillus subtilis/genetics</keyword><keyword>Base Sequence</keyword><keyword>DNA Probes</keyword><keyword>Gene Expression Regulation, Bacterial</keyword><keyword>Genes, Bacterial/genetics</keyword><keyword>Molecular Sequence Data</keyword><keyword>Oligonucleotide Array Sequence Analysis/*methods</keyword><keyword>Oligonucleotides/*genetics</keyword><keyword>RNA, Messenger/genetics/metabolism</keyword><keyword>Rats</keyword><keyword>Sensitivity and Specificity</keyword></keywords><dates><year>2000</year><pub-dates><date>Nov 15</date></pub-dates></dates><isbn>1362-4962 (Electronic)&#xD;0305-1048 (Linking)</isbn><accession-num>11071945</accession-num><urls><related-urls><url>;[25]. In our case we have used labelling controls, where specified DNA molecules (70-mer oligonucleotides) are spiked into experimental human genomic DNA samples prior to fluorescent labelling. A set of six synthetic 70-mer oligonucleotides (Additional file 2, Table S2) was designed to be spiked into each labelling reaction and hybridized to a constellation of 361 probes that were replicated five times on the array. We compared signal intensity values from control probes on the array hybridized with human genomic DNA and 70-mer oligonucleotides spiked into a separate sample of human genomic DNA. Each spike-in concentration was added on an individual array. We measured sensitivity of the array as a decrease in the correlation coefficient R2 value in the signal intensity from human genomic DNA spiked with 70-mer oligonucleotides when compared to the un-spiked human genomic DNA sample. The sensitivity of the UBDA was examined by the addition of 70-mer synthetic oligonucleotides to the labelling reaction of human genomic DNA sample (Cy-3 label). Spike-in control synthetic 70-mer oligonucleotides were added at varying concentrations; 4.5 picomolar, 41 picomolar, 121 picomolar and 364 picomolar respectively. Figure 1 elucidates that the sensitivity range of detection for the UBDA is between 364 picomolar and 121 picomolar as seen by the decreased R2 values of 0.84 and 0.92 respectively for perfect match probes for these two concentrations when compared to the un-spiked human genomic DNA sample. The sensitivity of detection is estimated between a concentration of 364 picomolar and 121 picomolar. At concentrations lower than 121 picomolar, the R2 value for perfect match probes is 0.96 which is within the ability to resolve samples statistically and confirms that there was no detectable variation at the lower oligonucleotide spike-in at these concentrations. This evaluation demonstrates the variability of signal intensities contributed by differences in oligonucleotide concentrations spiked into the human DNA sample compared to the un-spiked human DNA sample. Regression analysis of probe signal intensity values from the mis-matched probes in the data set are in Additional file 3, Figures S1A-S1D. We have assessed array variability over several arrays using a common human DNA sample in the reference channel. We obtained an R2 value of 0.94 ±0.06.The specificity of the computationally derived 9-mer probes on the UBDA array was studied using the selectivity of the middle nucleotide in each probe. We hypothesized that DNA strands generally will not hybridize efficiently to any probe for which there are multiple mismatches in proximity to the center most base. The array design was based upon the prediction that the use of relatively short probes (15-21 mers) would result in the middle approximately 9 bases dominating hybridization kinetics. Probes on the UBDA that contained the StuI site (AGG^CCT) were located and classified by the nucleotide position of the cut point, relative to the center of the probe on the microarray by a custom computer code. DNA was digested to completion with StuI, and compared to matched DNA that was not digested. Each of the 9-mer probes with StuI restriction enzyme sites were binned depending on the nucleotide position of the StuI restriction site relative to the center of the probe. Thus probes with the StuI restriction enzyme site were binned in terms of base location according to the position of the StuI restriction enzyme cut site with respect to the center of the probe. As expected, probes with restriction enzyme site in the center of the probe displayed the highest degree of specificity demonstrated by a reduction in signal. A log2 fold change of -0.23 was obtained when comparing digested DNA to undigested DNA, averaged over microarray probes with the restriction enzyme site at the center of the probe. Microarray probes with the StuI site located at the center demonstrated reduced intensity, confirming specificity of genomic DNA to hybridize to the center of the probe. The trend of the log2 fold change increased as the StuI restriction enzyme site moved away from the center of the probe with the average results increasing towards zero (Additional file 4, Figure S2). Thus, confirming that the center nucleotide is the most selective in the hybridization complexes.2.3.2 Identification of synthetically mixed pathogen sampleTo establish the ability to decipher a synthetically mixed sample on the UBDA array, Lactobacillus plantarum [GenBank accession number ACGZ00000000, genome size 3,198,761 bases] and Streptococcus mitisPEVuZE5vdGU+PENpdGU+PEF1dGhvcj5EZW5hcGFpdGU8L0F1dGhvcj48WWVhcj4yMDEwPC9ZZWFy

PjxSZWNOdW0+NDQzPC9SZWNOdW0+PERpc3BsYXlUZXh0PlsyNl08L0Rpc3BsYXlUZXh0PjxyZWNv

cmQ+PHJlYy1udW1iZXI+NDQzPC9yZWMtbnVtYmVyPjxmb3JlaWduLWtleXM+PGtleSBhcHA9IkVO

IiBkYi1pZD0id3g5MHI5cHQ4cnRyMjBlZnR2eXZ6MGE0dDAydjB6c3cwMnd2Ij40NDM8L2tleT48

L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwvcmVmLXR5

cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPkRlbmFwYWl0ZSwgRC48L2F1dGhvcj48

YXV0aG9yPkJydWNrbmVyLCBSLjwvYXV0aG9yPjxhdXRob3I+TnVobiwgTS48L2F1dGhvcj48YXV0

aG9yPlJlaWNobWFubiwgUC48L2F1dGhvcj48YXV0aG9yPkhlbnJpY2gsIEIuPC9hdXRob3I+PGF1

dGhvcj5NYXVyZXIsIFAuPC9hdXRob3I+PGF1dGhvcj5TY2hhaGxlLCBZLjwvYXV0aG9yPjxhdXRo

b3I+U2VsYm1hbm4sIFAuPC9hdXRob3I+PGF1dGhvcj5aaW1tZXJtYW5uLCBXLjwvYXV0aG9yPjxh

dXRob3I+V2FtYnV0dCwgUi48L2F1dGhvcj48YXV0aG9yPkhha2VuYmVjaywgUi48L2F1dGhvcj48

L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PGF1dGgtYWRkcmVzcz5EZXBhcnRtZW50IG9mIE1pY3Jv

YmlvbG9neSwgVW5pdmVyc2l0eSBvZiBLYWlzZXJzbGF1dGVybiwgS2Fpc2Vyc2xhdXRlcm4sIEdl

cm1hbnkuPC9hdXRoLWFkZHJlc3M+PHRpdGxlcz48dGl0bGU+VGhlIGdlbm9tZSBvZiBTdHJlcHRv

Y29jY3VzIG1pdGlzIEI2LS13aGF0IGlzIGEgY29tbWVuc2FsPzwvdGl0bGU+PHNlY29uZGFyeS10

aXRsZT5QTG9TIE9uZTwvc2Vjb25kYXJ5LXRpdGxlPjwvdGl0bGVzPjxwZXJpb2RpY2FsPjxmdWxs

LXRpdGxlPlBMb1MgT25lPC9mdWxsLXRpdGxlPjwvcGVyaW9kaWNhbD48cGFnZXM+ZTk0MjY8L3Bh

Z2VzPjx2b2x1bWU+NTwvdm9sdW1lPjxudW1iZXI+MjwvbnVtYmVyPjxlZGl0aW9uPjIwMTAvMDMv

MDM8L2VkaXRpb24+PGtleXdvcmRzPjxrZXl3b3JkPkFtaW5vIEFjaWQgU2VxdWVuY2U8L2tleXdv

cmQ+PGtleXdvcmQ+QmFjdGVyaWFsIFByb3RlaW5zL2dlbmV0aWNzPC9rZXl3b3JkPjxrZXl3b3Jk

PkJhc2UgU2VxdWVuY2U8L2tleXdvcmQ+PGtleXdvcmQ+Q2hyb21vc29tZSBNYXBwaW5nPC9rZXl3

b3JkPjxrZXl3b3JkPkNocm9tb3NvbWVzLCBCYWN0ZXJpYWwvKmdlbmV0aWNzPC9rZXl3b3JkPjxr

ZXl3b3JkPkNvbXBhcmF0aXZlIEdlbm9taWMgSHlicmlkaXphdGlvbjwva2V5d29yZD48a2V5d29y

ZD5ETkEgVHJhbnNwb3NhYmxlIEVsZW1lbnRzL2dlbmV0aWNzPC9rZXl3b3JkPjxrZXl3b3JkPkRO

QSwgQmFjdGVyaWFsL2NoZW1pc3RyeS8qZ2VuZXRpY3M8L2tleXdvcmQ+PGtleXdvcmQ+R2Vub21l

LCBCYWN0ZXJpYWwvKmdlbmV0aWNzPC9rZXl3b3JkPjxrZXl3b3JkPk1vbGVjdWxhciBTZXF1ZW5j

ZSBEYXRhPC9rZXl3b3JkPjxrZXl3b3JkPlBoeWxvZ2VueTwva2V5d29yZD48a2V5d29yZD5TZXF1

ZW5jZSBBbmFseXNpcywgRE5BPC9rZXl3b3JkPjxrZXl3b3JkPlNlcXVlbmNlIEhvbW9sb2d5LCBB

bWlubyBBY2lkPC9rZXl3b3JkPjxrZXl3b3JkPlNwZWNpZXMgU3BlY2lmaWNpdHk8L2tleXdvcmQ+

PGtleXdvcmQ+U3RyZXB0b2NvY2N1cyBtaXRpcy9jbGFzc2lmaWNhdGlvbi8qZ2VuZXRpY3M8L2tl

eXdvcmQ+PGtleXdvcmQ+U3RyZXB0b2NvY2N1cyBwbmV1bW9uaWFlL2dlbmV0aWNzPC9rZXl3b3Jk

PjxrZXl3b3JkPlN5bnRlbnk8L2tleXdvcmQ+PGtleXdvcmQ+VmlydWxlbmNlIEZhY3RvcnMvZ2Vu

ZXRpY3M8L2tleXdvcmQ+PC9rZXl3b3Jkcz48ZGF0ZXM+PHllYXI+MjAxMDwveWVhcj48L2RhdGVz

Pjxpc2JuPjE5MzItNjIwMyAoRWxlY3Ryb25pYykmI3hEOzE5MzItNjIwMyAoTGlua2luZyk8L2lz

Ym4+PGFjY2Vzc2lvbi1udW0+MjAxOTU1MzY8L2FjY2Vzc2lvbi1udW0+PHVybHM+PHJlbGF0ZWQt

dXJscz48dXJsPmh0dHA6Ly93d3cubmNiaS5ubG0ubmloLmdvdi9wdWJtZWQvMjAxOTU1MzY8L3Vy

bD48L3JlbGF0ZWQtdXJscz48L3VybHM+PGN1c3RvbTI+MjgyODQ3NzwvY3VzdG9tMj48ZWxlY3Ry

b25pYy1yZXNvdXJjZS1udW0+MTAuMTM3MS9qb3VybmFsLnBvbmUuMDAwOTQyNjwvZWxlY3Ryb25p

Yy1yZXNvdXJjZS1udW0+PGxhbmd1YWdlPmVuZzwvbGFuZ3VhZ2U+PC9yZWNvcmQ+PC9DaXRlPjwv

RW5kTm90ZT4A

ADDIN EN.CITE PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5EZW5hcGFpdGU8L0F1dGhvcj48WWVhcj4yMDEwPC9ZZWFy

PjxSZWNOdW0+NDQzPC9SZWNOdW0+PERpc3BsYXlUZXh0PlsyNl08L0Rpc3BsYXlUZXh0PjxyZWNv

cmQ+PHJlYy1udW1iZXI+NDQzPC9yZWMtbnVtYmVyPjxmb3JlaWduLWtleXM+PGtleSBhcHA9IkVO

IiBkYi1pZD0id3g5MHI5cHQ4cnRyMjBlZnR2eXZ6MGE0dDAydjB6c3cwMnd2Ij40NDM8L2tleT48

L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwvcmVmLXR5

cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPkRlbmFwYWl0ZSwgRC48L2F1dGhvcj48

YXV0aG9yPkJydWNrbmVyLCBSLjwvYXV0aG9yPjxhdXRob3I+TnVobiwgTS48L2F1dGhvcj48YXV0

aG9yPlJlaWNobWFubiwgUC48L2F1dGhvcj48YXV0aG9yPkhlbnJpY2gsIEIuPC9hdXRob3I+PGF1

dGhvcj5NYXVyZXIsIFAuPC9hdXRob3I+PGF1dGhvcj5TY2hhaGxlLCBZLjwvYXV0aG9yPjxhdXRo

b3I+U2VsYm1hbm4sIFAuPC9hdXRob3I+PGF1dGhvcj5aaW1tZXJtYW5uLCBXLjwvYXV0aG9yPjxh

dXRob3I+V2FtYnV0dCwgUi48L2F1dGhvcj48YXV0aG9yPkhha2VuYmVjaywgUi48L2F1dGhvcj48

L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PGF1dGgtYWRkcmVzcz5EZXBhcnRtZW50IG9mIE1pY3Jv

YmlvbG9neSwgVW5pdmVyc2l0eSBvZiBLYWlzZXJzbGF1dGVybiwgS2Fpc2Vyc2xhdXRlcm4sIEdl

cm1hbnkuPC9hdXRoLWFkZHJlc3M+PHRpdGxlcz48dGl0bGU+VGhlIGdlbm9tZSBvZiBTdHJlcHRv

Y29jY3VzIG1pdGlzIEI2LS13aGF0IGlzIGEgY29tbWVuc2FsPzwvdGl0bGU+PHNlY29uZGFyeS10

aXRsZT5QTG9TIE9uZTwvc2Vjb25kYXJ5LXRpdGxlPjwvdGl0bGVzPjxwZXJpb2RpY2FsPjxmdWxs

LXRpdGxlPlBMb1MgT25lPC9mdWxsLXRpdGxlPjwvcGVyaW9kaWNhbD48cGFnZXM+ZTk0MjY8L3Bh

Z2VzPjx2b2x1bWU+NTwvdm9sdW1lPjxudW1iZXI+MjwvbnVtYmVyPjxlZGl0aW9uPjIwMTAvMDMv

MDM8L2VkaXRpb24+PGtleXdvcmRzPjxrZXl3b3JkPkFtaW5vIEFjaWQgU2VxdWVuY2U8L2tleXdv

cmQ+PGtleXdvcmQ+QmFjdGVyaWFsIFByb3RlaW5zL2dlbmV0aWNzPC9rZXl3b3JkPjxrZXl3b3Jk

PkJhc2UgU2VxdWVuY2U8L2tleXdvcmQ+PGtleXdvcmQ+Q2hyb21vc29tZSBNYXBwaW5nPC9rZXl3

b3JkPjxrZXl3b3JkPkNocm9tb3NvbWVzLCBCYWN0ZXJpYWwvKmdlbmV0aWNzPC9rZXl3b3JkPjxr

ZXl3b3JkPkNvbXBhcmF0aXZlIEdlbm9taWMgSHlicmlkaXphdGlvbjwva2V5d29yZD48a2V5d29y

ZD5ETkEgVHJhbnNwb3NhYmxlIEVsZW1lbnRzL2dlbmV0aWNzPC9rZXl3b3JkPjxrZXl3b3JkPkRO

QSwgQmFjdGVyaWFsL2NoZW1pc3RyeS8qZ2VuZXRpY3M8L2tleXdvcmQ+PGtleXdvcmQ+R2Vub21l

LCBCYWN0ZXJpYWwvKmdlbmV0aWNzPC9rZXl3b3JkPjxrZXl3b3JkPk1vbGVjdWxhciBTZXF1ZW5j

ZSBEYXRhPC9rZXl3b3JkPjxrZXl3b3JkPlBoeWxvZ2VueTwva2V5d29yZD48a2V5d29yZD5TZXF1

ZW5jZSBBbmFseXNpcywgRE5BPC9rZXl3b3JkPjxrZXl3b3JkPlNlcXVlbmNlIEhvbW9sb2d5LCBB

bWlubyBBY2lkPC9rZXl3b3JkPjxrZXl3b3JkPlNwZWNpZXMgU3BlY2lmaWNpdHk8L2tleXdvcmQ+

PGtleXdvcmQ+U3RyZXB0b2NvY2N1cyBtaXRpcy9jbGFzc2lmaWNhdGlvbi8qZ2VuZXRpY3M8L2tl

eXdvcmQ+PGtleXdvcmQ+U3RyZXB0b2NvY2N1cyBwbmV1bW9uaWFlL2dlbmV0aWNzPC9rZXl3b3Jk

PjxrZXl3b3JkPlN5bnRlbnk8L2tleXdvcmQ+PGtleXdvcmQ+VmlydWxlbmNlIEZhY3RvcnMvZ2Vu

ZXRpY3M8L2tleXdvcmQ+PC9rZXl3b3Jkcz48ZGF0ZXM+PHllYXI+MjAxMDwveWVhcj48L2RhdGVz

Pjxpc2JuPjE5MzItNjIwMyAoRWxlY3Ryb25pYykmI3hEOzE5MzItNjIwMyAoTGlua2luZyk8L2lz

Ym4+PGFjY2Vzc2lvbi1udW0+MjAxOTU1MzY8L2FjY2Vzc2lvbi1udW0+PHVybHM+PHJlbGF0ZWQt

dXJscz48dXJsPmh0dHA6Ly93d3cubmNiaS5ubG0ubmloLmdvdi9wdWJtZWQvMjAxOTU1MzY8L3Vy

bD48L3JlbGF0ZWQtdXJscz48L3VybHM+PGN1c3RvbTI+MjgyODQ3NzwvY3VzdG9tMj48ZWxlY3Ry

b25pYy1yZXNvdXJjZS1udW0+MTAuMTM3MS9qb3VybmFsLnBvbmUuMDAwOTQyNjwvZWxlY3Ryb25p

Yy1yZXNvdXJjZS1udW0+PGxhbmd1YWdlPmVuZzwvbGFuZ3VhZ2U+PC9yZWNvcmQ+PC9DaXRlPjwv

RW5kTm90ZT4A

ADDIN EN.CITE.DATA [26] [Genbank accession number FN568063, genome size 2,146,611 bases] genomic DNA were mixed in a ratio of 4:1 (2.53 x 108 copies of L. plantarum to 0.57 x 108 copies of S. mitis genomes) for a total of 1 ?g of DNA, and thus adjusted for copy number of each of the two genomes and hybridized to the array. In addition, pure genomic DNA samples from L. plantarum and S. mitis were also hybridized individually on separate arrays. The minimum amount of sample required to be detected by hierarchical clustering was determined by an assumption that the mixed sample would cluster under the same node with known samples. As seen from Figure 2, the mixed sample comprising of Lactobacillus plantarum and Streptococcus mitis groups with pure samples from L. plantarum and S. mitis (as shown in Figure 2, lane 1, 2 and 3). These results show that if 25 % of the sample is from a second genome, it will group with the higher copy genome on the dendrogram heat map generated from the hierarchical clustering algorithm. A sample with Lactobacillus plantarum and Streptococcus mitis genomic DNA in a 4:1 ratio (2.53 x 108 copies of L. plantarum to 0.57 x 108 copies of S. mitis genomes) was spiked-in with 50 ng (1.54 x 1010 copies) of pBluescript plasmid (3,000 bases) ADDIN EN.CITE <EndNote><Cite><Author>Alting-Mees</Author><Year>1989</Year><RecNum>442</RecNum><DisplayText>[27]</DisplayText><record><rec-number>442</rec-number><foreign-keys><key app="EN" db-id="wx90r9pt8rtr20eftvyvz0a4t02v0zsw02wv">442</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Alting-Mees, M. A.</author><author>Short, J. M.</author></authors></contributors><auth-address>Stratagene Cloning Systems, La Jolla, CA 92037.</auth-address><titles><title>pBluescript II: gene mapping vectors</title><secondary-title>Nucleic Acids Res</secondary-title></titles><periodical><full-title>Nucleic Acids Res</full-title></periodical><pages>9494</pages><volume>17</volume><number>22</number><edition>1989/11/25</edition><keywords><keyword>*Bacteriophage lambda</keyword><keyword>DNA Transposable Elements</keyword><keyword>*Genetic Vectors</keyword><keyword>*Restriction Mapping</keyword></keywords><dates><year>1989</year><pub-dates><date>Nov 25</date></pub-dates></dates><isbn>0305-1048 (Print)&#xD;0305-1048 (Linking)</isbn><accession-num>2555794</accession-num><urls><related-urls><url>;[27] . However the node for this sample (Figure 2, lane 4) did not cluster with pure samples from Lactobacillus plantarum and Streptococcus mitis, instead it clustered closest to a pure sample of pBluescript (Figure 2, lane 5). Spike-in from a low complexity plasmid genome with a high copy number genome such as pBluescript can dominate the signature pattern. The alteration of the signature pattern is so great that the sample cannot be distinguished on the dendrogram from pure bacterial genomes. Therefore, we are in the process of developing algorithms which will produce a similarity score for a given genome in a mixed genome sample by comparing it to a wide spectrum of species in our genome signature repository.2.3.3 Identification of genetic signatures from closely related Brucella speciesThe spectrum of organisms chosen for hybridization on this array, were primarily bio-threat zoonotic agents infecting farm animals. Our initial studies were based on the ability of the 9-mer probe signal intensities to distinguish between different Brucella species. Currently, there are nine recognized species of Brucella based on host preferences and phenotypic preferences. Six of those species are Brucella abortus (cattle), Brucella canis (dogs), Brucella melitensis (sheep and goat), Brucella neotomae (desert wood rats), Brucella ovis (sheep) and Brucella suis (pigs) ADDIN EN.CITE <EndNote><Cite><Author>Morgan</Author><Year>1984</Year><RecNum>362</RecNum><DisplayText>[28]</DisplayText><record><rec-number>362</rec-number><foreign-keys><key app="EN" db-id="wx90r9pt8rtr20eftvyvz0a4t02v0zsw02wv">362</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Morgan, W. J.</author></authors></contributors><titles><title>Brucella classification and regional distribution</title><secondary-title>Dev Biol Stand</secondary-title></titles><periodical><full-title>Dev Biol Stand</full-title></periodical><pages>43-53</pages><volume>56</volume><edition>1984/01/01</edition><keywords><keyword>Bacteriophage Typing</keyword><keyword>Brucella/*classification/isolation &amp; purification</keyword><keyword>Brucella abortus/classification</keyword><keyword>Geography</keyword><keyword>Species Specificity</keyword></keywords><dates><year>1984</year></dates><isbn>0301-5149 (Print)&#xD;0301-5149 (Linking)</isbn><accession-num>6436103</accession-num><urls><related-urls><url>;[28]. All of these species are zoonotic except B. neotomae and B. ovis. Raw signal values from the pair data files for the Cy3 channel were background corrected and quantile normalized ADDIN EN.CITE <EndNote><Cite><Author>Irizarry</Author><Year>2003</Year><RecNum>162</RecNum><DisplayText>[29]</DisplayText><record><rec-number>162</rec-number><foreign-keys><key app="EN" db-id="wx90r9pt8rtr20eftvyvz0a4t02v0zsw02wv">162</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Irizarry, R. A.</author><author>Hobbs, B.</author><author>Collin, F.</author><author>Beazer-Barclay, Y. D.</author><author>Antonellis, K. J.</author><author>Scherf, U.</author><author>Speed, T. P.</author></authors></contributors><auth-address>Department of Biostatistics, Johns Hopkins University, Baltimore, MD 21205, USA. rafa@jhu.edu</auth-address><titles><title>Exploration, normalization, and summaries of high density oligonucleotide array probe level data</title><secondary-title>Biostatistics</secondary-title></titles><pages>249-64</pages><volume>4</volume><number>2</number><edition>2003/08/20</edition><keywords><keyword>Algorithms</keyword><keyword>Animals</keyword><keyword>DNA Probes/*genetics</keyword><keyword>*Data Interpretation, Statistical</keyword><keyword>Gene Expression Profiling/statistics &amp; numerical data</keyword><keyword>Humans</keyword><keyword>Linear Models</keyword><keyword>Mice</keyword><keyword>Normal Distribution</keyword><keyword>Oligonucleotide Array Sequence Analysis/*methods</keyword><keyword>Reproducibility of Results</keyword><keyword>Statistics, Nonparametric</keyword></keywords><dates><year>2003</year><pub-dates><date>Apr</date></pub-dates></dates><isbn>1465-4644 (Print)&#xD;1465-4644 (Linking)</isbn><accession-num>12925520</accession-num><urls><related-urls><url> [pii]</electronic-resource-num><language>eng</language></record></Cite></EndNote>[29]. Signal intensities related to the 9-mer data set were parsed from the data file using a PERL script. These files were imported into the GeneSpring GX (Agilent, Santa Clara, CA) program. Data from these files was clustered using the hierarchical clustering algorithm to generate a heat map and identify a pattern within the underlying data. The dendrogram of this heat map which runs vertically along the left side of the heat map in Figure 3 shows the unique bio-signature patterns from 9-mer probes obtained from Brucella suis 1330, Brucella abortus RB51, Brucella melitensis 16M, Brucella abortus 86-8-59and Brucella abortus 12. Normalized data from the 9-mer data set were filtered for intensity signals greater than the 20th percentile. Only intensity signals with a fold change of 5 or greater were included. These 2,267 elements were subjected to a hierarchical clustering algorithm with Euclidean distance being used as a similarity measure. Centroid linkage rule was applied in the clustering algorithm. The signal intensity values were represented as a log2 scale. One of the array features was pathogen specific probes designed for independent validation. These probes are species specific to a small set of pathogens including Avian Influenza Virus, Rift Valley Fever Virus, Foot and Mouth Disease Virus, Brucella melitensis 16M, Brucella suis 1330 and Brucella abortus biovar 1 strain 9-941 (Additional file 1, Table S1). The genomes of B. melitensis and B. suis have been completely sequenced (28, 29). Comparative genome analysis for these genomes shows that the two genomes are extremely similar. The sequence identity for most open reading frames (ORFs) was 99% or higher PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5QYXVsc2VuPC9BdXRob3I+PFllYXI+MjAwMjwvWWVhcj48

UmVjTnVtPjQ0MTwvUmVjTnVtPjxEaXNwbGF5VGV4dD5bMzBdPC9EaXNwbGF5VGV4dD48cmVjb3Jk

PjxyZWMtbnVtYmVyPjQ0MTwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIg

ZGItaWQ9Ind4OTByOXB0OHJ0cjIwZWZ0dnl2ejBhNHQwMnYwenN3MDJ3diI+NDQxPC9rZXk+PC9m

b3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBl

Pjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5QYXVsc2VuLCBJLiBULjwvYXV0aG9yPjxh

dXRob3I+U2VzaGFkcmksIFIuPC9hdXRob3I+PGF1dGhvcj5OZWxzb24sIEsuIEUuPC9hdXRob3I+

PGF1dGhvcj5FaXNlbiwgSi4gQS48L2F1dGhvcj48YXV0aG9yPkhlaWRlbGJlcmcsIEouIEYuPC9h

dXRob3I+PGF1dGhvcj5SZWFkLCBULiBELjwvYXV0aG9yPjxhdXRob3I+RG9kc29uLCBSLiBKLjwv

YXV0aG9yPjxhdXRob3I+VW1heWFtLCBMLjwvYXV0aG9yPjxhdXRob3I+QnJpbmthYywgTC4gTS48

L2F1dGhvcj48YXV0aG9yPkJlYW5hbiwgTS4gSi48L2F1dGhvcj48YXV0aG9yPkRhdWdoZXJ0eSwg

Uy4gQy48L2F1dGhvcj48YXV0aG9yPkRlYm95LCBSLiBULjwvYXV0aG9yPjxhdXRob3I+RHVya2lu

LCBBLiBTLjwvYXV0aG9yPjxhdXRob3I+S29sb25heSwgSi4gRi48L2F1dGhvcj48YXV0aG9yPk1h

ZHVwdSwgUi48L2F1dGhvcj48YXV0aG9yPk5lbHNvbiwgVy4gQy48L2F1dGhvcj48YXV0aG9yPkF5

b2RlamksIEIuPC9hdXRob3I+PGF1dGhvcj5LcmF1bCwgTS48L2F1dGhvcj48YXV0aG9yPlNoZXR0

eSwgSi48L2F1dGhvcj48YXV0aG9yPk1hbGVrLCBKLjwvYXV0aG9yPjxhdXRob3I+VmFuIEFrZW4s

IFMuIEUuPC9hdXRob3I+PGF1dGhvcj5SaWVkbXVsbGVyLCBTLjwvYXV0aG9yPjxhdXRob3I+VGV0

dGVsaW4sIEguPC9hdXRob3I+PGF1dGhvcj5HaWxsLCBTLiBSLjwvYXV0aG9yPjxhdXRob3I+V2hp

dGUsIE8uPC9hdXRob3I+PGF1dGhvcj5TYWx6YmVyZywgUy4gTC48L2F1dGhvcj48YXV0aG9yPkhv

b3ZlciwgRC4gTC48L2F1dGhvcj48YXV0aG9yPkxpbmRsZXIsIEwuIEUuPC9hdXRob3I+PGF1dGhv

cj5IYWxsaW5nLCBTLiBNLjwvYXV0aG9yPjxhdXRob3I+Qm95bGUsIFMuIE0uPC9hdXRob3I+PGF1

dGhvcj5GcmFzZXIsIEMuIE0uPC9hdXRob3I+PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjxhdXRo

LWFkZHJlc3M+VGhlIEluc3RpdHV0ZSBmb3IgR2Vub21pYyBSZXNlYXJjaCwgOTcxMiBNZWRpY2Fs

IENlbnRlciBEcml2ZSwgUm9ja3ZpbGxlLCBNRCAyMDg1MCwgVVNBLiBpcGF1bHNlbkB0aWdyLm9y

ZzwvYXV0aC1hZGRyZXNzPjx0aXRsZXM+PHRpdGxlPlRoZSBCcnVjZWxsYSBzdWlzIGdlbm9tZSBy

ZXZlYWxzIGZ1bmRhbWVudGFsIHNpbWlsYXJpdGllcyBiZXR3ZWVuIGFuaW1hbCBhbmQgcGxhbnQg

cGF0aG9nZW5zIGFuZCBzeW1iaW9udHM8L3RpdGxlPjxzZWNvbmRhcnktdGl0bGU+UHJvYyBOYXRs

IEFjYWQgU2NpIFUgUyBBPC9zZWNvbmRhcnktdGl0bGU+PC90aXRsZXM+PHBlcmlvZGljYWw+PGZ1

bGwtdGl0bGU+UHJvYyBOYXRsIEFjYWQgU2NpIFUgUyBBPC9mdWxsLXRpdGxlPjwvcGVyaW9kaWNh

bD48cGFnZXM+MTMxNDgtNTM8L3BhZ2VzPjx2b2x1bWU+OTk8L3ZvbHVtZT48bnVtYmVyPjIwPC9u

dW1iZXI+PGVkaXRpb24+MjAwMi8wOS8yNTwvZWRpdGlvbj48a2V5d29yZHM+PGtleXdvcmQ+QWxw

aGFwcm90ZW9iYWN0ZXJpYS9nZW5ldGljczwva2V5d29yZD48a2V5d29yZD5CcnVjZWxsYS8qZ2Vu

ZXRpY3MvcGF0aG9nZW5pY2l0eTwva2V5d29yZD48a2V5d29yZD5CcnVjZWxsYSBtZWxpdGVuc2lz

L2dlbmV0aWNzPC9rZXl3b3JkPjxrZXl3b3JkPkNocm9tb3NvbWVzLCBCYWN0ZXJpYWwvdWx0cmFz

dHJ1Y3R1cmU8L2tleXdvcmQ+PGtleXdvcmQ+RE5BIFRyYW5zcG9zYWJsZSBFbGVtZW50czwva2V5

d29yZD48a2V5d29yZD4qR2Vub21lLCBCYWN0ZXJpYWw8L2tleXdvcmQ+PGtleXdvcmQ+TW9kZWxz

LCBHZW5ldGljPC9rZXl3b3JkPjxrZXl3b3JkPk1vbGVjdWxhciBTZXF1ZW5jZSBEYXRhPC9rZXl3

b3JkPjxrZXl3b3JkPk9wZW4gUmVhZGluZyBGcmFtZXM8L2tleXdvcmQ+PGtleXdvcmQ+Umhpem9i

aXVtL2dlbmV0aWNzPC9rZXl3b3JkPjwva2V5d29yZHM+PGRhdGVzPjx5ZWFyPjIwMDI8L3llYXI+

PHB1Yi1kYXRlcz48ZGF0ZT5PY3QgMTwvZGF0ZT48L3B1Yi1kYXRlcz48L2RhdGVzPjxpc2JuPjAw

MjctODQyNCAoUHJpbnQpJiN4RDswMDI3LTg0MjQgKExpbmtpbmcpPC9pc2JuPjxhY2Nlc3Npb24t

bnVtPjEyMjcxMTIyPC9hY2Nlc3Npb24tbnVtPjx1cmxzPjxyZWxhdGVkLXVybHM+PHVybD5odHRw

Oi8vd3d3Lm5jYmkubmxtLm5paC5nb3YvZW50cmV6L3F1ZXJ5LmZjZ2k/Y21kPVJldHJpZXZlJmFt

cDtkYj1QdWJNZWQmYW1wO2RvcHQ9Q2l0YXRpb24mYW1wO2xpc3RfdWlkcz0xMjI3MTEyMjwvdXJs

PjwvcmVsYXRlZC11cmxzPjwvdXJscz48Y3VzdG9tMj4xMzA2MDE8L2N1c3RvbTI+PGVsZWN0cm9u

aWMtcmVzb3VyY2UtbnVtPjEwLjEwNzMvcG5hcy4xOTIzMTkwOTkmI3hEOzE5MjMxOTA5OSBbcGlp

XTwvZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+PGxhbmd1YWdlPmVuZzwvbGFuZ3VhZ2U+PC9yZWNv

cmQ+PC9DaXRlPjwvRW5kTm90ZT4A

ADDIN EN.CITE PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5QYXVsc2VuPC9BdXRob3I+PFllYXI+MjAwMjwvWWVhcj48

UmVjTnVtPjQ0MTwvUmVjTnVtPjxEaXNwbGF5VGV4dD5bMzBdPC9EaXNwbGF5VGV4dD48cmVjb3Jk

PjxyZWMtbnVtYmVyPjQ0MTwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIg

ZGItaWQ9Ind4OTByOXB0OHJ0cjIwZWZ0dnl2ejBhNHQwMnYwenN3MDJ3diI+NDQxPC9rZXk+PC9m

b3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBl

Pjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5QYXVsc2VuLCBJLiBULjwvYXV0aG9yPjxh

dXRob3I+U2VzaGFkcmksIFIuPC9hdXRob3I+PGF1dGhvcj5OZWxzb24sIEsuIEUuPC9hdXRob3I+

PGF1dGhvcj5FaXNlbiwgSi4gQS48L2F1dGhvcj48YXV0aG9yPkhlaWRlbGJlcmcsIEouIEYuPC9h

dXRob3I+PGF1dGhvcj5SZWFkLCBULiBELjwvYXV0aG9yPjxhdXRob3I+RG9kc29uLCBSLiBKLjwv

YXV0aG9yPjxhdXRob3I+VW1heWFtLCBMLjwvYXV0aG9yPjxhdXRob3I+QnJpbmthYywgTC4gTS48

L2F1dGhvcj48YXV0aG9yPkJlYW5hbiwgTS4gSi48L2F1dGhvcj48YXV0aG9yPkRhdWdoZXJ0eSwg

Uy4gQy48L2F1dGhvcj48YXV0aG9yPkRlYm95LCBSLiBULjwvYXV0aG9yPjxhdXRob3I+RHVya2lu

LCBBLiBTLjwvYXV0aG9yPjxhdXRob3I+S29sb25heSwgSi4gRi48L2F1dGhvcj48YXV0aG9yPk1h

ZHVwdSwgUi48L2F1dGhvcj48YXV0aG9yPk5lbHNvbiwgVy4gQy48L2F1dGhvcj48YXV0aG9yPkF5

b2RlamksIEIuPC9hdXRob3I+PGF1dGhvcj5LcmF1bCwgTS48L2F1dGhvcj48YXV0aG9yPlNoZXR0

eSwgSi48L2F1dGhvcj48YXV0aG9yPk1hbGVrLCBKLjwvYXV0aG9yPjxhdXRob3I+VmFuIEFrZW4s

IFMuIEUuPC9hdXRob3I+PGF1dGhvcj5SaWVkbXVsbGVyLCBTLjwvYXV0aG9yPjxhdXRob3I+VGV0

dGVsaW4sIEguPC9hdXRob3I+PGF1dGhvcj5HaWxsLCBTLiBSLjwvYXV0aG9yPjxhdXRob3I+V2hp

dGUsIE8uPC9hdXRob3I+PGF1dGhvcj5TYWx6YmVyZywgUy4gTC48L2F1dGhvcj48YXV0aG9yPkhv

b3ZlciwgRC4gTC48L2F1dGhvcj48YXV0aG9yPkxpbmRsZXIsIEwuIEUuPC9hdXRob3I+PGF1dGhv

cj5IYWxsaW5nLCBTLiBNLjwvYXV0aG9yPjxhdXRob3I+Qm95bGUsIFMuIE0uPC9hdXRob3I+PGF1

dGhvcj5GcmFzZXIsIEMuIE0uPC9hdXRob3I+PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjxhdXRo

LWFkZHJlc3M+VGhlIEluc3RpdHV0ZSBmb3IgR2Vub21pYyBSZXNlYXJjaCwgOTcxMiBNZWRpY2Fs

IENlbnRlciBEcml2ZSwgUm9ja3ZpbGxlLCBNRCAyMDg1MCwgVVNBLiBpcGF1bHNlbkB0aWdyLm9y

ZzwvYXV0aC1hZGRyZXNzPjx0aXRsZXM+PHRpdGxlPlRoZSBCcnVjZWxsYSBzdWlzIGdlbm9tZSBy

ZXZlYWxzIGZ1bmRhbWVudGFsIHNpbWlsYXJpdGllcyBiZXR3ZWVuIGFuaW1hbCBhbmQgcGxhbnQg

cGF0aG9nZW5zIGFuZCBzeW1iaW9udHM8L3RpdGxlPjxzZWNvbmRhcnktdGl0bGU+UHJvYyBOYXRs

IEFjYWQgU2NpIFUgUyBBPC9zZWNvbmRhcnktdGl0bGU+PC90aXRsZXM+PHBlcmlvZGljYWw+PGZ1

bGwtdGl0bGU+UHJvYyBOYXRsIEFjYWQgU2NpIFUgUyBBPC9mdWxsLXRpdGxlPjwvcGVyaW9kaWNh

bD48cGFnZXM+MTMxNDgtNTM8L3BhZ2VzPjx2b2x1bWU+OTk8L3ZvbHVtZT48bnVtYmVyPjIwPC9u

dW1iZXI+PGVkaXRpb24+MjAwMi8wOS8yNTwvZWRpdGlvbj48a2V5d29yZHM+PGtleXdvcmQ+QWxw

aGFwcm90ZW9iYWN0ZXJpYS9nZW5ldGljczwva2V5d29yZD48a2V5d29yZD5CcnVjZWxsYS8qZ2Vu

ZXRpY3MvcGF0aG9nZW5pY2l0eTwva2V5d29yZD48a2V5d29yZD5CcnVjZWxsYSBtZWxpdGVuc2lz

L2dlbmV0aWNzPC9rZXl3b3JkPjxrZXl3b3JkPkNocm9tb3NvbWVzLCBCYWN0ZXJpYWwvdWx0cmFz

dHJ1Y3R1cmU8L2tleXdvcmQ+PGtleXdvcmQ+RE5BIFRyYW5zcG9zYWJsZSBFbGVtZW50czwva2V5

d29yZD48a2V5d29yZD4qR2Vub21lLCBCYWN0ZXJpYWw8L2tleXdvcmQ+PGtleXdvcmQ+TW9kZWxz

LCBHZW5ldGljPC9rZXl3b3JkPjxrZXl3b3JkPk1vbGVjdWxhciBTZXF1ZW5jZSBEYXRhPC9rZXl3

b3JkPjxrZXl3b3JkPk9wZW4gUmVhZGluZyBGcmFtZXM8L2tleXdvcmQ+PGtleXdvcmQ+Umhpem9i

aXVtL2dlbmV0aWNzPC9rZXl3b3JkPjwva2V5d29yZHM+PGRhdGVzPjx5ZWFyPjIwMDI8L3llYXI+

PHB1Yi1kYXRlcz48ZGF0ZT5PY3QgMTwvZGF0ZT48L3B1Yi1kYXRlcz48L2RhdGVzPjxpc2JuPjAw

MjctODQyNCAoUHJpbnQpJiN4RDswMDI3LTg0MjQgKExpbmtpbmcpPC9pc2JuPjxhY2Nlc3Npb24t

bnVtPjEyMjcxMTIyPC9hY2Nlc3Npb24tbnVtPjx1cmxzPjxyZWxhdGVkLXVybHM+PHVybD5odHRw

Oi8vd3d3Lm5jYmkubmxtLm5paC5nb3YvZW50cmV6L3F1ZXJ5LmZjZ2k/Y21kPVJldHJpZXZlJmFt

cDtkYj1QdWJNZWQmYW1wO2RvcHQ9Q2l0YXRpb24mYW1wO2xpc3RfdWlkcz0xMjI3MTEyMjwvdXJs

PjwvcmVsYXRlZC11cmxzPjwvdXJscz48Y3VzdG9tMj4xMzA2MDE8L2N1c3RvbTI+PGVsZWN0cm9u

aWMtcmVzb3VyY2UtbnVtPjEwLjEwNzMvcG5hcy4xOTIzMTkwOTkmI3hEOzE5MjMxOTA5OSBbcGlp

XTwvZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+PGxhbmd1YWdlPmVuZzwvbGFuZ3VhZ2U+PC9yZWNv

cmQ+PC9DaXRlPjwvRW5kTm90ZT4A

ADDIN EN.CITE.DATA [30]. We computationally evaluated the published genome sequences for B. suis 1330 PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5QYXVsc2VuPC9BdXRob3I+PFllYXI+MjAwMjwvWWVhcj48

UmVjTnVtPjQ0MTwvUmVjTnVtPjxEaXNwbGF5VGV4dD5bMzBdPC9EaXNwbGF5VGV4dD48cmVjb3Jk

PjxyZWMtbnVtYmVyPjQ0MTwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIg

ZGItaWQ9Ind4OTByOXB0OHJ0cjIwZWZ0dnl2ejBhNHQwMnYwenN3MDJ3diI+NDQxPC9rZXk+PC9m

b3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBl

Pjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5QYXVsc2VuLCBJLiBULjwvYXV0aG9yPjxh

dXRob3I+U2VzaGFkcmksIFIuPC9hdXRob3I+PGF1dGhvcj5OZWxzb24sIEsuIEUuPC9hdXRob3I+

PGF1dGhvcj5FaXNlbiwgSi4gQS48L2F1dGhvcj48YXV0aG9yPkhlaWRlbGJlcmcsIEouIEYuPC9h

dXRob3I+PGF1dGhvcj5SZWFkLCBULiBELjwvYXV0aG9yPjxhdXRob3I+RG9kc29uLCBSLiBKLjwv

YXV0aG9yPjxhdXRob3I+VW1heWFtLCBMLjwvYXV0aG9yPjxhdXRob3I+QnJpbmthYywgTC4gTS48

L2F1dGhvcj48YXV0aG9yPkJlYW5hbiwgTS4gSi48L2F1dGhvcj48YXV0aG9yPkRhdWdoZXJ0eSwg

Uy4gQy48L2F1dGhvcj48YXV0aG9yPkRlYm95LCBSLiBULjwvYXV0aG9yPjxhdXRob3I+RHVya2lu

LCBBLiBTLjwvYXV0aG9yPjxhdXRob3I+S29sb25heSwgSi4gRi48L2F1dGhvcj48YXV0aG9yPk1h

ZHVwdSwgUi48L2F1dGhvcj48YXV0aG9yPk5lbHNvbiwgVy4gQy48L2F1dGhvcj48YXV0aG9yPkF5

b2RlamksIEIuPC9hdXRob3I+PGF1dGhvcj5LcmF1bCwgTS48L2F1dGhvcj48YXV0aG9yPlNoZXR0

eSwgSi48L2F1dGhvcj48YXV0aG9yPk1hbGVrLCBKLjwvYXV0aG9yPjxhdXRob3I+VmFuIEFrZW4s

IFMuIEUuPC9hdXRob3I+PGF1dGhvcj5SaWVkbXVsbGVyLCBTLjwvYXV0aG9yPjxhdXRob3I+VGV0

dGVsaW4sIEguPC9hdXRob3I+PGF1dGhvcj5HaWxsLCBTLiBSLjwvYXV0aG9yPjxhdXRob3I+V2hp

dGUsIE8uPC9hdXRob3I+PGF1dGhvcj5TYWx6YmVyZywgUy4gTC48L2F1dGhvcj48YXV0aG9yPkhv

b3ZlciwgRC4gTC48L2F1dGhvcj48YXV0aG9yPkxpbmRsZXIsIEwuIEUuPC9hdXRob3I+PGF1dGhv

cj5IYWxsaW5nLCBTLiBNLjwvYXV0aG9yPjxhdXRob3I+Qm95bGUsIFMuIE0uPC9hdXRob3I+PGF1

dGhvcj5GcmFzZXIsIEMuIE0uPC9hdXRob3I+PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjxhdXRo

LWFkZHJlc3M+VGhlIEluc3RpdHV0ZSBmb3IgR2Vub21pYyBSZXNlYXJjaCwgOTcxMiBNZWRpY2Fs

IENlbnRlciBEcml2ZSwgUm9ja3ZpbGxlLCBNRCAyMDg1MCwgVVNBLiBpcGF1bHNlbkB0aWdyLm9y

ZzwvYXV0aC1hZGRyZXNzPjx0aXRsZXM+PHRpdGxlPlRoZSBCcnVjZWxsYSBzdWlzIGdlbm9tZSBy

ZXZlYWxzIGZ1bmRhbWVudGFsIHNpbWlsYXJpdGllcyBiZXR3ZWVuIGFuaW1hbCBhbmQgcGxhbnQg

cGF0aG9nZW5zIGFuZCBzeW1iaW9udHM8L3RpdGxlPjxzZWNvbmRhcnktdGl0bGU+UHJvYyBOYXRs

IEFjYWQgU2NpIFUgUyBBPC9zZWNvbmRhcnktdGl0bGU+PC90aXRsZXM+PHBlcmlvZGljYWw+PGZ1

bGwtdGl0bGU+UHJvYyBOYXRsIEFjYWQgU2NpIFUgUyBBPC9mdWxsLXRpdGxlPjwvcGVyaW9kaWNh

bD48cGFnZXM+MTMxNDgtNTM8L3BhZ2VzPjx2b2x1bWU+OTk8L3ZvbHVtZT48bnVtYmVyPjIwPC9u

dW1iZXI+PGVkaXRpb24+MjAwMi8wOS8yNTwvZWRpdGlvbj48a2V5d29yZHM+PGtleXdvcmQ+QWxw

aGFwcm90ZW9iYWN0ZXJpYS9nZW5ldGljczwva2V5d29yZD48a2V5d29yZD5CcnVjZWxsYS8qZ2Vu

ZXRpY3MvcGF0aG9nZW5pY2l0eTwva2V5d29yZD48a2V5d29yZD5CcnVjZWxsYSBtZWxpdGVuc2lz

L2dlbmV0aWNzPC9rZXl3b3JkPjxrZXl3b3JkPkNocm9tb3NvbWVzLCBCYWN0ZXJpYWwvdWx0cmFz

dHJ1Y3R1cmU8L2tleXdvcmQ+PGtleXdvcmQ+RE5BIFRyYW5zcG9zYWJsZSBFbGVtZW50czwva2V5

d29yZD48a2V5d29yZD4qR2Vub21lLCBCYWN0ZXJpYWw8L2tleXdvcmQ+PGtleXdvcmQ+TW9kZWxz

LCBHZW5ldGljPC9rZXl3b3JkPjxrZXl3b3JkPk1vbGVjdWxhciBTZXF1ZW5jZSBEYXRhPC9rZXl3

b3JkPjxrZXl3b3JkPk9wZW4gUmVhZGluZyBGcmFtZXM8L2tleXdvcmQ+PGtleXdvcmQ+Umhpem9i

aXVtL2dlbmV0aWNzPC9rZXl3b3JkPjwva2V5d29yZHM+PGRhdGVzPjx5ZWFyPjIwMDI8L3llYXI+

PHB1Yi1kYXRlcz48ZGF0ZT5PY3QgMTwvZGF0ZT48L3B1Yi1kYXRlcz48L2RhdGVzPjxpc2JuPjAw

MjctODQyNCAoUHJpbnQpJiN4RDswMDI3LTg0MjQgKExpbmtpbmcpPC9pc2JuPjxhY2Nlc3Npb24t

bnVtPjEyMjcxMTIyPC9hY2Nlc3Npb24tbnVtPjx1cmxzPjxyZWxhdGVkLXVybHM+PHVybD5odHRw

Oi8vd3d3Lm5jYmkubmxtLm5paC5nb3YvZW50cmV6L3F1ZXJ5LmZjZ2k/Y21kPVJldHJpZXZlJmFt

cDtkYj1QdWJNZWQmYW1wO2RvcHQ9Q2l0YXRpb24mYW1wO2xpc3RfdWlkcz0xMjI3MTEyMjwvdXJs

PjwvcmVsYXRlZC11cmxzPjwvdXJscz48Y3VzdG9tMj4xMzA2MDE8L2N1c3RvbTI+PGVsZWN0cm9u

aWMtcmVzb3VyY2UtbnVtPjEwLjEwNzMvcG5hcy4xOTIzMTkwOTkmI3hEOzE5MjMxOTA5OSBbcGlp

XTwvZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+PGxhbmd1YWdlPmVuZzwvbGFuZ3VhZ2U+PC9yZWNv

cmQ+PC9DaXRlPjwvRW5kTm90ZT4A

ADDIN EN.CITE PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5QYXVsc2VuPC9BdXRob3I+PFllYXI+MjAwMjwvWWVhcj48

UmVjTnVtPjQ0MTwvUmVjTnVtPjxEaXNwbGF5VGV4dD5bMzBdPC9EaXNwbGF5VGV4dD48cmVjb3Jk

PjxyZWMtbnVtYmVyPjQ0MTwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIg

ZGItaWQ9Ind4OTByOXB0OHJ0cjIwZWZ0dnl2ejBhNHQwMnYwenN3MDJ3diI+NDQxPC9rZXk+PC9m

b3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBl

Pjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5QYXVsc2VuLCBJLiBULjwvYXV0aG9yPjxh

dXRob3I+U2VzaGFkcmksIFIuPC9hdXRob3I+PGF1dGhvcj5OZWxzb24sIEsuIEUuPC9hdXRob3I+

PGF1dGhvcj5FaXNlbiwgSi4gQS48L2F1dGhvcj48YXV0aG9yPkhlaWRlbGJlcmcsIEouIEYuPC9h

dXRob3I+PGF1dGhvcj5SZWFkLCBULiBELjwvYXV0aG9yPjxhdXRob3I+RG9kc29uLCBSLiBKLjwv

YXV0aG9yPjxhdXRob3I+VW1heWFtLCBMLjwvYXV0aG9yPjxhdXRob3I+QnJpbmthYywgTC4gTS48

L2F1dGhvcj48YXV0aG9yPkJlYW5hbiwgTS4gSi48L2F1dGhvcj48YXV0aG9yPkRhdWdoZXJ0eSwg

Uy4gQy48L2F1dGhvcj48YXV0aG9yPkRlYm95LCBSLiBULjwvYXV0aG9yPjxhdXRob3I+RHVya2lu

LCBBLiBTLjwvYXV0aG9yPjxhdXRob3I+S29sb25heSwgSi4gRi48L2F1dGhvcj48YXV0aG9yPk1h

ZHVwdSwgUi48L2F1dGhvcj48YXV0aG9yPk5lbHNvbiwgVy4gQy48L2F1dGhvcj48YXV0aG9yPkF5

b2RlamksIEIuPC9hdXRob3I+PGF1dGhvcj5LcmF1bCwgTS48L2F1dGhvcj48YXV0aG9yPlNoZXR0

eSwgSi48L2F1dGhvcj48YXV0aG9yPk1hbGVrLCBKLjwvYXV0aG9yPjxhdXRob3I+VmFuIEFrZW4s

IFMuIEUuPC9hdXRob3I+PGF1dGhvcj5SaWVkbXVsbGVyLCBTLjwvYXV0aG9yPjxhdXRob3I+VGV0

dGVsaW4sIEguPC9hdXRob3I+PGF1dGhvcj5HaWxsLCBTLiBSLjwvYXV0aG9yPjxhdXRob3I+V2hp

dGUsIE8uPC9hdXRob3I+PGF1dGhvcj5TYWx6YmVyZywgUy4gTC48L2F1dGhvcj48YXV0aG9yPkhv

b3ZlciwgRC4gTC48L2F1dGhvcj48YXV0aG9yPkxpbmRsZXIsIEwuIEUuPC9hdXRob3I+PGF1dGhv

cj5IYWxsaW5nLCBTLiBNLjwvYXV0aG9yPjxhdXRob3I+Qm95bGUsIFMuIE0uPC9hdXRob3I+PGF1

dGhvcj5GcmFzZXIsIEMuIE0uPC9hdXRob3I+PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjxhdXRo

LWFkZHJlc3M+VGhlIEluc3RpdHV0ZSBmb3IgR2Vub21pYyBSZXNlYXJjaCwgOTcxMiBNZWRpY2Fs

IENlbnRlciBEcml2ZSwgUm9ja3ZpbGxlLCBNRCAyMDg1MCwgVVNBLiBpcGF1bHNlbkB0aWdyLm9y

ZzwvYXV0aC1hZGRyZXNzPjx0aXRsZXM+PHRpdGxlPlRoZSBCcnVjZWxsYSBzdWlzIGdlbm9tZSBy

ZXZlYWxzIGZ1bmRhbWVudGFsIHNpbWlsYXJpdGllcyBiZXR3ZWVuIGFuaW1hbCBhbmQgcGxhbnQg

cGF0aG9nZW5zIGFuZCBzeW1iaW9udHM8L3RpdGxlPjxzZWNvbmRhcnktdGl0bGU+UHJvYyBOYXRs

IEFjYWQgU2NpIFUgUyBBPC9zZWNvbmRhcnktdGl0bGU+PC90aXRsZXM+PHBlcmlvZGljYWw+PGZ1

bGwtdGl0bGU+UHJvYyBOYXRsIEFjYWQgU2NpIFUgUyBBPC9mdWxsLXRpdGxlPjwvcGVyaW9kaWNh

bD48cGFnZXM+MTMxNDgtNTM8L3BhZ2VzPjx2b2x1bWU+OTk8L3ZvbHVtZT48bnVtYmVyPjIwPC9u

dW1iZXI+PGVkaXRpb24+MjAwMi8wOS8yNTwvZWRpdGlvbj48a2V5d29yZHM+PGtleXdvcmQ+QWxw

aGFwcm90ZW9iYWN0ZXJpYS9nZW5ldGljczwva2V5d29yZD48a2V5d29yZD5CcnVjZWxsYS8qZ2Vu

ZXRpY3MvcGF0aG9nZW5pY2l0eTwva2V5d29yZD48a2V5d29yZD5CcnVjZWxsYSBtZWxpdGVuc2lz

L2dlbmV0aWNzPC9rZXl3b3JkPjxrZXl3b3JkPkNocm9tb3NvbWVzLCBCYWN0ZXJpYWwvdWx0cmFz

dHJ1Y3R1cmU8L2tleXdvcmQ+PGtleXdvcmQ+RE5BIFRyYW5zcG9zYWJsZSBFbGVtZW50czwva2V5

d29yZD48a2V5d29yZD4qR2Vub21lLCBCYWN0ZXJpYWw8L2tleXdvcmQ+PGtleXdvcmQ+TW9kZWxz

LCBHZW5ldGljPC9rZXl3b3JkPjxrZXl3b3JkPk1vbGVjdWxhciBTZXF1ZW5jZSBEYXRhPC9rZXl3

b3JkPjxrZXl3b3JkPk9wZW4gUmVhZGluZyBGcmFtZXM8L2tleXdvcmQ+PGtleXdvcmQ+Umhpem9i

aXVtL2dlbmV0aWNzPC9rZXl3b3JkPjwva2V5d29yZHM+PGRhdGVzPjx5ZWFyPjIwMDI8L3llYXI+

PHB1Yi1kYXRlcz48ZGF0ZT5PY3QgMTwvZGF0ZT48L3B1Yi1kYXRlcz48L2RhdGVzPjxpc2JuPjAw

MjctODQyNCAoUHJpbnQpJiN4RDswMDI3LTg0MjQgKExpbmtpbmcpPC9pc2JuPjxhY2Nlc3Npb24t

bnVtPjEyMjcxMTIyPC9hY2Nlc3Npb24tbnVtPjx1cmxzPjxyZWxhdGVkLXVybHM+PHVybD5odHRw

Oi8vd3d3Lm5jYmkubmxtLm5paC5nb3YvZW50cmV6L3F1ZXJ5LmZjZ2k/Y21kPVJldHJpZXZlJmFt

cDtkYj1QdWJNZWQmYW1wO2RvcHQ9Q2l0YXRpb24mYW1wO2xpc3RfdWlkcz0xMjI3MTEyMjwvdXJs

PjwvcmVsYXRlZC11cmxzPjwvdXJscz48Y3VzdG9tMj4xMzA2MDE8L2N1c3RvbTI+PGVsZWN0cm9u

aWMtcmVzb3VyY2UtbnVtPjEwLjEwNzMvcG5hcy4xOTIzMTkwOTkmI3hEOzE5MjMxOTA5OSBbcGlp

XTwvZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+PGxhbmd1YWdlPmVuZzwvbGFuZ3VhZ2U+PC9yZWNv

cmQ+PC9DaXRlPjwvRW5kTm90ZT4A

ADDIN EN.CITE.DATA [30] and B. melitensis 16M PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5EZWxWZWNjaGlvPC9BdXRob3I+PFllYXI+MjAwMjwvWWVh

cj48UmVjTnVtPjQ0MDwvUmVjTnVtPjxEaXNwbGF5VGV4dD5bMzFdPC9EaXNwbGF5VGV4dD48cmVj

b3JkPjxyZWMtbnVtYmVyPjQ0MDwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJF

TiIgZGItaWQ9Ind4OTByOXB0OHJ0cjIwZWZ0dnl2ejBhNHQwMnYwenN3MDJ3diI+NDQwPC9rZXk+

PC9mb3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10

eXBlPjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5EZWxWZWNjaGlvLCBWLiBHLjwvYXV0

aG9yPjxhdXRob3I+S2FwYXRyYWwsIFYuPC9hdXRob3I+PGF1dGhvcj5SZWRrYXIsIFIuIEouPC9h

dXRob3I+PGF1dGhvcj5QYXRyYSwgRy48L2F1dGhvcj48YXV0aG9yPk11amVyLCBDLjwvYXV0aG9y

PjxhdXRob3I+TG9zLCBULjwvYXV0aG9yPjxhdXRob3I+SXZhbm92YSwgTi48L2F1dGhvcj48YXV0

aG9yPkFuZGVyc29uLCBJLjwvYXV0aG9yPjxhdXRob3I+QmhhdHRhY2hhcnl5YSwgQS48L2F1dGhv

cj48YXV0aG9yPkx5a2lkaXMsIEEuPC9hdXRob3I+PGF1dGhvcj5SZXpuaWssIEcuPC9hdXRob3I+

PGF1dGhvcj5KYWJsb25za2ksIEwuPC9hdXRob3I+PGF1dGhvcj5MYXJzZW4sIE4uPC9hdXRob3I+

PGF1dGhvcj5EJmFwb3M7U291emEsIE0uPC9hdXRob3I+PGF1dGhvcj5CZXJuYWwsIEEuPC9hdXRo

b3I+PGF1dGhvcj5NYXp1ciwgTS48L2F1dGhvcj48YXV0aG9yPkdvbHRzbWFuLCBFLjwvYXV0aG9y

PjxhdXRob3I+U2Vsa292LCBFLjwvYXV0aG9yPjxhdXRob3I+RWx6ZXIsIFAuIEguPC9hdXRob3I+

PGF1dGhvcj5IYWdpdXMsIFMuPC9hdXRob3I+PGF1dGhvcj5PJmFwb3M7Q2FsbGFnaGFuLCBELjwv

YXV0aG9yPjxhdXRob3I+TGV0ZXNzb24sIEouIEouPC9hdXRob3I+PGF1dGhvcj5IYXNlbGtvcm4s

IFIuPC9hdXRob3I+PGF1dGhvcj5LeXJwaWRlcywgTi48L2F1dGhvcj48YXV0aG9yPk92ZXJiZWVr

LCBSLjwvYXV0aG9yPjwvYXV0aG9ycz48L2NvbnRyaWJ1dG9ycz48YXV0aC1hZGRyZXNzPkluc3Rp

dHV0ZSBvZiBNb2xlY3VsYXIgQmlvbG9neSBhbmQgTWVkaWNpbmUsIFVuaXZlcnNpdHkgb2YgU2Ny

YW50b24sIFNjcmFudG9uLCBQQSAxODUxMCwgVVNBLiB2aW1ibUBhb2wuY29tPC9hdXRoLWFkZHJl

c3M+PHRpdGxlcz48dGl0bGU+VGhlIGdlbm9tZSBzZXF1ZW5jZSBvZiB0aGUgZmFjdWx0YXRpdmUg

aW50cmFjZWxsdWxhciBwYXRob2dlbiBCcnVjZWxsYSBtZWxpdGVuc2lzPC90aXRsZT48c2Vjb25k

YXJ5LXRpdGxlPlByb2MgTmF0bCBBY2FkIFNjaSBVIFMgQTwvc2Vjb25kYXJ5LXRpdGxlPjwvdGl0

bGVzPjxwZXJpb2RpY2FsPjxmdWxsLXRpdGxlPlByb2MgTmF0bCBBY2FkIFNjaSBVIFMgQTwvZnVs

bC10aXRsZT48L3BlcmlvZGljYWw+PHBhZ2VzPjQ0My04PC9wYWdlcz48dm9sdW1lPjk5PC92b2x1

bWU+PG51bWJlcj4xPC9udW1iZXI+PGVkaXRpb24+MjAwMi8wMS8wNTwvZWRpdGlvbj48a2V5d29y

ZHM+PGtleXdvcmQ+QnJ1Y2VsbGEgbWVsaXRlbnNpcy8qZ2VuZXRpY3M8L2tleXdvcmQ+PGtleXdv

cmQ+Q2hyb21vc29tZXM8L2tleXdvcmQ+PGtleXdvcmQ+RmF0dHkgQWNpZHMvbWV0YWJvbGlzbTwv

a2V5d29yZD48a2V5d29yZD4qR2Vub21lLCBCYWN0ZXJpYWw8L2tleXdvcmQ+PGtleXdvcmQ+TW9k

ZWxzLCBCaW9sb2dpY2FsPC9rZXl3b3JkPjxrZXl3b3JkPk1vZGVscywgR2VuZXRpYzwva2V5d29y

ZD48a2V5d29yZD5Nb2xlY3VsYXIgU2VxdWVuY2UgRGF0YTwva2V5d29yZD48a2V5d29yZD5PcGVu

IFJlYWRpbmcgRnJhbWVzPC9rZXl3b3JkPjxrZXl3b3JkPlByb3RlaW4gQmlvc3ludGhlc2lzPC9r

ZXl3b3JkPjxrZXl3b3JkPlJlcGxpY2F0aW9uIE9yaWdpbjwva2V5d29yZD48a2V5d29yZD5TZXF1

ZW5jZSBBbmFseXNpcywgRE5BPC9rZXl3b3JkPjxrZXl3b3JkPlNpZ25hbCBUcmFuc2R1Y3Rpb248

L2tleXdvcmQ+PC9rZXl3b3Jkcz48ZGF0ZXM+PHllYXI+MjAwMjwveWVhcj48cHViLWRhdGVzPjxk

YXRlPkphbiA4PC9kYXRlPjwvcHViLWRhdGVzPjwvZGF0ZXM+PGlzYm4+MDAyNy04NDI0IChQcmlu

dCkmI3hEOzAwMjctODQyNCAoTGlua2luZyk8L2lzYm4+PGFjY2Vzc2lvbi1udW0+MTE3NTY2ODg8

L2FjY2Vzc2lvbi1udW0+PHVybHM+PHJlbGF0ZWQtdXJscz48dXJsPmh0dHA6Ly93d3cubmNiaS5u

bG0ubmloLmdvdi9lbnRyZXovcXVlcnkuZmNnaT9jbWQ9UmV0cmlldmUmYW1wO2RiPVB1Yk1lZCZh

bXA7ZG9wdD1DaXRhdGlvbiZhbXA7bGlzdF91aWRzPTExNzU2Njg4PC91cmw+PC9yZWxhdGVkLXVy

bHM+PC91cmxzPjxjdXN0b20yPjExNzU3OTwvY3VzdG9tMj48ZWxlY3Ryb25pYy1yZXNvdXJjZS1u

dW0+MTAuMTA3My9wbmFzLjIyMTU3NTM5OCYjeEQ7MjIxNTc1Mzk4IFtwaWldPC9lbGVjdHJvbmlj

LXJlc291cmNlLW51bT48bGFuZ3VhZ2U+ZW5nPC9sYW5ndWFnZT48L3JlY29yZD48L0NpdGU+PC9F

bmROb3RlPgB=

ADDIN EN.CITE PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5EZWxWZWNjaGlvPC9BdXRob3I+PFllYXI+MjAwMjwvWWVh

cj48UmVjTnVtPjQ0MDwvUmVjTnVtPjxEaXNwbGF5VGV4dD5bMzFdPC9EaXNwbGF5VGV4dD48cmVj

b3JkPjxyZWMtbnVtYmVyPjQ0MDwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJF

TiIgZGItaWQ9Ind4OTByOXB0OHJ0cjIwZWZ0dnl2ejBhNHQwMnYwenN3MDJ3diI+NDQwPC9rZXk+

PC9mb3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10

eXBlPjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5EZWxWZWNjaGlvLCBWLiBHLjwvYXV0

aG9yPjxhdXRob3I+S2FwYXRyYWwsIFYuPC9hdXRob3I+PGF1dGhvcj5SZWRrYXIsIFIuIEouPC9h

dXRob3I+PGF1dGhvcj5QYXRyYSwgRy48L2F1dGhvcj48YXV0aG9yPk11amVyLCBDLjwvYXV0aG9y

PjxhdXRob3I+TG9zLCBULjwvYXV0aG9yPjxhdXRob3I+SXZhbm92YSwgTi48L2F1dGhvcj48YXV0

aG9yPkFuZGVyc29uLCBJLjwvYXV0aG9yPjxhdXRob3I+QmhhdHRhY2hhcnl5YSwgQS48L2F1dGhv

cj48YXV0aG9yPkx5a2lkaXMsIEEuPC9hdXRob3I+PGF1dGhvcj5SZXpuaWssIEcuPC9hdXRob3I+

PGF1dGhvcj5KYWJsb25za2ksIEwuPC9hdXRob3I+PGF1dGhvcj5MYXJzZW4sIE4uPC9hdXRob3I+

PGF1dGhvcj5EJmFwb3M7U291emEsIE0uPC9hdXRob3I+PGF1dGhvcj5CZXJuYWwsIEEuPC9hdXRo

b3I+PGF1dGhvcj5NYXp1ciwgTS48L2F1dGhvcj48YXV0aG9yPkdvbHRzbWFuLCBFLjwvYXV0aG9y

PjxhdXRob3I+U2Vsa292LCBFLjwvYXV0aG9yPjxhdXRob3I+RWx6ZXIsIFAuIEguPC9hdXRob3I+

PGF1dGhvcj5IYWdpdXMsIFMuPC9hdXRob3I+PGF1dGhvcj5PJmFwb3M7Q2FsbGFnaGFuLCBELjwv

YXV0aG9yPjxhdXRob3I+TGV0ZXNzb24sIEouIEouPC9hdXRob3I+PGF1dGhvcj5IYXNlbGtvcm4s

IFIuPC9hdXRob3I+PGF1dGhvcj5LeXJwaWRlcywgTi48L2F1dGhvcj48YXV0aG9yPk92ZXJiZWVr

LCBSLjwvYXV0aG9yPjwvYXV0aG9ycz48L2NvbnRyaWJ1dG9ycz48YXV0aC1hZGRyZXNzPkluc3Rp

dHV0ZSBvZiBNb2xlY3VsYXIgQmlvbG9neSBhbmQgTWVkaWNpbmUsIFVuaXZlcnNpdHkgb2YgU2Ny

YW50b24sIFNjcmFudG9uLCBQQSAxODUxMCwgVVNBLiB2aW1ibUBhb2wuY29tPC9hdXRoLWFkZHJl

c3M+PHRpdGxlcz48dGl0bGU+VGhlIGdlbm9tZSBzZXF1ZW5jZSBvZiB0aGUgZmFjdWx0YXRpdmUg

aW50cmFjZWxsdWxhciBwYXRob2dlbiBCcnVjZWxsYSBtZWxpdGVuc2lzPC90aXRsZT48c2Vjb25k

YXJ5LXRpdGxlPlByb2MgTmF0bCBBY2FkIFNjaSBVIFMgQTwvc2Vjb25kYXJ5LXRpdGxlPjwvdGl0

bGVzPjxwZXJpb2RpY2FsPjxmdWxsLXRpdGxlPlByb2MgTmF0bCBBY2FkIFNjaSBVIFMgQTwvZnVs

bC10aXRsZT48L3BlcmlvZGljYWw+PHBhZ2VzPjQ0My04PC9wYWdlcz48dm9sdW1lPjk5PC92b2x1

bWU+PG51bWJlcj4xPC9udW1iZXI+PGVkaXRpb24+MjAwMi8wMS8wNTwvZWRpdGlvbj48a2V5d29y

ZHM+PGtleXdvcmQ+QnJ1Y2VsbGEgbWVsaXRlbnNpcy8qZ2VuZXRpY3M8L2tleXdvcmQ+PGtleXdv

cmQ+Q2hyb21vc29tZXM8L2tleXdvcmQ+PGtleXdvcmQ+RmF0dHkgQWNpZHMvbWV0YWJvbGlzbTwv

a2V5d29yZD48a2V5d29yZD4qR2Vub21lLCBCYWN0ZXJpYWw8L2tleXdvcmQ+PGtleXdvcmQ+TW9k

ZWxzLCBCaW9sb2dpY2FsPC9rZXl3b3JkPjxrZXl3b3JkPk1vZGVscywgR2VuZXRpYzwva2V5d29y

ZD48a2V5d29yZD5Nb2xlY3VsYXIgU2VxdWVuY2UgRGF0YTwva2V5d29yZD48a2V5d29yZD5PcGVu

IFJlYWRpbmcgRnJhbWVzPC9rZXl3b3JkPjxrZXl3b3JkPlByb3RlaW4gQmlvc3ludGhlc2lzPC9r

ZXl3b3JkPjxrZXl3b3JkPlJlcGxpY2F0aW9uIE9yaWdpbjwva2V5d29yZD48a2V5d29yZD5TZXF1

ZW5jZSBBbmFseXNpcywgRE5BPC9rZXl3b3JkPjxrZXl3b3JkPlNpZ25hbCBUcmFuc2R1Y3Rpb248

L2tleXdvcmQ+PC9rZXl3b3Jkcz48ZGF0ZXM+PHllYXI+MjAwMjwveWVhcj48cHViLWRhdGVzPjxk

YXRlPkphbiA4PC9kYXRlPjwvcHViLWRhdGVzPjwvZGF0ZXM+PGlzYm4+MDAyNy04NDI0IChQcmlu

dCkmI3hEOzAwMjctODQyNCAoTGlua2luZyk8L2lzYm4+PGFjY2Vzc2lvbi1udW0+MTE3NTY2ODg8

L2FjY2Vzc2lvbi1udW0+PHVybHM+PHJlbGF0ZWQtdXJscz48dXJsPmh0dHA6Ly93d3cubmNiaS5u

bG0ubmloLmdvdi9lbnRyZXovcXVlcnkuZmNnaT9jbWQ9UmV0cmlldmUmYW1wO2RiPVB1Yk1lZCZh

bXA7ZG9wdD1DaXRhdGlvbiZhbXA7bGlzdF91aWRzPTExNzU2Njg4PC91cmw+PC9yZWxhdGVkLXVy

bHM+PC91cmxzPjxjdXN0b20yPjExNzU3OTwvY3VzdG9tMj48ZWxlY3Ryb25pYy1yZXNvdXJjZS1u

dW0+MTAuMTA3My9wbmFzLjIyMTU3NTM5OCYjeEQ7MjIxNTc1Mzk4IFtwaWldPC9lbGVjdHJvbmlj

LXJlc291cmNlLW51bT48bGFuZ3VhZ2U+ZW5nPC9sYW5ndWFnZT48L3JlY29yZD48L0NpdGU+PC9F

bmROb3RlPgB=

ADDIN EN.CITE.DATA [31] to determine the specific instances in the genome sequence of each 9 base core probe sequence from the array. Normalized signal intensity for each of the 262,144 9-mer probes represented on the array were divided by the corresponding counts of 9-mer probe occurrences for both B. suis and B. melitensis. The resulting values for a set of 32,000 probes were then plotted as illustrated in Figure 4, with B. melitensis and B. suis (signal intensity/counts) on the ordinate and abscissa, respectively. Pearson’s correlation coefficient was subsequently calculated (ρ = 0.93 as shown). This correlation value indicates that the 9-mer probe signal intensities are in agreement with ‘known’ genome sequence similarity scores for B. melitensis and B. suis. 2.3.4 Taxonomic phylogenetic relationships between organisms hybridized on the UBDA arrayPhylogenetic trees are used as a tool in comparative sequence analysis to illustrate the evolutionary relationships among sequences. To create a phylogenetic tree based on 9-mer signal intensities, genomes listed in (Additional file 5, Table S3) were compared pair-wise, using the Pearson correlation measure (Figure 5). In this study, we demonstrate the use of signal intensities generated from 9-mer probe data to clearly cluster hosts and pathogens into to their ‘known’ phylogenetic relationships. We have previously shown that a custom microsatellite microarray can be used to demonstrate global microsatellite variation between species as measured by array hybridization signal intensities. This correlated with established taxonomic relationships PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5HYWxpbmRvPC9BdXRob3I+PFllYXI+MjAwOTwvWWVhcj48

UmVjTnVtPjM2NDwvUmVjTnVtPjxEaXNwbGF5VGV4dD5bMTldPC9EaXNwbGF5VGV4dD48cmVjb3Jk

PjxyZWMtbnVtYmVyPjM2NDwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIg

ZGItaWQ9Ind4OTByOXB0OHJ0cjIwZWZ0dnl2ejBhNHQwMnYwenN3MDJ3diI+MzY0PC9rZXk+PC9m

b3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBl

Pjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5HYWxpbmRvLCBDLiBMLjwvYXV0aG9yPjxh

dXRob3I+TWNJdmVyLCBMLiBKLjwvYXV0aG9yPjxhdXRob3I+TWNDb3JtaWNrLCBKLiBGLjwvYXV0

aG9yPjxhdXRob3I+U2tpbm5lciwgTS4gQS48L2F1dGhvcj48YXV0aG9yPlhpZSwgWS48L2F1dGhv

cj48YXV0aG9yPkdlbGhhdXNlbiwgUi4gQS48L2F1dGhvcj48YXV0aG9yPk5nLCBLLjwvYXV0aG9y

PjxhdXRob3I+S3VtYXIsIE4uIE0uPC9hdXRob3I+PGF1dGhvcj5HYXJuZXIsIEguIFIuPC9hdXRo

b3I+PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjxhdXRoLWFkZHJlc3M+TWNEZXJtb3R0IENlbnRl

ciBmb3IgSHVtYW4gR3Jvd3RoIGFuZCBEZXZlbG9wbWVudCBvZiB0aGUgVW5pdmVyc2l0eSBvZiBU

ZXhhcyBTb3V0aHdlc3Rlcm4gTWVkaWNhbCBDZW50ZXIsIERhbGxhcywgVGV4YXMsIFVTQS4gQ3Jp

c3RpLmdhbGluZG9AdXRzb3V0aHdlc3Rlcm4uZWR1PC9hdXRoLWFkZHJlc3M+PHRpdGxlcz48dGl0

bGU+R2xvYmFsIG1pY3Jvc2F0ZWxsaXRlIGNvbnRlbnQgZGlzdGluZ3Vpc2hlcyBodW1hbnMsIHBy

aW1hdGVzLCBhbmltYWxzLCBhbmQgcGxhbnRzPC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPk1vbCBC

aW9sIEV2b2w8L3NlY29uZGFyeS10aXRsZT48L3RpdGxlcz48cGVyaW9kaWNhbD48ZnVsbC10aXRs

ZT5Nb2wgQmlvbCBFdm9sPC9mdWxsLXRpdGxlPjwvcGVyaW9kaWNhbD48cGFnZXM+MjgwOS0xOTwv

cGFnZXM+PHZvbHVtZT4yNjwvdm9sdW1lPjxudW1iZXI+MTI8L251bWJlcj48ZWRpdGlvbj4yMDA5

LzA5LzAxPC9lZGl0aW9uPjxrZXl3b3Jkcz48a2V5d29yZD5BbmltYWxzPC9rZXl3b3JkPjxrZXl3

b3JkPkJhc2UgQ29tcG9zaXRpb24vKmdlbmV0aWNzPC9rZXl3b3JkPjxrZXl3b3JkPkdlbmV0aWMg

TG9jaS9nZW5ldGljczwva2V5d29yZD48a2V5d29yZD5HZW5vbWUvZ2VuZXRpY3M8L2tleXdvcmQ+

PGtleXdvcmQ+SHVtYW5zPC9rZXl3b3JkPjxrZXl3b3JkPk1pY3Jvc2F0ZWxsaXRlIFJlcGVhdHMv

KmdlbmV0aWNzPC9rZXl3b3JkPjxrZXl3b3JkPk51Y2xlaWMgQWNpZCBIeWJyaWRpemF0aW9uL2dl

bmV0aWNzPC9rZXl3b3JkPjxrZXl3b3JkPk9saWdvbnVjbGVvdGlkZSBBcnJheSBTZXF1ZW5jZSBB

bmFseXNpczwva2V5d29yZD48a2V5d29yZD5QYW4gdHJvZ2xvZHl0ZXMvZ2VuZXRpY3M8L2tleXdv

cmQ+PGtleXdvcmQ+UGxhbnRzLypnZW5ldGljczwva2V5d29yZD48a2V5d29yZD5QcmltYXRlcy8q

Z2VuZXRpY3M8L2tleXdvcmQ+PGtleXdvcmQ+U3BlY2llcyBTcGVjaWZpY2l0eTwva2V5d29yZD48

L2tleXdvcmRzPjxkYXRlcz48eWVhcj4yMDA5PC95ZWFyPjxwdWItZGF0ZXM+PGRhdGU+RGVjPC9k

YXRlPjwvcHViLWRhdGVzPjwvZGF0ZXM+PGlzYm4+MTUzNy0xNzE5IChFbGVjdHJvbmljKSYjeEQ7

MDczNy00MDM4IChMaW5raW5nKTwvaXNibj48YWNjZXNzaW9uLW51bT4xOTcxNzUyNjwvYWNjZXNz

aW9uLW51bT48dXJscz48cmVsYXRlZC11cmxzPjx1cmw+aHR0cDovL3d3dy5uY2JpLm5sbS5uaWgu

Z292L2VudHJlei9xdWVyeS5mY2dpP2NtZD1SZXRyaWV2ZSZhbXA7ZGI9UHViTWVkJmFtcDtkb3B0

PUNpdGF0aW9uJmFtcDtsaXN0X3VpZHM9MTk3MTc1MjY8L3VybD48L3JlbGF0ZWQtdXJscz48L3Vy

bHM+PGN1c3RvbTI+Mjc4MjMyNzwvY3VzdG9tMj48ZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+bXNw

MTkyIFtwaWldJiN4RDsxMC4xMDkzL21vbGJldi9tc3AxOTI8L2VsZWN0cm9uaWMtcmVzb3VyY2Ut

bnVtPjxsYW5ndWFnZT5lbmc8L2xhbmd1YWdlPjwvcmVjb3JkPjwvQ2l0ZT48L0VuZE5vdGU+

ADDIN EN.CITE PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5HYWxpbmRvPC9BdXRob3I+PFllYXI+MjAwOTwvWWVhcj48

UmVjTnVtPjM2NDwvUmVjTnVtPjxEaXNwbGF5VGV4dD5bMTldPC9EaXNwbGF5VGV4dD48cmVjb3Jk

PjxyZWMtbnVtYmVyPjM2NDwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIg

ZGItaWQ9Ind4OTByOXB0OHJ0cjIwZWZ0dnl2ejBhNHQwMnYwenN3MDJ3diI+MzY0PC9rZXk+PC9m

b3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBl

Pjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5HYWxpbmRvLCBDLiBMLjwvYXV0aG9yPjxh

dXRob3I+TWNJdmVyLCBMLiBKLjwvYXV0aG9yPjxhdXRob3I+TWNDb3JtaWNrLCBKLiBGLjwvYXV0

aG9yPjxhdXRob3I+U2tpbm5lciwgTS4gQS48L2F1dGhvcj48YXV0aG9yPlhpZSwgWS48L2F1dGhv

cj48YXV0aG9yPkdlbGhhdXNlbiwgUi4gQS48L2F1dGhvcj48YXV0aG9yPk5nLCBLLjwvYXV0aG9y

PjxhdXRob3I+S3VtYXIsIE4uIE0uPC9hdXRob3I+PGF1dGhvcj5HYXJuZXIsIEguIFIuPC9hdXRo

b3I+PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjxhdXRoLWFkZHJlc3M+TWNEZXJtb3R0IENlbnRl

ciBmb3IgSHVtYW4gR3Jvd3RoIGFuZCBEZXZlbG9wbWVudCBvZiB0aGUgVW5pdmVyc2l0eSBvZiBU

ZXhhcyBTb3V0aHdlc3Rlcm4gTWVkaWNhbCBDZW50ZXIsIERhbGxhcywgVGV4YXMsIFVTQS4gQ3Jp

c3RpLmdhbGluZG9AdXRzb3V0aHdlc3Rlcm4uZWR1PC9hdXRoLWFkZHJlc3M+PHRpdGxlcz48dGl0

bGU+R2xvYmFsIG1pY3Jvc2F0ZWxsaXRlIGNvbnRlbnQgZGlzdGluZ3Vpc2hlcyBodW1hbnMsIHBy

aW1hdGVzLCBhbmltYWxzLCBhbmQgcGxhbnRzPC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPk1vbCBC

aW9sIEV2b2w8L3NlY29uZGFyeS10aXRsZT48L3RpdGxlcz48cGVyaW9kaWNhbD48ZnVsbC10aXRs

ZT5Nb2wgQmlvbCBFdm9sPC9mdWxsLXRpdGxlPjwvcGVyaW9kaWNhbD48cGFnZXM+MjgwOS0xOTwv

cGFnZXM+PHZvbHVtZT4yNjwvdm9sdW1lPjxudW1iZXI+MTI8L251bWJlcj48ZWRpdGlvbj4yMDA5

LzA5LzAxPC9lZGl0aW9uPjxrZXl3b3Jkcz48a2V5d29yZD5BbmltYWxzPC9rZXl3b3JkPjxrZXl3

b3JkPkJhc2UgQ29tcG9zaXRpb24vKmdlbmV0aWNzPC9rZXl3b3JkPjxrZXl3b3JkPkdlbmV0aWMg

TG9jaS9nZW5ldGljczwva2V5d29yZD48a2V5d29yZD5HZW5vbWUvZ2VuZXRpY3M8L2tleXdvcmQ+

PGtleXdvcmQ+SHVtYW5zPC9rZXl3b3JkPjxrZXl3b3JkPk1pY3Jvc2F0ZWxsaXRlIFJlcGVhdHMv

KmdlbmV0aWNzPC9rZXl3b3JkPjxrZXl3b3JkPk51Y2xlaWMgQWNpZCBIeWJyaWRpemF0aW9uL2dl

bmV0aWNzPC9rZXl3b3JkPjxrZXl3b3JkPk9saWdvbnVjbGVvdGlkZSBBcnJheSBTZXF1ZW5jZSBB

bmFseXNpczwva2V5d29yZD48a2V5d29yZD5QYW4gdHJvZ2xvZHl0ZXMvZ2VuZXRpY3M8L2tleXdv

cmQ+PGtleXdvcmQ+UGxhbnRzLypnZW5ldGljczwva2V5d29yZD48a2V5d29yZD5QcmltYXRlcy8q

Z2VuZXRpY3M8L2tleXdvcmQ+PGtleXdvcmQ+U3BlY2llcyBTcGVjaWZpY2l0eTwva2V5d29yZD48

L2tleXdvcmRzPjxkYXRlcz48eWVhcj4yMDA5PC95ZWFyPjxwdWItZGF0ZXM+PGRhdGU+RGVjPC9k

YXRlPjwvcHViLWRhdGVzPjwvZGF0ZXM+PGlzYm4+MTUzNy0xNzE5IChFbGVjdHJvbmljKSYjeEQ7

MDczNy00MDM4IChMaW5raW5nKTwvaXNibj48YWNjZXNzaW9uLW51bT4xOTcxNzUyNjwvYWNjZXNz

aW9uLW51bT48dXJscz48cmVsYXRlZC11cmxzPjx1cmw+aHR0cDovL3d3dy5uY2JpLm5sbS5uaWgu

Z292L2VudHJlei9xdWVyeS5mY2dpP2NtZD1SZXRyaWV2ZSZhbXA7ZGI9UHViTWVkJmFtcDtkb3B0

PUNpdGF0aW9uJmFtcDtsaXN0X3VpZHM9MTk3MTc1MjY8L3VybD48L3JlbGF0ZWQtdXJscz48L3Vy

bHM+PGN1c3RvbTI+Mjc4MjMyNzwvY3VzdG9tMj48ZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+bXNw

MTkyIFtwaWldJiN4RDsxMC4xMDkzL21vbGJldi9tc3AxOTI8L2VsZWN0cm9uaWMtcmVzb3VyY2Ut

bnVtPjxsYW5ndWFnZT5lbmc8L2xhbmd1YWdlPjwvcmVjb3JkPjwvQ2l0ZT48L0VuZE5vdGU+

ADDIN EN.CITE.DATA [19]. Data obtained from the UBDA arrays (normalized signal intensity values) and computational analysis (log2 transformed, computed counts within sequenced genomes), for all 262,144 9-mer probes, were treated identically for the purposes of tree building. All 262,144 9-mer data points for each sample were first normalized using GeneSpring (percentile shift normalization followed by baseline to median normalization). A Pearson’s correlation matrix was subsequently produced and then converted to a taxonomic tree using the neighbour-joining program within the PHYLIP software suite and TreeView program ADDIN EN.CITE <EndNote><Cite><Author>Page</Author><Year>1996</Year><RecNum>361</RecNum><DisplayText>[32]</DisplayText><record><rec-number>361</rec-number><foreign-keys><key app="EN" db-id="wx90r9pt8rtr20eftvyvz0a4t02v0zsw02wv">361</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Page, R. D.</author></authors></contributors><auth-address>Division of Environmental and Evolutionary Biology, University of Glasgow, UK. r.page@bio.gla.ac.uk</auth-address><titles><title>TreeView: an application to display phylogenetic trees on personal computers</title><secondary-title>Comput Appl Biosci</secondary-title></titles><periodical><full-title>Comput Appl Biosci</full-title></periodical><pages>357-8</pages><volume>12</volume><number>4</number><edition>1996/08/01</edition><keywords><keyword>Computer Graphics</keyword><keyword>Microcomputers</keyword><keyword>*Phylogeny</keyword><keyword>*Software</keyword></keywords><dates><year>1996</year><pub-dates><date>Aug</date></pub-dates></dates><isbn>0266-7061 (Print)&#xD;0266-7061 (Linking)</isbn><accession-num>8902363</accession-num><urls><related-urls><url>;[32]. Trees were not rooted to any specific organism. The lower branches of the phylogenetic tree as shown in Figure 5 display the segregation and differentiation of the various Brucella species. The mixed sample comprising of L. Plantarum and S. Mitis (4:1 ratio) was found to be closer to the L. Plantarum(ρ= 0.974) versus S. mitis(ρ= 0.957) on the phylogenetic tree since there was a higher copy number of this genome in the sample (Figure 5). The tree illustrates that the 9-mer probe intensities can be used in species differentiation. The taxonomic tree is an approximate visualization estimation, using a distance matrix which successfully separated mammalian, bacterial and viral clades. 2.3.5 Samples subjected to DNA amplification are comparable to unamplified samplesIn preparation for the UBDA becoming not only a detection assay but also a diagnostic test for the identification of numerous pathogens, it was recognized that pathogens may be present in a given sample at very low copy numbers and may be further diluted by genetic material recovered from the host. Microarrays require 0.5 - 1 ?g of high-purity genomic DNA, which may be difficult to obtain from all samples. To overcome this limitation the potential for DNA amplification, artefacts that may significantly alter hybridization to the microarray were examined. To analyze for this possible limitation, a 10 ng (4.89 x 106 copies) aliquot of Francisella tularensis LVS strain genomic DNA [Accession number NC_007880, genome size 1,895,994 bases] was amplified using the whole genome amplification method (GenomiPhi V2, GE Healthcare). A total of 1 ?g of the resulting amplified DNA was hybridized to the UBDA array and compared to the hybridization pattern resulting from the hybridization of 1 ?g of unamplified DNA from the same source. Figure 6 shows a linear regression of the two samples (all 262,144 probes) which resulted in an R2 value of 0.91, well within the R2 = 0.94 +- 0.06 reproducibility found for the custom microsatellite microarray PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5HYWxpbmRvPC9BdXRob3I+PFllYXI+MjAwOTwvWWVhcj48

UmVjTnVtPjM2NDwvUmVjTnVtPjxEaXNwbGF5VGV4dD5bMTldPC9EaXNwbGF5VGV4dD48cmVjb3Jk

PjxyZWMtbnVtYmVyPjM2NDwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIg

ZGItaWQ9Ind4OTByOXB0OHJ0cjIwZWZ0dnl2ejBhNHQwMnYwenN3MDJ3diI+MzY0PC9rZXk+PC9m

b3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBl

Pjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5HYWxpbmRvLCBDLiBMLjwvYXV0aG9yPjxh

dXRob3I+TWNJdmVyLCBMLiBKLjwvYXV0aG9yPjxhdXRob3I+TWNDb3JtaWNrLCBKLiBGLjwvYXV0

aG9yPjxhdXRob3I+U2tpbm5lciwgTS4gQS48L2F1dGhvcj48YXV0aG9yPlhpZSwgWS48L2F1dGhv

cj48YXV0aG9yPkdlbGhhdXNlbiwgUi4gQS48L2F1dGhvcj48YXV0aG9yPk5nLCBLLjwvYXV0aG9y

PjxhdXRob3I+S3VtYXIsIE4uIE0uPC9hdXRob3I+PGF1dGhvcj5HYXJuZXIsIEguIFIuPC9hdXRo

b3I+PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjxhdXRoLWFkZHJlc3M+TWNEZXJtb3R0IENlbnRl

ciBmb3IgSHVtYW4gR3Jvd3RoIGFuZCBEZXZlbG9wbWVudCBvZiB0aGUgVW5pdmVyc2l0eSBvZiBU

ZXhhcyBTb3V0aHdlc3Rlcm4gTWVkaWNhbCBDZW50ZXIsIERhbGxhcywgVGV4YXMsIFVTQS4gQ3Jp

c3RpLmdhbGluZG9AdXRzb3V0aHdlc3Rlcm4uZWR1PC9hdXRoLWFkZHJlc3M+PHRpdGxlcz48dGl0

bGU+R2xvYmFsIG1pY3Jvc2F0ZWxsaXRlIGNvbnRlbnQgZGlzdGluZ3Vpc2hlcyBodW1hbnMsIHBy

aW1hdGVzLCBhbmltYWxzLCBhbmQgcGxhbnRzPC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPk1vbCBC

aW9sIEV2b2w8L3NlY29uZGFyeS10aXRsZT48L3RpdGxlcz48cGVyaW9kaWNhbD48ZnVsbC10aXRs

ZT5Nb2wgQmlvbCBFdm9sPC9mdWxsLXRpdGxlPjwvcGVyaW9kaWNhbD48cGFnZXM+MjgwOS0xOTwv

cGFnZXM+PHZvbHVtZT4yNjwvdm9sdW1lPjxudW1iZXI+MTI8L251bWJlcj48ZWRpdGlvbj4yMDA5

LzA5LzAxPC9lZGl0aW9uPjxrZXl3b3Jkcz48a2V5d29yZD5BbmltYWxzPC9rZXl3b3JkPjxrZXl3

b3JkPkJhc2UgQ29tcG9zaXRpb24vKmdlbmV0aWNzPC9rZXl3b3JkPjxrZXl3b3JkPkdlbmV0aWMg

TG9jaS9nZW5ldGljczwva2V5d29yZD48a2V5d29yZD5HZW5vbWUvZ2VuZXRpY3M8L2tleXdvcmQ+

PGtleXdvcmQ+SHVtYW5zPC9rZXl3b3JkPjxrZXl3b3JkPk1pY3Jvc2F0ZWxsaXRlIFJlcGVhdHMv

KmdlbmV0aWNzPC9rZXl3b3JkPjxrZXl3b3JkPk51Y2xlaWMgQWNpZCBIeWJyaWRpemF0aW9uL2dl

bmV0aWNzPC9rZXl3b3JkPjxrZXl3b3JkPk9saWdvbnVjbGVvdGlkZSBBcnJheSBTZXF1ZW5jZSBB

bmFseXNpczwva2V5d29yZD48a2V5d29yZD5QYW4gdHJvZ2xvZHl0ZXMvZ2VuZXRpY3M8L2tleXdv

cmQ+PGtleXdvcmQ+UGxhbnRzLypnZW5ldGljczwva2V5d29yZD48a2V5d29yZD5QcmltYXRlcy8q

Z2VuZXRpY3M8L2tleXdvcmQ+PGtleXdvcmQ+U3BlY2llcyBTcGVjaWZpY2l0eTwva2V5d29yZD48

L2tleXdvcmRzPjxkYXRlcz48eWVhcj4yMDA5PC95ZWFyPjxwdWItZGF0ZXM+PGRhdGU+RGVjPC9k

YXRlPjwvcHViLWRhdGVzPjwvZGF0ZXM+PGlzYm4+MTUzNy0xNzE5IChFbGVjdHJvbmljKSYjeEQ7

MDczNy00MDM4IChMaW5raW5nKTwvaXNibj48YWNjZXNzaW9uLW51bT4xOTcxNzUyNjwvYWNjZXNz

aW9uLW51bT48dXJscz48cmVsYXRlZC11cmxzPjx1cmw+aHR0cDovL3d3dy5uY2JpLm5sbS5uaWgu

Z292L2VudHJlei9xdWVyeS5mY2dpP2NtZD1SZXRyaWV2ZSZhbXA7ZGI9UHViTWVkJmFtcDtkb3B0

PUNpdGF0aW9uJmFtcDtsaXN0X3VpZHM9MTk3MTc1MjY8L3VybD48L3JlbGF0ZWQtdXJscz48L3Vy

bHM+PGN1c3RvbTI+Mjc4MjMyNzwvY3VzdG9tMj48ZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+bXNw

MTkyIFtwaWldJiN4RDsxMC4xMDkzL21vbGJldi9tc3AxOTI8L2VsZWN0cm9uaWMtcmVzb3VyY2Ut

bnVtPjxsYW5ndWFnZT5lbmc8L2xhbmd1YWdlPjwvcmVjb3JkPjwvQ2l0ZT48L0VuZE5vdGU+

ADDIN EN.CITE PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5HYWxpbmRvPC9BdXRob3I+PFllYXI+MjAwOTwvWWVhcj48

UmVjTnVtPjM2NDwvUmVjTnVtPjxEaXNwbGF5VGV4dD5bMTldPC9EaXNwbGF5VGV4dD48cmVjb3Jk

PjxyZWMtbnVtYmVyPjM2NDwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIg

ZGItaWQ9Ind4OTByOXB0OHJ0cjIwZWZ0dnl2ejBhNHQwMnYwenN3MDJ3diI+MzY0PC9rZXk+PC9m

b3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBl

Pjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5HYWxpbmRvLCBDLiBMLjwvYXV0aG9yPjxh

dXRob3I+TWNJdmVyLCBMLiBKLjwvYXV0aG9yPjxhdXRob3I+TWNDb3JtaWNrLCBKLiBGLjwvYXV0

aG9yPjxhdXRob3I+U2tpbm5lciwgTS4gQS48L2F1dGhvcj48YXV0aG9yPlhpZSwgWS48L2F1dGhv

cj48YXV0aG9yPkdlbGhhdXNlbiwgUi4gQS48L2F1dGhvcj48YXV0aG9yPk5nLCBLLjwvYXV0aG9y

PjxhdXRob3I+S3VtYXIsIE4uIE0uPC9hdXRob3I+PGF1dGhvcj5HYXJuZXIsIEguIFIuPC9hdXRo

b3I+PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjxhdXRoLWFkZHJlc3M+TWNEZXJtb3R0IENlbnRl

ciBmb3IgSHVtYW4gR3Jvd3RoIGFuZCBEZXZlbG9wbWVudCBvZiB0aGUgVW5pdmVyc2l0eSBvZiBU

ZXhhcyBTb3V0aHdlc3Rlcm4gTWVkaWNhbCBDZW50ZXIsIERhbGxhcywgVGV4YXMsIFVTQS4gQ3Jp

c3RpLmdhbGluZG9AdXRzb3V0aHdlc3Rlcm4uZWR1PC9hdXRoLWFkZHJlc3M+PHRpdGxlcz48dGl0

bGU+R2xvYmFsIG1pY3Jvc2F0ZWxsaXRlIGNvbnRlbnQgZGlzdGluZ3Vpc2hlcyBodW1hbnMsIHBy

aW1hdGVzLCBhbmltYWxzLCBhbmQgcGxhbnRzPC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPk1vbCBC

aW9sIEV2b2w8L3NlY29uZGFyeS10aXRsZT48L3RpdGxlcz48cGVyaW9kaWNhbD48ZnVsbC10aXRs

ZT5Nb2wgQmlvbCBFdm9sPC9mdWxsLXRpdGxlPjwvcGVyaW9kaWNhbD48cGFnZXM+MjgwOS0xOTwv

cGFnZXM+PHZvbHVtZT4yNjwvdm9sdW1lPjxudW1iZXI+MTI8L251bWJlcj48ZWRpdGlvbj4yMDA5

LzA5LzAxPC9lZGl0aW9uPjxrZXl3b3Jkcz48a2V5d29yZD5BbmltYWxzPC9rZXl3b3JkPjxrZXl3

b3JkPkJhc2UgQ29tcG9zaXRpb24vKmdlbmV0aWNzPC9rZXl3b3JkPjxrZXl3b3JkPkdlbmV0aWMg

TG9jaS9nZW5ldGljczwva2V5d29yZD48a2V5d29yZD5HZW5vbWUvZ2VuZXRpY3M8L2tleXdvcmQ+

PGtleXdvcmQ+SHVtYW5zPC9rZXl3b3JkPjxrZXl3b3JkPk1pY3Jvc2F0ZWxsaXRlIFJlcGVhdHMv

KmdlbmV0aWNzPC9rZXl3b3JkPjxrZXl3b3JkPk51Y2xlaWMgQWNpZCBIeWJyaWRpemF0aW9uL2dl

bmV0aWNzPC9rZXl3b3JkPjxrZXl3b3JkPk9saWdvbnVjbGVvdGlkZSBBcnJheSBTZXF1ZW5jZSBB

bmFseXNpczwva2V5d29yZD48a2V5d29yZD5QYW4gdHJvZ2xvZHl0ZXMvZ2VuZXRpY3M8L2tleXdv

cmQ+PGtleXdvcmQ+UGxhbnRzLypnZW5ldGljczwva2V5d29yZD48a2V5d29yZD5QcmltYXRlcy8q

Z2VuZXRpY3M8L2tleXdvcmQ+PGtleXdvcmQ+U3BlY2llcyBTcGVjaWZpY2l0eTwva2V5d29yZD48

L2tleXdvcmRzPjxkYXRlcz48eWVhcj4yMDA5PC95ZWFyPjxwdWItZGF0ZXM+PGRhdGU+RGVjPC9k

YXRlPjwvcHViLWRhdGVzPjwvZGF0ZXM+PGlzYm4+MTUzNy0xNzE5IChFbGVjdHJvbmljKSYjeEQ7

MDczNy00MDM4IChMaW5raW5nKTwvaXNibj48YWNjZXNzaW9uLW51bT4xOTcxNzUyNjwvYWNjZXNz

aW9uLW51bT48dXJscz48cmVsYXRlZC11cmxzPjx1cmw+aHR0cDovL3d3dy5uY2JpLm5sbS5uaWgu

Z292L2VudHJlei9xdWVyeS5mY2dpP2NtZD1SZXRyaWV2ZSZhbXA7ZGI9UHViTWVkJmFtcDtkb3B0

PUNpdGF0aW9uJmFtcDtsaXN0X3VpZHM9MTk3MTc1MjY8L3VybD48L3JlbGF0ZWQtdXJscz48L3Vy

bHM+PGN1c3RvbTI+Mjc4MjMyNzwvY3VzdG9tMj48ZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+bXNw

MTkyIFtwaWldJiN4RDsxMC4xMDkzL21vbGJldi9tc3AxOTI8L2VsZWN0cm9uaWMtcmVzb3VyY2Ut

bnVtPjxsYW5ndWFnZT5lbmc8L2xhbmd1YWdlPjwvcmVjb3JkPjwvQ2l0ZT48L0VuZE5vdGU+

ADDIN EN.CITE.DATA [19]. This confirms that whole genome amplification of pathogen material in small amounts is comparable to the unamplified genomic sample. We obtained these results using the standard protocol with 10 ng of starting material without optimization. We are targeting a 1-2 nanogram sample size as a starting amount of material in an optimized robust, field sample evaluation. 2.4 Discussion This is a new forensics array based technology to identify any species. This unique strategy of using patterns generated from hybridization of any unknown genome (DNA or cDNA) to a very high-density species independent oligonucleotide microarray and comparing those patterns to a library of patterns of known samples can be used to identify unknown organisms. Figure 5 shows the grouping of the different genomes into bacterial, viral and eukaryotic genomes. Further the Brucella species grouping pattern obtained from the phylogenomic analysis using the Pearson’s correlation matrix shown in Figure 5 are in agreement with Brucella species showing hierarchical clustering represented as a similarity matrix shown in Figure 3. The UBDA hybridization patterns are unique to a genome, and potentially to different isolates and to a mixture of organisms. In the future, this forensics method will work by comparing signal intensity readout to a library of readouts established by interrogating a wide spectrum of species which will be available at our website . The phylogenetic tree illustrates the ability of 9-mer probes to differentiate among Brucella species. Pair-wise comparisons between different genomes can be used as a measure to classify bacterial, viral or mammalian genomes into their respective clades. We have begun to amass a library of ‘signatures’ to facilitate accurate identification and classification of “unknown” samples. We are currently expanding the repository of available bio-signatures to several hundred genomes including field isolates from bacteria, viruses, host genomes and vectors infected with pathogens. Some of the genomes in this repository are classified in the select agent category. UBDA forensics application has the potential to be compatible with micro-machine based front end sample processing and preparation platforms, thus enabling the production of a highly automated, fast and accurate field-deployable detection system. Other diagnostic techniques such as PCR or RT-PCR require several primers to be designed which are specific for each genome- bacterial, viral or host. There may be spurious products for primers binding at low specificity. The processing costs should also be taken into consideration for these methodologies. The current cost for the UBDA array is approximately $350 per sample which includes reagents and processing costs. The current turnaround time for this forensics technology is less than 24 hours. This is a single experimental procedure compared to other technologies which involve a series of methods such as serological, biochemical and genomic based. Genome specific arrays are in the similar price range as the UBDA array; however researchers can only assay a single genome or a small subset of them. Currently the UBDA platform requires a turnaround time approximately one day from hybridization on the array to data analysis. A diagnostic laboratory in the field requires proximately two weeks before the identity of a given infectious agent can be determined. These methods usually require several standard serological and biochemical tests that are usually selected and based on the clinical symptoms observed in the field. Serology test results are usually available after 48 hours. Although each of these tests is cost effective in nature, they must be fine-tuned to be pathogen specific. The UBDA approach can be applied to any genome, even in the presence of background contamination (usually host DNA) for which, the unique pattern will be known. The patterns generated from an unknown sample (secretion, tissue culture, environmental sample, etc) with minimal specimen processing can be identified or at least the most similar related species will be predicted by comparison to a library or a repository of patterns. These techniques may be especially useful in evaluating and differentiating species whose genome has not yet been sequenced. Along with a repository of unique hybridization signatures from the genomes of pathogens and their hosts, this array has the ability to rapidly and adequately identify biological threat agents and newly emerging infectious pathogens that are high risk priorities in bio-defense. Application of this technology has the potential to extend to other areas such as food and environmental microbial monitoring and basic research including, (a) speciation and evolution, (b) human/animal disease biomarker discovery, (c) measurement of the genomic response to a chemical, radiation or other exposure, but most important, (d) pathogen forensics and characterization of natural or engineered variants that may confound other species-specific approaches.2.5 Conclusions Genetic signature discovery and identification of pathogenic phenotypes will provide a robust means of discriminating pathogens that are closely related. This array has high sensitivity as demonstrated by the detection of low amounts of spike-in oligonucleotides. Hybridization patterns are unique to a specific genome and these can be used to de-convolute and thus identity the constituents of a mixed pathogen sample. In addition it can distinguish hosts and pathogens by their divergent phylogenomic relationships as captured in their respective 9-mer hybridization signatures. This platform has potential for commercial and government agency applications as a cost effective reliable platform for accurately screening large numbers of samples for bio-threat agents in forensic analysis, screening for pathogens that routinely infect animals and humans, and as a molecular diagnostic of micro-organisms in a clinical environment. This platform is highly attractive, because it has multiplex capacity where knowledge can be drawn from the array hybridization patterns without prior explicit information of the genomes in the samples. These hybridization patterns are being translated into a knowledge base repository of bio-signatures so that future users of this technology can compare and draw inferences related to the sample under study. The data from these experiments and the array design are located on our web site at . 2.6 Methods2.6.1 Array design detailsA custom microarray was designed by this laboratory and manufactured by Roche-Nimblegen (Madison, WI) as a custom 385K (385,000 probe platform) chip to include the following sets of probes; 9-mer, pathogen specific probes; rRNA gene specific, microsatellite and control 70-mer oligonucleotide probes. There were 262,144 9-mer probes, and 20,000 of them were replicated 3 times in total (Additional file 1, Table S1). The 9-mer probes were comprised of a core 9-mer nucleotide and flanked on both sides by three nucleotides, selected to maximize sequence coverage of these basic 15-mers. Probes with low GC content were padded with additional bases at their termini to equalize melting temperatures, with most probes ranging from 15-21 nucleotides in total length. For the 9-mer design, the length of the probes was adjusted to match a melting temperature of 54° C. The array design was based upon the prediction that the use of relatively short probes (15-21 mers) would result in the middle 9 bases dominating hybridization kinetics. rRNA probes were included in the design to serve as positive controls and confirmation of the 9-mer probes power for differentiating genomes. The rRNA probes were selected from the green gene data (), utilizing the complete list of 8,935 OTUs (Operational Taxonomic Unit). One probe was selected for each OTU and probe length was adjusted to a Tm equal to 54° C, as was done for 9-mer design. A mis-match probe (1 mis-match, MM) for each OTU probe was included in the design. Perfect match (PM) 8,935 probes and 8,935 one mis-match MM probes were included in the microarray design. All probes are replicated 3 times on the array. Genome specific probes for Brucella spp., Avian Influenza Virus (AIV), Foot and Mouth Disease Virus (FMDV), and Rift-Valley Fever Virus (RVFV) were designed and included on the microarray as an independent test when the array is used to analyze these species. Sequence alignments were performed to determine the similar and unique regions of the pathogens, with probes selected from the unique regions of each pathogen species or sub-type, and excluding sequences similar to host genomes. In total, 1,062 unique probes were selected and are replicated 3 times. Probes dedicated to surveying microsatellite content were designed for every 1- to 6-mer repetitive sequence. For each 1- to 5-mer repetitive sequence, single mis-match (1MM) probes were also designed. A total of 3,557 unique microsatellite probes were generated and replicated at total of 3 times. Microsatellite probes were included on this array to anchor the results to previous experiments and to aid in the de-convolution of the contribution of host genomic DNA. For higher life forms typically have many microsatellite loci, whereas bacteria and viruses have none or very few in their genome.Gene-specific probes were designed to target important metabolic pathways, such as alcohol dehydrogenase, glucose-6-phosphate isomerase and SHV-like β-lactamase, by using the highly conserved sequences. In total, 432 probes were designed and replicated a total of 3 times.For labelling controls, a set of six synthetic 70-mer oligonucleotides were designed to be spiked into each labelling reaction and hybridized to a constellation of 361 dedicated probes on the array comprising of perfect match probes (34 probes), 1 mis-match (100 probes), 2 mis-match (137 probes) and 3 mis-match probes (90 probes), ranging from 15-19 nucleotides. The set of 361 probes are replicated 5 times total (Additional file 2, Table S2). Figure 1 shows a comparison of signal intensity values of perfect match control probes on the array generated from human genomic DNA without spike of oligonucleotides to samples with a spiked-in. Regression analysis of signal intensity values from the mis-matched probes on the data set is in Figures S1A-S1D (Additional file 3). The array design files for each feature category on the UBDA array are in Additional file 6 (9-mer probes) and Additional file 7 (all other probes) and also available at Microarray procedureHuman genomic DNA was extracted from blood samples collected from a volunteer by the McDermott Center for Human Growth and Development Genetics Clinical Laboratory in accordance with Institutional Review Board at UT Southwestern Medical Center (Dallas, TX). Genomic DNA from Bos taurus, Gallus gallus, Meleagris gallopavo, Ovis aries, Capra hircus and Equus caballus was obtained from Zyagen (San Diego, CA). Brucella species, Cryptosporidium parvum, Lactobacillus plantarum, Streptococcus mitis, Escherichia coli and Influenza virus genomic DNA was obtained from BEI resources and ATCC (Manassas, VA). The spectrum of organisms chosen for hybridization on the UBDA array was primarily bio-threat zoonotic agents, agents infecting farm animals.DNA concentration (260nm) and purity (260/280 and 260/230 nm) was assessed by the spectrophotometer and quality by agarose gel electrophoresis. Samples with 260/230 nm ratios greater than 1.8 were used following established protocols for array comparative genomic hybridization (CGH). Hybridization conditions were optimized to ensure specificity and sensitivity. All DNA test samples (1 ?g) were labelled with Cy3 and co-hybridized with the same Cy5-labeled human reference (Promega, Inc, Madison, WI), according to Roche Nimblegen standard microarray labelling procedures. For each microarray, human genomic DNA (Promega, Madison, WI) was labelled with Cy-5 and used as a reference channel in each experiment. DNA labelling, hybridization and data acquisition were performed by Mogene (St. Louis, MO). We tested hybridization temperatures ranging from 30°C to 50°C.For microarray hybridization, a custom buffer (0.5% Triton X-100, 1 M NaCl, and 100 mM Tris-HCl pH 7.5, filtered with a 0.2 micron nitrocellulose filter, prepared fresh) was used at 38°C, and microarrays were washed following Roche Nimblegen’s CGH standard techniques (available at ). Hybridization conditions were standardized for the UBDA array to minimize any errors that could lead to bias resulting after processing the slides and image scanning on an array scanner. Signals from probes complementary to labelling controls indicate that the post-DNA preparation process, from labelling to hybridization, washing and scanning, were successful. Hybridization, scanning, and data extraction were performed following Roche NimbleGen standard protocol for CGH arrays, and the resulting raw data were provided via secure web link.2.6.3 Array data processing and organism classificationA Robust Multi-chip Average (RMA) normalization procedure was performed across all arrays. The procedure included background subtraction and quantile normalization using Nimblescan Software (Roche NimbleGen). After normalization, all 262,144 9-mer probes were extracted from the 370K array using PERL scripts and averaged across the replicate probes. Subsequent statistical analysis was performed using GeneSpringGX 11.0 (Agilent Technologies, Santa Clara, CA). All signal intensity values were log2 transformed for further analysis. Data were also filtered by intensity values (lower cut off percentile of 20 % for raw signals), and subsequent pair-wise comparisons were performed on the sample data set. Clustering is one of the data mining processes for discovery and identifying patterns in the underlying data. Clustering algorithms partition data into subsets based on similarity and dissimilarity. Clustering methods follow three steps: pattern recognition, use of a clustering algorithm and similarity measure matrix ADDIN EN.CITE <EndNote><Cite><Author>Frades</Author><Year>2010</Year><RecNum>139</RecNum><DisplayText>[33]</DisplayText><record><rec-number>139</rec-number><foreign-keys><key app="EN" db-id="wx90r9pt8rtr20eftvyvz0a4t02v0zsw02wv">139</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Frades, I.</author><author>Matthiesen, R.</author></authors></contributors><auth-address>Bioinformatics, Parque Technologico de Bizkaia, Derio, Spain.</auth-address><titles><title>Overview on techniques in cluster analysis</title><secondary-title>Methods Mol Biol</secondary-title></titles><periodical><full-title>Methods Mol Biol</full-title></periodical><pages>81-107</pages><volume>593</volume><edition>2009/12/04</edition><keywords><keyword>Algorithms</keyword><keyword>*Cluster Analysis</keyword><keyword>Computational Biology/*methods</keyword><keyword>Neural Networks (Computer)</keyword><keyword>Pattern Recognition, Automated</keyword></keywords><dates><year>2010</year></dates><isbn>1940-6029 (Electronic)&#xD;1064-3745 (Linking)</isbn><accession-num>19957146</accession-num><urls><related-urls><url>;[33]. For pattern recognition, pair-wise comparisons are used between samples to select the features on which the clustering is to be performed. Our experimental platform is comparative genome hybridization for which hierarchical clustering is used to determine phylogenomic relationships between organisms. Hierarchical clustering ADDIN EN.CITE <EndNote><Cite><Author>Eisen</Author><Year>1998</Year><RecNum>322</RecNum><DisplayText>[34]</DisplayText><record><rec-number>322</rec-number><foreign-keys><key app="EN" db-id="wx90r9pt8rtr20eftvyvz0a4t02v0zsw02wv">322</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Eisen, M. B.</author><author>Spellman, P. T.</author><author>Brown, P. O.</author><author>Botstein, D.</author></authors></contributors><auth-address>Department of Genetics, Stanford University School of Medicine, 300 Pasteur Avenue, Stanford, CA 94305, USA.</auth-address><titles><title>Cluster analysis and display of genome-wide expression patterns</title><secondary-title>Proc Natl Acad Sci U S A</secondary-title></titles><periodical><full-title>Proc Natl Acad Sci U S A</full-title></periodical><pages>14863-8</pages><volume>95</volume><number>25</number><edition>1998/12/09</edition><keywords><keyword>Cluster Analysis</keyword><keyword>Gene Expression</keyword><keyword>*Genome, Fungal</keyword><keyword>*Genome, Human</keyword><keyword>Humans</keyword><keyword>*Multigene Family</keyword><keyword>Saccharomyces cerevisiae/*genetics</keyword></keywords><dates><year>1998</year><pub-dates><date>Dec 8</date></pub-dates></dates><isbn>0027-8424 (Print)&#xD;0027-8424 (Linking)</isbn><accession-num>9843981</accession-num><urls><related-urls><url>;[34] transforms a distance matrix of pair-wise similarity measurements between all items into a hierarchy of nested groupings. The hierarchy is represented with a binary tree-like dendrogram. Hierarchical clustering was performed on the resulting data sets, using the Euclidian matrix and centroid linkage to classify various organisms. Data sets were analyzed for Brucella species. A cut-off of 5-fold change in hybridization intensity for a given probe was used to reduce the data set to only those meaningful probes that showed a difference between at least one of the pair-wise comparisons.2.6.4Phylogenetic taxonomic tree based on array intensityData obtained from the Universal Bio-Detection Array (normalized signal intensity values that were log2 transformed) and computational analysis for all 262,144 9-mer probes were treated identically for the purpose of tree building. All 262,144 data points for each of the 20 samples were first RMA normalized. For each sample, a Pearson’s correlation matrix was created which included self-similarity and similarity to the remaining 19 samples from all the 262,144 data points of each sample. The resulting distance matrix was used to produce a phylogenetic tree, using the neighbour-joining method within the PHYLIP software suite and TreeView. 2.6.5Whole genome amplification Francisella tularensis LVS strain genomic DNA, starting material, 10 nanogram was amplified using whole genome amplification method as defined (GenomiPhi V2, GE Healthcare). We obtained 2-3 ?g of whole genome amplified DNA from 10 ng of starting genomic DNA.2.7 Acknowledgements This work was funded by Department of Homeland Security through the FAZD Center (National Center of Excellence for Foreign Animal and Zoonotic Disease Defense) at Texas A & M University and Virginia Bioinformatics Institute director’s funds. SJS received support from a trans-disciplinary fellowship from Virginia Tech and Virginia Bioinformatics Institute. We would like to extend a special thanks to Angela George and Dale Preston of the Texas Animal Health Commission, Austin, Texas for assistance with sample preparation. We thank Dr. Abey Bandara and Dr. Tom Inzana at Virginia Tech for providing the Francisella tularensis LVS strain genomic DNA. We would like to extend a special thanks to Greg Thorne and Shaukat Rangwala with MoGene their valuable technical assistance. We appreciate the assistance of Linda Gunn, Renee Nester, Traci Roberts and Laurie Spotswood for administrative assistance. We also appreciate Zyagen and BEI resources for providing genomic DNA. 2.8 AttributionSJS oversaw the project, coordinated the study design, carried out the analysis and subsequent parsing and data interpretation and drafted the manuscript. JNW initiated the project, participated in preliminary technical analyses. CLG participated in manuscript editing. LM participated in manuscript editing, created the UBDA website and provided computation expertise. ZS designed the array and provided computation expertise. JM provided useful discussions and technical assistance. LGA provided DNA samples, data interpretation and participated in manuscript editing. HRG conceived of the study, participated in the study design and mentored in drafting the manuscript. All authors have agreed to all the content in the manuscript, including the data as presented.2.9 Bibliography ADDIN EN.REFLIST 1.Pannucci J, Cai H, Pardington PE, Williams E, Okinaka RT, Kuske CR, Cary RB: Virulence signatures: microarray-based approaches to discovery and analysis. Biosens Bioelectron 2004, 20(4):706-718.2.Ruiz-Mesa JD, Sanchez-Gonzalez J, Reguera JM, Martin L, Lopez-Palmero S, Colmenero JD: Rose Bengal test: diagnostic yield and use for the rapid diagnosis of human brucellosis in emergency departments in endemic areas. Clin Microbiol Infect 2005, 11(3):221-225.3.Bricker BJ: PCR as a diagnostic tool for brucellosis. Vet Microbiol 2002, 90(1-4):435-446.4.Bounaadja L, Albert D, Chenais B, Henault S, Zygmunt MS, Poliak S, Garin-Bastuji B: Real-time PCR for identification of Brucella spp.: a comparative study of IS711, bcsp31 and per target genes. Vet Microbiol 2009, 137(1-2):156-164.5.Hinic V, Brodard I, Thomann A, Holub M, Miserez R, Abril C: IS711-based real-time PCR assay as a tool for detection of Brucella spp. in wild boars and comparison with bacterial isolation and serology. BMC Vet Res 2009, 5:22.6.Her M, Kang SI, Kim JW, Kim JY, Hwang IY, Jung SC, Park SH, Park MY, Yoo H: A genetic comparison of Brucella abortus isolates from animals and humans by using an MLVA assay. J Microbiol Biotechnol 2010, 20(12):1750-1755.7.Whatmore AM, Perrett LL, MacMillan AP: Characterisation of the genetic diversity of Brucella by multilocus sequencing. BMC Microbiol 2007, 7:34.8.Abril C, Thomann A, Brodard I, Wu N, Ryser-Degiorgis MP, Frey J, Overesch G: A novel isolation method of Brucella species and molecular tracking of Brucella suis biovar 2 in domestic and wild animals. Vet Microbiol 2011.9.De Santis R, Ciammaruconi A, Faggioni G, D'Amelio R, Marianelli C, Lista F: Lab on a chip genotyping for Brucella spp. based on 15-loci multi locus VNTR analysis. BMC Microbiol 2009, 9:66.10.Scott JC, Koylass MS, Stubberfield MR, Whatmore AM: Multiplex assay based on single-nucleotide polymorphisms for rapid identification of Brucella isolates at the species level. Appl Environ Microbiol 2007, 73(22):7331-7337.11.Call DR: Challenges and opportunities for pathogen detection using DNA microarrays. Crit Rev Microbiol 2005, 31(2):91-99.12.Call DR, Brockman FJ, Chandler DP: Detecting and genotyping Escherichia coli O157:H7 using multiplexed PCR and nucleic acid microarrays. Int J Food Microbiol 2001, 67(1-2):71-80.13.Chizhikov V, Wagner M, Ivshina A, Hoshino Y, Kapikian AZ, Chumakov K: Detection and genotyping of human group A rotaviruses by oligonucleotide microarray hybridization. J Clin Microbiol 2002, 40(7):2398-2407.14.Wilson WJ, Strout CL, DeSantis TZ, Stilwell JL, Carrano AV, Andersen GL: Sequence-specific identification of 18 pathogenic microorganisms using microarray technology. Mol Cell Probes 2002, 16(2):119-127.15.Wang D, Coscoy L, Zylberberg M, Avila PC, Boushey HA, Ganem D, DeRisi JL: Microarray-based detection and genotyping of viral pathogens. Proc Natl Acad Sci U S A 2002, 99(24):15687-15692.16.Pease AC, Solas D, Sullivan EJ, Cronin MT, Holmes CP, Fodor SP: Light-generated oligonucleotide arrays for rapid DNA sequence analysis. Proc Natl Acad Sci U S A 1994, 91(11):5022-5026.17.Royce TE, Rozowsky JS, Gerstein MB: Toward a universal microarray: prediction of gene expression through nearest-neighbor probe sequence identification. Nucleic Acids Res 2007, 35(15):e99.18.Belosludtsev YY, Bowerman D, Weil R, Marthandan N, Balog R, Luebke K, Lawson J, Johnston SA, Lyons CR, Obrien K et al: Organism identification using a genome sequence-independent universal microarray probe set. Biotechniques 2004, 37(4):654-658, 660.19.Galindo CL, McIver LJ, McCormick JF, Skinner MA, Xie Y, Gelhausen RA, Ng K, Kumar NM, Garner HR: Global microsatellite content distinguishes humans, primates, animals, and plants. Mol Biol Evol 2009, 26(12):2809-2819.20.Luebke KJ, Balog RP, Mittelman D, Garner HR: Digital optical chemistry: A novel system for the rapid fabrication of custom oligonucleotide arrays. Microfabricated Sensors 2002, 815:87-106.21.Luebke KJ, Balog RP, Garner HR: Prioritized selection of oligodeoxyribonucleotide probes for efficient hybridization to RNA transcripts. Nucleic Acids Research 2003, 31(2):750-758.22.Balog R, Hedhili MN, Bournel F, Penno M, Tronc M, Azria R, Illenberger E: Synthesis of Cl-2 induced by low energy (0-18 eV) electron impact to condensed 1,2-C2F4Cl2 molecules. Physical Chemistry Chemical Physics 2002, 4(14):3350-3355.23.Galindo CL: Sporadic breast cancer patient's germline DNA exhibit an AT-rich microsatellite signature. Genes, Chromosomes and Cancer 2010, accepted.24.McGall GH, Fidanza JA: Photolithographic synthesis of high-density oligonucleotide arrays. Methods Mol Biol 2001, 170:71-101.25.Kane MD, Jatkoe TA, Stumpf CR, Lu J, Thomas JD, Madore SJ: Assessment of the sensitivity and specificity of oligonucleotide (50mer) microarrays. Nucleic Acids Res 2000, 28(22):4552-4557.26.Denapaite D, Bruckner R, Nuhn M, Reichmann P, Henrich B, Maurer P, Schahle Y, Selbmann P, Zimmermann W, Wambutt R et al: The genome of Streptococcus mitis B6--what is a commensal?PLoS One 2010, 5(2):e9426.27.Alting-Mees MA, Short JM: pBluescript II: gene mapping vectors. Nucleic Acids Res 1989, 17(22):9494.28.Morgan WJ: Brucella classification and regional distribution. Dev Biol Stand 1984, 56:43-53.29.Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U, Speed TP: Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 2003, 4(2):249-264.30.Paulsen IT, Seshadri R, Nelson KE, Eisen JA, Heidelberg JF, Read TD, Dodson RJ, Umayam L, Brinkac LM, Beanan MJ et al: The Brucella suis genome reveals fundamental similarities between animal and plant pathogens and symbionts. Proc Natl Acad Sci U S A 2002, 99(20):13148-13153.31.DelVecchio VG, Kapatral V, Redkar RJ, Patra G, Mujer C, Los T, Ivanova N, Anderson I, Bhattacharyya A, Lykidis A et al: The genome sequence of the facultative intracellular pathogen Brucella melitensis. Proc Natl Acad Sci U S A 2002, 99(1):443-448.32.Page RD: TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 1996, 12(4):357-358.33.Frades I, Matthiesen R: Overview on techniques in cluster analysis. Methods Mol Biol 2010, 593:81-107.34.Eisen MB, Spellman PT, Brown PO, Botstein D: Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci U S A 1998, 95(25):14863-14868. ADDIN EN.REFLIST 2.10 Figures2.10.1 Figure 1 - Array sensitivity determined by control probe signal intensity valuesHuman genomic DNA spiked with 70-mer oligonucleotides at different concentrations was compared against the same sample without oligonucleotides. Normalized signal intensity values from the Cy3 channel were plotted on a log scale and compared using linear regression from human genomic DNA samples with and without 70-mer oligonucleotides spiked into the labelling reaction. The probes being assessed on this scatter plot are perfect matches to the 70-mer oligonucleotide sequence. Each notation on the graph represents a specific concentration of spiked-in 70-mer oligonucleotides on an individual array. The oligonucleotides were spiked into the labelling reaction at a concentration range from 4.5 pM to 364 pM. The divergence of R2 value from that with no spike-in was used to measure the sensitivity of detection on the array. 2.10.2 Figure 2 - Hierarchical clustering of mixed samples demonstrates the resolution capabilities of the UBDA arrayThis dendogram and heat map illustrates a unique bio-signature pattern obtained from Lactobacillus plantarum, mixed sample (synthetic mixture in a 4:1 ratio of L. plantarum and Streptococcus mitis), S. mitis, mixed sample (a synthetic mixture of L. plantarum and S. mitis genomic DNA in a ratio of 4:1 with a spike-in of pBluescript plasmid at 50 ng) and pBluescript plasmid. Normalized data from the 9-mer data set were filtered for intensity signals greater than the 20th percentile. Only intensity signals with a fold change of 5 or greater were included. These 36,059 elements were subjected to hierarchical clustering with Euclidean distance being used as a similarity measure. The signal intensity values were represented on a log2 scale and range from 8.4 to 13.4.2.10.3 Figure 3 - Unique 9-mer probe bio-signatures from hybridization of Brucella genomes demonstrates ability to resolve highly similar genomesThis dendogram illustrates the unique bio-signature obtained from Brucella abortus RB51, Brucella abortus 12, Brucella abortus 86-8-59, Brucella melitensis 16M and Brucella suis 1330. Normalized data from the 9-mer data set were filtered for intensity signals greater than the 20th percentile. Only intensity signals with a fold change of 5 or greater were included. These 2,267 elements were subjected to hierarchical clustering with Euclidean distance being used as a similarity measure. The signal intensity values were represented as a log2 scale. The range of log2 values are from 7.2 to 13.2.10.4 Figure 4 - Correlation of Brucella Suis 1330 and Brucella melitensis 16M was computed by a ratio of signal intensity divided by counts of 9-mer probe occurrences in the respective genomesNormalized signal intensity for each of the 262,144 9-mer probes represented on the array were divided by the corresponding counts of 9-mer probe occurrences in the respective genome sequences for both B. suis and B.melitensis. The resulting values for a set of 32,000 probes were then plotted, with B. melitensis and B. suis (signal intensity/counts) on the ordinate and abscissa, respectively. Pearson’s correlation coefficient was subsequently calculated (ρ = 0.93 as shown). 2.10.5 Figure 5 - Phylogenetic relationships from the 9-mer probe set between organisms hybridized on the UBDA arrayAll 262,144 9-mer data points for each of the 20 samples were RMA normalized and log2 transformed. A Pearson correlation matrix was created by comparing each sample against all other samples. The values were used to generate a taxonomic relationship tree using the PHYLIP software. The taxonomic tree, as visualized in the Treeview program, shows the separation between mammalian, bacterial and viral genomes.2.10.6 Figure 6 - Bivariate Fit of Francisella tularensis whole genome amplified genomic DNA (log2 values) by unamplified genomic DNA (log2 values).A linear regression of the two samples resulted in an R2 value of 0.91, confirming that whole genome amplification of pathogen material such as Francisella tularensis LVS genomic DNA in small amounts (10 ng starting material) is comparable to the unamplified genomic sample. 2.11 Additional files 2.11.1 Table S1 Distribution of probe types included in the UBDA designThe table describes the different data set features on the array. Feature CategoryFeature count with replicatesDescription9-mer (49 probes equivalent to 262, 144 probes)302,144Sequence independent including every 9bp combination (20,000 probes replicated 3x total)rRNA35,756Probes designed from 16s rRNA sequences (replicated 3x total)Gene specific probes1,296Probes derived from alcohol dehydrogenase, glucose-6-phosphate isomerase and SHV-like β-lactamase (replicated 3x total)Pathogen specific probes3,186Specific to Brucella spp., Avian Influenza virus, Rift Valley Fever Virus and Foot and Mouth Disease Virus (replicated 3x total)Microsatellites probes10,671Every 1-mer to 6-mer repetitive sequences (replicated 3x total)70 mer oligonucleotide probes1,805Measure and calibrate labelling and hybridization efficiency and specificity (replicated 5x total)Total probes354,8582.11.2 Table S2 Sequence of labelling control oligonucleotide probesSequence information of the 70-mer oligonucleotides used in the spike-in study to determine the sensitivity of the UBDA array.ProbeSequence1CTACCTCCGATCGCGATACAGAATGAATCATGGGATTCATATTGAGACAGTTGTTCTGTCTTGGCTGGAC2ACCGACTAAAGGTAATGACCATTGGTGAATTGATACCGTCTACAACCCTCCAATGTTACAAGAGACTAAC3AATGGAAAAGTTGGCTCCGGGTCTTACACCTGCGTGCCTCGATGCTAACAGACCCCAGGGCGACCGATAT4 TGTCAGACCGTAGCGTTGCAGCTTCAGTCACACAGCTTTGGCTTAGAGATTCCGCCAAAAGAACCATCCT5ATGCGTATGCTGCAACCAACGATTAATCCGGTCTCCTATAGGACATCGCGATAAGATCGTCTAACGTAGC6GGACCGCTAGTTGTCGGACCATACATTGATGTTGGAATATGCGGATACCCAGGCAATCATTTCACCTTTT2.11.3 Figures S1A – S1D Regression analysis of signal intensity values generated from spike in of different concentrations of 70-mer oligonucleotides to human genomic DNA versus the un-spiked sample.Average Cy3 signal intensity values were plotted on a log scale. Normalized signal intensities from the Cy3 channel, which were human genomic DNA samples with and without the addition of 6 spike-in 70-mer oligonucleotides, were compared by linear regression. Each notation on the graph represents an individual control probe spot on the array. The R2 value is displayed in the lower right quadrant of the graph. Purple x represent perfect match probes (PM), blue diamonds represent 1 mis-match (MM) probes, red squares represent probes with 2 mis-matches and green triangles represent 3 mis-matches. (A) At 4.5 picomolar of oligonucleotide spike-in, an R2 value of 0.96 was obtained for probes with a PM, 0.93 for 1 MM, 0.95 for 2MM and 0.92 for 3MM. (B) At 41 picomolar of oligonucleotide spike-in, an R2 value of 0.96 was obtained for probes with a PM, 0.87 for 1 MM, 0.94 for 2MM and 0.86 for 3MM. (C) At 121 picomolar of oligonucleotide spike-in, an R2 value of 0.92 was obtained for probes with a PM (perfect match), 0.85 for 1 MM, 0.90 for 2MM and 0.83 for 3MM. (D) At 364 picomolar of oligonucleotide spike-in, an R2 value of 0.84 was obtained for probes with a PM (perfect match), 0.81 for 1 MM, 0.90 for 2MM and 0.75 for 3MM. Blast searches were done for all 70 mer probe combinations to the human genome sequence. The 2 MM 70-mer oligonucleotide probes were highly similar to the human genome and hence are not considered informative and do not show any variation as represented by the linear regression value.Figure S1AFigure S1BFigure S1CFigure S1D2.11.4 Figure S2 Analysis of probe hybridization specificity on the UBDA array.Human genomic DNA was digested with StuI (AGG^CCT) restriction enzyme, and then compared to undigested human genomic DNA from the same individual. The resulting values were plotted, with ratio of the human genomic DNA digested with StuI and undigested human genomic DNA as log2 fold change on the ordinate axis. The nucleotide position of the StuI restriction enzyme site relative to the center of the 9-mer probe is plotted on the abscissa axis.Probe specificity analysis of individual 9-mer probes is confirmed by demonstrating that the center most base governs the hybridization kinetics. This is shown by a reduction in probe signal intensity values when the human genomic DNA sample was digested with StuI enzyme. The reduction in the probe intensity signal is greater when the restriction enzyme site is located at the center of the 9-mer probe. Therefore the center nucleotide of the probe is the most restrictive in determining the specificity of the probe hybridization complex. 2.11.5 Table S3 Genomes hybridized on the arrayGenomic DNA from the following genomes was hybridized on the UBDA array. EukaryotesProkaryotesVirusesHomo sapiens (Human)Lactobacillus plantarumInfluenza A 49H10N7Bos taurus (Bull)Escherichia coli K12Influenza A 76H1N1Gallus gallus (Chicken)Brucella abortus RB51Meleagris gallopavo (Turkey)Brucella abortus 12Ovis aries (Sheep)Brucella abortus 86859Capra hircus (Goat)Brucella suis 1330Equus caballus (Horse)Brucella melitensis 16MCryptosporidium parvum2.11.6 Annotation file for 9-mer probes on the UBDA array (available at )2.11.7 Annotation file for all other probes on the UBDA array (available at )Genomic DNA from the following genomes was hybridized on the UBDA array. Chapter 3Comparison of genome diversity of Brucella spp. field isolates using Universal Bio-signature Detection Array and whole genome sequencing reveals limitations of current diagnostic methodsShamira J. Shallom1§, HongSeok Tae1§, Luciana Sarmento2, Dale Preston3, Lauren McIver1, Christopher Franck1,4, Allan Dickerman1, L. Garry Adams2 and Harold R. Garner1*1 Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, VA, USA2 Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, TX, USA3 Texas Animal Health Commission, State-Federal Diagnostic Laboratory, Austin, TX, USA4 Laboratory for Interdisciplinary Statistical Analysis (LISA), Department of Statistics of Virginia Tech, Blacksburg, VA, USA§ The first two authors contributed equally to this work*Corresponding Author:Harold R. GarnerExecutive Director, Virginia Bioinformatics InstituteVirginia TechWashington Street, MC0477Blacksburg, VA 24061-0477, USAE-mail: garner@vbi.vt.edu, phone: 540.231.2582, fax: 540.231.26063.1 AbstractDiverse analysis methods are used to identify pathogens, specifically Brucella species or biovars. Diagnostic approaches included serology and biochemical tests, PCR assays, microarray analyses using a Universal Bio-signature Detection Array (UBDA) and whole genome ‘deep’ sequencing techniques for Brucella organisms including a number of field isolates. Although there was frequent agreement among different tests, some gave compound/contradictory results that were a consequence of species diversity as measured by UBDA and validated from whole genome sequence. The field isolates have clearly diverged from known Brucella reference genomes, such that they confound identification using serological and biochemical tests. This could imply that the Brucella isolates were from mixed or dual infections of both Brucella abortus and Brucella suis in the same animal, or infected by a chimera or variant of Brucella suis in cattle that evoked a false positive serological test. UBDA is sensitive in tracing genomic differences among the isolates.Keywords: Genomics, B. suis, B. abortus, Bovine, Porcine, Diagnostics3.2 IntroductionBrucellosis is an anthropo-zoonotic disease caused by small intracellular facultative, Gram negative cocco-bacilli belonging to the genus Brucella. Brucellosis is considered the world’s most widespread zoonotic infection causing abortion, fetal death, and genital infections in animals PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5Hb2Rmcm9pZDwvQXV0aG9yPjxZZWFyPjIwMDU8L1llYXI+

PFJlY051bT40NzA8L1JlY051bT48RGlzcGxheVRleHQ+WzFdPC9EaXNwbGF5VGV4dD48cmVjb3Jk

PjxyZWMtbnVtYmVyPjQ3MDwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIg

ZGItaWQ9Ind4OTByOXB0OHJ0cjIwZWZ0dnl2ejBhNHQwMnYwenN3MDJ3diI+NDcwPC9rZXk+PC9m

b3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBl

Pjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5Hb2Rmcm9pZCwgSi48L2F1dGhvcj48YXV0

aG9yPkNsb2Vja2FlcnQsIEEuPC9hdXRob3I+PGF1dGhvcj5MaWF1dGFyZCwgSi4gUC48L2F1dGhv

cj48YXV0aG9yPktvaGxlciwgUy48L2F1dGhvcj48YXV0aG9yPkZyZXRpbiwgRC48L2F1dGhvcj48

YXV0aG9yPldhbHJhdmVucywgSy48L2F1dGhvcj48YXV0aG9yPkdhcmluLUJhc3R1amksIEIuPC9h

dXRob3I+PGF1dGhvcj5MZXRlc3NvbiwgSi4gSi48L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmli

dXRvcnM+PGF1dGgtYWRkcmVzcz5EZXBhcnRlbWVudCBkZSBCYWN0ZXJpb2xvZ2llIGV0IGQmYXBv

cztJbW11bm9sb2dpZSwgQ2VudHJlIGQmYXBvcztFdHVkZSBldCBkZSBSZWNoZXJjaGVzIFZldGVy

aW5haXJlcyBldCBBZ3JvY2hpbWlxdWVzLCA5OSBHcm9lc2VsZW5iZXJnLCAxMTgwIFVjY2xlLCBC

ZWxnaXVtLiBqYWNxdWVzLmdvZGZyb2lkQHVwLmFjLnphPC9hdXRoLWFkZHJlc3M+PHRpdGxlcz48

dGl0bGU+RnJvbSB0aGUgZGlzY292ZXJ5IG9mIHRoZSBNYWx0YSBmZXZlciZhcG9zO3MgYWdlbnQg

dG8gdGhlIGRpc2NvdmVyeSBvZiBhIG1hcmluZSBtYW1tYWwgcmVzZXJ2b2lyLCBicnVjZWxsb3Np

cyBoYXMgY29udGludW91c2x5IGJlZW4gYSByZS1lbWVyZ2luZyB6b29ub3NpczwvdGl0bGU+PHNl

Y29uZGFyeS10aXRsZT5WZXQgUmVzPC9zZWNvbmRhcnktdGl0bGU+PGFsdC10aXRsZT5WZXRlcmlu

YXJ5IHJlc2VhcmNoPC9hbHQtdGl0bGU+PC90aXRsZXM+PHBlcmlvZGljYWw+PGZ1bGwtdGl0bGU+

VmV0IFJlczwvZnVsbC10aXRsZT48YWJici0xPlZldGVyaW5hcnkgcmVzZWFyY2g8L2FiYnItMT48

L3BlcmlvZGljYWw+PGFsdC1wZXJpb2RpY2FsPjxmdWxsLXRpdGxlPlZldCBSZXM8L2Z1bGwtdGl0

bGU+PGFiYnItMT5WZXRlcmluYXJ5IHJlc2VhcmNoPC9hYmJyLTE+PC9hbHQtcGVyaW9kaWNhbD48

cGFnZXM+MzEzLTI2PC9wYWdlcz48dm9sdW1lPjM2PC92b2x1bWU+PG51bWJlcj4zPC9udW1iZXI+

PGVkaXRpb24+MjAwNS8wNC8yMzwvZWRpdGlvbj48a2V5d29yZHM+PGtleXdvcmQ+QW5pbWFsczwv

a2V5d29yZD48a2V5d29yZD5BbmltYWxzLCBXaWxkL21pY3JvYmlvbG9neTwva2V5d29yZD48a2V5

d29yZD5CaW90ZXJyb3Jpc208L2tleXdvcmQ+PGtleXdvcmQ+QnJ1Y2VsbGEvY2xhc3NpZmljYXRp

b24vaXNvbGF0aW9uICZhbXA7IHB1cmlmaWNhdGlvbjwva2V5d29yZD48a2V5d29yZD5CcnVjZWxs

b3Npcy8qZXBpZGVtaW9sb2d5L3ZldGVyaW5hcnk8L2tleXdvcmQ+PGtleXdvcmQ+Q2V0YWNlYS9t

aWNyb2Jpb2xvZ3k8L2tleXdvcmQ+PGtleXdvcmQ+Q29tbXVuaWNhYmxlIERpc2Vhc2VzLCBFbWVy

Z2luZy8qZXBpZGVtaW9sb2d5PC9rZXl3b3JkPjxrZXl3b3JkPipEaXNlYXNlIFJlc2Vydm9pcnM8

L2tleXdvcmQ+PGtleXdvcmQ+SHVtYW5zPC9rZXl3b3JkPjxrZXl3b3JkPlBpbm5pcGVkaWEvbWlj

cm9iaW9sb2d5PC9rZXl3b3JkPjxrZXl3b3JkPlByZXZhbGVuY2U8L2tleXdvcmQ+PGtleXdvcmQ+

Wm9vbm9zZXMvKmVwaWRlbWlvbG9neTwva2V5d29yZD48L2tleXdvcmRzPjxkYXRlcz48eWVhcj4y

MDA1PC95ZWFyPjxwdWItZGF0ZXM+PGRhdGU+TWF5LUp1bjwvZGF0ZT48L3B1Yi1kYXRlcz48L2Rh

dGVzPjxpc2JuPjA5MjgtNDI0OSAoUHJpbnQpJiN4RDswOTI4LTQyNDkgKExpbmtpbmcpPC9pc2Ju

PjxhY2Nlc3Npb24tbnVtPjE1ODQ1MjI4PC9hY2Nlc3Npb24tbnVtPjx3b3JrLXR5cGU+UmVzZWFy

Y2ggU3VwcG9ydCwgTm9uLVUuUy4gR292JmFwb3M7dCYjeEQ7UmV2aWV3PC93b3JrLXR5cGU+PHVy

bHM+PHJlbGF0ZWQtdXJscz48dXJsPmh0dHA6Ly93d3cubmNiaS5ubG0ubmloLmdvdi9wdWJtZWQv

MTU4NDUyMjg8L3VybD48L3JlbGF0ZWQtdXJscz48L3VybHM+PGVsZWN0cm9uaWMtcmVzb3VyY2Ut

bnVtPjEwLjEwNTEvdmV0cmVzOjIwMDUwMDM8L2VsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjxsYW5n

dWFnZT5lbmc8L2xhbmd1YWdlPjwvcmVjb3JkPjwvQ2l0ZT48L0VuZE5vdGU+AG==

ADDIN EN.CITE PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5Hb2Rmcm9pZDwvQXV0aG9yPjxZZWFyPjIwMDU8L1llYXI+

PFJlY051bT40NzA8L1JlY051bT48RGlzcGxheVRleHQ+WzFdPC9EaXNwbGF5VGV4dD48cmVjb3Jk

PjxyZWMtbnVtYmVyPjQ3MDwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIg

ZGItaWQ9Ind4OTByOXB0OHJ0cjIwZWZ0dnl2ejBhNHQwMnYwenN3MDJ3diI+NDcwPC9rZXk+PC9m

b3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBl

Pjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5Hb2Rmcm9pZCwgSi48L2F1dGhvcj48YXV0

aG9yPkNsb2Vja2FlcnQsIEEuPC9hdXRob3I+PGF1dGhvcj5MaWF1dGFyZCwgSi4gUC48L2F1dGhv

cj48YXV0aG9yPktvaGxlciwgUy48L2F1dGhvcj48YXV0aG9yPkZyZXRpbiwgRC48L2F1dGhvcj48

YXV0aG9yPldhbHJhdmVucywgSy48L2F1dGhvcj48YXV0aG9yPkdhcmluLUJhc3R1amksIEIuPC9h

dXRob3I+PGF1dGhvcj5MZXRlc3NvbiwgSi4gSi48L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmli

dXRvcnM+PGF1dGgtYWRkcmVzcz5EZXBhcnRlbWVudCBkZSBCYWN0ZXJpb2xvZ2llIGV0IGQmYXBv

cztJbW11bm9sb2dpZSwgQ2VudHJlIGQmYXBvcztFdHVkZSBldCBkZSBSZWNoZXJjaGVzIFZldGVy

aW5haXJlcyBldCBBZ3JvY2hpbWlxdWVzLCA5OSBHcm9lc2VsZW5iZXJnLCAxMTgwIFVjY2xlLCBC

ZWxnaXVtLiBqYWNxdWVzLmdvZGZyb2lkQHVwLmFjLnphPC9hdXRoLWFkZHJlc3M+PHRpdGxlcz48

dGl0bGU+RnJvbSB0aGUgZGlzY292ZXJ5IG9mIHRoZSBNYWx0YSBmZXZlciZhcG9zO3MgYWdlbnQg

dG8gdGhlIGRpc2NvdmVyeSBvZiBhIG1hcmluZSBtYW1tYWwgcmVzZXJ2b2lyLCBicnVjZWxsb3Np

cyBoYXMgY29udGludW91c2x5IGJlZW4gYSByZS1lbWVyZ2luZyB6b29ub3NpczwvdGl0bGU+PHNl

Y29uZGFyeS10aXRsZT5WZXQgUmVzPC9zZWNvbmRhcnktdGl0bGU+PGFsdC10aXRsZT5WZXRlcmlu

YXJ5IHJlc2VhcmNoPC9hbHQtdGl0bGU+PC90aXRsZXM+PHBlcmlvZGljYWw+PGZ1bGwtdGl0bGU+

VmV0IFJlczwvZnVsbC10aXRsZT48YWJici0xPlZldGVyaW5hcnkgcmVzZWFyY2g8L2FiYnItMT48

L3BlcmlvZGljYWw+PGFsdC1wZXJpb2RpY2FsPjxmdWxsLXRpdGxlPlZldCBSZXM8L2Z1bGwtdGl0

bGU+PGFiYnItMT5WZXRlcmluYXJ5IHJlc2VhcmNoPC9hYmJyLTE+PC9hbHQtcGVyaW9kaWNhbD48

cGFnZXM+MzEzLTI2PC9wYWdlcz48dm9sdW1lPjM2PC92b2x1bWU+PG51bWJlcj4zPC9udW1iZXI+

PGVkaXRpb24+MjAwNS8wNC8yMzwvZWRpdGlvbj48a2V5d29yZHM+PGtleXdvcmQ+QW5pbWFsczwv

a2V5d29yZD48a2V5d29yZD5BbmltYWxzLCBXaWxkL21pY3JvYmlvbG9neTwva2V5d29yZD48a2V5

d29yZD5CaW90ZXJyb3Jpc208L2tleXdvcmQ+PGtleXdvcmQ+QnJ1Y2VsbGEvY2xhc3NpZmljYXRp

b24vaXNvbGF0aW9uICZhbXA7IHB1cmlmaWNhdGlvbjwva2V5d29yZD48a2V5d29yZD5CcnVjZWxs

b3Npcy8qZXBpZGVtaW9sb2d5L3ZldGVyaW5hcnk8L2tleXdvcmQ+PGtleXdvcmQ+Q2V0YWNlYS9t

aWNyb2Jpb2xvZ3k8L2tleXdvcmQ+PGtleXdvcmQ+Q29tbXVuaWNhYmxlIERpc2Vhc2VzLCBFbWVy

Z2luZy8qZXBpZGVtaW9sb2d5PC9rZXl3b3JkPjxrZXl3b3JkPipEaXNlYXNlIFJlc2Vydm9pcnM8

L2tleXdvcmQ+PGtleXdvcmQ+SHVtYW5zPC9rZXl3b3JkPjxrZXl3b3JkPlBpbm5pcGVkaWEvbWlj

cm9iaW9sb2d5PC9rZXl3b3JkPjxrZXl3b3JkPlByZXZhbGVuY2U8L2tleXdvcmQ+PGtleXdvcmQ+

Wm9vbm9zZXMvKmVwaWRlbWlvbG9neTwva2V5d29yZD48L2tleXdvcmRzPjxkYXRlcz48eWVhcj4y

MDA1PC95ZWFyPjxwdWItZGF0ZXM+PGRhdGU+TWF5LUp1bjwvZGF0ZT48L3B1Yi1kYXRlcz48L2Rh

dGVzPjxpc2JuPjA5MjgtNDI0OSAoUHJpbnQpJiN4RDswOTI4LTQyNDkgKExpbmtpbmcpPC9pc2Ju

PjxhY2Nlc3Npb24tbnVtPjE1ODQ1MjI4PC9hY2Nlc3Npb24tbnVtPjx3b3JrLXR5cGU+UmVzZWFy

Y2ggU3VwcG9ydCwgTm9uLVUuUy4gR292JmFwb3M7dCYjeEQ7UmV2aWV3PC93b3JrLXR5cGU+PHVy

bHM+PHJlbGF0ZWQtdXJscz48dXJsPmh0dHA6Ly93d3cubmNiaS5ubG0ubmloLmdvdi9wdWJtZWQv

MTU4NDUyMjg8L3VybD48L3JlbGF0ZWQtdXJscz48L3VybHM+PGVsZWN0cm9uaWMtcmVzb3VyY2Ut

bnVtPjEwLjEwNTEvdmV0cmVzOjIwMDUwMDM8L2VsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjxsYW5n

dWFnZT5lbmc8L2xhbmd1YWdlPjwvcmVjb3JkPjwvQ2l0ZT48L0VuZE5vdGU+AG==

ADDIN EN.CITE.DATA [1]. In humans, this highly diverse illness initially presents as fever, malaise and myalgia and has the potential to develop into a chronic illness affecting various organs and tissues. The genus is further classified into nine species of Brucella based on host preference and phenotype. These are B. abortus (cattle), B. canis (dogs), B. melitensis (sheep and goat), B. neotomae (desert wood rats), B. ovis (sheep) and B. suis (pigs) ADDIN EN.CITE <EndNote><Cite><Author>Morgan</Author><Year>1984</Year><RecNum>362</RecNum><DisplayText>[2]</DisplayText><record><rec-number>362</rec-number><foreign-keys><key app="EN" db-id="wx90r9pt8rtr20eftvyvz0a4t02v0zsw02wv">362</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Morgan, W. J.</author></authors></contributors><titles><title>Brucella classification and regional distribution</title><secondary-title>Dev Biol Stand</secondary-title></titles><periodical><full-title>Dev Biol Stand</full-title></periodical><pages>43-53</pages><volume>56</volume><edition>1984/01/01</edition><keywords><keyword>Bacteriophage Typing</keyword><keyword>Brucella/*classification/isolation &amp; purification</keyword><keyword>Brucella abortus/classification</keyword><keyword>Geography</keyword><keyword>Species Specificity</keyword></keywords><dates><year>1984</year></dates><isbn>0301-5149 (Print)&#xD;0301-5149 (Linking)</isbn><accession-num>6436103</accession-num><urls><related-urls><url>;[2], B. microti (voles) PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5TY2hvbHo8L0F1dGhvcj48WWVhcj4yMDA4PC9ZZWFyPjxS

ZWNOdW0+ODI5PC9SZWNOdW0+PERpc3BsYXlUZXh0PlszXTwvRGlzcGxheVRleHQ+PHJlY29yZD48

cmVjLW51bWJlcj44Mjk8L3JlYy1udW1iZXI+PGZvcmVpZ24ta2V5cz48a2V5IGFwcD0iRU4iIGRi

LWlkPSJ3eDkwcjlwdDhydHIyMGVmdHZ5dnowYTR0MDJ2MHpzdzAyd3YiPjgyOTwva2V5PjwvZm9y

ZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJKb3VybmFsIEFydGljbGUiPjE3PC9yZWYtdHlwZT48

Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+U2Nob2x6LCBILiBDLjwvYXV0aG9yPjxhdXRo

b3I+SHViYWxlaywgWi48L2F1dGhvcj48YXV0aG9yPlNlZGxhY2VrLCBJLjwvYXV0aG9yPjxhdXRo

b3I+VmVyZ25hdWQsIEcuPC9hdXRob3I+PGF1dGhvcj5Ub21hc28sIEguPC9hdXRob3I+PGF1dGhv

cj5BbCBEYWhvdWssIFMuPC9hdXRob3I+PGF1dGhvcj5NZWx6ZXIsIEYuPC9hdXRob3I+PGF1dGhv

cj5LYW1wZmVyLCBQLjwvYXV0aG9yPjxhdXRob3I+TmV1YmF1ZXIsIEguPC9hdXRob3I+PGF1dGhv

cj5DbG9lY2thZXJ0LCBBLjwvYXV0aG9yPjxhdXRob3I+TWFxdWFydCwgTS48L2F1dGhvcj48YXV0

aG9yPlp5Z211bnQsIE0uIFMuPC9hdXRob3I+PGF1dGhvcj5XaGF0bW9yZSwgQS4gTS48L2F1dGhv

cj48YXV0aG9yPkZhbHNlbiwgRS48L2F1dGhvcj48YXV0aG9yPkJhaG4sIFAuPC9hdXRob3I+PGF1

dGhvcj5Hb2xsbmVyLCBDLjwvYXV0aG9yPjxhdXRob3I+UGZlZmZlciwgTS48L2F1dGhvcj48YXV0

aG9yPkh1YmVyLCBCLjwvYXV0aG9yPjxhdXRob3I+QnVzc2UsIEguIEouPC9hdXRob3I+PGF1dGhv

cj5Ob2NrbGVyLCBLLjwvYXV0aG9yPjwvYXV0aG9ycz48L2NvbnRyaWJ1dG9ycz48YXV0aC1hZGRy

ZXNzPkJ1bmRlc3dlaHIgSW5zdGl0dXRlIG9mIE1pY3JvYmlvbG9neSwgTmV1aGVyYmVyZ3N0cmFz

c2UgMTEsIEQtODA5MzcgTXVuaWNoLCBHZXJtYW55LiBIb2xnZXIxU2Nob2x6QGJ1bmRlc3dlaHIu

b3JnPC9hdXRoLWFkZHJlc3M+PHRpdGxlcz48dGl0bGU+QnJ1Y2VsbGEgbWljcm90aSBzcC4gbm92

LiwgaXNvbGF0ZWQgZnJvbSB0aGUgY29tbW9uIHZvbGUgTWljcm90dXMgYXJ2YWxpczwvdGl0bGU+

PHNlY29uZGFyeS10aXRsZT5JbnQgSiBTeXN0IEV2b2wgTWljcm9iaW9sPC9zZWNvbmRhcnktdGl0

bGU+PGFsdC10aXRsZT5JbnRlcm5hdGlvbmFsIGpvdXJuYWwgb2Ygc3lzdGVtYXRpYyBhbmQgZXZv

bHV0aW9uYXJ5IG1pY3JvYmlvbG9neTwvYWx0LXRpdGxlPjwvdGl0bGVzPjxwZXJpb2RpY2FsPjxm

dWxsLXRpdGxlPkludCBKIFN5c3QgRXZvbCBNaWNyb2Jpb2w8L2Z1bGwtdGl0bGU+PGFiYnItMT5J

bnRlcm5hdGlvbmFsIGpvdXJuYWwgb2Ygc3lzdGVtYXRpYyBhbmQgZXZvbHV0aW9uYXJ5IG1pY3Jv

YmlvbG9neTwvYWJici0xPjwvcGVyaW9kaWNhbD48YWx0LXBlcmlvZGljYWw+PGZ1bGwtdGl0bGU+

SW50IEogU3lzdCBFdm9sIE1pY3JvYmlvbDwvZnVsbC10aXRsZT48YWJici0xPkludGVybmF0aW9u

YWwgam91cm5hbCBvZiBzeXN0ZW1hdGljIGFuZCBldm9sdXRpb25hcnkgbWljcm9iaW9sb2d5PC9h

YmJyLTE+PC9hbHQtcGVyaW9kaWNhbD48cGFnZXM+Mzc1LTgyPC9wYWdlcz48dm9sdW1lPjU4PC92

b2x1bWU+PG51bWJlcj5QdCAyPC9udW1iZXI+PGVkaXRpb24+MjAwOC8wMS8yNjwvZWRpdGlvbj48

a2V5d29yZHM+PGtleXdvcmQ+QW5pbWFsczwva2V5d29yZD48a2V5d29yZD5BcnZpY29saW5hZS8q

bWljcm9iaW9sb2d5PC9rZXl3b3JkPjxrZXl3b3JkPkJhY3RlcmlhbCBPdXRlciBNZW1icmFuZSBQ

cm90ZWlucy9nZW5ldGljczwva2V5d29yZD48a2V5d29yZD5CYWN0ZXJpYWwgVHlwaW5nIFRlY2hu

aXF1ZXM8L2tleXdvcmQ+PGtleXdvcmQ+QnJ1Y2VsbGEvKmNsYXNzaWZpY2F0aW9uL2dlbmV0aWNz

Lyppc29sYXRpb24gJmFtcDsgcHVyaWZpY2F0aW9uL3BoeXNpb2xvZ3k8L2tleXdvcmQ+PGtleXdv

cmQ+QnJ1Y2VsbG9zaXMvbWljcm9iaW9sb2d5Lyp2ZXRlcmluYXJ5PC9rZXl3b3JkPjxrZXl3b3Jk

PkROQSwgQmFjdGVyaWFsL2FuYWx5c2lzPC9rZXl3b3JkPjxrZXl3b3JkPkdlbmVzLCByUk5BPC9r

ZXl3b3JkPjxrZXl3b3JkPkdlbm90eXBlPC9rZXl3b3JkPjxrZXl3b3JkPk1pbmlzYXRlbGxpdGUg

UmVwZWF0cy9nZW5ldGljczwva2V5d29yZD48a2V5d29yZD5Nb2xlY3VsYXIgU2VxdWVuY2UgRGF0

YTwva2V5d29yZD48a2V5d29yZD5OdWNsZWljIEFjaWQgSHlicmlkaXphdGlvbjwva2V5d29yZD48

a2V5d29yZD5QaGVub3R5cGU8L2tleXdvcmQ+PGtleXdvcmQ+UGh5bG9nZW55PC9rZXl3b3JkPjxr

ZXl3b3JkPlJOQSwgUmlib3NvbWFsLCAxNlMvZ2VuZXRpY3M8L2tleXdvcmQ+PGtleXdvcmQ+UmVj

IEEgUmVjb21iaW5hc2VzL2dlbmV0aWNzPC9rZXl3b3JkPjxrZXl3b3JkPlJvZGVudCBEaXNlYXNl

cy8qbWljcm9iaW9sb2d5PC9rZXl3b3JkPjxrZXl3b3JkPlNlcXVlbmNlIEFuYWx5c2lzLCBETkE8

L2tleXdvcmQ+PGtleXdvcmQ+U3BlY2llcyBTcGVjaWZpY2l0eTwva2V5d29yZD48L2tleXdvcmRz

PjxkYXRlcz48eWVhcj4yMDA4PC95ZWFyPjxwdWItZGF0ZXM+PGRhdGU+RmViPC9kYXRlPjwvcHVi

LWRhdGVzPjwvZGF0ZXM+PGlzYm4+MTQ2Ni01MDI2IChQcmludCkmI3hEOzE0NjYtNTAyNiAoTGlu

a2luZyk8L2lzYm4+PGFjY2Vzc2lvbi1udW0+MTgyMTg5MzQ8L2FjY2Vzc2lvbi1udW0+PHdvcmst

dHlwZT5SZXNlYXJjaCBTdXBwb3J0LCBOb24tVS5TLiBHb3YmYXBvczt0PC93b3JrLXR5cGU+PHVy

bHM+PHJlbGF0ZWQtdXJscz48dXJsPmh0dHA6Ly93d3cubmNiaS5ubG0ubmloLmdvdi9wdWJtZWQv

MTgyMTg5MzQ8L3VybD48L3JlbGF0ZWQtdXJscz48L3VybHM+PGVsZWN0cm9uaWMtcmVzb3VyY2Ut

bnVtPjEwLjEwOTkvaWpzLjAuNjUzNTYtMDwvZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+PGxhbmd1

YWdlPmVuZzwvbGFuZ3VhZ2U+PC9yZWNvcmQ+PC9DaXRlPjwvRW5kTm90ZT5=

ADDIN EN.CITE PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5TY2hvbHo8L0F1dGhvcj48WWVhcj4yMDA4PC9ZZWFyPjxS

ZWNOdW0+ODI5PC9SZWNOdW0+PERpc3BsYXlUZXh0PlszXTwvRGlzcGxheVRleHQ+PHJlY29yZD48

cmVjLW51bWJlcj44Mjk8L3JlYy1udW1iZXI+PGZvcmVpZ24ta2V5cz48a2V5IGFwcD0iRU4iIGRi

LWlkPSJ3eDkwcjlwdDhydHIyMGVmdHZ5dnowYTR0MDJ2MHpzdzAyd3YiPjgyOTwva2V5PjwvZm9y

ZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJKb3VybmFsIEFydGljbGUiPjE3PC9yZWYtdHlwZT48

Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+U2Nob2x6LCBILiBDLjwvYXV0aG9yPjxhdXRo

b3I+SHViYWxlaywgWi48L2F1dGhvcj48YXV0aG9yPlNlZGxhY2VrLCBJLjwvYXV0aG9yPjxhdXRo

b3I+VmVyZ25hdWQsIEcuPC9hdXRob3I+PGF1dGhvcj5Ub21hc28sIEguPC9hdXRob3I+PGF1dGhv

cj5BbCBEYWhvdWssIFMuPC9hdXRob3I+PGF1dGhvcj5NZWx6ZXIsIEYuPC9hdXRob3I+PGF1dGhv

cj5LYW1wZmVyLCBQLjwvYXV0aG9yPjxhdXRob3I+TmV1YmF1ZXIsIEguPC9hdXRob3I+PGF1dGhv

cj5DbG9lY2thZXJ0LCBBLjwvYXV0aG9yPjxhdXRob3I+TWFxdWFydCwgTS48L2F1dGhvcj48YXV0

aG9yPlp5Z211bnQsIE0uIFMuPC9hdXRob3I+PGF1dGhvcj5XaGF0bW9yZSwgQS4gTS48L2F1dGhv

cj48YXV0aG9yPkZhbHNlbiwgRS48L2F1dGhvcj48YXV0aG9yPkJhaG4sIFAuPC9hdXRob3I+PGF1

dGhvcj5Hb2xsbmVyLCBDLjwvYXV0aG9yPjxhdXRob3I+UGZlZmZlciwgTS48L2F1dGhvcj48YXV0

aG9yPkh1YmVyLCBCLjwvYXV0aG9yPjxhdXRob3I+QnVzc2UsIEguIEouPC9hdXRob3I+PGF1dGhv

cj5Ob2NrbGVyLCBLLjwvYXV0aG9yPjwvYXV0aG9ycz48L2NvbnRyaWJ1dG9ycz48YXV0aC1hZGRy

ZXNzPkJ1bmRlc3dlaHIgSW5zdGl0dXRlIG9mIE1pY3JvYmlvbG9neSwgTmV1aGVyYmVyZ3N0cmFz

c2UgMTEsIEQtODA5MzcgTXVuaWNoLCBHZXJtYW55LiBIb2xnZXIxU2Nob2x6QGJ1bmRlc3dlaHIu

b3JnPC9hdXRoLWFkZHJlc3M+PHRpdGxlcz48dGl0bGU+QnJ1Y2VsbGEgbWljcm90aSBzcC4gbm92

LiwgaXNvbGF0ZWQgZnJvbSB0aGUgY29tbW9uIHZvbGUgTWljcm90dXMgYXJ2YWxpczwvdGl0bGU+

PHNlY29uZGFyeS10aXRsZT5JbnQgSiBTeXN0IEV2b2wgTWljcm9iaW9sPC9zZWNvbmRhcnktdGl0

bGU+PGFsdC10aXRsZT5JbnRlcm5hdGlvbmFsIGpvdXJuYWwgb2Ygc3lzdGVtYXRpYyBhbmQgZXZv

bHV0aW9uYXJ5IG1pY3JvYmlvbG9neTwvYWx0LXRpdGxlPjwvdGl0bGVzPjxwZXJpb2RpY2FsPjxm

dWxsLXRpdGxlPkludCBKIFN5c3QgRXZvbCBNaWNyb2Jpb2w8L2Z1bGwtdGl0bGU+PGFiYnItMT5J

bnRlcm5hdGlvbmFsIGpvdXJuYWwgb2Ygc3lzdGVtYXRpYyBhbmQgZXZvbHV0aW9uYXJ5IG1pY3Jv

YmlvbG9neTwvYWJici0xPjwvcGVyaW9kaWNhbD48YWx0LXBlcmlvZGljYWw+PGZ1bGwtdGl0bGU+

SW50IEogU3lzdCBFdm9sIE1pY3JvYmlvbDwvZnVsbC10aXRsZT48YWJici0xPkludGVybmF0aW9u

YWwgam91cm5hbCBvZiBzeXN0ZW1hdGljIGFuZCBldm9sdXRpb25hcnkgbWljcm9iaW9sb2d5PC9h

YmJyLTE+PC9hbHQtcGVyaW9kaWNhbD48cGFnZXM+Mzc1LTgyPC9wYWdlcz48dm9sdW1lPjU4PC92

b2x1bWU+PG51bWJlcj5QdCAyPC9udW1iZXI+PGVkaXRpb24+MjAwOC8wMS8yNjwvZWRpdGlvbj48

a2V5d29yZHM+PGtleXdvcmQ+QW5pbWFsczwva2V5d29yZD48a2V5d29yZD5BcnZpY29saW5hZS8q

bWljcm9iaW9sb2d5PC9rZXl3b3JkPjxrZXl3b3JkPkJhY3RlcmlhbCBPdXRlciBNZW1icmFuZSBQ

cm90ZWlucy9nZW5ldGljczwva2V5d29yZD48a2V5d29yZD5CYWN0ZXJpYWwgVHlwaW5nIFRlY2hu

aXF1ZXM8L2tleXdvcmQ+PGtleXdvcmQ+QnJ1Y2VsbGEvKmNsYXNzaWZpY2F0aW9uL2dlbmV0aWNz

Lyppc29sYXRpb24gJmFtcDsgcHVyaWZpY2F0aW9uL3BoeXNpb2xvZ3k8L2tleXdvcmQ+PGtleXdv

cmQ+QnJ1Y2VsbG9zaXMvbWljcm9iaW9sb2d5Lyp2ZXRlcmluYXJ5PC9rZXl3b3JkPjxrZXl3b3Jk

PkROQSwgQmFjdGVyaWFsL2FuYWx5c2lzPC9rZXl3b3JkPjxrZXl3b3JkPkdlbmVzLCByUk5BPC9r

ZXl3b3JkPjxrZXl3b3JkPkdlbm90eXBlPC9rZXl3b3JkPjxrZXl3b3JkPk1pbmlzYXRlbGxpdGUg

UmVwZWF0cy9nZW5ldGljczwva2V5d29yZD48a2V5d29yZD5Nb2xlY3VsYXIgU2VxdWVuY2UgRGF0

YTwva2V5d29yZD48a2V5d29yZD5OdWNsZWljIEFjaWQgSHlicmlkaXphdGlvbjwva2V5d29yZD48

a2V5d29yZD5QaGVub3R5cGU8L2tleXdvcmQ+PGtleXdvcmQ+UGh5bG9nZW55PC9rZXl3b3JkPjxr

ZXl3b3JkPlJOQSwgUmlib3NvbWFsLCAxNlMvZ2VuZXRpY3M8L2tleXdvcmQ+PGtleXdvcmQ+UmVj

IEEgUmVjb21iaW5hc2VzL2dlbmV0aWNzPC9rZXl3b3JkPjxrZXl3b3JkPlJvZGVudCBEaXNlYXNl

cy8qbWljcm9iaW9sb2d5PC9rZXl3b3JkPjxrZXl3b3JkPlNlcXVlbmNlIEFuYWx5c2lzLCBETkE8

L2tleXdvcmQ+PGtleXdvcmQ+U3BlY2llcyBTcGVjaWZpY2l0eTwva2V5d29yZD48L2tleXdvcmRz

PjxkYXRlcz48eWVhcj4yMDA4PC95ZWFyPjxwdWItZGF0ZXM+PGRhdGU+RmViPC9kYXRlPjwvcHVi

LWRhdGVzPjwvZGF0ZXM+PGlzYm4+MTQ2Ni01MDI2IChQcmludCkmI3hEOzE0NjYtNTAyNiAoTGlu

a2luZyk8L2lzYm4+PGFjY2Vzc2lvbi1udW0+MTgyMTg5MzQ8L2FjY2Vzc2lvbi1udW0+PHdvcmst

dHlwZT5SZXNlYXJjaCBTdXBwb3J0LCBOb24tVS5TLiBHb3YmYXBvczt0PC93b3JrLXR5cGU+PHVy

bHM+PHJlbGF0ZWQtdXJscz48dXJsPmh0dHA6Ly93d3cubmNiaS5ubG0ubmloLmdvdi9wdWJtZWQv

MTgyMTg5MzQ8L3VybD48L3JlbGF0ZWQtdXJscz48L3VybHM+PGVsZWN0cm9uaWMtcmVzb3VyY2Ut

bnVtPjEwLjEwOTkvaWpzLjAuNjUzNTYtMDwvZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+PGxhbmd1

YWdlPmVuZzwvbGFuZ3VhZ2U+PC9yZWNvcmQ+PC9DaXRlPjwvRW5kTm90ZT5=

ADDIN EN.CITE.DATA [3] and the recently described marine mammals infecting species B. ceti and B. pinnipedialis. Currently it takes approximately two weeks from collection of a clinical specimen to definitive identification of Brucella. Due to the zoonotic nature of most Brucella, the tests are complex and are a bio-hazard for laboratory personnel who handle this agent. Once an infected herd is identified, the infection is contained by quarantine and eliminating all infected and exposed animals until the disease is eradicated. In addition, federal and state animal health officials check neighboring herds and vendors that may have received animals from the infected herd (aphis., Facts about Brucellosis, August 4, 2011). Diagnostic tests are used to identify infected cattle, however, there is no single test for the detection of Brucella. Instead, there are a series of tests comprised of growth characteristics, serology and bacteriological methods for classification of the species and then biovar subcategories for each ADDIN EN.CITE <EndNote><Cite><Author>G.G</Author><Year>1988</Year><RecNum>451</RecNum><DisplayText>[4]</DisplayText><record><rec-number>451</rec-number><foreign-keys><key app="EN" db-id="wx90r9pt8rtr20eftvyvz0a4t02v0zsw02wv">451</key></foreign-keys><ref-type name="Aggregated Database">55</ref-type><contributors><authors><author>Alton G.G</author></authors></contributors><titles><title>Techniques for the brucellosis laboratory</title></titles><edition>1988</edition><dates><year>1988</year></dates><pub-location>Paris</pub-location><publisher>paris: Institut National de la Recherche Agronomique</publisher><isbn>2738000428</isbn><urls></urls></record></Cite></EndNote>[4]. The traditional test used in the field is the brucellosis milk ring test and/or the Rose Bengal test (RBT). In addition, buffered plate agglutination, complement fixation test (CFT), and indirect and competitive enzyme-linked immunoblotting (iELISA and cELISA) are widely used to detect serum antibodies for bovine brucellosis diagnosis. After a culture has been identified as a member of the genus Brucella, the species and biovar are established. For B. melitensis, B. abortus and B. suis, the identification is performed based on four tests: carbon dioxide (CO2) requirement, production of hydrogen sulfide (H2S), and dye (thionin and basic fuschin) sensitivity. Most standard serological tests such as serum agglutination, complement fixation and enzyme-linked immuno-sorbent assays (ELISAs) use whole cell preparations PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5EZSBLbGVyazwvQXV0aG9yPjxZZWFyPjE5ODU8L1llYXI+

PFJlY051bT42NDY8L1JlY051bT48RGlzcGxheVRleHQ+WzVdPC9EaXNwbGF5VGV4dD48cmVjb3Jk

PjxyZWMtbnVtYmVyPjY0NjwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIg

ZGItaWQ9Ind4OTByOXB0OHJ0cjIwZWZ0dnl2ejBhNHQwMnYwenN3MDJ3diI+NjQ2PC9rZXk+PC9m

b3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBl

Pjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5EZSBLbGVyaywgRS48L2F1dGhvcj48YXV0

aG9yPkFuZGVyc29uLCBSLjwvYXV0aG9yPjwvYXV0aG9ycz48L2NvbnRyaWJ1dG9ycz48dGl0bGVz

Pjx0aXRsZT5Db21wYXJhdGl2ZSBldmFsdWF0aW9uIG9mIHRoZSBlbnp5bWUtbGlua2VkIGltbXVu

b3NvcmJlbnQgYXNzYXkgaW4gdGhlIGxhYm9yYXRvcnkgZGlhZ25vc2lzIG9mIGJydWNlbGxvc2lz

PC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPkogQ2xpbiBNaWNyb2Jpb2w8L3NlY29uZGFyeS10aXRs

ZT48YWx0LXRpdGxlPkpvdXJuYWwgb2YgY2xpbmljYWwgbWljcm9iaW9sb2d5PC9hbHQtdGl0bGU+

PC90aXRsZXM+PHBlcmlvZGljYWw+PGZ1bGwtdGl0bGU+SiBDbGluIE1pY3JvYmlvbDwvZnVsbC10

aXRsZT48L3BlcmlvZGljYWw+PGFsdC1wZXJpb2RpY2FsPjxmdWxsLXRpdGxlPkpvdXJuYWwgb2Yg

Q2xpbmljYWwgTWljcm9iaW9sb2d5PC9mdWxsLXRpdGxlPjwvYWx0LXBlcmlvZGljYWw+PHBhZ2Vz

PjM4MS02PC9wYWdlcz48dm9sdW1lPjIxPC92b2x1bWU+PG51bWJlcj4zPC9udW1iZXI+PGVkaXRp

b24+MTk4NS8wMy8wMTwvZWRpdGlvbj48a2V5d29yZHM+PGtleXdvcmQ+QW50aWJvZGllcywgQmFj

dGVyaWFsLyphbmFseXNpczwva2V5d29yZD48a2V5d29yZD5CcnVjZWxsYSBhYm9ydHVzL2ltbXVu

b2xvZ3k8L2tleXdvcmQ+PGtleXdvcmQ+QnJ1Y2VsbG9zaXMvKmRpYWdub3Npczwva2V5d29yZD48

a2V5d29yZD5Dcm9zcyBSZWFjdGlvbnM8L2tleXdvcmQ+PGtleXdvcmQ+KkVuenltZS1MaW5rZWQg

SW1tdW5vc29yYmVudCBBc3NheTwva2V5d29yZD48a2V5d29yZD5GYWxzZSBQb3NpdGl2ZSBSZWFj

dGlvbnM8L2tleXdvcmQ+PGtleXdvcmQ+SHVtYW5zPC9rZXl3b3JkPjxrZXl3b3JkPipJbW11bm9l

bnp5bWUgVGVjaG5pcXVlczwva2V5d29yZD48a2V5d29yZD5JbW11bm9nbG9idWxpbiBNLyphbmFs

eXNpczwva2V5d29yZD48a2V5d29yZD5ZZXJzaW5pYSBlbnRlcm9jb2xpdGljYS9pbW11bm9sb2d5

PC9rZXl3b3JkPjwva2V5d29yZHM+PGRhdGVzPjx5ZWFyPjE5ODU8L3llYXI+PHB1Yi1kYXRlcz48

ZGF0ZT5NYXI8L2RhdGU+PC9wdWItZGF0ZXM+PC9kYXRlcz48aXNibj4wMDk1LTExMzcgKFByaW50

KSYjeEQ7MDA5NS0xMTM3IChMaW5raW5nKTwvaXNibj48YWNjZXNzaW9uLW51bT4zOTIwMjQxPC9h

Y2Nlc3Npb24tbnVtPjx3b3JrLXR5cGU+Q29tcGFyYXRpdmUgU3R1ZHk8L3dvcmstdHlwZT48dXJs

cz48cmVsYXRlZC11cmxzPjx1cmw+aHR0cDovL3d3dy5uY2JpLm5sbS5uaWguZ292L3B1Ym1lZC8z

OTIwMjQxPC91cmw+PC9yZWxhdGVkLXVybHM+PC91cmxzPjxjdXN0b20yPjI3MTY2OTwvY3VzdG9t

Mj48bGFuZ3VhZ2U+ZW5nPC9sYW5ndWFnZT48L3JlY29yZD48L0NpdGU+PENpdGU+PEF1dGhvcj5E

ZSBLbGVyazwvQXV0aG9yPjxZZWFyPjE5ODU8L1llYXI+PFJlY051bT42NDY8L1JlY051bT48cmVj

b3JkPjxyZWMtbnVtYmVyPjY0NjwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJF

TiIgZGItaWQ9Ind4OTByOXB0OHJ0cjIwZWZ0dnl2ejBhNHQwMnYwenN3MDJ3diI+NjQ2PC9rZXk+

PC9mb3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10

eXBlPjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5EZSBLbGVyaywgRS48L2F1dGhvcj48

YXV0aG9yPkFuZGVyc29uLCBSLjwvYXV0aG9yPjwvYXV0aG9ycz48L2NvbnRyaWJ1dG9ycz48dGl0

bGVzPjx0aXRsZT5Db21wYXJhdGl2ZSBldmFsdWF0aW9uIG9mIHRoZSBlbnp5bWUtbGlua2VkIGlt

bXVub3NvcmJlbnQgYXNzYXkgaW4gdGhlIGxhYm9yYXRvcnkgZGlhZ25vc2lzIG9mIGJydWNlbGxv

c2lzPC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPkogQ2xpbiBNaWNyb2Jpb2w8L3NlY29uZGFyeS10

aXRsZT48YWx0LXRpdGxlPkpvdXJuYWwgb2YgY2xpbmljYWwgbWljcm9iaW9sb2d5PC9hbHQtdGl0

bGU+PC90aXRsZXM+PHBlcmlvZGljYWw+PGZ1bGwtdGl0bGU+SiBDbGluIE1pY3JvYmlvbDwvZnVs

bC10aXRsZT48L3BlcmlvZGljYWw+PGFsdC1wZXJpb2RpY2FsPjxmdWxsLXRpdGxlPkpvdXJuYWwg

b2YgQ2xpbmljYWwgTWljcm9iaW9sb2d5PC9mdWxsLXRpdGxlPjwvYWx0LXBlcmlvZGljYWw+PHBh

Z2VzPjM4MS02PC9wYWdlcz48dm9sdW1lPjIxPC92b2x1bWU+PG51bWJlcj4zPC9udW1iZXI+PGVk

aXRpb24+MTk4NS8wMy8wMTwvZWRpdGlvbj48a2V5d29yZHM+PGtleXdvcmQ+QW50aWJvZGllcywg

QmFjdGVyaWFsLyphbmFseXNpczwva2V5d29yZD48a2V5d29yZD5CcnVjZWxsYSBhYm9ydHVzL2lt

bXVub2xvZ3k8L2tleXdvcmQ+PGtleXdvcmQ+QnJ1Y2VsbG9zaXMvKmRpYWdub3Npczwva2V5d29y

ZD48a2V5d29yZD5Dcm9zcyBSZWFjdGlvbnM8L2tleXdvcmQ+PGtleXdvcmQ+KkVuenltZS1MaW5r

ZWQgSW1tdW5vc29yYmVudCBBc3NheTwva2V5d29yZD48a2V5d29yZD5GYWxzZSBQb3NpdGl2ZSBS

ZWFjdGlvbnM8L2tleXdvcmQ+PGtleXdvcmQ+SHVtYW5zPC9rZXl3b3JkPjxrZXl3b3JkPipJbW11

bm9lbnp5bWUgVGVjaG5pcXVlczwva2V5d29yZD48a2V5d29yZD5JbW11bm9nbG9idWxpbiBNLyph

bmFseXNpczwva2V5d29yZD48a2V5d29yZD5ZZXJzaW5pYSBlbnRlcm9jb2xpdGljYS9pbW11bm9s

b2d5PC9rZXl3b3JkPjwva2V5d29yZHM+PGRhdGVzPjx5ZWFyPjE5ODU8L3llYXI+PHB1Yi1kYXRl

cz48ZGF0ZT5NYXI8L2RhdGU+PC9wdWItZGF0ZXM+PC9kYXRlcz48aXNibj4wMDk1LTExMzcgKFBy

aW50KSYjeEQ7MDA5NS0xMTM3IChMaW5raW5nKTwvaXNibj48YWNjZXNzaW9uLW51bT4zOTIwMjQx

PC9hY2Nlc3Npb24tbnVtPjx3b3JrLXR5cGU+Q29tcGFyYXRpdmUgU3R1ZHk8L3dvcmstdHlwZT48

dXJscz48cmVsYXRlZC11cmxzPjx1cmw+aHR0cDovL3d3dy5uY2JpLm5sbS5uaWguZ292L3B1Ym1l

ZC8zOTIwMjQxPC91cmw+PC9yZWxhdGVkLXVybHM+PC91cmxzPjxjdXN0b20yPjI3MTY2OTwvY3Vz

dG9tMj48bGFuZ3VhZ2U+ZW5nPC9sYW5ndWFnZT48L3JlY29yZD48L0NpdGU+PC9FbmROb3RlPgB=

ADDIN EN.CITE PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5EZSBLbGVyazwvQXV0aG9yPjxZZWFyPjE5ODU8L1llYXI+

PFJlY051bT42NDY8L1JlY051bT48RGlzcGxheVRleHQ+WzVdPC9EaXNwbGF5VGV4dD48cmVjb3Jk

PjxyZWMtbnVtYmVyPjY0NjwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIg

ZGItaWQ9Ind4OTByOXB0OHJ0cjIwZWZ0dnl2ejBhNHQwMnYwenN3MDJ3diI+NjQ2PC9rZXk+PC9m

b3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBl

Pjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5EZSBLbGVyaywgRS48L2F1dGhvcj48YXV0

aG9yPkFuZGVyc29uLCBSLjwvYXV0aG9yPjwvYXV0aG9ycz48L2NvbnRyaWJ1dG9ycz48dGl0bGVz

Pjx0aXRsZT5Db21wYXJhdGl2ZSBldmFsdWF0aW9uIG9mIHRoZSBlbnp5bWUtbGlua2VkIGltbXVu

b3NvcmJlbnQgYXNzYXkgaW4gdGhlIGxhYm9yYXRvcnkgZGlhZ25vc2lzIG9mIGJydWNlbGxvc2lz

PC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPkogQ2xpbiBNaWNyb2Jpb2w8L3NlY29uZGFyeS10aXRs

ZT48YWx0LXRpdGxlPkpvdXJuYWwgb2YgY2xpbmljYWwgbWljcm9iaW9sb2d5PC9hbHQtdGl0bGU+

PC90aXRsZXM+PHBlcmlvZGljYWw+PGZ1bGwtdGl0bGU+SiBDbGluIE1pY3JvYmlvbDwvZnVsbC10

aXRsZT48L3BlcmlvZGljYWw+PGFsdC1wZXJpb2RpY2FsPjxmdWxsLXRpdGxlPkpvdXJuYWwgb2Yg

Q2xpbmljYWwgTWljcm9iaW9sb2d5PC9mdWxsLXRpdGxlPjwvYWx0LXBlcmlvZGljYWw+PHBhZ2Vz

PjM4MS02PC9wYWdlcz48dm9sdW1lPjIxPC92b2x1bWU+PG51bWJlcj4zPC9udW1iZXI+PGVkaXRp

b24+MTk4NS8wMy8wMTwvZWRpdGlvbj48a2V5d29yZHM+PGtleXdvcmQ+QW50aWJvZGllcywgQmFj

dGVyaWFsLyphbmFseXNpczwva2V5d29yZD48a2V5d29yZD5CcnVjZWxsYSBhYm9ydHVzL2ltbXVu

b2xvZ3k8L2tleXdvcmQ+PGtleXdvcmQ+QnJ1Y2VsbG9zaXMvKmRpYWdub3Npczwva2V5d29yZD48

a2V5d29yZD5Dcm9zcyBSZWFjdGlvbnM8L2tleXdvcmQ+PGtleXdvcmQ+KkVuenltZS1MaW5rZWQg

SW1tdW5vc29yYmVudCBBc3NheTwva2V5d29yZD48a2V5d29yZD5GYWxzZSBQb3NpdGl2ZSBSZWFj

dGlvbnM8L2tleXdvcmQ+PGtleXdvcmQ+SHVtYW5zPC9rZXl3b3JkPjxrZXl3b3JkPipJbW11bm9l

bnp5bWUgVGVjaG5pcXVlczwva2V5d29yZD48a2V5d29yZD5JbW11bm9nbG9idWxpbiBNLyphbmFs

eXNpczwva2V5d29yZD48a2V5d29yZD5ZZXJzaW5pYSBlbnRlcm9jb2xpdGljYS9pbW11bm9sb2d5

PC9rZXl3b3JkPjwva2V5d29yZHM+PGRhdGVzPjx5ZWFyPjE5ODU8L3llYXI+PHB1Yi1kYXRlcz48

ZGF0ZT5NYXI8L2RhdGU+PC9wdWItZGF0ZXM+PC9kYXRlcz48aXNibj4wMDk1LTExMzcgKFByaW50

KSYjeEQ7MDA5NS0xMTM3IChMaW5raW5nKTwvaXNibj48YWNjZXNzaW9uLW51bT4zOTIwMjQxPC9h

Y2Nlc3Npb24tbnVtPjx3b3JrLXR5cGU+Q29tcGFyYXRpdmUgU3R1ZHk8L3dvcmstdHlwZT48dXJs

cz48cmVsYXRlZC11cmxzPjx1cmw+aHR0cDovL3d3dy5uY2JpLm5sbS5uaWguZ292L3B1Ym1lZC8z

OTIwMjQxPC91cmw+PC9yZWxhdGVkLXVybHM+PC91cmxzPjxjdXN0b20yPjI3MTY2OTwvY3VzdG9t

Mj48bGFuZ3VhZ2U+ZW5nPC9sYW5ndWFnZT48L3JlY29yZD48L0NpdGU+PENpdGU+PEF1dGhvcj5E

ZSBLbGVyazwvQXV0aG9yPjxZZWFyPjE5ODU8L1llYXI+PFJlY051bT42NDY8L1JlY051bT48cmVj

b3JkPjxyZWMtbnVtYmVyPjY0NjwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJF

TiIgZGItaWQ9Ind4OTByOXB0OHJ0cjIwZWZ0dnl2ejBhNHQwMnYwenN3MDJ3diI+NjQ2PC9rZXk+

PC9mb3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10

eXBlPjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5EZSBLbGVyaywgRS48L2F1dGhvcj48

YXV0aG9yPkFuZGVyc29uLCBSLjwvYXV0aG9yPjwvYXV0aG9ycz48L2NvbnRyaWJ1dG9ycz48dGl0

bGVzPjx0aXRsZT5Db21wYXJhdGl2ZSBldmFsdWF0aW9uIG9mIHRoZSBlbnp5bWUtbGlua2VkIGlt

bXVub3NvcmJlbnQgYXNzYXkgaW4gdGhlIGxhYm9yYXRvcnkgZGlhZ25vc2lzIG9mIGJydWNlbGxv

c2lzPC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPkogQ2xpbiBNaWNyb2Jpb2w8L3NlY29uZGFyeS10

aXRsZT48YWx0LXRpdGxlPkpvdXJuYWwgb2YgY2xpbmljYWwgbWljcm9iaW9sb2d5PC9hbHQtdGl0

bGU+PC90aXRsZXM+PHBlcmlvZGljYWw+PGZ1bGwtdGl0bGU+SiBDbGluIE1pY3JvYmlvbDwvZnVs

bC10aXRsZT48L3BlcmlvZGljYWw+PGFsdC1wZXJpb2RpY2FsPjxmdWxsLXRpdGxlPkpvdXJuYWwg

b2YgQ2xpbmljYWwgTWljcm9iaW9sb2d5PC9mdWxsLXRpdGxlPjwvYWx0LXBlcmlvZGljYWw+PHBh

Z2VzPjM4MS02PC9wYWdlcz48dm9sdW1lPjIxPC92b2x1bWU+PG51bWJlcj4zPC9udW1iZXI+PGVk

aXRpb24+MTk4NS8wMy8wMTwvZWRpdGlvbj48a2V5d29yZHM+PGtleXdvcmQ+QW50aWJvZGllcywg

QmFjdGVyaWFsLyphbmFseXNpczwva2V5d29yZD48a2V5d29yZD5CcnVjZWxsYSBhYm9ydHVzL2lt

bXVub2xvZ3k8L2tleXdvcmQ+PGtleXdvcmQ+QnJ1Y2VsbG9zaXMvKmRpYWdub3Npczwva2V5d29y

ZD48a2V5d29yZD5Dcm9zcyBSZWFjdGlvbnM8L2tleXdvcmQ+PGtleXdvcmQ+KkVuenltZS1MaW5r

ZWQgSW1tdW5vc29yYmVudCBBc3NheTwva2V5d29yZD48a2V5d29yZD5GYWxzZSBQb3NpdGl2ZSBS

ZWFjdGlvbnM8L2tleXdvcmQ+PGtleXdvcmQ+SHVtYW5zPC9rZXl3b3JkPjxrZXl3b3JkPipJbW11

bm9lbnp5bWUgVGVjaG5pcXVlczwva2V5d29yZD48a2V5d29yZD5JbW11bm9nbG9idWxpbiBNLyph

bmFseXNpczwva2V5d29yZD48a2V5d29yZD5ZZXJzaW5pYSBlbnRlcm9jb2xpdGljYS9pbW11bm9s

b2d5PC9rZXl3b3JkPjwva2V5d29yZHM+PGRhdGVzPjx5ZWFyPjE5ODU8L3llYXI+PHB1Yi1kYXRl

cz48ZGF0ZT5NYXI8L2RhdGU+PC9wdWItZGF0ZXM+PC9kYXRlcz48aXNibj4wMDk1LTExMzcgKFBy

aW50KSYjeEQ7MDA5NS0xMTM3IChMaW5raW5nKTwvaXNibj48YWNjZXNzaW9uLW51bT4zOTIwMjQx

PC9hY2Nlc3Npb24tbnVtPjx3b3JrLXR5cGU+Q29tcGFyYXRpdmUgU3R1ZHk8L3dvcmstdHlwZT48

dXJscz48cmVsYXRlZC11cmxzPjx1cmw+aHR0cDovL3d3dy5uY2JpLm5sbS5uaWguZ292L3B1Ym1l

ZC8zOTIwMjQxPC91cmw+PC9yZWxhdGVkLXVybHM+PC91cmxzPjxjdXN0b20yPjI3MTY2OTwvY3Vz

dG9tMj48bGFuZ3VhZ2U+ZW5nPC9sYW5ndWFnZT48L3JlY29yZD48L0NpdGU+PC9FbmROb3RlPgB=

ADDIN EN.CITE.DATA [5], cell sonic extracts or lipopolysaccharide (LPS) fractions ADDIN EN.CITE <EndNote><Cite><Author>Lindberg</Author><Year>1982</Year><RecNum>604</RecNum><DisplayText>[6]</DisplayText><record><rec-number>604</rec-number><foreign-keys><key app="EN" db-id="wx90r9pt8rtr20eftvyvz0a4t02v0zsw02wv">604</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Lindberg, A. A.</author><author>Haeggman, S.</author><author>Karlson, K.</author><author>Carlsson, H. E.</author><author>Mair, N. S.</author></authors></contributors><titles><title>Enzyme immunoassay of the antibody response to Brucella and Yersinia enterocolitica 09 infections in humans</title><secondary-title>J Hyg (Lond)</secondary-title><alt-title>The Journal of hygiene</alt-title></titles><periodical><full-title>J Hyg (Lond)</full-title><abbr-1>The Journal of hygiene</abbr-1></periodical><alt-periodical><full-title>J Hyg (Lond)</full-title><abbr-1>The Journal of hygiene</abbr-1></alt-periodical><pages>295-307</pages><volume>88</volume><number>2</number><edition>1982/04/01</edition><keywords><keyword>Antibodies, Bacterial/*analysis</keyword><keyword>Brucella abortus/immunology</keyword><keyword>Brucellosis/*diagnosis</keyword><keyword>Diagnosis, Differential</keyword><keyword>Enzyme-Linked Immunosorbent Assay</keyword><keyword>Epitopes</keyword><keyword>Humans</keyword><keyword>Lipopolysaccharides/immunology</keyword><keyword>Yersinia Infections/*diagnosis</keyword></keywords><dates><year>1982</year><pub-dates><date>Apr</date></pub-dates></dates><isbn>0022-1724 (Print)&#xD;0022-1724 (Linking)</isbn><accession-num>6174601</accession-num><work-type>Research Support, Non-U.S. Gov&apos;t</work-type><urls><related-urls><url>;[6]. A strong antibody response is obtained with LPS, however, the immuno-dominant epitope of the Brucella O-polysaccharide is similar to that of various bacteria such as Yersinia enterocolitica O9, Salmonella Urbana group N, Vibrio cholera, Francisella tularensis and Escherichia coli O:157 which results in cross-reactivity PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5DYXJvZmY8L0F1dGhvcj48WWVhcj4xOTg0PC9ZZWFyPjxS

ZWNOdW0+NTE1PC9SZWNOdW0+PERpc3BsYXlUZXh0Pls3LTldPC9EaXNwbGF5VGV4dD48cmVjb3Jk

PjxyZWMtbnVtYmVyPjUxNTwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIg

ZGItaWQ9Ind4OTByOXB0OHJ0cjIwZWZ0dnl2ejBhNHQwMnYwenN3MDJ3diI+NTE1PC9rZXk+PC9m

b3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBl

Pjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5DYXJvZmYsIE0uPC9hdXRob3I+PGF1dGhv

cj5CdW5kbGUsIEQuIFIuPC9hdXRob3I+PGF1dGhvcj5QZXJyeSwgTS4gQi48L2F1dGhvcj48YXV0

aG9yPkNoZXJ3b25vZ3JvZHpreSwgSi4gVy48L2F1dGhvcj48YXV0aG9yPkR1bmNhbiwgSi4gUi48

L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PHRpdGxlcz48dGl0bGU+QW50aWdlbmlj

IFMtdHlwZSBsaXBvcG9seXNhY2NoYXJpZGUgb2YgQnJ1Y2VsbGEgYWJvcnR1cyAxMTE5LTM8L3Rp

dGxlPjxzZWNvbmRhcnktdGl0bGU+SW5mZWN0IEltbXVuPC9zZWNvbmRhcnktdGl0bGU+PGFsdC10

aXRsZT5JbmZlY3Rpb24gYW5kIGltbXVuaXR5PC9hbHQtdGl0bGU+PC90aXRsZXM+PHBlcmlvZGlj

YWw+PGZ1bGwtdGl0bGU+SW5mZWN0IEltbXVuPC9mdWxsLXRpdGxlPjwvcGVyaW9kaWNhbD48cGFn

ZXM+Mzg0LTg8L3BhZ2VzPjx2b2x1bWU+NDY8L3ZvbHVtZT48bnVtYmVyPjI8L251bWJlcj48ZWRp

dGlvbj4xOTg0LzExLzAxPC9lZGl0aW9uPjxrZXl3b3Jkcz48a2V5d29yZD5BbnRpZ2VucywgQmFj

dGVyaWFsLyphbmFseXNpczwva2V5d29yZD48a2V5d29yZD5CcnVjZWxsYSBhYm9ydHVzLyppbW11

bm9sb2d5PC9rZXl3b3JkPjxrZXl3b3JkPkNhcmJvaHlkcmF0ZSBTZXF1ZW5jZTwva2V5d29yZD48

a2V5d29yZD5MaXBvcG9seXNhY2NoYXJpZGVzL2ltbXVub2xvZ3k8L2tleXdvcmQ+PGtleXdvcmQ+

TWFnbmV0aWMgUmVzb25hbmNlIFNwZWN0cm9zY29weTwva2V5d29yZD48a2V5d29yZD5Qb2x5c2Fj

Y2hhcmlkZXMsIEJhY3RlcmlhbC8qaW1tdW5vbG9neTwva2V5d29yZD48L2tleXdvcmRzPjxkYXRl

cz48eWVhcj4xOTg0PC95ZWFyPjxwdWItZGF0ZXM+PGRhdGU+Tm92PC9kYXRlPjwvcHViLWRhdGVz

PjwvZGF0ZXM+PGlzYm4+MDAxOS05NTY3IChQcmludCkmI3hEOzAwMTktOTU2NyAoTGlua2luZyk8

L2lzYm4+PGFjY2Vzc2lvbi1udW0+NjQzNzk4MTwvYWNjZXNzaW9uLW51bT48dXJscz48cmVsYXRl

ZC11cmxzPjx1cmw+aHR0cDovL3d3dy5uY2JpLm5sbS5uaWguZ292L3B1Ym1lZC82NDM3OTgxPC91

cmw+PC9yZWxhdGVkLXVybHM+PC91cmxzPjxjdXN0b20yPjI2MTU0MzwvY3VzdG9tMj48bGFuZ3Vh

Z2U+ZW5nPC9sYW5ndWFnZT48L3JlY29yZD48L0NpdGU+PENpdGU+PEF1dGhvcj5DYXJvZmY8L0F1

dGhvcj48WWVhcj4xOTg0PC9ZZWFyPjxSZWNOdW0+NTIxPC9SZWNOdW0+PHJlY29yZD48cmVjLW51

bWJlcj41MjE8L3JlYy1udW1iZXI+PGZvcmVpZ24ta2V5cz48a2V5IGFwcD0iRU4iIGRiLWlkPSJ3

eDkwcjlwdDhydHIyMGVmdHZ5dnowYTR0MDJ2MHpzdzAyd3YiPjUyMTwva2V5PjwvZm9yZWlnbi1r

ZXlzPjxyZWYtdHlwZSBuYW1lPSJKb3VybmFsIEFydGljbGUiPjE3PC9yZWYtdHlwZT48Y29udHJp

YnV0b3JzPjxhdXRob3JzPjxhdXRob3I+Q2Fyb2ZmLCBNLjwvYXV0aG9yPjxhdXRob3I+QnVuZGxl

LCBELiBSLjwvYXV0aG9yPjxhdXRob3I+UGVycnksIE0uIEIuPC9hdXRob3I+PC9hdXRob3JzPjwv

Y29udHJpYnV0b3JzPjx0aXRsZXM+PHRpdGxlPlN0cnVjdHVyZSBvZiB0aGUgTy1jaGFpbiBvZiB0

aGUgcGhlbm9sLXBoYXNlIHNvbHVibGUgY2VsbHVsYXIgbGlwb3BvbHlzYWNjaGFyaWRlIG9mIFll

cnNpbmlhIGVudGVyb2NvbGl0aWNhIHNlcm90eXBlIE86OTwvdGl0bGU+PHNlY29uZGFyeS10aXRs

ZT5FdXIgSiBCaW9jaGVtPC9zZWNvbmRhcnktdGl0bGU+PGFsdC10aXRsZT5FdXJvcGVhbiBqb3Vy

bmFsIG9mIGJpb2NoZW1pc3RyeSAvIEZFQlM8L2FsdC10aXRsZT48L3RpdGxlcz48cGVyaW9kaWNh

bD48ZnVsbC10aXRsZT5FdXIgSiBCaW9jaGVtPC9mdWxsLXRpdGxlPjxhYmJyLTE+RXVyb3BlYW4g

am91cm5hbCBvZiBiaW9jaGVtaXN0cnkgLyBGRUJTPC9hYmJyLTE+PC9wZXJpb2RpY2FsPjxhbHQt

cGVyaW9kaWNhbD48ZnVsbC10aXRsZT5FdXIgSiBCaW9jaGVtPC9mdWxsLXRpdGxlPjxhYmJyLTE+

RXVyb3BlYW4gam91cm5hbCBvZiBiaW9jaGVtaXN0cnkgLyBGRUJTPC9hYmJyLTE+PC9hbHQtcGVy

aW9kaWNhbD48cGFnZXM+MTk1LTIwMDwvcGFnZXM+PHZvbHVtZT4xMzk8L3ZvbHVtZT48bnVtYmVy

PjE8L251bWJlcj48ZWRpdGlvbj4xOTg0LzAyLzE1PC9lZGl0aW9uPjxrZXl3b3Jkcz48a2V5d29y

ZD5BbnRpZ2VucywgQmFjdGVyaWFsLyppc29sYXRpb24gJmFtcDsgcHVyaWZpY2F0aW9uPC9rZXl3

b3JkPjxrZXl3b3JkPkNoZW1pY2FsIFBoZW5vbWVuYTwva2V5d29yZD48a2V5d29yZD5DaGVtaXN0

cnk8L2tleXdvcmQ+PGtleXdvcmQ+SW1tdW5vY2hlbWlzdHJ5PC9rZXl3b3JkPjxrZXl3b3JkPkxp

cGlkIEE8L2tleXdvcmQ+PGtleXdvcmQ+TGlwb3BvbHlzYWNjaGFyaWRlcy8qaXNvbGF0aW9uICZh

bXA7IHB1cmlmaWNhdGlvbjwva2V5d29yZD48a2V5d29yZD5NYWduZXRpYyBSZXNvbmFuY2UgU3Bl

Y3Ryb3Njb3B5PC9rZXl3b3JkPjxrZXl3b3JkPk1hc3MgU3BlY3Ryb21ldHJ5PC9rZXl3b3JkPjxr

ZXl3b3JkPk8gQW50aWdlbnM8L2tleXdvcmQ+PGtleXdvcmQ+UGhlbm9sPC9rZXl3b3JkPjxrZXl3

b3JkPlBoZW5vbHM8L2tleXdvcmQ+PGtleXdvcmQ+U2Vyb3R5cGluZzwva2V5d29yZD48a2V5d29y

ZD5Tb2x1YmlsaXR5PC9rZXl3b3JkPjxrZXl3b3JkPlllcnNpbmlhLyppbW11bm9sb2d5PC9rZXl3

b3JkPjwva2V5d29yZHM+PGRhdGVzPjx5ZWFyPjE5ODQ8L3llYXI+PHB1Yi1kYXRlcz48ZGF0ZT5G

ZWIgMTU8L2RhdGU+PC9wdWItZGF0ZXM+PC9kYXRlcz48aXNibj4wMDE0LTI5NTYgKFByaW50KSYj

eEQ7MDAxNC0yOTU2IChMaW5raW5nKTwvaXNibj48YWNjZXNzaW9uLW51bT42MTk5MTk5PC9hY2Nl

c3Npb24tbnVtPjx1cmxzPjxyZWxhdGVkLXVybHM+PHVybD5odHRwOi8vd3d3Lm5jYmkubmxtLm5p

aC5nb3YvcHVibWVkLzYxOTkxOTk8L3VybD48L3JlbGF0ZWQtdXJscz48L3VybHM+PGxhbmd1YWdl

PmVuZzwvbGFuZ3VhZ2U+PC9yZWNvcmQ+PC9DaXRlPjxDaXRlPjxBdXRob3I+Q29yYmVsPC9BdXRo

b3I+PFllYXI+MTk4NDwvWWVhcj48UmVjTnVtPjUzMjwvUmVjTnVtPjxyZWNvcmQ+PHJlYy1udW1i

ZXI+NTMyPC9yZWMtbnVtYmVyPjxmb3JlaWduLWtleXM+PGtleSBhcHA9IkVOIiBkYi1pZD0id3g5

MHI5cHQ4cnRyMjBlZnR2eXZ6MGE0dDAydjB6c3cwMnd2Ij41MzI8L2tleT48L2ZvcmVpZ24ta2V5

cz48cmVmLXR5cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwvcmVmLXR5cGU+PGNvbnRyaWJ1

dG9ycz48YXV0aG9ycz48YXV0aG9yPkNvcmJlbCwgTS4gSi48L2F1dGhvcj48YXV0aG9yPlN0dWFy

dCwgRi4gQS48L2F1dGhvcj48YXV0aG9yPkJyZXdlciwgUi4gQS48L2F1dGhvcj48L2F1dGhvcnM+

PC9jb250cmlidXRvcnM+PHRpdGxlcz48dGl0bGU+T2JzZXJ2YXRpb25zIG9uIHNlcm9sb2dpY2Fs

IGNyb3NzLXJlYWN0aW9ucyBiZXR3ZWVuIHNtb290aCBCcnVjZWxsYSBzcGVjaWVzIGFuZCBvcmdh

bmlzbXMgb2Ygb3RoZXIgZ2VuZXJhPC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPkRldiBCaW9sIFN0

YW5kPC9zZWNvbmRhcnktdGl0bGU+PGFsdC10aXRsZT5EZXZlbG9wbWVudHMgaW4gYmlvbG9naWNh

bCBzdGFuZGFyZGl6YXRpb248L2FsdC10aXRsZT48L3RpdGxlcz48cGVyaW9kaWNhbD48ZnVsbC10

aXRsZT5EZXYgQmlvbCBTdGFuZDwvZnVsbC10aXRsZT48L3BlcmlvZGljYWw+PHBhZ2VzPjM0MS04

PC9wYWdlcz48dm9sdW1lPjU2PC92b2x1bWU+PGVkaXRpb24+MTk4NC8wMS8wMTwvZWRpdGlvbj48

a2V5d29yZHM+PGtleXdvcmQ+QW5pbWFsczwva2V5d29yZD48a2V5d29yZD5BbnRpYm9kaWVzLCBC

YWN0ZXJpYWwvYW5hbHlzaXM8L2tleXdvcmQ+PGtleXdvcmQ+QnJ1Y2VsbGEvKmltbXVub2xvZ3k8

L2tleXdvcmQ+PGtleXdvcmQ+QnJ1Y2VsbG9zaXMvZGlhZ25vc2lzL3ZldGVyaW5hcnk8L2tleXdv

cmQ+PGtleXdvcmQ+QnJ1Y2VsbG9zaXMsIEJvdmluZS9kaWFnbm9zaXM8L2tleXdvcmQ+PGtleXdv

cmQ+Q2F0dGxlPC9rZXl3b3JkPjxrZXl3b3JkPkNyb3NzIFJlYWN0aW9uczwva2V5d29yZD48a2V5

d29yZD5Qc2V1ZG9tb25hcy9pbW11bm9sb2d5PC9rZXl3b3JkPjxrZXl3b3JkPlNhbG1vbmVsbGEv

aW1tdW5vbG9neTwva2V5d29yZD48a2V5d29yZD5Td2luZTwva2V5d29yZD48a2V5d29yZD5Td2lu

ZSBEaXNlYXNlcy9kaWFnbm9zaXM8L2tleXdvcmQ+PGtleXdvcmQ+WWVyc2luaWEgZW50ZXJvY29s

aXRpY2EvaW1tdW5vbG9neTwva2V5d29yZD48L2tleXdvcmRzPjxkYXRlcz48eWVhcj4xOTg0PC95

ZWFyPjwvZGF0ZXM+PGlzYm4+MDMwMS01MTQ5IChQcmludCkmI3hEOzAzMDEtNTE0OSAoTGlua2lu

Zyk8L2lzYm4+PGFjY2Vzc2lvbi1udW0+NjQ4OTYyMDwvYWNjZXNzaW9uLW51bT48dXJscz48cmVs

YXRlZC11cmxzPjx1cmw+aHR0cDovL3d3dy5uY2JpLm5sbS5uaWguZ292L3B1Ym1lZC82NDg5NjIw

PC91cmw+PC9yZWxhdGVkLXVybHM+PC91cmxzPjxsYW5ndWFnZT5lbmc8L2xhbmd1YWdlPjwvcmVj

b3JkPjwvQ2l0ZT48L0VuZE5vdGU+AG==

ADDIN EN.CITE PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5DYXJvZmY8L0F1dGhvcj48WWVhcj4xOTg0PC9ZZWFyPjxS

ZWNOdW0+NTE1PC9SZWNOdW0+PERpc3BsYXlUZXh0Pls3LTldPC9EaXNwbGF5VGV4dD48cmVjb3Jk

PjxyZWMtbnVtYmVyPjUxNTwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIg

ZGItaWQ9Ind4OTByOXB0OHJ0cjIwZWZ0dnl2ejBhNHQwMnYwenN3MDJ3diI+NTE1PC9rZXk+PC9m

b3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBl

Pjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5DYXJvZmYsIE0uPC9hdXRob3I+PGF1dGhv

cj5CdW5kbGUsIEQuIFIuPC9hdXRob3I+PGF1dGhvcj5QZXJyeSwgTS4gQi48L2F1dGhvcj48YXV0

aG9yPkNoZXJ3b25vZ3JvZHpreSwgSi4gVy48L2F1dGhvcj48YXV0aG9yPkR1bmNhbiwgSi4gUi48

L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PHRpdGxlcz48dGl0bGU+QW50aWdlbmlj

IFMtdHlwZSBsaXBvcG9seXNhY2NoYXJpZGUgb2YgQnJ1Y2VsbGEgYWJvcnR1cyAxMTE5LTM8L3Rp

dGxlPjxzZWNvbmRhcnktdGl0bGU+SW5mZWN0IEltbXVuPC9zZWNvbmRhcnktdGl0bGU+PGFsdC10

aXRsZT5JbmZlY3Rpb24gYW5kIGltbXVuaXR5PC9hbHQtdGl0bGU+PC90aXRsZXM+PHBlcmlvZGlj

YWw+PGZ1bGwtdGl0bGU+SW5mZWN0IEltbXVuPC9mdWxsLXRpdGxlPjwvcGVyaW9kaWNhbD48cGFn

ZXM+Mzg0LTg8L3BhZ2VzPjx2b2x1bWU+NDY8L3ZvbHVtZT48bnVtYmVyPjI8L251bWJlcj48ZWRp

dGlvbj4xOTg0LzExLzAxPC9lZGl0aW9uPjxrZXl3b3Jkcz48a2V5d29yZD5BbnRpZ2VucywgQmFj

dGVyaWFsLyphbmFseXNpczwva2V5d29yZD48a2V5d29yZD5CcnVjZWxsYSBhYm9ydHVzLyppbW11

bm9sb2d5PC9rZXl3b3JkPjxrZXl3b3JkPkNhcmJvaHlkcmF0ZSBTZXF1ZW5jZTwva2V5d29yZD48

a2V5d29yZD5MaXBvcG9seXNhY2NoYXJpZGVzL2ltbXVub2xvZ3k8L2tleXdvcmQ+PGtleXdvcmQ+

TWFnbmV0aWMgUmVzb25hbmNlIFNwZWN0cm9zY29weTwva2V5d29yZD48a2V5d29yZD5Qb2x5c2Fj

Y2hhcmlkZXMsIEJhY3RlcmlhbC8qaW1tdW5vbG9neTwva2V5d29yZD48L2tleXdvcmRzPjxkYXRl

cz48eWVhcj4xOTg0PC95ZWFyPjxwdWItZGF0ZXM+PGRhdGU+Tm92PC9kYXRlPjwvcHViLWRhdGVz

PjwvZGF0ZXM+PGlzYm4+MDAxOS05NTY3IChQcmludCkmI3hEOzAwMTktOTU2NyAoTGlua2luZyk8

L2lzYm4+PGFjY2Vzc2lvbi1udW0+NjQzNzk4MTwvYWNjZXNzaW9uLW51bT48dXJscz48cmVsYXRl

ZC11cmxzPjx1cmw+aHR0cDovL3d3dy5uY2JpLm5sbS5uaWguZ292L3B1Ym1lZC82NDM3OTgxPC91

cmw+PC9yZWxhdGVkLXVybHM+PC91cmxzPjxjdXN0b20yPjI2MTU0MzwvY3VzdG9tMj48bGFuZ3Vh

Z2U+ZW5nPC9sYW5ndWFnZT48L3JlY29yZD48L0NpdGU+PENpdGU+PEF1dGhvcj5DYXJvZmY8L0F1

dGhvcj48WWVhcj4xOTg0PC9ZZWFyPjxSZWNOdW0+NTIxPC9SZWNOdW0+PHJlY29yZD48cmVjLW51

bWJlcj41MjE8L3JlYy1udW1iZXI+PGZvcmVpZ24ta2V5cz48a2V5IGFwcD0iRU4iIGRiLWlkPSJ3

eDkwcjlwdDhydHIyMGVmdHZ5dnowYTR0MDJ2MHpzdzAyd3YiPjUyMTwva2V5PjwvZm9yZWlnbi1r

ZXlzPjxyZWYtdHlwZSBuYW1lPSJKb3VybmFsIEFydGljbGUiPjE3PC9yZWYtdHlwZT48Y29udHJp

YnV0b3JzPjxhdXRob3JzPjxhdXRob3I+Q2Fyb2ZmLCBNLjwvYXV0aG9yPjxhdXRob3I+QnVuZGxl

LCBELiBSLjwvYXV0aG9yPjxhdXRob3I+UGVycnksIE0uIEIuPC9hdXRob3I+PC9hdXRob3JzPjwv

Y29udHJpYnV0b3JzPjx0aXRsZXM+PHRpdGxlPlN0cnVjdHVyZSBvZiB0aGUgTy1jaGFpbiBvZiB0

aGUgcGhlbm9sLXBoYXNlIHNvbHVibGUgY2VsbHVsYXIgbGlwb3BvbHlzYWNjaGFyaWRlIG9mIFll

cnNpbmlhIGVudGVyb2NvbGl0aWNhIHNlcm90eXBlIE86OTwvdGl0bGU+PHNlY29uZGFyeS10aXRs

ZT5FdXIgSiBCaW9jaGVtPC9zZWNvbmRhcnktdGl0bGU+PGFsdC10aXRsZT5FdXJvcGVhbiBqb3Vy

bmFsIG9mIGJpb2NoZW1pc3RyeSAvIEZFQlM8L2FsdC10aXRsZT48L3RpdGxlcz48cGVyaW9kaWNh

bD48ZnVsbC10aXRsZT5FdXIgSiBCaW9jaGVtPC9mdWxsLXRpdGxlPjxhYmJyLTE+RXVyb3BlYW4g

am91cm5hbCBvZiBiaW9jaGVtaXN0cnkgLyBGRUJTPC9hYmJyLTE+PC9wZXJpb2RpY2FsPjxhbHQt

cGVyaW9kaWNhbD48ZnVsbC10aXRsZT5FdXIgSiBCaW9jaGVtPC9mdWxsLXRpdGxlPjxhYmJyLTE+

RXVyb3BlYW4gam91cm5hbCBvZiBiaW9jaGVtaXN0cnkgLyBGRUJTPC9hYmJyLTE+PC9hbHQtcGVy

aW9kaWNhbD48cGFnZXM+MTk1LTIwMDwvcGFnZXM+PHZvbHVtZT4xMzk8L3ZvbHVtZT48bnVtYmVy

PjE8L251bWJlcj48ZWRpdGlvbj4xOTg0LzAyLzE1PC9lZGl0aW9uPjxrZXl3b3Jkcz48a2V5d29y

ZD5BbnRpZ2VucywgQmFjdGVyaWFsLyppc29sYXRpb24gJmFtcDsgcHVyaWZpY2F0aW9uPC9rZXl3

b3JkPjxrZXl3b3JkPkNoZW1pY2FsIFBoZW5vbWVuYTwva2V5d29yZD48a2V5d29yZD5DaGVtaXN0

cnk8L2tleXdvcmQ+PGtleXdvcmQ+SW1tdW5vY2hlbWlzdHJ5PC9rZXl3b3JkPjxrZXl3b3JkPkxp

cGlkIEE8L2tleXdvcmQ+PGtleXdvcmQ+TGlwb3BvbHlzYWNjaGFyaWRlcy8qaXNvbGF0aW9uICZh

bXA7IHB1cmlmaWNhdGlvbjwva2V5d29yZD48a2V5d29yZD5NYWduZXRpYyBSZXNvbmFuY2UgU3Bl

Y3Ryb3Njb3B5PC9rZXl3b3JkPjxrZXl3b3JkPk1hc3MgU3BlY3Ryb21ldHJ5PC9rZXl3b3JkPjxr

ZXl3b3JkPk8gQW50aWdlbnM8L2tleXdvcmQ+PGtleXdvcmQ+UGhlbm9sPC9rZXl3b3JkPjxrZXl3

b3JkPlBoZW5vbHM8L2tleXdvcmQ+PGtleXdvcmQ+U2Vyb3R5cGluZzwva2V5d29yZD48a2V5d29y

ZD5Tb2x1YmlsaXR5PC9rZXl3b3JkPjxrZXl3b3JkPlllcnNpbmlhLyppbW11bm9sb2d5PC9rZXl3

b3JkPjwva2V5d29yZHM+PGRhdGVzPjx5ZWFyPjE5ODQ8L3llYXI+PHB1Yi1kYXRlcz48ZGF0ZT5G

ZWIgMTU8L2RhdGU+PC9wdWItZGF0ZXM+PC9kYXRlcz48aXNibj4wMDE0LTI5NTYgKFByaW50KSYj

eEQ7MDAxNC0yOTU2IChMaW5raW5nKTwvaXNibj48YWNjZXNzaW9uLW51bT42MTk5MTk5PC9hY2Nl

c3Npb24tbnVtPjx1cmxzPjxyZWxhdGVkLXVybHM+PHVybD5odHRwOi8vd3d3Lm5jYmkubmxtLm5p

aC5nb3YvcHVibWVkLzYxOTkxOTk8L3VybD48L3JlbGF0ZWQtdXJscz48L3VybHM+PGxhbmd1YWdl

PmVuZzwvbGFuZ3VhZ2U+PC9yZWNvcmQ+PC9DaXRlPjxDaXRlPjxBdXRob3I+Q29yYmVsPC9BdXRo

b3I+PFllYXI+MTk4NDwvWWVhcj48UmVjTnVtPjUzMjwvUmVjTnVtPjxyZWNvcmQ+PHJlYy1udW1i

ZXI+NTMyPC9yZWMtbnVtYmVyPjxmb3JlaWduLWtleXM+PGtleSBhcHA9IkVOIiBkYi1pZD0id3g5

MHI5cHQ4cnRyMjBlZnR2eXZ6MGE0dDAydjB6c3cwMnd2Ij41MzI8L2tleT48L2ZvcmVpZ24ta2V5

cz48cmVmLXR5cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwvcmVmLXR5cGU+PGNvbnRyaWJ1

dG9ycz48YXV0aG9ycz48YXV0aG9yPkNvcmJlbCwgTS4gSi48L2F1dGhvcj48YXV0aG9yPlN0dWFy

dCwgRi4gQS48L2F1dGhvcj48YXV0aG9yPkJyZXdlciwgUi4gQS48L2F1dGhvcj48L2F1dGhvcnM+

PC9jb250cmlidXRvcnM+PHRpdGxlcz48dGl0bGU+T2JzZXJ2YXRpb25zIG9uIHNlcm9sb2dpY2Fs

IGNyb3NzLXJlYWN0aW9ucyBiZXR3ZWVuIHNtb290aCBCcnVjZWxsYSBzcGVjaWVzIGFuZCBvcmdh

bmlzbXMgb2Ygb3RoZXIgZ2VuZXJhPC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPkRldiBCaW9sIFN0

YW5kPC9zZWNvbmRhcnktdGl0bGU+PGFsdC10aXRsZT5EZXZlbG9wbWVudHMgaW4gYmlvbG9naWNh

bCBzdGFuZGFyZGl6YXRpb248L2FsdC10aXRsZT48L3RpdGxlcz48cGVyaW9kaWNhbD48ZnVsbC10

aXRsZT5EZXYgQmlvbCBTdGFuZDwvZnVsbC10aXRsZT48L3BlcmlvZGljYWw+PHBhZ2VzPjM0MS04

PC9wYWdlcz48dm9sdW1lPjU2PC92b2x1bWU+PGVkaXRpb24+MTk4NC8wMS8wMTwvZWRpdGlvbj48

a2V5d29yZHM+PGtleXdvcmQ+QW5pbWFsczwva2V5d29yZD48a2V5d29yZD5BbnRpYm9kaWVzLCBC

YWN0ZXJpYWwvYW5hbHlzaXM8L2tleXdvcmQ+PGtleXdvcmQ+QnJ1Y2VsbGEvKmltbXVub2xvZ3k8

L2tleXdvcmQ+PGtleXdvcmQ+QnJ1Y2VsbG9zaXMvZGlhZ25vc2lzL3ZldGVyaW5hcnk8L2tleXdv

cmQ+PGtleXdvcmQ+QnJ1Y2VsbG9zaXMsIEJvdmluZS9kaWFnbm9zaXM8L2tleXdvcmQ+PGtleXdv

cmQ+Q2F0dGxlPC9rZXl3b3JkPjxrZXl3b3JkPkNyb3NzIFJlYWN0aW9uczwva2V5d29yZD48a2V5

d29yZD5Qc2V1ZG9tb25hcy9pbW11bm9sb2d5PC9rZXl3b3JkPjxrZXl3b3JkPlNhbG1vbmVsbGEv

aW1tdW5vbG9neTwva2V5d29yZD48a2V5d29yZD5Td2luZTwva2V5d29yZD48a2V5d29yZD5Td2lu

ZSBEaXNlYXNlcy9kaWFnbm9zaXM8L2tleXdvcmQ+PGtleXdvcmQ+WWVyc2luaWEgZW50ZXJvY29s

aXRpY2EvaW1tdW5vbG9neTwva2V5d29yZD48L2tleXdvcmRzPjxkYXRlcz48eWVhcj4xOTg0PC95

ZWFyPjwvZGF0ZXM+PGlzYm4+MDMwMS01MTQ5IChQcmludCkmI3hEOzAzMDEtNTE0OSAoTGlua2lu

Zyk8L2lzYm4+PGFjY2Vzc2lvbi1udW0+NjQ4OTYyMDwvYWNjZXNzaW9uLW51bT48dXJscz48cmVs

YXRlZC11cmxzPjx1cmw+aHR0cDovL3d3dy5uY2JpLm5sbS5uaWguZ292L3B1Ym1lZC82NDg5NjIw

PC91cmw+PC9yZWxhdGVkLXVybHM+PC91cmxzPjxsYW5ndWFnZT5lbmc8L2xhbmd1YWdlPjwvcmVj

b3JkPjwvQ2l0ZT48L0VuZE5vdGU+AG==

ADDIN EN.CITE.DATA [7-9]. Further, there are separate tests for infected cattle in vaccinated herds that require additional testing with a combination of Rivanol and complement fixation test along with bacteriological examination of milk samples ADDIN EN.CITE <EndNote><Cite><Author>Cloeckaert A</Author><Year>1992</Year><RecNum>448</RecNum><DisplayText>[4, 10]</DisplayText><record><rec-number>448</rec-number><foreign-keys><key app="EN" db-id="wx90r9pt8rtr20eftvyvz0a4t02v0zsw02wv">448</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Cloeckaert A, Kerkhofs P, Limet JN</author></authors></contributors><titles><title><style face="normal" font="default" size="100%">Antibody response to</style><style face="italic" font="default" size="100%"> Brucella</style><style face="normal" font="default" size="100%"> ourter membrane proteins in bovine brucellosis: immunoblot analysis and competitive enzyme-linked immunosorbent assay using monoclonal antibodies.</style></title><secondary-title>Journal of Clinical Microbiology</secondary-title></titles><periodical><full-title>Journal of Clinical Microbiology</full-title></periodical><pages>3168-3174</pages><volume>30</volume><dates><year>1992</year></dates><urls></urls></record></Cite><Cite><Author>G.G</Author><Year>1988</Year><RecNum>451</RecNum><record><rec-number>451</rec-number><foreign-keys><key app="EN" db-id="wx90r9pt8rtr20eftvyvz0a4t02v0zsw02wv">451</key></foreign-keys><ref-type name="Aggregated Database">55</ref-type><contributors><authors><author>Alton G.G</author></authors></contributors><titles><title>Techniques for the brucellosis laboratory</title></titles><edition>1988</edition><dates><year>1988</year></dates><pub-location>Paris</pub-location><publisher>paris: Institut National de la Recherche Agronomique</publisher><isbn>2738000428</isbn><urls></urls></record></Cite></EndNote>[4, 10]. In international eradication programs, it is time consuming to differentiate vaccinated from infected animals ADDIN EN.CITE <EndNote><Cite><Author>Samartino</Author><Year>1999</Year><RecNum>652</RecNum><DisplayText>[11]</DisplayText><record><rec-number>652</rec-number><foreign-keys><key app="EN" db-id="wx90r9pt8rtr20eftvyvz0a4t02v0zsw02wv">652</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Samartino, L.</author><author>Gall, D.</author><author>Gregoret, R.</author><author>Nielsen, K.</author></authors></contributors><auth-address>Instituto Nacional de Tecnologia Agropecuaria-Centro de Ciencias Veterinarias y Agronomicas, Instituto de Patobiologia-Bacteriologia, Buenos Aires, Argentina. lsanma@.ar</auth-address><titles><title>Validation of enzyme-linked immunosorbent assays for the diagnosis of bovine brucellosis</title><secondary-title>Vet Microbiol</secondary-title><alt-title>Veterinary microbiology</alt-title></titles><periodical><full-title>Vet Microbiol</full-title></periodical><pages>193-200</pages><volume>70</volume><number>3-4</number><edition>1999/12/22</edition><keywords><keyword>Animals</keyword><keyword>Argentina</keyword><keyword>Bacterial Vaccines</keyword><keyword>Brucellosis, Bovine/*diagnosis</keyword><keyword>Cattle</keyword><keyword>Enzyme-Linked Immunosorbent Assay/standards/*veterinary</keyword><keyword>Reproducibility of Results</keyword><keyword>Vaccination/veterinary</keyword></keywords><dates><year>1999</year><pub-dates><date>Dec</date></pub-dates></dates><isbn>0378-1135 (Print)&#xD;0378-1135 (Linking)</isbn><accession-num>10596803</accession-num><work-type>Comparative Study</work-type><urls><related-urls><url>;[11] hence, differential serological diagnosis in brucellosis remains a challenge.Several PCR-based assays for typing of Brucella species biovars have been developed. These are mainly genus specific PCR assays targeted to genes such as the BCP31, omp2A, omp2B and the 16S and 23S rRNA operon genes ADDIN EN.CITE <EndNote><Cite><Author>Bricker</Author><Year>2002</Year><RecNum>512</RecNum><DisplayText>[12]</DisplayText><record><rec-number>512</rec-number><foreign-keys><key app="EN" db-id="wx90r9pt8rtr20eftvyvz0a4t02v0zsw02wv">512</key><key app="ENWeb" db-id="">0</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Bricker, B. J.</author></authors></contributors><auth-address>United States Department of Agriculture, Agricultural Research Service, National Animal Disease Center, 2300 Dayton Road, Ames, IA 50010, USA. bbricker@nadc.ars.</auth-address><titles><title>PCR as a diagnostic tool for brucellosis</title><secondary-title>Vet Microbiol</secondary-title><alt-title>Veterinary microbiology</alt-title></titles><periodical><full-title>Vet Microbiol</full-title></periodical><pages>435-46</pages><volume>90</volume><number>1-4</number><edition>2002/11/05</edition><keywords><keyword>Animals</keyword><keyword>Brucella/genetics/*isolation &amp; purification</keyword><keyword>Brucellosis/*diagnosis/*microbiology</keyword><keyword>DNA Primers</keyword><keyword>Polymerase Chain Reaction/methods</keyword></keywords><dates><year>2002</year><pub-dates><date>Dec 20</date></pub-dates></dates><isbn>0378-1135 (Print)&#xD;0378-1135 (Linking)</isbn><accession-num>12414163</accession-num><work-type>Review</work-type><urls><related-urls><url>;[12]. Other PCR tests have also been developed for typing the Brucella species biovars, such as analysis of the IS711 repetitive element ADDIN EN.CITE <EndNote><Cite><Author>Bricker</Author><Year>1994</Year><RecNum>379</RecNum><DisplayText>[13]</DisplayText><record><rec-number>379</rec-number><foreign-keys><key app="EN" db-id="wx90r9pt8rtr20eftvyvz0a4t02v0zsw02wv">379</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Bricker, B. J.</author><author>Halling, S. M.</author></authors></contributors><auth-address>National Animal Disease Center, Agricultural Research Service, U.S. Department of Agriculture, Ames, Iowa 50010.</auth-address><titles><title>Differentiation of Brucella abortus bv. 1, 2, and 4, Brucella melitensis, Brucella ovis, and Brucella suis bv. 1 by PCR</title><secondary-title>J Clin Microbiol</secondary-title></titles><periodical><full-title>J Clin Microbiol</full-title></periodical><pages>2660-6</pages><volume>32</volume><number>11</number><edition>1994/11/01</edition><keywords><keyword>Base Sequence</keyword><keyword>Brucella/genetics/*isolation &amp; purification</keyword><keyword>Brucella melitensis/genetics/*isolation &amp; purification</keyword><keyword>DNA, Bacterial/analysis</keyword><keyword>Molecular Sequence Data</keyword><keyword>Polymerase Chain Reaction</keyword></keywords><dates><year>1994</year><pub-dates><date>Nov</date></pub-dates></dates><isbn>0095-1137 (Print)&#xD;0095-1137 (Linking)</isbn><accession-num>7852552</accession-num><urls><related-urls><url>;[13]. Genotyping using variable number tandem repeats (VNTRs) has been used previously to provide a Brucella species level resolution PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5XaGF0bW9yZTwvQXV0aG9yPjxZZWFyPjIwMDY8L1llYXI+

PFJlY051bT45NjU8L1JlY051bT48RGlzcGxheVRleHQ+WzE0LCAxNV08L0Rpc3BsYXlUZXh0Pjxy

ZWNvcmQ+PHJlYy1udW1iZXI+OTY1PC9yZWMtbnVtYmVyPjxmb3JlaWduLWtleXM+PGtleSBhcHA9

IkVOIiBkYi1pZD0id3g5MHI5cHQ4cnRyMjBlZnR2eXZ6MGE0dDAydjB6c3cwMnd2Ij45NjU8L2tl

eT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwvcmVm

LXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPldoYXRtb3JlLCBBLiBNLjwvYXV0

aG9yPjxhdXRob3I+U2hhbmtzdGVyLCBTLiBKLjwvYXV0aG9yPjxhdXRob3I+UGVycmV0dCwgTC4g

TC48L2F1dGhvcj48YXV0aG9yPk11cnBoeSwgVC4gSi48L2F1dGhvcj48YXV0aG9yPkJyZXcsIFMu

IEQuPC9hdXRob3I+PGF1dGhvcj5UaGlybHdhbGwsIFIuIEUuPC9hdXRob3I+PGF1dGhvcj5DdXRs

ZXIsIFMuIEouPC9hdXRob3I+PGF1dGhvcj5NYWNNaWxsYW4sIEEuIFAuPC9hdXRob3I+PC9hdXRo

b3JzPjwvY29udHJpYnV0b3JzPjxhdXRoLWFkZHJlc3M+RGVwYXJ0bWVudCBvZiBTdGF0dXRvcnkg

YW5kIEV4b3RpYyBCYWN0ZXJpYWwgRGlzZWFzZXMsIFZldGVyaW5hcnkgTGFib3JhdG9yaWVzIEFn

ZW5jeSwgQWRkbGVzdG9uZSwgU3VycmV5IEtUMTUgM05CLCBVbml0ZWQgS2luZ2RvbS4gYS53aGF0

bW9yZUB2bGEuZGVmcmEuZ3NpLmdvdi51azwvYXV0aC1hZGRyZXNzPjx0aXRsZXM+PHRpdGxlPklk

ZW50aWZpY2F0aW9uIGFuZCBjaGFyYWN0ZXJpemF0aW9uIG9mIHZhcmlhYmxlLW51bWJlciB0YW5k

ZW0tcmVwZWF0IG1hcmtlcnMgZm9yIHR5cGluZyBvZiBCcnVjZWxsYSBzcHA8L3RpdGxlPjxzZWNv

bmRhcnktdGl0bGU+SiBDbGluIE1pY3JvYmlvbDwvc2Vjb25kYXJ5LXRpdGxlPjxhbHQtdGl0bGU+

Sm91cm5hbCBvZiBjbGluaWNhbCBtaWNyb2Jpb2xvZ3k8L2FsdC10aXRsZT48L3RpdGxlcz48cGVy

aW9kaWNhbD48ZnVsbC10aXRsZT5KIENsaW4gTWljcm9iaW9sPC9mdWxsLXRpdGxlPjwvcGVyaW9k

aWNhbD48YWx0LXBlcmlvZGljYWw+PGZ1bGwtdGl0bGU+Sm91cm5hbCBvZiBDbGluaWNhbCBNaWNy

b2Jpb2xvZ3k8L2Z1bGwtdGl0bGU+PC9hbHQtcGVyaW9kaWNhbD48cGFnZXM+MTk4Mi05MzwvcGFn

ZXM+PHZvbHVtZT40NDwvdm9sdW1lPjxudW1iZXI+NjwvbnVtYmVyPjxlZGl0aW9uPjIwMDYvMDYv

MDg8L2VkaXRpb24+PGtleXdvcmRzPjxrZXl3b3JkPkFuaW1hbHM8L2tleXdvcmQ+PGtleXdvcmQ+

QW5pbWFscywgRG9tZXN0aWMvbWljcm9iaW9sb2d5PC9rZXl3b3JkPjxrZXl3b3JkPkFuaW1hbHMs

IFdpbGQvbWljcm9iaW9sb2d5PC9rZXl3b3JkPjxrZXl3b3JkPipCYWN0ZXJpYWwgVHlwaW5nIFRl

Y2huaXF1ZXM8L2tleXdvcmQ+PGtleXdvcmQ+QnJ1Y2VsbGEvKmNsYXNzaWZpY2F0aW9uL2dlbmV0

aWNzL2lzb2xhdGlvbiAmYW1wOyBwdXJpZmljYXRpb248L2tleXdvcmQ+PGtleXdvcmQ+QnJ1Y2Vs

bG9zaXMvZXBpZGVtaW9sb2d5L21pY3JvYmlvbG9neTwva2V5d29yZD48a2V5d29yZD5DYXR0bGU8

L2tleXdvcmQ+PGtleXdvcmQ+RG9nczwva2V5d29yZD48a2V5d29yZD4qR2VuZXRpYyBNYXJrZXJz

PC9rZXl3b3JkPjxrZXl3b3JkPkdlbmV0aWMgVmFyaWF0aW9uPC9rZXl3b3JkPjxrZXl3b3JkPkh1

bWFuczwva2V5d29yZD48a2V5d29yZD4qTWluaXNhdGVsbGl0ZSBSZXBlYXRzPC9rZXl3b3JkPjxr

ZXl3b3JkPk1vbGVjdWxhciBTZXF1ZW5jZSBEYXRhPC9rZXl3b3JkPjxrZXl3b3JkPlNlcXVlbmNl

IEFuYWx5c2lzLCBETkE8L2tleXdvcmQ+PGtleXdvcmQ+U3BlY2llcyBTcGVjaWZpY2l0eTwva2V5

d29yZD48L2tleXdvcmRzPjxkYXRlcz48eWVhcj4yMDA2PC95ZWFyPjxwdWItZGF0ZXM+PGRhdGU+

SnVuPC9kYXRlPjwvcHViLWRhdGVzPjwvZGF0ZXM+PGlzYm4+MDA5NS0xMTM3IChQcmludCkmI3hE

OzAwOTUtMTEzNyAoTGlua2luZyk8L2lzYm4+PGFjY2Vzc2lvbi1udW0+MTY3NTc1ODg8L2FjY2Vz

c2lvbi1udW0+PHdvcmstdHlwZT5FdmFsdWF0aW9uIFN0dWRpZXMmI3hEO1Jlc2VhcmNoIFN1cHBv

cnQsIE5vbi1VLlMuIEdvdiZhcG9zO3Q8L3dvcmstdHlwZT48dXJscz48cmVsYXRlZC11cmxzPjx1

cmw+aHR0cDovL3d3dy5uY2JpLm5sbS5uaWguZ292L3B1Ym1lZC8xNjc1NzU4ODwvdXJsPjwvcmVs

YXRlZC11cmxzPjwvdXJscz48Y3VzdG9tMj4xNDg5NDM3PC9jdXN0b20yPjxlbGVjdHJvbmljLXJl

c291cmNlLW51bT4xMC4xMTI4L0pDTS4wMjAzOS0wNTwvZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+

PGxhbmd1YWdlPmVuZzwvbGFuZ3VhZ2U+PC9yZWNvcmQ+PC9DaXRlPjxDaXRlPjxBdXRob3I+QnJp

Y2tlcjwvQXV0aG9yPjxZZWFyPjIwMDM8L1llYXI+PFJlY051bT45NDc8L1JlY051bT48cmVjb3Jk

PjxyZWMtbnVtYmVyPjk0NzwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIg

ZGItaWQ9Ind4OTByOXB0OHJ0cjIwZWZ0dnl2ejBhNHQwMnYwenN3MDJ3diI+OTQ3PC9rZXk+PC9m

b3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBl

Pjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5Ccmlja2VyLCBCLiBKLjwvYXV0aG9yPjxh

dXRob3I+RXdhbHQsIEQuIFIuPC9hdXRob3I+PGF1dGhvcj5IYWxsaW5nLCBTLiBNLjwvYXV0aG9y

PjwvYXV0aG9ycz48L2NvbnRyaWJ1dG9ycz48YXV0aC1hZGRyZXNzPlVuaXRlZCBTdGF0ZXMgRGVw

YXJ0bWVudCBvZiBBZ3JpY3VsdHVyZSwgQWdyaWN1bHR1cmFsIFJlc2VhcmNoIFNlcnZpY2UsIE5h

dGlvbmFsIEFuaW1hbCBEaXNlYXNlIENlbnRlciwgMjMwMCBEYXl0b24gUmQsIEFtZXMsIElBIDUw

MDEwLCBVU0EuIGJicmlja2VyQG5hZGMuYXJzLnVzZGEuZ292PC9hdXRoLWFkZHJlc3M+PHRpdGxl

cz48dGl0bGU+QnJ1Y2VsbGEgJmFwb3M7SE9PRi1QcmludHMmYXBvczs6IHN0cmFpbiB0eXBpbmcg

YnkgbXVsdGktbG9jdXMgYW5hbHlzaXMgb2YgdmFyaWFibGUgbnVtYmVyIHRhbmRlbSByZXBlYXRz

IChWTlRScyk8L3RpdGxlPjxzZWNvbmRhcnktdGl0bGU+Qk1DIE1pY3JvYmlvbDwvc2Vjb25kYXJ5

LXRpdGxlPjxhbHQtdGl0bGU+Qk1DIG1pY3JvYmlvbG9neTwvYWx0LXRpdGxlPjwvdGl0bGVzPjxw

ZXJpb2RpY2FsPjxmdWxsLXRpdGxlPkJNQyBNaWNyb2Jpb2w8L2Z1bGwtdGl0bGU+PC9wZXJpb2Rp

Y2FsPjxwYWdlcz4xNTwvcGFnZXM+PHZvbHVtZT4zPC92b2x1bWU+PGVkaXRpb24+MjAwMy8wNy8x

NTwvZWRpdGlvbj48a2V5d29yZHM+PGtleXdvcmQ+QWxsZWxlczwva2V5d29yZD48a2V5d29yZD5B

bmltYWxzPC9rZXl3b3JkPjxrZXl3b3JkPkJhY3RlcmlhbCBUeXBpbmcgVGVjaG5pcXVlczwva2V5

d29yZD48a2V5d29yZD5CcnVjZWxsYS8qY2xhc3NpZmljYXRpb24vZ2VuZXRpY3M8L2tleXdvcmQ+

PGtleXdvcmQ+QnJ1Y2VsbG9zaXMvbWljcm9iaW9sb2d5PC9rZXl3b3JkPjxrZXl3b3JkPkNhdHRs

ZTwva2V5d29yZD48a2V5d29yZD5ETkEsIEJhY3RlcmlhbC8qYW5hbHlzaXM8L2tleXdvcmQ+PGtl

eXdvcmQ+TWluaXNhdGVsbGl0ZSBSZXBlYXRzLypnZW5ldGljczwva2V5d29yZD48a2V5d29yZD5N

b2xlY3VsYXIgU2VxdWVuY2UgRGF0YTwva2V5d29yZD48a2V5d29yZD5Qb2x5bWVyYXNlIENoYWlu

IFJlYWN0aW9uPC9rZXl3b3JkPjwva2V5d29yZHM+PGRhdGVzPjx5ZWFyPjIwMDM8L3llYXI+PHB1

Yi1kYXRlcz48ZGF0ZT5KdWwgMTE8L2RhdGU+PC9wdWItZGF0ZXM+PC9kYXRlcz48aXNibj4xNDcx

LTIxODAgKEVsZWN0cm9uaWMpJiN4RDsxNDcxLTIxODAgKExpbmtpbmcpPC9pc2JuPjxhY2Nlc3Np

b24tbnVtPjEyODU3MzUxPC9hY2Nlc3Npb24tbnVtPjx1cmxzPjxyZWxhdGVkLXVybHM+PHVybD5o

dHRwOi8vd3d3Lm5jYmkubmxtLm5paC5nb3YvcHVibWVkLzEyODU3MzUxPC91cmw+PC9yZWxhdGVk

LXVybHM+PC91cmxzPjxjdXN0b20yPjE4Mzg3MDwvY3VzdG9tMj48ZWxlY3Ryb25pYy1yZXNvdXJj

ZS1udW0+MTAuMTE4Ni8xNDcxLTIxODAtMy0xNTwvZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+PGxh

bmd1YWdlPmVuZzwvbGFuZ3VhZ2U+PC9yZWNvcmQ+PC9DaXRlPjwvRW5kTm90ZT4A

ADDIN EN.CITE PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5XaGF0bW9yZTwvQXV0aG9yPjxZZWFyPjIwMDY8L1llYXI+

PFJlY051bT45NjU8L1JlY051bT48RGlzcGxheVRleHQ+WzE0LCAxNV08L0Rpc3BsYXlUZXh0Pjxy

ZWNvcmQ+PHJlYy1udW1iZXI+OTY1PC9yZWMtbnVtYmVyPjxmb3JlaWduLWtleXM+PGtleSBhcHA9

IkVOIiBkYi1pZD0id3g5MHI5cHQ4cnRyMjBlZnR2eXZ6MGE0dDAydjB6c3cwMnd2Ij45NjU8L2tl

eT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwvcmVm

LXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPldoYXRtb3JlLCBBLiBNLjwvYXV0

aG9yPjxhdXRob3I+U2hhbmtzdGVyLCBTLiBKLjwvYXV0aG9yPjxhdXRob3I+UGVycmV0dCwgTC4g

TC48L2F1dGhvcj48YXV0aG9yPk11cnBoeSwgVC4gSi48L2F1dGhvcj48YXV0aG9yPkJyZXcsIFMu

IEQuPC9hdXRob3I+PGF1dGhvcj5UaGlybHdhbGwsIFIuIEUuPC9hdXRob3I+PGF1dGhvcj5DdXRs

ZXIsIFMuIEouPC9hdXRob3I+PGF1dGhvcj5NYWNNaWxsYW4sIEEuIFAuPC9hdXRob3I+PC9hdXRo

b3JzPjwvY29udHJpYnV0b3JzPjxhdXRoLWFkZHJlc3M+RGVwYXJ0bWVudCBvZiBTdGF0dXRvcnkg

YW5kIEV4b3RpYyBCYWN0ZXJpYWwgRGlzZWFzZXMsIFZldGVyaW5hcnkgTGFib3JhdG9yaWVzIEFn

ZW5jeSwgQWRkbGVzdG9uZSwgU3VycmV5IEtUMTUgM05CLCBVbml0ZWQgS2luZ2RvbS4gYS53aGF0

bW9yZUB2bGEuZGVmcmEuZ3NpLmdvdi51azwvYXV0aC1hZGRyZXNzPjx0aXRsZXM+PHRpdGxlPklk

ZW50aWZpY2F0aW9uIGFuZCBjaGFyYWN0ZXJpemF0aW9uIG9mIHZhcmlhYmxlLW51bWJlciB0YW5k

ZW0tcmVwZWF0IG1hcmtlcnMgZm9yIHR5cGluZyBvZiBCcnVjZWxsYSBzcHA8L3RpdGxlPjxzZWNv

bmRhcnktdGl0bGU+SiBDbGluIE1pY3JvYmlvbDwvc2Vjb25kYXJ5LXRpdGxlPjxhbHQtdGl0bGU+

Sm91cm5hbCBvZiBjbGluaWNhbCBtaWNyb2Jpb2xvZ3k8L2FsdC10aXRsZT48L3RpdGxlcz48cGVy

aW9kaWNhbD48ZnVsbC10aXRsZT5KIENsaW4gTWljcm9iaW9sPC9mdWxsLXRpdGxlPjwvcGVyaW9k

aWNhbD48YWx0LXBlcmlvZGljYWw+PGZ1bGwtdGl0bGU+Sm91cm5hbCBvZiBDbGluaWNhbCBNaWNy

b2Jpb2xvZ3k8L2Z1bGwtdGl0bGU+PC9hbHQtcGVyaW9kaWNhbD48cGFnZXM+MTk4Mi05MzwvcGFn

ZXM+PHZvbHVtZT40NDwvdm9sdW1lPjxudW1iZXI+NjwvbnVtYmVyPjxlZGl0aW9uPjIwMDYvMDYv

MDg8L2VkaXRpb24+PGtleXdvcmRzPjxrZXl3b3JkPkFuaW1hbHM8L2tleXdvcmQ+PGtleXdvcmQ+

QW5pbWFscywgRG9tZXN0aWMvbWljcm9iaW9sb2d5PC9rZXl3b3JkPjxrZXl3b3JkPkFuaW1hbHMs

IFdpbGQvbWljcm9iaW9sb2d5PC9rZXl3b3JkPjxrZXl3b3JkPipCYWN0ZXJpYWwgVHlwaW5nIFRl

Y2huaXF1ZXM8L2tleXdvcmQ+PGtleXdvcmQ+QnJ1Y2VsbGEvKmNsYXNzaWZpY2F0aW9uL2dlbmV0

aWNzL2lzb2xhdGlvbiAmYW1wOyBwdXJpZmljYXRpb248L2tleXdvcmQ+PGtleXdvcmQ+QnJ1Y2Vs

bG9zaXMvZXBpZGVtaW9sb2d5L21pY3JvYmlvbG9neTwva2V5d29yZD48a2V5d29yZD5DYXR0bGU8

L2tleXdvcmQ+PGtleXdvcmQ+RG9nczwva2V5d29yZD48a2V5d29yZD4qR2VuZXRpYyBNYXJrZXJz

PC9rZXl3b3JkPjxrZXl3b3JkPkdlbmV0aWMgVmFyaWF0aW9uPC9rZXl3b3JkPjxrZXl3b3JkPkh1

bWFuczwva2V5d29yZD48a2V5d29yZD4qTWluaXNhdGVsbGl0ZSBSZXBlYXRzPC9rZXl3b3JkPjxr

ZXl3b3JkPk1vbGVjdWxhciBTZXF1ZW5jZSBEYXRhPC9rZXl3b3JkPjxrZXl3b3JkPlNlcXVlbmNl

IEFuYWx5c2lzLCBETkE8L2tleXdvcmQ+PGtleXdvcmQ+U3BlY2llcyBTcGVjaWZpY2l0eTwva2V5

d29yZD48L2tleXdvcmRzPjxkYXRlcz48eWVhcj4yMDA2PC95ZWFyPjxwdWItZGF0ZXM+PGRhdGU+

SnVuPC9kYXRlPjwvcHViLWRhdGVzPjwvZGF0ZXM+PGlzYm4+MDA5NS0xMTM3IChQcmludCkmI3hE

OzAwOTUtMTEzNyAoTGlua2luZyk8L2lzYm4+PGFjY2Vzc2lvbi1udW0+MTY3NTc1ODg8L2FjY2Vz

c2lvbi1udW0+PHdvcmstdHlwZT5FdmFsdWF0aW9uIFN0dWRpZXMmI3hEO1Jlc2VhcmNoIFN1cHBv

cnQsIE5vbi1VLlMuIEdvdiZhcG9zO3Q8L3dvcmstdHlwZT48dXJscz48cmVsYXRlZC11cmxzPjx1

cmw+aHR0cDovL3d3dy5uY2JpLm5sbS5uaWguZ292L3B1Ym1lZC8xNjc1NzU4ODwvdXJsPjwvcmVs

YXRlZC11cmxzPjwvdXJscz48Y3VzdG9tMj4xNDg5NDM3PC9jdXN0b20yPjxlbGVjdHJvbmljLXJl

c291cmNlLW51bT4xMC4xMTI4L0pDTS4wMjAzOS0wNTwvZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+

PGxhbmd1YWdlPmVuZzwvbGFuZ3VhZ2U+PC9yZWNvcmQ+PC9DaXRlPjxDaXRlPjxBdXRob3I+QnJp

Y2tlcjwvQXV0aG9yPjxZZWFyPjIwMDM8L1llYXI+PFJlY051bT45NDc8L1JlY051bT48cmVjb3Jk

PjxyZWMtbnVtYmVyPjk0NzwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIg

ZGItaWQ9Ind4OTByOXB0OHJ0cjIwZWZ0dnl2ejBhNHQwMnYwenN3MDJ3diI+OTQ3PC9rZXk+PC9m

b3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBl

Pjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5Ccmlja2VyLCBCLiBKLjwvYXV0aG9yPjxh

dXRob3I+RXdhbHQsIEQuIFIuPC9hdXRob3I+PGF1dGhvcj5IYWxsaW5nLCBTLiBNLjwvYXV0aG9y

PjwvYXV0aG9ycz48L2NvbnRyaWJ1dG9ycz48YXV0aC1hZGRyZXNzPlVuaXRlZCBTdGF0ZXMgRGVw

YXJ0bWVudCBvZiBBZ3JpY3VsdHVyZSwgQWdyaWN1bHR1cmFsIFJlc2VhcmNoIFNlcnZpY2UsIE5h

dGlvbmFsIEFuaW1hbCBEaXNlYXNlIENlbnRlciwgMjMwMCBEYXl0b24gUmQsIEFtZXMsIElBIDUw

MDEwLCBVU0EuIGJicmlja2VyQG5hZGMuYXJzLnVzZGEuZ292PC9hdXRoLWFkZHJlc3M+PHRpdGxl

cz48dGl0bGU+QnJ1Y2VsbGEgJmFwb3M7SE9PRi1QcmludHMmYXBvczs6IHN0cmFpbiB0eXBpbmcg

YnkgbXVsdGktbG9jdXMgYW5hbHlzaXMgb2YgdmFyaWFibGUgbnVtYmVyIHRhbmRlbSByZXBlYXRz

IChWTlRScyk8L3RpdGxlPjxzZWNvbmRhcnktdGl0bGU+Qk1DIE1pY3JvYmlvbDwvc2Vjb25kYXJ5

LXRpdGxlPjxhbHQtdGl0bGU+Qk1DIG1pY3JvYmlvbG9neTwvYWx0LXRpdGxlPjwvdGl0bGVzPjxw

ZXJpb2RpY2FsPjxmdWxsLXRpdGxlPkJNQyBNaWNyb2Jpb2w8L2Z1bGwtdGl0bGU+PC9wZXJpb2Rp

Y2FsPjxwYWdlcz4xNTwvcGFnZXM+PHZvbHVtZT4zPC92b2x1bWU+PGVkaXRpb24+MjAwMy8wNy8x

NTwvZWRpdGlvbj48a2V5d29yZHM+PGtleXdvcmQ+QWxsZWxlczwva2V5d29yZD48a2V5d29yZD5B

bmltYWxzPC9rZXl3b3JkPjxrZXl3b3JkPkJhY3RlcmlhbCBUeXBpbmcgVGVjaG5pcXVlczwva2V5

d29yZD48a2V5d29yZD5CcnVjZWxsYS8qY2xhc3NpZmljYXRpb24vZ2VuZXRpY3M8L2tleXdvcmQ+

PGtleXdvcmQ+QnJ1Y2VsbG9zaXMvbWljcm9iaW9sb2d5PC9rZXl3b3JkPjxrZXl3b3JkPkNhdHRs

ZTwva2V5d29yZD48a2V5d29yZD5ETkEsIEJhY3RlcmlhbC8qYW5hbHlzaXM8L2tleXdvcmQ+PGtl

eXdvcmQ+TWluaXNhdGVsbGl0ZSBSZXBlYXRzLypnZW5ldGljczwva2V5d29yZD48a2V5d29yZD5N

b2xlY3VsYXIgU2VxdWVuY2UgRGF0YTwva2V5d29yZD48a2V5d29yZD5Qb2x5bWVyYXNlIENoYWlu

IFJlYWN0aW9uPC9rZXl3b3JkPjwva2V5d29yZHM+PGRhdGVzPjx5ZWFyPjIwMDM8L3llYXI+PHB1

Yi1kYXRlcz48ZGF0ZT5KdWwgMTE8L2RhdGU+PC9wdWItZGF0ZXM+PC9kYXRlcz48aXNibj4xNDcx

LTIxODAgKEVsZWN0cm9uaWMpJiN4RDsxNDcxLTIxODAgKExpbmtpbmcpPC9pc2JuPjxhY2Nlc3Np

b24tbnVtPjEyODU3MzUxPC9hY2Nlc3Npb24tbnVtPjx1cmxzPjxyZWxhdGVkLXVybHM+PHVybD5o

dHRwOi8vd3d3Lm5jYmkubmxtLm5paC5nb3YvcHVibWVkLzEyODU3MzUxPC91cmw+PC9yZWxhdGVk

LXVybHM+PC91cmxzPjxjdXN0b20yPjE4Mzg3MDwvY3VzdG9tMj48ZWxlY3Ryb25pYy1yZXNvdXJj

ZS1udW0+MTAuMTE4Ni8xNDcxLTIxODAtMy0xNTwvZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+PGxh

bmd1YWdlPmVuZzwvbGFuZ3VhZ2U+PC9yZWNvcmQ+PC9DaXRlPjwvRW5kTm90ZT4A

ADDIN EN.CITE.DATA [14, 15]. However, many of these loci result in homoplasy where the same variability is observed in different branches of the phylogenomic tree ADDIN EN.CITE <EndNote><Cite><Author>Bricker</Author><Year>2005</Year><RecNum>1032</RecNum><DisplayText>[16]</DisplayText><record><rec-number>1032</rec-number><foreign-keys><key app="EN" db-id="wx90r9pt8rtr20eftvyvz0a4t02v0zsw02wv">1032</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Bricker, B. J.</author><author>Ewalt, D. R.</author></authors></contributors><auth-address>Bacterial Diseases of Livestock Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, 2300 Dayton Rd, Ames, IA 50010, USA. bbricker@nadc.ars.</auth-address><titles><title>Evaluation of the HOOF-Print assay for typing Brucella abortus strains isolated from cattle in the United States: results with four performance criteria</title><secondary-title>BMC Microbiol</secondary-title><alt-title>BMC microbiology</alt-title></titles><periodical><full-title>BMC Microbiol</full-title></periodical><pages>37</pages><volume>5</volume><edition>2005/06/25</edition><keywords><keyword>Animals</keyword><keyword>Bacterial Typing Techniques</keyword><keyword>Brucella abortus/*classification/genetics/isolation &amp;</keyword><keyword>purification/pathogenicity</keyword><keyword>Brucellosis, Bovine/microbiology</keyword><keyword>Cattle/*microbiology</keyword><keyword>Genotype</keyword><keyword>Hoof and Claw/microbiology</keyword><keyword>Reproducibility of Results</keyword><keyword>United States</keyword></keywords><dates><year>2005</year></dates><isbn>1471-2180 (Electronic)&#xD;1471-2180 (Linking)</isbn><accession-num>15975142</accession-num><urls><related-urls><url>;[16]. Single nucleotide polymorphism studies using real time PCR assays have been developed in specific house-keeping genes in the Brucella clade PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5Gb3N0ZXI8L0F1dGhvcj48WWVhcj4yMDA4PC9ZZWFyPjxS

ZWNOdW0+OTY5PC9SZWNOdW0+PERpc3BsYXlUZXh0PlsxN108L0Rpc3BsYXlUZXh0PjxyZWNvcmQ+

PHJlYy1udW1iZXI+OTY5PC9yZWMtbnVtYmVyPjxmb3JlaWduLWtleXM+PGtleSBhcHA9IkVOIiBk

Yi1pZD0id3g5MHI5cHQ4cnRyMjBlZnR2eXZ6MGE0dDAydjB6c3cwMnd2Ij45Njk8L2tleT48L2Zv

cmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwvcmVmLXR5cGU+

PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPkZvc3RlciwgSi4gVC48L2F1dGhvcj48YXV0

aG9yPk9raW5ha2EsIFIuIFQuPC9hdXRob3I+PGF1dGhvcj5TdmVuc3NvbiwgUi48L2F1dGhvcj48

YXV0aG9yPlNoYXcsIEsuPC9hdXRob3I+PGF1dGhvcj5EZSwgQi4gSy48L2F1dGhvcj48YXV0aG9y

PlJvYmlzb24sIFIuIEEuPC9hdXRob3I+PGF1dGhvcj5Qcm9iZXJ0LCBXLiBTLjwvYXV0aG9yPjxh

dXRob3I+S2VuZWZpYywgTC4gSi48L2F1dGhvcj48YXV0aG9yPkJyb3duLCBXLiBELjwvYXV0aG9y

PjxhdXRob3I+S2VpbSwgUC48L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PGF1dGgt

YWRkcmVzcz5DZW50ZXIgZm9yIE1pY3JvYmlhbCBHZW5ldGljcyBhbmQgR2Vub21pY3MsIE5vcnRo

ZXJuIEFyaXpvbmEgVW5pdmVyc2l0eSwgRmxhZ3N0YWZmLCBBWiA4NjAxMS01NjQwLCBVU0EuPC9h

dXRoLWFkZHJlc3M+PHRpdGxlcz48dGl0bGU+UmVhbC10aW1lIFBDUiBhc3NheXMgb2Ygc2luZ2xl

LW51Y2xlb3RpZGUgcG9seW1vcnBoaXNtcyBkZWZpbmluZyB0aGUgbWFqb3IgQnJ1Y2VsbGEgY2xh

ZGVzPC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPkogQ2xpbiBNaWNyb2Jpb2w8L3NlY29uZGFyeS10

aXRsZT48YWx0LXRpdGxlPkpvdXJuYWwgb2YgY2xpbmljYWwgbWljcm9iaW9sb2d5PC9hbHQtdGl0

bGU+PC90aXRsZXM+PHBlcmlvZGljYWw+PGZ1bGwtdGl0bGU+SiBDbGluIE1pY3JvYmlvbDwvZnVs

bC10aXRsZT48L3BlcmlvZGljYWw+PGFsdC1wZXJpb2RpY2FsPjxmdWxsLXRpdGxlPkpvdXJuYWwg

b2YgQ2xpbmljYWwgTWljcm9iaW9sb2d5PC9mdWxsLXRpdGxlPjwvYWx0LXBlcmlvZGljYWw+PHBh

Z2VzPjI5Ni0zMDE8L3BhZ2VzPjx2b2x1bWU+NDY8L3ZvbHVtZT48bnVtYmVyPjE8L251bWJlcj48

ZWRpdGlvbj4yMDA3LzExLzIzPC9lZGl0aW9uPjxrZXl3b3Jkcz48a2V5d29yZD5BbmltYWxzPC9r

ZXl3b3JkPjxrZXl3b3JkPkJhY3RlcmlhbCBUeXBpbmcgVGVjaG5pcXVlcy8qbWV0aG9kczwva2V5

d29yZD48a2V5d29yZD5CcnVjZWxsYS8qY2xhc3NpZmljYXRpb24vKmdlbmV0aWNzPC9rZXl3b3Jk

PjxrZXl3b3JkPkROQSwgQmFjdGVyaWFsL2NoZW1pc3RyeS8qZ2VuZXRpY3M8L2tleXdvcmQ+PGtl

eXdvcmQ+R2Vub3R5cGU8L2tleXdvcmQ+PGtleXdvcmQ+SHVtYW5zPC9rZXl3b3JkPjxrZXl3b3Jk

Pk1vbGVjdWxhciBTZXF1ZW5jZSBEYXRhPC9rZXl3b3JkPjxrZXl3b3JkPlBvbHltZXJhc2UgQ2hh

aW4gUmVhY3Rpb24vKm1ldGhvZHM8L2tleXdvcmQ+PGtleXdvcmQ+KlBvbHltb3JwaGlzbSwgU2lu

Z2xlIE51Y2xlb3RpZGU8L2tleXdvcmQ+PGtleXdvcmQ+U2Vuc2l0aXZpdHkgYW5kIFNwZWNpZmlj

aXR5PC9rZXl3b3JkPjxrZXl3b3JkPlNlcXVlbmNlIEFuYWx5c2lzLCBETkE8L2tleXdvcmQ+PC9r

ZXl3b3Jkcz48ZGF0ZXM+PHllYXI+MjAwODwveWVhcj48cHViLWRhdGVzPjxkYXRlPkphbjwvZGF0

ZT48L3B1Yi1kYXRlcz48L2RhdGVzPjxpc2JuPjEwOTgtNjYwWCAoRWxlY3Ryb25pYykmI3hEOzAw

OTUtMTEzNyAoTGlua2luZyk8L2lzYm4+PGFjY2Vzc2lvbi1udW0+MTgwMzI2Mjg8L2FjY2Vzc2lv

bi1udW0+PHdvcmstdHlwZT5FdmFsdWF0aW9uIFN0dWRpZXMmI3hEO1Jlc2VhcmNoIFN1cHBvcnQs

IFUuUy4gR292JmFwb3M7dCwgTm9uLVAuSC5TLjwvd29yay10eXBlPjx1cmxzPjxyZWxhdGVkLXVy

bHM+PHVybD5odHRwOi8vd3d3Lm5jYmkubmxtLm5paC5nb3YvcHVibWVkLzE4MDMyNjI4PC91cmw+

PC9yZWxhdGVkLXVybHM+PC91cmxzPjxjdXN0b20yPjIyMjQyOTU8L2N1c3RvbTI+PGVsZWN0cm9u

aWMtcmVzb3VyY2UtbnVtPjEwLjExMjgvSkNNLjAxNDk2LTA3PC9lbGVjdHJvbmljLXJlc291cmNl

LW51bT48bGFuZ3VhZ2U+ZW5nPC9sYW5ndWFnZT48L3JlY29yZD48L0NpdGU+PC9FbmROb3RlPgB=

ADDIN EN.CITE PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5Gb3N0ZXI8L0F1dGhvcj48WWVhcj4yMDA4PC9ZZWFyPjxS

ZWNOdW0+OTY5PC9SZWNOdW0+PERpc3BsYXlUZXh0PlsxN108L0Rpc3BsYXlUZXh0PjxyZWNvcmQ+

PHJlYy1udW1iZXI+OTY5PC9yZWMtbnVtYmVyPjxmb3JlaWduLWtleXM+PGtleSBhcHA9IkVOIiBk

Yi1pZD0id3g5MHI5cHQ4cnRyMjBlZnR2eXZ6MGE0dDAydjB6c3cwMnd2Ij45Njk8L2tleT48L2Zv

cmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwvcmVmLXR5cGU+

PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPkZvc3RlciwgSi4gVC48L2F1dGhvcj48YXV0

aG9yPk9raW5ha2EsIFIuIFQuPC9hdXRob3I+PGF1dGhvcj5TdmVuc3NvbiwgUi48L2F1dGhvcj48

YXV0aG9yPlNoYXcsIEsuPC9hdXRob3I+PGF1dGhvcj5EZSwgQi4gSy48L2F1dGhvcj48YXV0aG9y

PlJvYmlzb24sIFIuIEEuPC9hdXRob3I+PGF1dGhvcj5Qcm9iZXJ0LCBXLiBTLjwvYXV0aG9yPjxh

dXRob3I+S2VuZWZpYywgTC4gSi48L2F1dGhvcj48YXV0aG9yPkJyb3duLCBXLiBELjwvYXV0aG9y

PjxhdXRob3I+S2VpbSwgUC48L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PGF1dGgt

YWRkcmVzcz5DZW50ZXIgZm9yIE1pY3JvYmlhbCBHZW5ldGljcyBhbmQgR2Vub21pY3MsIE5vcnRo

ZXJuIEFyaXpvbmEgVW5pdmVyc2l0eSwgRmxhZ3N0YWZmLCBBWiA4NjAxMS01NjQwLCBVU0EuPC9h

dXRoLWFkZHJlc3M+PHRpdGxlcz48dGl0bGU+UmVhbC10aW1lIFBDUiBhc3NheXMgb2Ygc2luZ2xl

LW51Y2xlb3RpZGUgcG9seW1vcnBoaXNtcyBkZWZpbmluZyB0aGUgbWFqb3IgQnJ1Y2VsbGEgY2xh

ZGVzPC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPkogQ2xpbiBNaWNyb2Jpb2w8L3NlY29uZGFyeS10

aXRsZT48YWx0LXRpdGxlPkpvdXJuYWwgb2YgY2xpbmljYWwgbWljcm9iaW9sb2d5PC9hbHQtdGl0

bGU+PC90aXRsZXM+PHBlcmlvZGljYWw+PGZ1bGwtdGl0bGU+SiBDbGluIE1pY3JvYmlvbDwvZnVs

bC10aXRsZT48L3BlcmlvZGljYWw+PGFsdC1wZXJpb2RpY2FsPjxmdWxsLXRpdGxlPkpvdXJuYWwg

b2YgQ2xpbmljYWwgTWljcm9iaW9sb2d5PC9mdWxsLXRpdGxlPjwvYWx0LXBlcmlvZGljYWw+PHBh

Z2VzPjI5Ni0zMDE8L3BhZ2VzPjx2b2x1bWU+NDY8L3ZvbHVtZT48bnVtYmVyPjE8L251bWJlcj48

ZWRpdGlvbj4yMDA3LzExLzIzPC9lZGl0aW9uPjxrZXl3b3Jkcz48a2V5d29yZD5BbmltYWxzPC9r

ZXl3b3JkPjxrZXl3b3JkPkJhY3RlcmlhbCBUeXBpbmcgVGVjaG5pcXVlcy8qbWV0aG9kczwva2V5

d29yZD48a2V5d29yZD5CcnVjZWxsYS8qY2xhc3NpZmljYXRpb24vKmdlbmV0aWNzPC9rZXl3b3Jk

PjxrZXl3b3JkPkROQSwgQmFjdGVyaWFsL2NoZW1pc3RyeS8qZ2VuZXRpY3M8L2tleXdvcmQ+PGtl

eXdvcmQ+R2Vub3R5cGU8L2tleXdvcmQ+PGtleXdvcmQ+SHVtYW5zPC9rZXl3b3JkPjxrZXl3b3Jk

Pk1vbGVjdWxhciBTZXF1ZW5jZSBEYXRhPC9rZXl3b3JkPjxrZXl3b3JkPlBvbHltZXJhc2UgQ2hh

aW4gUmVhY3Rpb24vKm1ldGhvZHM8L2tleXdvcmQ+PGtleXdvcmQ+KlBvbHltb3JwaGlzbSwgU2lu

Z2xlIE51Y2xlb3RpZGU8L2tleXdvcmQ+PGtleXdvcmQ+U2Vuc2l0aXZpdHkgYW5kIFNwZWNpZmlj

aXR5PC9rZXl3b3JkPjxrZXl3b3JkPlNlcXVlbmNlIEFuYWx5c2lzLCBETkE8L2tleXdvcmQ+PC9r

ZXl3b3Jkcz48ZGF0ZXM+PHllYXI+MjAwODwveWVhcj48cHViLWRhdGVzPjxkYXRlPkphbjwvZGF0

ZT48L3B1Yi1kYXRlcz48L2RhdGVzPjxpc2JuPjEwOTgtNjYwWCAoRWxlY3Ryb25pYykmI3hEOzAw

OTUtMTEzNyAoTGlua2luZyk8L2lzYm4+PGFjY2Vzc2lvbi1udW0+MTgwMzI2Mjg8L2FjY2Vzc2lv

bi1udW0+PHdvcmstdHlwZT5FdmFsdWF0aW9uIFN0dWRpZXMmI3hEO1Jlc2VhcmNoIFN1cHBvcnQs

IFUuUy4gR292JmFwb3M7dCwgTm9uLVAuSC5TLjwvd29yay10eXBlPjx1cmxzPjxyZWxhdGVkLXVy

bHM+PHVybD5odHRwOi8vd3d3Lm5jYmkubmxtLm5paC5nb3YvcHVibWVkLzE4MDMyNjI4PC91cmw+

PC9yZWxhdGVkLXVybHM+PC91cmxzPjxjdXN0b20yPjIyMjQyOTU8L2N1c3RvbTI+PGVsZWN0cm9u

aWMtcmVzb3VyY2UtbnVtPjEwLjExMjgvSkNNLjAxNDk2LTA3PC9lbGVjdHJvbmljLXJlc291cmNl

LW51bT48bGFuZ3VhZ2U+ZW5nPC9sYW5ndWFnZT48L3JlY29yZD48L0NpdGU+PC9FbmROb3RlPgB=

ADDIN EN.CITE.DATA [17] . In this study, we were approached by the Texas Animal Health Commission (TAHC), Austin, Texas, because they had a number isolates (n = 36) obtained from milk and tissues of cattle, horses and pigs suspected to have brucellosis. These samples had variable Brucella serology profiles and biochemical phenotypes. We sought to determine if these isolates originated from mixed samples or were possibly intermediate (chimeric) biovars indicating an evolving B. suis host preference using data from several technologies: serology tests, PCR amplification of the IS711 element from Brucella species, UBDA technology and whole genome sequencing. The UBDA platform for detection and differentiation is an oligonucleotide array that contains all possible (49 combinations) 9-mer probes, and is therefore genome independent. ADDIN EN.CITE <EndNote><Cite><Author>Shallom</Author><Year>2011</Year><RecNum>444</RecNum><DisplayText>[18]</DisplayText><record><rec-number>444</rec-number><foreign-keys><key app="EN" db-id="wx90r9pt8rtr20eftvyvz0a4t02v0zsw02wv">444</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Shallom, S. J.</author><author>Weeks, J. N.</author><author>Galindo, C. L.</author><author>McIver, L.</author><author>Sun, Z.</author><author>McCormick, J.</author><author>Adams, L. G.</author><author>Garner, H. R.</author></authors></contributors><auth-address>Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, VA, USA. garner@vbi.vt.edu.</auth-address><titles><title>A species independent universal bio-detection microarray for pathogen forensics and phylogenetic classification of unknown microorganisms</title><secondary-title>BMC Microbiol</secondary-title><alt-title>BMC microbiology</alt-title></titles><periodical><full-title>BMC Microbiol</full-title></periodical><pages>132</pages><volume>11</volume><edition>2011/06/16</edition><dates><year>2011</year></dates><isbn>1471-2180 (Electronic)&#xD;1471-2180 (Linking)</isbn><accession-num>21672191</accession-num><urls><related-urls><url>;[18]. This technology facilitates classification of new pathogens and profiling of the 36 field isolates in relation to a library of known standards acquired using the same array design. Finally, this study describes the analysis results of whole genome ‘deep sequencing’ for further validation of the identity of these field isolates.3.3 ResultsSamples cultured from milk and/or tissues of cattle, horses and pigs suspected to having brucellosis, were selected for analysis using the UBDA array and Illumina-based sequencing because of abnormal serological and biochemical tests. The results generated from biochemical typing, PCR, UBDA PCA analysis and whole genome analysis have been summarized in Supplementary table 1A and 1B.The original biochemical tests of 36 field isolates indicated that 19 isolates were B. abortus and 17 isolates were B. suis. We sequenced nine TAHC field samples and an aliquot of the sample on which original B. suis1330 reference sequence was based using Illumina paired-end sequencing to validate the UBDA findings and to explain the anomalous PCR and other test results (Supplementary Table 2).3.3.1 PCR assay on the IS711 Element of BrucellaThe PCR assay identifies polymorphisms arising from species specific localization of the genetic element IS711 in the Brucella chromosomes. IS711 is a repetitive element unique to Brucella species and for most species at least one copy of the element occurs at a unique species or biovar specific chromosomal locus. The IS711 element is 281 base pairs with additional nucleotides flanking the 3’ end of the element that are species specific. Using accepted primer sets, band of 498 base pairs was expected for B. abortus and 285 base pairs for B. suis ADDIN EN.CITE <EndNote><Cite><Author>Bricker</Author><Year>1994</Year><RecNum>363</RecNum><DisplayText>[13]</DisplayText><record><rec-number>363</rec-number><foreign-keys><key app="EN" db-id="wx90r9pt8rtr20eftvyvz0a4t02v0zsw02wv">363</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Bricker, B. J.</author><author>Halling, S. M.</author></authors></contributors><auth-address>National Animal Disease Center, Agricultural Research Service, U.S. Department of Agriculture, Ames, Iowa 50010.</auth-address><titles><title>Differentiation of Brucella abortus bv. 1, 2, and 4, Brucella melitensis, Brucella ovis, and Brucella suis bv. 1 by PCR</title><secondary-title>J Clin Microbiol</secondary-title></titles><periodical><full-title>J Clin Microbiol</full-title></periodical><pages>2660-6</pages><volume>32</volume><number>11</number><edition>1994/11/01</edition><keywords><keyword>Base Sequence</keyword><keyword>Brucella/genetics/*isolation &amp; purification</keyword><keyword>Brucella melitensis/genetics/*isolation &amp; purification</keyword><keyword>DNA, Bacterial/analysis</keyword><keyword>Molecular Sequence Data</keyword><keyword>Polymerase Chain Reaction</keyword></keywords><dates><year>1994</year><pub-dates><date>Nov</date></pub-dates></dates><isbn>0095-1137 (Print)&#xD;0095-1137 (Linking)</isbn><accession-num>7852552</accession-num><urls><related-urls><url>;[13]. The BLAST alignment of IS711 element Brucella primers to five known Brucella genomes is shown using the Mauve alignment (Figure 1) PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5EYXJsaW5nPC9BdXRob3I+PFllYXI+MjAwNDwvWWVhcj48

UmVjTnVtPjM3NDwvUmVjTnVtPjxEaXNwbGF5VGV4dD5bMTldPC9EaXNwbGF5VGV4dD48cmVjb3Jk

PjxyZWMtbnVtYmVyPjM3NDwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIg

ZGItaWQ9Ind4OTByOXB0OHJ0cjIwZWZ0dnl2ejBhNHQwMnYwenN3MDJ3diI+Mzc0PC9rZXk+PC9m

b3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBl

Pjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5EYXJsaW5nLCBBLiBDLjwvYXV0aG9yPjxh

dXRob3I+TWF1LCBCLjwvYXV0aG9yPjxhdXRob3I+QmxhdHRuZXIsIEYuIFIuPC9hdXRob3I+PGF1

dGhvcj5QZXJuYSwgTi4gVC48L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PGF1dGgt

YWRkcmVzcz5EZXBhcnRtZW50IG9mIENvbXB1dGVyIFNjaWVuY2UsIFVuaXZlcnNpdHkgb2YgV2lz

Y29uc2luLU1hZGlzb24sIE1hZGlzb24sIFdpc2NvbnNpbiA1MzcwNiwgVVNBLjwvYXV0aC1hZGRy

ZXNzPjx0aXRsZXM+PHRpdGxlPk1hdXZlOiBtdWx0aXBsZSBhbGlnbm1lbnQgb2YgY29uc2VydmVk

IGdlbm9taWMgc2VxdWVuY2Ugd2l0aCByZWFycmFuZ2VtZW50czwvdGl0bGU+PHNlY29uZGFyeS10

aXRsZT5HZW5vbWUgUmVzPC9zZWNvbmRhcnktdGl0bGU+PC90aXRsZXM+PHBlcmlvZGljYWw+PGZ1

bGwtdGl0bGU+R2Vub21lIFJlczwvZnVsbC10aXRsZT48L3BlcmlvZGljYWw+PHBhZ2VzPjEzOTQt

NDAzPC9wYWdlcz48dm9sdW1lPjE0PC92b2x1bWU+PG51bWJlcj43PC9udW1iZXI+PGVkaXRpb24+

MjAwNC8wNy8wMzwvZWRpdGlvbj48a2V5d29yZHM+PGtleXdvcmQ+Q2hyb21vc29tZXMsIEJhY3Rl

cmlhbC9nZW5ldGljczwva2V5d29yZD48a2V5d29yZD5Db21wdXRlciBTaW11bGF0aW9uPC9rZXl3

b3JkPjxrZXl3b3JkPkNvbnNlcnZlZCBTZXF1ZW5jZS8qZ2VuZXRpY3M8L2tleXdvcmQ+PGtleXdv

cmQ+RE5BLCBCYWN0ZXJpYWwvZ2VuZXRpY3M8L2tleXdvcmQ+PGtleXdvcmQ+RW50ZXJvYmFjdGVy

aWFjZWFlLypnZW5ldGljczwva2V5d29yZD48a2V5d29yZD5Fc2NoZXJpY2hpYSBjb2xpL2dlbmV0

aWNzPC9rZXl3b3JkPjxrZXl3b3JkPkVzY2hlcmljaGlhIGNvbGkgTzE1Ny9nZW5ldGljczwva2V5

d29yZD48a2V5d29yZD4qR2Vub21lLCBCYWN0ZXJpYWw8L2tleXdvcmQ+PGtleXdvcmQ+UmVjb21i

aW5hdGlvbiwgR2VuZXRpYy8qZ2VuZXRpY3M8L2tleXdvcmQ+PGtleXdvcmQ+U2FsbW9uZWxsYSB0

eXBoaS9nZW5ldGljczwva2V5d29yZD48a2V5d29yZD5TYWxtb25lbGxhIHR5cGhpbXVyaXVtL2dl

bmV0aWNzPC9rZXl3b3JkPjxrZXl3b3JkPlNlcXVlbmNlIEFsaWdubWVudC8qbWV0aG9kcy9zdGF0

aXN0aWNzICZhbXA7IG51bWVyaWNhbCBkYXRhPC9rZXl3b3JkPjxrZXl3b3JkPlNoaWdlbGxhIGZs

ZXhuZXJpL2dlbmV0aWNzPC9rZXl3b3JkPjxrZXl3b3JkPipTb2Z0d2FyZTwva2V5d29yZD48a2V5

d29yZD5Tb2Z0d2FyZSBEZXNpZ248L2tleXdvcmQ+PGtleXdvcmQ+U29mdHdhcmUgVmFsaWRhdGlv

bjwva2V5d29yZD48a2V5d29yZD5TcGVjaWVzIFNwZWNpZmljaXR5PC9rZXl3b3JkPjwva2V5d29y

ZHM+PGRhdGVzPjx5ZWFyPjIwMDQ8L3llYXI+PHB1Yi1kYXRlcz48ZGF0ZT5KdWw8L2RhdGU+PC9w

dWItZGF0ZXM+PC9kYXRlcz48aXNibj4xMDg4LTkwNTEgKFByaW50KSYjeEQ7MTA4OC05MDUxIChM

aW5raW5nKTwvaXNibj48YWNjZXNzaW9uLW51bT4xNTIzMTc1NDwvYWNjZXNzaW9uLW51bT48dXJs

cz48cmVsYXRlZC11cmxzPjx1cmw+aHR0cDovL3d3dy5uY2JpLm5sbS5uaWguZ292L2VudHJlei9x

dWVyeS5mY2dpP2NtZD1SZXRyaWV2ZSZhbXA7ZGI9UHViTWVkJmFtcDtkb3B0PUNpdGF0aW9uJmFt

cDtsaXN0X3VpZHM9MTUyMzE3NTQ8L3VybD48L3JlbGF0ZWQtdXJscz48L3VybHM+PGN1c3RvbTI+

NDQyMTU2PC9jdXN0b20yPjxlbGVjdHJvbmljLXJlc291cmNlLW51bT4xMC4xMTAxL2dyLjIyODk3

MDQmI3hEOzE0LzcvMTM5NCBbcGlpXTwvZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+PGxhbmd1YWdl

PmVuZzwvbGFuZ3VhZ2U+PC9yZWNvcmQ+PC9DaXRlPjwvRW5kTm90ZT5=

ADDIN EN.CITE PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5EYXJsaW5nPC9BdXRob3I+PFllYXI+MjAwNDwvWWVhcj48

UmVjTnVtPjM3NDwvUmVjTnVtPjxEaXNwbGF5VGV4dD5bMTldPC9EaXNwbGF5VGV4dD48cmVjb3Jk

PjxyZWMtbnVtYmVyPjM3NDwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIg

ZGItaWQ9Ind4OTByOXB0OHJ0cjIwZWZ0dnl2ejBhNHQwMnYwenN3MDJ3diI+Mzc0PC9rZXk+PC9m

b3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBl

Pjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5EYXJsaW5nLCBBLiBDLjwvYXV0aG9yPjxh

dXRob3I+TWF1LCBCLjwvYXV0aG9yPjxhdXRob3I+QmxhdHRuZXIsIEYuIFIuPC9hdXRob3I+PGF1

dGhvcj5QZXJuYSwgTi4gVC48L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PGF1dGgt

YWRkcmVzcz5EZXBhcnRtZW50IG9mIENvbXB1dGVyIFNjaWVuY2UsIFVuaXZlcnNpdHkgb2YgV2lz

Y29uc2luLU1hZGlzb24sIE1hZGlzb24sIFdpc2NvbnNpbiA1MzcwNiwgVVNBLjwvYXV0aC1hZGRy

ZXNzPjx0aXRsZXM+PHRpdGxlPk1hdXZlOiBtdWx0aXBsZSBhbGlnbm1lbnQgb2YgY29uc2VydmVk

IGdlbm9taWMgc2VxdWVuY2Ugd2l0aCByZWFycmFuZ2VtZW50czwvdGl0bGU+PHNlY29uZGFyeS10

aXRsZT5HZW5vbWUgUmVzPC9zZWNvbmRhcnktdGl0bGU+PC90aXRsZXM+PHBlcmlvZGljYWw+PGZ1

bGwtdGl0bGU+R2Vub21lIFJlczwvZnVsbC10aXRsZT48L3BlcmlvZGljYWw+PHBhZ2VzPjEzOTQt

NDAzPC9wYWdlcz48dm9sdW1lPjE0PC92b2x1bWU+PG51bWJlcj43PC9udW1iZXI+PGVkaXRpb24+

MjAwNC8wNy8wMzwvZWRpdGlvbj48a2V5d29yZHM+PGtleXdvcmQ+Q2hyb21vc29tZXMsIEJhY3Rl

cmlhbC9nZW5ldGljczwva2V5d29yZD48a2V5d29yZD5Db21wdXRlciBTaW11bGF0aW9uPC9rZXl3

b3JkPjxrZXl3b3JkPkNvbnNlcnZlZCBTZXF1ZW5jZS8qZ2VuZXRpY3M8L2tleXdvcmQ+PGtleXdv

cmQ+RE5BLCBCYWN0ZXJpYWwvZ2VuZXRpY3M8L2tleXdvcmQ+PGtleXdvcmQ+RW50ZXJvYmFjdGVy

aWFjZWFlLypnZW5ldGljczwva2V5d29yZD48a2V5d29yZD5Fc2NoZXJpY2hpYSBjb2xpL2dlbmV0

aWNzPC9rZXl3b3JkPjxrZXl3b3JkPkVzY2hlcmljaGlhIGNvbGkgTzE1Ny9nZW5ldGljczwva2V5

d29yZD48a2V5d29yZD4qR2Vub21lLCBCYWN0ZXJpYWw8L2tleXdvcmQ+PGtleXdvcmQ+UmVjb21i

aW5hdGlvbiwgR2VuZXRpYy8qZ2VuZXRpY3M8L2tleXdvcmQ+PGtleXdvcmQ+U2FsbW9uZWxsYSB0

eXBoaS9nZW5ldGljczwva2V5d29yZD48a2V5d29yZD5TYWxtb25lbGxhIHR5cGhpbXVyaXVtL2dl

bmV0aWNzPC9rZXl3b3JkPjxrZXl3b3JkPlNlcXVlbmNlIEFsaWdubWVudC8qbWV0aG9kcy9zdGF0

aXN0aWNzICZhbXA7IG51bWVyaWNhbCBkYXRhPC9rZXl3b3JkPjxrZXl3b3JkPlNoaWdlbGxhIGZs

ZXhuZXJpL2dlbmV0aWNzPC9rZXl3b3JkPjxrZXl3b3JkPipTb2Z0d2FyZTwva2V5d29yZD48a2V5

d29yZD5Tb2Z0d2FyZSBEZXNpZ248L2tleXdvcmQ+PGtleXdvcmQ+U29mdHdhcmUgVmFsaWRhdGlv

bjwva2V5d29yZD48a2V5d29yZD5TcGVjaWVzIFNwZWNpZmljaXR5PC9rZXl3b3JkPjwva2V5d29y

ZHM+PGRhdGVzPjx5ZWFyPjIwMDQ8L3llYXI+PHB1Yi1kYXRlcz48ZGF0ZT5KdWw8L2RhdGU+PC9w

dWItZGF0ZXM+PC9kYXRlcz48aXNibj4xMDg4LTkwNTEgKFByaW50KSYjeEQ7MTA4OC05MDUxIChM

aW5raW5nKTwvaXNibj48YWNjZXNzaW9uLW51bT4xNTIzMTc1NDwvYWNjZXNzaW9uLW51bT48dXJs

cz48cmVsYXRlZC11cmxzPjx1cmw+aHR0cDovL3d3dy5uY2JpLm5sbS5uaWguZ292L2VudHJlei9x

dWVyeS5mY2dpP2NtZD1SZXRyaWV2ZSZhbXA7ZGI9UHViTWVkJmFtcDtkb3B0PUNpdGF0aW9uJmFt

cDtsaXN0X3VpZHM9MTUyMzE3NTQ8L3VybD48L3JlbGF0ZWQtdXJscz48L3VybHM+PGN1c3RvbTI+

NDQyMTU2PC9jdXN0b20yPjxlbGVjdHJvbmljLXJlc291cmNlLW51bT4xMC4xMTAxL2dyLjIyODk3

MDQmI3hEOzE0LzcvMTM5NCBbcGlpXTwvZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+PGxhbmd1YWdl

PmVuZzwvbGFuZ3VhZ2U+PC9yZWNvcmQ+PC9DaXRlPjwvRW5kTm90ZT5=

ADDIN EN.CITE.DATA [19] to have complementary PCR primer sequences for bio-assays of both B. abortus and B. suis species. From serology and biochemical tests of the 36 field isolates, 19 isolates(1, 2, 3, 5, 6, 7, 11, 12, 14, 15, 18, 19, 20, 21, 23, 24, 25, 32, 33) and 17 isolates (4, 8, 9, 10, 13, 16, 17, 22, 26, 29, 30, 31, 34, 35, 36, 37, 40)were determined to be B. abortus and B. suis respectively. PCR assays targeting the traditionally used IS711 element in Brucella showed ambiguity in the size of the PCR products obtained from these field isolates. All 19 isolates identified as B. abortus by the serology test produced the expected 498 base pair B. abortusIS711 element PCR products (Supplementary Figure 1A through 1E). They were also positive for B. suis specific PCR primers but the sizes of products were approximately 900 bases and their sequences did not align to the B. suis 1330 genome. Hence, the products from the B. abortus isolates for the B. suis specific PCR test were determined to be non-specific and spurious. The only exception, isolate 18 (B. abortus strain 19), produced the expected sizes of products from both the B. abortus specific PCR primer set and B. suis primer set (Supplementary Figure 1B) and was suspected to contain both B. abortus and B. suis infections. Most isolates which were identified as B. suis from the serology test, produced B. abortus specific PCR products (498 bases) as well as the B. suis specific products of 285 base pairs (Supplementary Figure 1A through 1E). The PCR products from these isolates were sequenced and compared to B. abortus and B. suis reference genomes. The sequences mapped to the expected positions of PCR products in their specific genomes, which suggested that they could be mixed isolates of both B. abortus and B. suis. However, isolate 4, 36 and 37 which were also determined to be B. suis by the biochemical test showed unexpected results. While isolate 4 produced an expected size of the product from the B. abortus specific PCR test and an abnormal 900 bases non-specific product from the B. suis specific PCR test (Supplementary Figure 1A), Isolate 36 and 37 produced only B. abortus specific PCR products (Supplementary Figure 1E. These 36 field isolates did not produce an IS711 product with the B. melitensis 16M primers. PCR reactions for the control genomic DNA from B. suis 1330 were positive for the B. suis specific primer set and negative for B. abortus or B. melitensis specific primer set, as expected. B. abortus 2308 had a product specific to B. abortus. The B. abortus RB51 had the expected size of the PCR product for the B. abortus primer set but different size fragments including approximately 900, 1200 and 1500 bases for the B. suis primer set. B. melitensis 16M primers also produced the expected 700 base product for the B. melitensis primer set (Supplementary Figure 2).3.3.2 Principal Component Analysis of UBDA array probe signal intensity values Genomic DNA from each of the samples was hybridized on the UBDA array which contains probes to all possible 9-mers. To determine the closest similarity of the field isolates to the reference samples B. abortus and B. suis genomes, signal intensity values generated from UBDA array probes for each of the field isolates and reference samples (B. suis 1330 and B. abortus 2308) were evaluated using Principal Component Analysis (PCA) (Supplementary Table 1B). PCA method provides a quantitative measure and helps assign the sample to one of more groups such as a pure isolate of a single species or composite mixture of multiple species. Samples from bovine milk or tissue determined to be B. suis from biochemical typing (4, 10, 13, 16, 17, 22, 26, 29, 34, 35, 36 and 37) were found to be similar to B. suis or a composite mixture of B. suis and B. abortus using PCA. The other B. suis typed isolates (8, 30, 31 and 40) were determined to be most similar to the B. abortus reference. These results would indicate that these isolates may have a higher proportion of B. abortus genomic DNA in the sample. Based on the PCA analysis and a discriminatory value of 0.6% between the genome sizes of B. abortus and B. suis (Supplementary Table 5), we determined that they were not pure B. suis isolates and they maybe the result of mixed or dual infections.Further, the B. abortus biochemically typed isolates (1, 2, 7, 11, 15, 19, 20, 21, 23 and 25) were found to be similar to the B. abortus bio-signature. Isolate 18, which was biochemically identified as B. abortus, is predominantly composed B. suis based on PCA analysis of UBDA array data. Isolates (3, 5, 6, 13, 14, 32 and 33) were found to be more similar to B. suis from PCA analysis. This may be attributed to the limits of detection of the UBDA array and PCA-based analysis. The detection limit for de-convoluting the identity of these highly similar Brucella species is in the range of ~ 0.6% based on sequence similarity (Supplementary Table 2). 3.3.3 Comparison of species independent 9-mer probe signal intensity values from the UBDA of known Brucella species and field samples from the Texas Animal Health Commission (TAHC) using phylogenomic analysisTo understand and visualize the relative similarity among all samples, the hybridization signal intensities were then evaluated using phylogenomic analysis tools used to describe the evolutionary relationships among sequences ADDIN EN.CITE <EndNote><Cite><Author>Holder</Author><Year>2008</Year><RecNum>360</RecNum><DisplayText>[20]</DisplayText><record><rec-number>360</rec-number><foreign-keys><key app="EN" db-id="wx90r9pt8rtr20eftvyvz0a4t02v0zsw02wv">360</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Holder, M. T.</author><author>Zwickl, D. J.</author><author>Dessimoz, C.</author></authors></contributors><auth-address>Department of Ecology and Evolutionary Biology, University of Kansas, 1200 Sunnyside Avenue, Lawrence, KS 66045, USA. mtholder@ku.edu</auth-address><titles><title>Evaluating the robustness of phylogenetic methods to among-site variability in substitution processes</title><secondary-title>Philos Trans R Soc Lond B Biol Sci</secondary-title></titles><periodical><full-title>Philos Trans R Soc Lond B Biol Sci</full-title></periodical><pages>4013-21</pages><volume>363</volume><number>1512</number><edition>2008/10/15</edition><keywords><keyword>*Algorithms</keyword><keyword>Amino Acid Substitution/*genetics</keyword><keyword>Bayes Theorem</keyword><keyword>Classification/*methods</keyword><keyword>Codon/genetics</keyword><keyword>Computer Simulation</keyword><keyword>Cytochromes b/genetics</keyword><keyword>*Evolution, Molecular</keyword><keyword>Likelihood Functions</keyword><keyword>*Models, Genetic</keyword><keyword>*Phylogeny</keyword></keywords><dates><year>2008</year><pub-dates><date>Dec 27</date></pub-dates></dates><isbn>1471-2970 (Electronic)&#xD;0962-8436 (Linking)</isbn><accession-num>18852108</accession-num><urls><related-urls><url> [pii]&#xD;10.1098/rstb.2008.0162</electronic-resource-num><language>eng</language></record></Cite></EndNote>[20]. This involves cluster analysis, an unsupervised learning technique used to organize samples into groups such that samples within a cluster are more similar to each other than to samples in other clusters. Un-biased cluster analysis of hybridization patterns can easily distinguish species into accepted phylogenic relationships PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5HYWxpbmRvPC9BdXRob3I+PFllYXI+MjAwOTwvWWVhcj48

UmVjTnVtPjM2NDwvUmVjTnVtPjxEaXNwbGF5VGV4dD5bMjFdPC9EaXNwbGF5VGV4dD48cmVjb3Jk

PjxyZWMtbnVtYmVyPjM2NDwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIg

ZGItaWQ9Ind4OTByOXB0OHJ0cjIwZWZ0dnl2ejBhNHQwMnYwenN3MDJ3diI+MzY0PC9rZXk+PC9m

b3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBl

Pjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5HYWxpbmRvLCBDLiBMLjwvYXV0aG9yPjxh

dXRob3I+TWNJdmVyLCBMLiBKLjwvYXV0aG9yPjxhdXRob3I+TWNDb3JtaWNrLCBKLiBGLjwvYXV0

aG9yPjxhdXRob3I+U2tpbm5lciwgTS4gQS48L2F1dGhvcj48YXV0aG9yPlhpZSwgWS48L2F1dGhv

cj48YXV0aG9yPkdlbGhhdXNlbiwgUi4gQS48L2F1dGhvcj48YXV0aG9yPk5nLCBLLjwvYXV0aG9y

PjxhdXRob3I+S3VtYXIsIE4uIE0uPC9hdXRob3I+PGF1dGhvcj5HYXJuZXIsIEguIFIuPC9hdXRo

b3I+PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjxhdXRoLWFkZHJlc3M+TWNEZXJtb3R0IENlbnRl

ciBmb3IgSHVtYW4gR3Jvd3RoIGFuZCBEZXZlbG9wbWVudCBvZiB0aGUgVW5pdmVyc2l0eSBvZiBU

ZXhhcyBTb3V0aHdlc3Rlcm4gTWVkaWNhbCBDZW50ZXIsIERhbGxhcywgVGV4YXMsIFVTQS4gQ3Jp

c3RpLmdhbGluZG9AdXRzb3V0aHdlc3Rlcm4uZWR1PC9hdXRoLWFkZHJlc3M+PHRpdGxlcz48dGl0

bGU+R2xvYmFsIG1pY3Jvc2F0ZWxsaXRlIGNvbnRlbnQgZGlzdGluZ3Vpc2hlcyBodW1hbnMsIHBy

aW1hdGVzLCBhbmltYWxzLCBhbmQgcGxhbnRzPC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPk1vbCBC

aW9sIEV2b2w8L3NlY29uZGFyeS10aXRsZT48L3RpdGxlcz48cGVyaW9kaWNhbD48ZnVsbC10aXRs

ZT5Nb2wgQmlvbCBFdm9sPC9mdWxsLXRpdGxlPjwvcGVyaW9kaWNhbD48cGFnZXM+MjgwOS0xOTwv

cGFnZXM+PHZvbHVtZT4yNjwvdm9sdW1lPjxudW1iZXI+MTI8L251bWJlcj48ZWRpdGlvbj4yMDA5

LzA5LzAxPC9lZGl0aW9uPjxrZXl3b3Jkcz48a2V5d29yZD5BbmltYWxzPC9rZXl3b3JkPjxrZXl3

b3JkPkJhc2UgQ29tcG9zaXRpb24vKmdlbmV0aWNzPC9rZXl3b3JkPjxrZXl3b3JkPkdlbmV0aWMg

TG9jaS9nZW5ldGljczwva2V5d29yZD48a2V5d29yZD5HZW5vbWUvZ2VuZXRpY3M8L2tleXdvcmQ+

PGtleXdvcmQ+SHVtYW5zPC9rZXl3b3JkPjxrZXl3b3JkPk1pY3Jvc2F0ZWxsaXRlIFJlcGVhdHMv

KmdlbmV0aWNzPC9rZXl3b3JkPjxrZXl3b3JkPk51Y2xlaWMgQWNpZCBIeWJyaWRpemF0aW9uL2dl

bmV0aWNzPC9rZXl3b3JkPjxrZXl3b3JkPk9saWdvbnVjbGVvdGlkZSBBcnJheSBTZXF1ZW5jZSBB

bmFseXNpczwva2V5d29yZD48a2V5d29yZD5QYW4gdHJvZ2xvZHl0ZXMvZ2VuZXRpY3M8L2tleXdv

cmQ+PGtleXdvcmQ+UGxhbnRzLypnZW5ldGljczwva2V5d29yZD48a2V5d29yZD5QcmltYXRlcy8q

Z2VuZXRpY3M8L2tleXdvcmQ+PGtleXdvcmQ+U3BlY2llcyBTcGVjaWZpY2l0eTwva2V5d29yZD48

L2tleXdvcmRzPjxkYXRlcz48eWVhcj4yMDA5PC95ZWFyPjxwdWItZGF0ZXM+PGRhdGU+RGVjPC9k

YXRlPjwvcHViLWRhdGVzPjwvZGF0ZXM+PGlzYm4+MTUzNy0xNzE5IChFbGVjdHJvbmljKSYjeEQ7

MDczNy00MDM4IChMaW5raW5nKTwvaXNibj48YWNjZXNzaW9uLW51bT4xOTcxNzUyNjwvYWNjZXNz

aW9uLW51bT48dXJscz48cmVsYXRlZC11cmxzPjx1cmw+aHR0cDovL3d3dy5uY2JpLm5sbS5uaWgu

Z292L2VudHJlei9xdWVyeS5mY2dpP2NtZD1SZXRyaWV2ZSZhbXA7ZGI9UHViTWVkJmFtcDtkb3B0

PUNpdGF0aW9uJmFtcDtsaXN0X3VpZHM9MTk3MTc1MjY8L3VybD48L3JlbGF0ZWQtdXJscz48L3Vy

bHM+PGN1c3RvbTI+Mjc4MjMyNzwvY3VzdG9tMj48ZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+bXNw

MTkyIFtwaWldJiN4RDsxMC4xMDkzL21vbGJldi9tc3AxOTI8L2VsZWN0cm9uaWMtcmVzb3VyY2Ut

bnVtPjxsYW5ndWFnZT5lbmc8L2xhbmd1YWdlPjwvcmVjb3JkPjwvQ2l0ZT48L0VuZE5vdGU+

ADDIN EN.CITE PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5HYWxpbmRvPC9BdXRob3I+PFllYXI+MjAwOTwvWWVhcj48

UmVjTnVtPjM2NDwvUmVjTnVtPjxEaXNwbGF5VGV4dD5bMjFdPC9EaXNwbGF5VGV4dD48cmVjb3Jk

PjxyZWMtbnVtYmVyPjM2NDwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIg

ZGItaWQ9Ind4OTByOXB0OHJ0cjIwZWZ0dnl2ejBhNHQwMnYwenN3MDJ3diI+MzY0PC9rZXk+PC9m

b3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBl

Pjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5HYWxpbmRvLCBDLiBMLjwvYXV0aG9yPjxh

dXRob3I+TWNJdmVyLCBMLiBKLjwvYXV0aG9yPjxhdXRob3I+TWNDb3JtaWNrLCBKLiBGLjwvYXV0

aG9yPjxhdXRob3I+U2tpbm5lciwgTS4gQS48L2F1dGhvcj48YXV0aG9yPlhpZSwgWS48L2F1dGhv

cj48YXV0aG9yPkdlbGhhdXNlbiwgUi4gQS48L2F1dGhvcj48YXV0aG9yPk5nLCBLLjwvYXV0aG9y

PjxhdXRob3I+S3VtYXIsIE4uIE0uPC9hdXRob3I+PGF1dGhvcj5HYXJuZXIsIEguIFIuPC9hdXRo

b3I+PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjxhdXRoLWFkZHJlc3M+TWNEZXJtb3R0IENlbnRl

ciBmb3IgSHVtYW4gR3Jvd3RoIGFuZCBEZXZlbG9wbWVudCBvZiB0aGUgVW5pdmVyc2l0eSBvZiBU

ZXhhcyBTb3V0aHdlc3Rlcm4gTWVkaWNhbCBDZW50ZXIsIERhbGxhcywgVGV4YXMsIFVTQS4gQ3Jp

c3RpLmdhbGluZG9AdXRzb3V0aHdlc3Rlcm4uZWR1PC9hdXRoLWFkZHJlc3M+PHRpdGxlcz48dGl0

bGU+R2xvYmFsIG1pY3Jvc2F0ZWxsaXRlIGNvbnRlbnQgZGlzdGluZ3Vpc2hlcyBodW1hbnMsIHBy

aW1hdGVzLCBhbmltYWxzLCBhbmQgcGxhbnRzPC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPk1vbCBC

aW9sIEV2b2w8L3NlY29uZGFyeS10aXRsZT48L3RpdGxlcz48cGVyaW9kaWNhbD48ZnVsbC10aXRs

ZT5Nb2wgQmlvbCBFdm9sPC9mdWxsLXRpdGxlPjwvcGVyaW9kaWNhbD48cGFnZXM+MjgwOS0xOTwv

cGFnZXM+PHZvbHVtZT4yNjwvdm9sdW1lPjxudW1iZXI+MTI8L251bWJlcj48ZWRpdGlvbj4yMDA5

LzA5LzAxPC9lZGl0aW9uPjxrZXl3b3Jkcz48a2V5d29yZD5BbmltYWxzPC9rZXl3b3JkPjxrZXl3

b3JkPkJhc2UgQ29tcG9zaXRpb24vKmdlbmV0aWNzPC9rZXl3b3JkPjxrZXl3b3JkPkdlbmV0aWMg

TG9jaS9nZW5ldGljczwva2V5d29yZD48a2V5d29yZD5HZW5vbWUvZ2VuZXRpY3M8L2tleXdvcmQ+

PGtleXdvcmQ+SHVtYW5zPC9rZXl3b3JkPjxrZXl3b3JkPk1pY3Jvc2F0ZWxsaXRlIFJlcGVhdHMv

KmdlbmV0aWNzPC9rZXl3b3JkPjxrZXl3b3JkPk51Y2xlaWMgQWNpZCBIeWJyaWRpemF0aW9uL2dl

bmV0aWNzPC9rZXl3b3JkPjxrZXl3b3JkPk9saWdvbnVjbGVvdGlkZSBBcnJheSBTZXF1ZW5jZSBB

bmFseXNpczwva2V5d29yZD48a2V5d29yZD5QYW4gdHJvZ2xvZHl0ZXMvZ2VuZXRpY3M8L2tleXdv

cmQ+PGtleXdvcmQ+UGxhbnRzLypnZW5ldGljczwva2V5d29yZD48a2V5d29yZD5QcmltYXRlcy8q

Z2VuZXRpY3M8L2tleXdvcmQ+PGtleXdvcmQ+U3BlY2llcyBTcGVjaWZpY2l0eTwva2V5d29yZD48

L2tleXdvcmRzPjxkYXRlcz48eWVhcj4yMDA5PC95ZWFyPjxwdWItZGF0ZXM+PGRhdGU+RGVjPC9k

YXRlPjwvcHViLWRhdGVzPjwvZGF0ZXM+PGlzYm4+MTUzNy0xNzE5IChFbGVjdHJvbmljKSYjeEQ7

MDczNy00MDM4IChMaW5raW5nKTwvaXNibj48YWNjZXNzaW9uLW51bT4xOTcxNzUyNjwvYWNjZXNz

aW9uLW51bT48dXJscz48cmVsYXRlZC11cmxzPjx1cmw+aHR0cDovL3d3dy5uY2JpLm5sbS5uaWgu

Z292L2VudHJlei9xdWVyeS5mY2dpP2NtZD1SZXRyaWV2ZSZhbXA7ZGI9UHViTWVkJmFtcDtkb3B0

PUNpdGF0aW9uJmFtcDtsaXN0X3VpZHM9MTk3MTc1MjY8L3VybD48L3JlbGF0ZWQtdXJscz48L3Vy

bHM+PGN1c3RvbTI+Mjc4MjMyNzwvY3VzdG9tMj48ZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+bXNw

MTkyIFtwaWldJiN4RDsxMC4xMDkzL21vbGJldi9tc3AxOTI8L2VsZWN0cm9uaWMtcmVzb3VyY2Ut

bnVtPjxsYW5ndWFnZT5lbmc8L2xhbmd1YWdlPjwvcmVjb3JkPjwvQ2l0ZT48L0VuZE5vdGU+

ADDIN EN.CITE.DATA [21]. Our group has previously demonstrated a low resolution array design that focused on a subset of species independent random probes ADDIN EN.CITE <EndNote><Cite><Author>Belosludtsev</Author><Year>2004</Year><RecNum>67</RecNum><DisplayText>[22]</DisplayText><record><rec-number>67</rec-number><foreign-keys><key app="EN" db-id="wx90r9pt8rtr20eftvyvz0a4t02v0zsw02wv">67</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Belosludtsev, Y. Y.</author><author>Bowerman, D.</author><author>Weil, R.</author><author>Marthandan, N.</author><author>Balog, R.</author><author>Luebke, K.</author><author>Lawson, J.</author><author>Johnston, S. A.</author><author>Lyons, C. R.</author><author>Obrien, K.</author><author>Garner, H. R.</author><author>Powdrill, T. F.</author></authors></contributors><auth-address>Vitruvius Biosciences, The Woodlands, USA.</auth-address><titles><title>Organism identification using a genome sequence-independent universal microarray probe set</title><secondary-title>Biotechniques</secondary-title></titles><pages>654-8, 660</pages><volume>37</volume><number>4</number><edition>2004/11/03</edition><keywords><keyword>Bacillus anthracis/genetics</keyword><keyword>Bacillus subtilis/genetics</keyword><keyword>Bioterrorism</keyword><keyword>*DNA Probes</keyword><keyword>DNA, Bacterial/*genetics</keyword><keyword>Gene Expression Profiling/instrumentation/*methods</keyword><keyword>Molecular Sequence Data</keyword><keyword>Nucleic Acid Hybridization/methods</keyword><keyword>Oligonucleotide Array Sequence Analysis/*instrumentation/methods</keyword><keyword>*Oligonucleotide Probes</keyword><keyword>Streptococcus pneumoniae/genetics</keyword><keyword>Yersinia pestis/genetics</keyword></keywords><dates><year>2004</year><pub-dates><date>Oct</date></pub-dates></dates><isbn>0736-6205 (Print)&#xD;0736-6205 (Linking)</isbn><accession-num>15517977</accession-num><urls><related-urls><url>;[22] and cluster analysis to distinguish species. In this study, we use signal intensities generated from 9-mer probe (262,144) data to create a neighbor-joining phylogenomic relationship tree of the Brucella field isolates. The tree was rooted to F. tularensis LVS UBDA data and the order of the samples were randomized to create the phylogeny relationship tree (Figure 2). A hierarchical clustering algorithm analysis of signal intensities from the UBDA array was used to establish nearest neighbor relationships between these isolates. A similar phylogenomic relationship tree (Supplementary Figure 3) was obtained when signal intensities from each sample were RMA normalized as a batch process using Nimblescan ADDIN EN.CITE <EndNote><Cite><Author>Irizarry</Author><Year>2003</Year><RecNum>162</RecNum><DisplayText>[23]</DisplayText><record><rec-number>162</rec-number><foreign-keys><key app="EN" db-id="wx90r9pt8rtr20eftvyvz0a4t02v0zsw02wv">162</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Irizarry, R. A.</author><author>Hobbs, B.</author><author>Collin, F.</author><author>Beazer-Barclay, Y. D.</author><author>Antonellis, K. J.</author><author>Scherf, U.</author><author>Speed, T. P.</author></authors></contributors><auth-address>Department of Biostatistics, Johns Hopkins University, Baltimore, MD 21205, USA. rafa@jhu.edu</auth-address><titles><title>Exploration, normalization, and summaries of high density oligonucleotide array probe level data</title><secondary-title>Biostatistics</secondary-title></titles><pages>249-64</pages><volume>4</volume><number>2</number><edition>2003/08/20</edition><keywords><keyword>Algorithms</keyword><keyword>Animals</keyword><keyword>DNA Probes/*genetics</keyword><keyword>*Data Interpretation, Statistical</keyword><keyword>Gene Expression Profiling/statistics &amp; numerical data</keyword><keyword>Humans</keyword><keyword>Linear Models</keyword><keyword>Mice</keyword><keyword>Normal Distribution</keyword><keyword>Oligonucleotide Array Sequence Analysis/*methods</keyword><keyword>Reproducibility of Results</keyword><keyword>Statistics, Nonparametric</keyword></keywords><dates><year>2003</year><pub-dates><date>Apr</date></pub-dates></dates><isbn>1465-4644 (Print)&#xD;1465-4644 (Linking)</isbn><accession-num>12925520</accession-num><urls><related-urls><url> [pii]</electronic-resource-num><language>eng</language></record></Cite></EndNote>[23]. From the 9-mer phylogenomic tree, isolate33 appears to be a highly chimeric or contaminated isolate and appears as an out group on the phylogenomic tree. The Pearson’s correlation distance to E. coli and F. tularensis LVS strain was ρ = 0.936 and ρ = 0.915, respectively. Whole genome sequencing of this isolate revealed that it had the highest proportion of unmapped reads (46,344 reads) with 25.2% of these reads being completely novel with no alignment to the NT database (Supplementary Table 3). B. suis isolates 29 and 34 clustered close to each other (Figure 2) and were originally obtained from bovine tissue derived from the same herd. Isolate 29 and 34 are highly similar with a Pearson’s distance of ρ = 0.997. B. suis isolates 30 and 31 were also isolated from the same herd and are closely related with a Pearson’s distance of ρ = 0.993. Although B. suis isolates 9, 10 and 17 were isolated from porcine sources, they are different in their UBDA signal intensity pattern from the B. suis 1330 isolate and are separated by Pearson correlation values of 0.926, 0.867 and 0.891, respectively. Isolate 9 appears to be the nearest neighbor to B. suis 1330 (Figure 2). Isolate 13 was the only isolate obtained from equine tissue and was found to be at a distance of ρ = 0.864 from B. suis 1330. Sequencing of this isolate revealed a large proportion (49.4%) of unmapped reads (66,035 reads) having no similarity (BLAST output < 1e-15) to sequences in the NT database (Supplementary Table 3). Additional analysis of the unmapped reads from contaminating organisms (“other” column in Supplementary Table 3) is described in Supplementary Table 4. Two isolates, 36 and 37, did not cluster with any of the B. suis or B. abortus isolates, although they were identified as B. suis in biochemical tests. On the phylogenomic tree generated from UBDA data, they separated by a distance of ρ = 0.913 (Figure 2). These isolates showed a band only with the IS711 element PCR with B. abortus primers while no product was detected with the B. suis primers (Supplementary Figure 1E). This data again indicates significant discrepancy among the various analyses. The reference genome samples such as B. suis 1330, B. melitensis 16M, B. abortus 2308 and B. abortus RB51, are in a subgroup away from the field isolates. We determined that unmapped reads from B. suis 1330 reference strain had a high proportion of reads (32,489) that mapped to the human genome (Supplementary Table 3). Hence the B. suis 1330 DNA sample was found to contain a high proportion of human genomic DNA sequences. Since the probes on the array are not species-specific, the array gives a spectrum of signal intensities that are derived from the genomic contents of a sample. We did not sequence genomic DNA from the other known Brucella such as B. abortus RB51, B. melitensis 16M and B. abortus 2308. In addition, to assess the reproducibility of the array since independent samples were hybridized in the two channels on the array, a single sample of B. abortus RB51 was hybridized in both channels which showed an R2 value of 0.99, demonstrating that there was no dye bias in the array hybridization. 3.3.4 Experimental confirmation of UBDA findings using next generation sequencing methodologyWe used whole genome sequence data to determine whether the B. suis isolates were either truly mixed, or chimeric intermediate genotypes. We sequenced nine TAHC field samples and an aliquot of the original B. suis1330 reference DNA sample using Illumina paired-end sequencing (76 cycles for isolate 2, 3, 17, 22, 29, 34 and 35, and 101 cycles for isolate 13, 33 and B. suis 1330) to validate the UBDA findings and to attempt to explain the anomalous PCR and other test results. We obtained 42,000,000 ~ 49,000,000 reads per sample, and used BWA ADDIN EN.CITE <EndNote><Cite><Author>Li</Author><Year>2009</Year><RecNum>373</RecNum><DisplayText>[24]</DisplayText><record><rec-number>373</rec-number><foreign-keys><key app="EN" db-id="wx90r9pt8rtr20eftvyvz0a4t02v0zsw02wv">373</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Li, H.</author><author>Durbin, R.</author></authors></contributors><auth-address>Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, CB10 1SA, UK.</auth-address><titles><title>Fast and accurate short read alignment with Burrows-Wheeler transform</title><secondary-title>Bioinformatics</secondary-title></titles><periodical><full-title>Bioinformatics</full-title></periodical><pages>1754-60</pages><volume>25</volume><number>14</number><edition>2009/05/20</edition><keywords><keyword>*Algorithms</keyword><keyword>Genomics/*methods</keyword><keyword>Sequence Alignment/*methods</keyword><keyword>Sequence Analysis, DNA/methods</keyword><keyword>*Software</keyword></keywords><dates><year>2009</year><pub-dates><date>Jul 15</date></pub-dates></dates><isbn>1367-4811 (Electronic)&#xD;1367-4803 (Linking)</isbn><accession-num>19451168</accession-num><urls><related-urls><url> [pii]&#xD;10.1093/bioinformatics/btp324</electronic-resource-num><language>eng</language></record></Cite></EndNote>[24] to map the reads to the genomic sequences of the five completely sequenced Brucella species as references to measure divergence from those genomes.The first three samples, B. abortus isolates (2, 3 and 33) had 99.9% similarity to B. abortus biovar 1 9-941, while B. suis isolates (13, 17, 22, 29, 34 and 35) had 99.9% base level identities to B. suis 1330 genomes (Supplementary Table 2). From the PCR assays using the IS711 element and the UBDA analysis, six isolates (13, 17, 22, 29, 34 and 35) were suspected to be either mixtures of B. abortus and B. suis, or variants of B. suis producing PCR products for both B. abortus and B. suis primer sets. To address this question, we compared the average sequence coverage between261,000 and 280,000 bases of B. abortus 9-941 genome, which is a long deletion in B. suis 1330 genome (Supplementary Table 5). The average coverage of isolates 13, 17, 22, 29, 34 and 35 on the region varied from 0.07 to 0.6x, which was significantly different from the average coverage on the B. abortus or B. suis whole genome (1,000x ~ 1,700x, Supplementary Table 2). The region also exists in several other Brucella species including B. abortus S19, B. abortus 2308, B. melitensis 16M, B. ovis ATCC 25840 and B. suis ATCC 23445. The results indicated that the samples were mixtures of different Brucella species and the mixture ratios were between 13,000:1 ~ 1,700:1, B. suis and other Brucella. This data indicate that minimum specificity limit for resolving these two very close genomes is a 19 kb region ((280,000-261,000)/3,300,000 = 0.006 = 0.6%) (Supplementary Table 5). In order to distinguish a closely related contaminant using the UBDA array, there must be more than one copy of the minor species in 1,700 copies of the major species. Hence the detection limit on the UBDA array was set at 0.6% for Principal Component Analysis of these highly similar Brucella species. In addition, the percentage identity of these 3 isolates to B. suis is ~ 99.4% compared to B. abortus biovar 1 9-941 at ~ 99.9%. The other sequenced isolates (13, 17, 22, 29, 34 and 35) had only about 80 variant loci to B. suis 1330 and were ~99.9% identical compared to ~99.2% identity to B. abortus biovar 1 9-941 (Supplementary Table 2). The numbers of loci containing sequence differences for each sample against the B. suis 1330 genome were compared. Isolates 2, 3 and 33 were determined to be B. abortus or a close variant, although they had more than 7,900 loci containing sequence differences with respect to B. suis 1330. Even though the numbers of variants in the six isolates were almost the same, the comparison of common variants showed differences between the samples (Table 1). Each cell in table 1 represents the number of common variants between two samples when compared to the B. suis 1330 genome ADDIN EN.CITE <EndNote><Cite><Author>Tae</Author><Year>2011</Year><RecNum>1042</RecNum><DisplayText>[25]</DisplayText><record><rec-number>1042</rec-number><foreign-keys><key app="EN" db-id="wx90r9pt8rtr20eftvyvz0a4t02v0zsw02wv">1042</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Tae, H.</author><author>Shallom, S.</author><author>Settlage, R.</author><author>Preston, D.</author><author>Adams, L. G.</author><author>Garner, H. R.</author></authors></contributors><auth-address>Virginia Bioinformatics Institute, Virginia Tech, Washington Street, MC0477, Blacksburg, VA 24061-0477. garner@vbi.vt.edu.</auth-address><titles><title>Revised Genome Sequence of Brucella suis 1330</title><secondary-title>J Bacteriol</secondary-title><alt-title>Journal of bacteriology</alt-title></titles><periodical><full-title>J Bacteriol</full-title></periodical><pages>6410</pages><volume>193</volume><number>22</number><edition>2011/11/01</edition><dates><year>2011</year><pub-dates><date>Nov</date></pub-dates></dates><isbn>1098-5530 (Electronic)&#xD;0021-9193 (Linking)</isbn><accession-num>22038969</accession-num><urls><related-urls><url>;[25]. 3.3.5 Phylogenomic tree built using amino acid sequence as translated from sequenced genomes of selected field isolates A phylogenomic tree from publicly available sequenced Brucella genomes and Texas Animal Health Field Brucella field isolates was generated to visualize differences among isolates at the gene level. The results of a maximum likelihood phylogenomic analysis using translated amino acid sequences of the 13 Brucella genomes from the NCBI database and nine newly sequenced Brucella field isolates (2, 3, 13, 17, 22, 29, 33, 34 and 35) is shown in Figure 3. Representatives of the major groups of Brucella including multiple strains of B. suis, B. abortus, and B. melitensis and B. ovis, B. ceti, B. pinnipedialis, and B. microti were included in the tree for context. The tree was rooted at B. microti based on prior analyses using more distant Brucella strains. The maximum likelihood tree was created based on 1,006 presumptively vertically inherited genes. The new genomes were localized to two locations on the tree: 6 nested nearest B. suis and 3 nested nearest B. abortus. The new B. suis genomes (isolates 13, 17, 22, 29, 34 and 35) are highly similar with per-site nucleotide differences on the order of 10-5 between pairs, and this cluster was supported by 100% of bootstraps while the distances to B. suis 1330 or B. suis S2 are 3 to 7 x 10-4 mutations per site. The three new genomes, in the B. abortus clade are more divergent. The patristic distance between any of the B. abortus field isolates 2, 3, or 33 to B. abortus S19 are indicated to be about 10-3 mutations per site. Note, that the phylogenomic tree generated using gene level sequence information emphasizes analysis of single copy genes of a highly curated data set (Figure 3). It provides a comparison of the open-reading frames (ORFs) of the predominant genome in a given sample and unmapped reads which have been derived from contaminating organisms in a given sample, are not considered. However, the phylogenomic analysis using the signal intensities from genome independent probes on the UBDA array (Figure 2) captured the mixed or chimeric genomes present in the Brucella field isolates. 3.4 DiscussionThe detection and identification of bio-threat agents requires a high-resolution detection platform capable of discerning closely related species from a given organism. Using one “gold standard” test, the PCR test, we observed spurious PCR products from several samples due to non-specific binding of PCR primers under standard conditions. Since the reverse primers for both B. abortus and B. suis are common and target IS711 transposon elements which are duplicated at the several loci, the primer can bind to multiple regions in the genomes and thus the specificity contribution by this primer is diminished. The IS711 transposon element is known to continuously copy and insert itself in new positions in a genome which may generate non-specific PCR products ADDIN EN.CITE <EndNote><Cite><Author>Ocampo-Sosa</Author><Year>2008</Year><RecNum>1041</RecNum><DisplayText>[26]</DisplayText><record><rec-number>1041</rec-number><foreign-keys><key app="EN" db-id="wx90r9pt8rtr20eftvyvz0a4t02v0zsw02wv">1041</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Ocampo-Sosa, A. A.</author><author>Garcia-Lobo, J. M.</author></authors></contributors><auth-address>Departamento de Biologia Molecular, Universidad de Cantabria, Instituto de Biomedicina y Biotecnologia de Cantabria, IBBTEC, CSIC-Universidad de Cantabria-IDICAN, Santander, Spain. alainocampo@</auth-address><titles><title>Demonstration of IS711 transposition in Brucella ovis and Brucella pinnipedialis</title><secondary-title>BMC Microbiol</secondary-title><alt-title>BMC microbiology</alt-title></titles><periodical><full-title>BMC Microbiol</full-title></periodical><pages>17</pages><volume>8</volume><edition>2008/01/26</edition><keywords><keyword>Blotting, Southern</keyword><keyword>Brucella/*genetics</keyword><keyword>Brucella ovis/*genetics</keyword><keyword>DNA Transposable Elements/*genetics</keyword><keyword>Genome, Bacterial</keyword><keyword>*Mutagenesis, Insertional</keyword><keyword>Mutation</keyword><keyword>Polymerase Chain Reaction</keyword><keyword>Sequence Analysis, DNA</keyword></keywords><dates><year>2008</year></dates><isbn>1471-2180 (Electronic)&#xD;1471-2180 (Linking)</isbn><accession-num>18218072</accession-num><work-type>Research Support, Non-U.S. Gov&apos;t</work-type><urls><related-urls><url>;[26]. PCR-based assays for typing of Brucella species biovar are ideal for high quality pure samples. However, since several field isolates had positive results for both B. abortus and B. suis in the PCR assay using IS711 elements, which may be explained if the isolates are mixed, chimeric assemblies where B. suis has now merged with B. abortus genomic components, or a new variant of B. suis that has now moved into cattle thus evoking a false positive serological or biochemical test. The UBDA method was used to establish the identity of the species diversity and phylogenomic relationships between field isolates, and was shown to be sensitive to species variants of the type seen here. We demonstrate the use of signal intensities from UBDA to generate a principal component analysis and assign a given sample to one of more groups. Principal component analysis and Euclidean distance mapping to reference B. abortus 2308 and B. suis 1330 genomes provides a quantitative approximation to the composite species identity of the field isolate. Samples from bovine milk or tissue determined to be B. suis in biochemical or serological tests were found to be a mixed composite of Brucella species. Hence, we determined that they were not pure B. suis isolates and presumably are the result of mixed or dual infections. The specificity limit for de-convoluting the identity of these highly similar species is in the range of ~ 0.6% sequence similarity of these field isolates to known reference genomes such as B. abortus biovar 1 9-941 and B. suis 1330 (Supplementary Table 2). Phylogenomic analysis using a nearest-neighbor joining algorithm for the signal intensities from UBDA revealed that standardized biochemically phenotyped B. suis isolates failed to cluster with known B. suis 1330, and instead clustered as mixed samples or an unknown intermediate species. Inspection of the dendrogram of nearest neighbors between Brucella field isolates derived from the species-independent UBDA method shows that the field isolates have diverged such that they confound the identity given to the Brucella field isolates from serological and biochemical tests. To validate this, nine field isolates were sequenced and their sequencing reads were mapped to the B. suis 1330 and B. abortus 9-941 genome sequences. By comparing the ratio of sequencing reads mapped to B. suis 1330 and B. abortus 9-941 genome specific regions, it was confirmed that B. suis and B. abortus coexist in isolates 13, 17, 22, 29, 34 and 35 of which the predominant genome was B. suis. In this study, the standard diagnostics including serology tests and PCR assays used to determine species of field isolates were found to have limitations when those isolates are potentially complex, leading to the identification of only predominant or targeted organisms or false conclusions as a consequence of species genomic evolution or minority contaminants. Deploying other more comprehensive techniques, including species-independent microarrays with superior speed and cost benefit and whole genome sequencing, which has superior comprehensive analysis, can lead to a greater confidence in the final interpretation. These techniques can also be revealing of an underlying reason for the success or failure of other analytical technique through providing data which more completely describes the genomic complexity of real-world field samples. 3.5 Materials and Methods3.5.1 Bacterial Isolates: Bacteriologic, serology and biochemical proceduresCulture and identification of Brucella spp., which had been previously described by Alton ADDIN EN.CITE <EndNote><Cite><Author>G.G</Author><Year>1988</Year><RecNum>451</RecNum><DisplayText>[4]</DisplayText><record><rec-number>451</rec-number><foreign-keys><key app="EN" db-id="wx90r9pt8rtr20eftvyvz0a4t02v0zsw02wv">451</key></foreign-keys><ref-type name="Aggregated Database">55</ref-type><contributors><authors><author>Alton G.G</author></authors></contributors><titles><title>Techniques for the brucellosis laboratory</title></titles><edition>1988</edition><dates><year>1988</year></dates><pub-location>Paris</pub-location><publisher>paris: Institut National de la Recherche Agronomique</publisher><isbn>2738000428</isbn><urls></urls></record></Cite></EndNote>[4], was performed from 36 milk and tissue samples of bovine, porcine and equine animals at the Texas Animal Health Commission (Austin, TX). The card test was performed by standard procedures used by the Department of Agriculture. Samples identified positive with the card test were plated onto Farrell’s media and selective Brucella media with ethyl violet and incubated at 37?C under aerobic conditions in the presence of 5-10% CO2 for five to seven days. The bacterial colonies demonstrating a gross morphology typical for smooth colonies of Brucella spp. were screened for catalase, oxidase and urease activity. Species and biovar identification were performed according to CO2 requirement, production of H2S, growth in the presence of basic fuchsin, thionin and slide agglutination test with monospecific anti-A and anti-M antigenic determinants of Brucella LPS (Lipolysaccharide) sera. Of the 36 TAHC samples, 19 were identified as B. abortus and 17 were identified as B. suis from these tests.3.5.2 Genomic DNA sample preparation Genomic DNAs of 36 samples were prepared from milk or tissue samples of cattle, horses and pigs suspected to have brucellosisbased on serology and biochemical diagnostic tests. The organisms were methanol inactivated at the Texas Animal Health Commission (Austin, TX) and genomic DNA was extracted at College of Veterinary Medicine, Texas A&M University (College Station, TX) as follows. Pellets of methanol inactivated cells were washed with 25 ml of J-buffer (0.1 M Tris pH 8.0; 0.1 M EDTA; 0.15 M NaCl) and then lysed in 1 ml of J-buffer containing 10% lysozyme solution (10 mg/ml in 0.25 M Tris, pH 8.0). After 10 min of incubation, DNA was released from the cells by sodium N-lauryl sarcosine (Sigma, St. Louis, MO) treatment followed by degradation of RNA by DNase-free RNase (Roche Applied Science, Indianapolis, IN) treatment and digestion of proteins with proteinase K (Roche Applied Science). The resulting solution was transferred to a dialysis bag and dialyzed against TE (10 mM Tris, pH 8.0 and 1 mM EDTA) overnight at 37°C. DNA was subsequently extracted twice using neutral water-saturated phenol (Ambion, Austin, TX) first and then ether (Sigma-Aldrich, St. Louis, MO) before dialyzing overnight against TE. DNA concentration was quantified by NanoDrop ND-1000 (Thermo Scientific, Wilmington, DE) and stored at 4°C until used PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5Sb3NzZXR0aTwvQXV0aG9yPjxZZWFyPjIwMDk8L1llYXI+

PFJlY051bT4zNzU8L1JlY051bT48RGlzcGxheVRleHQ+WzI3XTwvRGlzcGxheVRleHQ+PHJlY29y

ZD48cmVjLW51bWJlcj4zNzU8L3JlYy1udW1iZXI+PGZvcmVpZ24ta2V5cz48a2V5IGFwcD0iRU4i

IGRiLWlkPSJ3eDkwcjlwdDhydHIyMGVmdHZ5dnowYTR0MDJ2MHpzdzAyd3YiPjM3NTwva2V5Pjwv

Zm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJKb3VybmFsIEFydGljbGUiPjE3PC9yZWYtdHlw

ZT48Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+Um9zc2V0dGksIEMuIEEuPC9hdXRob3I+

PGF1dGhvcj5HYWxpbmRvLCBDLiBMLjwvYXV0aG9yPjxhdXRob3I+TGF3aG9uLCBTLiBELjwvYXV0

aG9yPjxhdXRob3I+R2FybmVyLCBILiBSLjwvYXV0aG9yPjxhdXRob3I+QWRhbXMsIEwuIEcuPC9h

dXRob3I+PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjxhdXRoLWFkZHJlc3M+QWRhbXMsIExHJiN4

RDtUZXhhcyBBJmFtcDtNIFVuaXYsIERlcHQgVmV0IFBhdGhvYmlvbCwgQ29sbCBWZXQgTWVkICZh

bXA7IEJpb21lZCBTY2ksIENvbGxlZ2UgU3RuLCBUWCA3NzQ4MyBVU0EmI3hEO1RleGFzIEEmYW1w

O00gVW5pdiwgRGVwdCBWZXQgUGF0aG9iaW9sLCBDb2xsIFZldCBNZWQgJmFtcDsgQmlvbWVkIFNj

aSwgQ29sbGVnZSBTdG4sIFRYIDc3NDgzIFVTQSYjeEQ7VGV4YXMgQSZhbXA7TSBVbml2LCBEZXB0

IFZldCBQYXRob2Jpb2wsIENvbGwgVmV0IE1lZCAmYW1wOyBCaW9tZWQgU2NpLCBDb2xsZWdlIFN0

biwgVFggNzc0ODMgVVNBJiN4RDtVbml2IFRleGFzIFNXIE1lZCBTY2gsIERlcHQgQmlvY2hlbSwg

RGFsbGFzLCBUWCA3NTM5MCBVU0EmI3hEO1VuaXYgVGV4YXMgU1cgTWVkIFNjaCwgRGVwdCBJbnRl

cm5hbCBNZWQsIERhbGxhcywgVFggNzUzOTAgVVNBJiN4RDtJTlRBIENDMjUsIENJQ1Z5QSBDTklB

LCBJbnN0IFBhdG9iaW9sLCBCdWVub3MgQWlyZXMsIERGLCBBcmdlbnRpbmE8L2F1dGgtYWRkcmVz

cz48dGl0bGVzPjx0aXRsZT5CcnVjZWxsYSBtZWxpdGVuc2lzIGdsb2JhbCBnZW5lIGV4cHJlc3Np

b24gc3R1ZHkgcHJvdmlkZXMgbm92ZWwgaW5mb3JtYXRpb24gb24gZ3Jvd3RoIHBoYXNlLXNwZWNp

ZmljIGdlbmUgcmVndWxhdGlvbiB3aXRoIHBvdGVudGlhbCBpbnNpZ2h0cyBmb3IgdW5kZXJzdGFu

ZGluZyBCcnVjZWxsYTpob3N0IGluaXRpYWwgaW50ZXJhY3Rpb25zPC90aXRsZT48c2Vjb25kYXJ5

LXRpdGxlPkJtYyBNaWNyb2Jpb2xvZ3k8L3NlY29uZGFyeS10aXRsZT48YWx0LXRpdGxlPkJtYyBN

aWNyb2Jpb2w8L2FsdC10aXRsZT48L3RpdGxlcz48YWx0LXBlcmlvZGljYWw+PGZ1bGwtdGl0bGU+

Qk1DIE1pY3JvYmlvbDwvZnVsbC10aXRsZT48L2FsdC1wZXJpb2RpY2FsPjxwYWdlcz4tPC9wYWdl

cz48dm9sdW1lPjk8L3ZvbHVtZT48a2V5d29yZHM+PGtleXdvcmQ+Mi1jb21wb25lbnQgc3lzdGVt

IGJ2cnIvYnZyczwva2V5d29yZD48a2V5d29yZD5vdXRlci1tZW1icmFuZSBwcm90ZWluPC9rZXl3

b3JkPjxrZXl3b3JkPmVwaXRoZWxpYWwtY2VsbHM8L2tleXdvcmQ+PGtleXdvcmQ+aXYgc2VjcmV0

aW9uPC9rZXl3b3JkPjxrZXl3b3JkPmJhY3RlcmlhbCBpbnZhc2lvbjwva2V5d29yZD48a2V5d29y

ZD5ybmEgc3RhYmlsaXR5PC9rZXl3b3JkPjxrZXl3b3JkPnZpcmIgb3Blcm9uPC9rZXl3b3JkPjxr

ZXl3b3JkPnZlcm8gY2VsbHM8L2tleXdvcmQ+PGtleXdvcmQ+dmlydWxlbmNlPC9rZXl3b3JkPjxr

ZXl3b3JkPmFib3J0dXM8L2tleXdvcmQ+PC9rZXl3b3Jkcz48ZGF0ZXM+PHllYXI+MjAwOTwveWVh

cj48cHViLWRhdGVzPjxkYXRlPk1heSA2PC9kYXRlPjwvcHViLWRhdGVzPjwvZGF0ZXM+PGlzYm4+

MTQ3MS0yMTgwPC9pc2JuPjxhY2Nlc3Npb24tbnVtPklTSTowMDAyNjY4MDEyMDAwMDI8L2FjY2Vz

c2lvbi1udW0+PHVybHM+PHJlbGF0ZWQtdXJscz48dXJsPiZsdDtHbyB0byBJU0kmZ3Q7Oi8vMDAw

MjY2ODAxMjAwMDAyPC91cmw+PC9yZWxhdGVkLXVybHM+PC91cmxzPjxlbGVjdHJvbmljLXJlc291

cmNlLW51bT5BcnRuIDgxJiN4RDtEb2kgMTAuMTE4Ni8xNDcxLTIxODAtOS04MTwvZWxlY3Ryb25p

Yy1yZXNvdXJjZS1udW0+PGxhbmd1YWdlPkVuZ2xpc2g8L2xhbmd1YWdlPjwvcmVjb3JkPjwvQ2l0

ZT48L0VuZE5vdGU+

ADDIN EN.CITE PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5Sb3NzZXR0aTwvQXV0aG9yPjxZZWFyPjIwMDk8L1llYXI+

PFJlY051bT4zNzU8L1JlY051bT48RGlzcGxheVRleHQ+WzI3XTwvRGlzcGxheVRleHQ+PHJlY29y

ZD48cmVjLW51bWJlcj4zNzU8L3JlYy1udW1iZXI+PGZvcmVpZ24ta2V5cz48a2V5IGFwcD0iRU4i

IGRiLWlkPSJ3eDkwcjlwdDhydHIyMGVmdHZ5dnowYTR0MDJ2MHpzdzAyd3YiPjM3NTwva2V5Pjwv

Zm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJKb3VybmFsIEFydGljbGUiPjE3PC9yZWYtdHlw

ZT48Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+Um9zc2V0dGksIEMuIEEuPC9hdXRob3I+

PGF1dGhvcj5HYWxpbmRvLCBDLiBMLjwvYXV0aG9yPjxhdXRob3I+TGF3aG9uLCBTLiBELjwvYXV0

aG9yPjxhdXRob3I+R2FybmVyLCBILiBSLjwvYXV0aG9yPjxhdXRob3I+QWRhbXMsIEwuIEcuPC9h

dXRob3I+PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjxhdXRoLWFkZHJlc3M+QWRhbXMsIExHJiN4

RDtUZXhhcyBBJmFtcDtNIFVuaXYsIERlcHQgVmV0IFBhdGhvYmlvbCwgQ29sbCBWZXQgTWVkICZh

bXA7IEJpb21lZCBTY2ksIENvbGxlZ2UgU3RuLCBUWCA3NzQ4MyBVU0EmI3hEO1RleGFzIEEmYW1w

O00gVW5pdiwgRGVwdCBWZXQgUGF0aG9iaW9sLCBDb2xsIFZldCBNZWQgJmFtcDsgQmlvbWVkIFNj

aSwgQ29sbGVnZSBTdG4sIFRYIDc3NDgzIFVTQSYjeEQ7VGV4YXMgQSZhbXA7TSBVbml2LCBEZXB0

IFZldCBQYXRob2Jpb2wsIENvbGwgVmV0IE1lZCAmYW1wOyBCaW9tZWQgU2NpLCBDb2xsZWdlIFN0

biwgVFggNzc0ODMgVVNBJiN4RDtVbml2IFRleGFzIFNXIE1lZCBTY2gsIERlcHQgQmlvY2hlbSwg

RGFsbGFzLCBUWCA3NTM5MCBVU0EmI3hEO1VuaXYgVGV4YXMgU1cgTWVkIFNjaCwgRGVwdCBJbnRl

cm5hbCBNZWQsIERhbGxhcywgVFggNzUzOTAgVVNBJiN4RDtJTlRBIENDMjUsIENJQ1Z5QSBDTklB

LCBJbnN0IFBhdG9iaW9sLCBCdWVub3MgQWlyZXMsIERGLCBBcmdlbnRpbmE8L2F1dGgtYWRkcmVz

cz48dGl0bGVzPjx0aXRsZT5CcnVjZWxsYSBtZWxpdGVuc2lzIGdsb2JhbCBnZW5lIGV4cHJlc3Np

b24gc3R1ZHkgcHJvdmlkZXMgbm92ZWwgaW5mb3JtYXRpb24gb24gZ3Jvd3RoIHBoYXNlLXNwZWNp

ZmljIGdlbmUgcmVndWxhdGlvbiB3aXRoIHBvdGVudGlhbCBpbnNpZ2h0cyBmb3IgdW5kZXJzdGFu

ZGluZyBCcnVjZWxsYTpob3N0IGluaXRpYWwgaW50ZXJhY3Rpb25zPC90aXRsZT48c2Vjb25kYXJ5

LXRpdGxlPkJtYyBNaWNyb2Jpb2xvZ3k8L3NlY29uZGFyeS10aXRsZT48YWx0LXRpdGxlPkJtYyBN

aWNyb2Jpb2w8L2FsdC10aXRsZT48L3RpdGxlcz48YWx0LXBlcmlvZGljYWw+PGZ1bGwtdGl0bGU+

Qk1DIE1pY3JvYmlvbDwvZnVsbC10aXRsZT48L2FsdC1wZXJpb2RpY2FsPjxwYWdlcz4tPC9wYWdl

cz48dm9sdW1lPjk8L3ZvbHVtZT48a2V5d29yZHM+PGtleXdvcmQ+Mi1jb21wb25lbnQgc3lzdGVt

IGJ2cnIvYnZyczwva2V5d29yZD48a2V5d29yZD5vdXRlci1tZW1icmFuZSBwcm90ZWluPC9rZXl3

b3JkPjxrZXl3b3JkPmVwaXRoZWxpYWwtY2VsbHM8L2tleXdvcmQ+PGtleXdvcmQ+aXYgc2VjcmV0

aW9uPC9rZXl3b3JkPjxrZXl3b3JkPmJhY3RlcmlhbCBpbnZhc2lvbjwva2V5d29yZD48a2V5d29y

ZD5ybmEgc3RhYmlsaXR5PC9rZXl3b3JkPjxrZXl3b3JkPnZpcmIgb3Blcm9uPC9rZXl3b3JkPjxr

ZXl3b3JkPnZlcm8gY2VsbHM8L2tleXdvcmQ+PGtleXdvcmQ+dmlydWxlbmNlPC9rZXl3b3JkPjxr

ZXl3b3JkPmFib3J0dXM8L2tleXdvcmQ+PC9rZXl3b3Jkcz48ZGF0ZXM+PHllYXI+MjAwOTwveWVh

cj48cHViLWRhdGVzPjxkYXRlPk1heSA2PC9kYXRlPjwvcHViLWRhdGVzPjwvZGF0ZXM+PGlzYm4+

MTQ3MS0yMTgwPC9pc2JuPjxhY2Nlc3Npb24tbnVtPklTSTowMDAyNjY4MDEyMDAwMDI8L2FjY2Vz

c2lvbi1udW0+PHVybHM+PHJlbGF0ZWQtdXJscz48dXJsPiZsdDtHbyB0byBJU0kmZ3Q7Oi8vMDAw

MjY2ODAxMjAwMDAyPC91cmw+PC9yZWxhdGVkLXVybHM+PC91cmxzPjxlbGVjdHJvbmljLXJlc291

cmNlLW51bT5BcnRuIDgxJiN4RDtEb2kgMTAuMTE4Ni8xNDcxLTIxODAtOS04MTwvZWxlY3Ryb25p

Yy1yZXNvdXJjZS1udW0+PGxhbmd1YWdlPkVuZ2xpc2g8L2xhbmd1YWdlPjwvcmVjb3JkPjwvQ2l0

ZT48L0VuZE5vdGU+

ADDIN EN.CITE.DATA [27]. These DNA samples were then received at VBI, Virginia Tech (Blacksburg, VA). Of the 36 TAHC genomic DNAs, 19 samples had low DNA concentration and were whole genome amplified using 10 ng of starting material as specified by the manufacturer (GenomiPhi V2, GE Healthcare, Piscataway, NJ), resulting in 2-3 μg of whole genome amplified DNA from 10 ng of starting genomic DNA. B. suis 1330 genomic DNA was obtained from BEI resources (Manassas, VA).3.5.3 PCR assay on the IS711 Element of Brucella species and sequencing of PCR productsPrimers were chosen for the IS711 element of B. abortus and B. suis as described in ADDIN EN.CITE <EndNote><Cite><Author>Bricker</Author><Year>1994</Year><RecNum>363</RecNum><DisplayText>[13]</DisplayText><record><rec-number>363</rec-number><foreign-keys><key app="EN" db-id="wx90r9pt8rtr20eftvyvz0a4t02v0zsw02wv">363</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Bricker, B. J.</author><author>Halling, S. M.</author></authors></contributors><auth-address>National Animal Disease Center, Agricultural Research Service, U.S. Department of Agriculture, Ames, Iowa 50010.</auth-address><titles><title>Differentiation of Brucella abortus bv. 1, 2, and 4, Brucella melitensis, Brucella ovis, and Brucella suis bv. 1 by PCR</title><secondary-title>J Clin Microbiol</secondary-title></titles><periodical><full-title>J Clin Microbiol</full-title></periodical><pages>2660-6</pages><volume>32</volume><number>11</number><edition>1994/11/01</edition><keywords><keyword>Base Sequence</keyword><keyword>Brucella/genetics/*isolation &amp; purification</keyword><keyword>Brucella melitensis/genetics/*isolation &amp; purification</keyword><keyword>DNA, Bacterial/analysis</keyword><keyword>Molecular Sequence Data</keyword><keyword>Polymerase Chain Reaction</keyword></keywords><dates><year>1994</year><pub-dates><date>Nov</date></pub-dates></dates><isbn>0095-1137 (Print)&#xD;0095-1137 (Linking)</isbn><accession-num>7852552</accession-num><urls><related-urls><url>;[13] and synthesized by IDT (Integrated DNA technologies, Coralville, IA). Samples were analyzed by PCR using 25 ng of starting material in a total reaction volume of 50 μl containing 2x master mix (Promega, Madison, WI), template and 20 pmoles of primer (Integrated DNA Technologies, Coralville, IA). Reactions were performed using an initial three minutes denaturation step at 95?C, followed by 35 cycles of 30 seconds at 95?C, 50 seconds at 56?C, 1 min at 72?C, and a final extension step for 7 minutes at 72?C. The samples (5 μl) were treated with 2μl of ExoSAP (Affymetrix, Santa Clara, CA) for 15 minutes at 37 ?C, and the reaction was inactivated by heating to 80 ?C for 15 minutes. The samples were sequenced using ABI big dye terminator chemistry reactions and sequenced on the 3730 sequencer (ABI, Foster City, CA).3.5.4 Species independent array design, preparation and hybridization and array data processingDNA concentration (260 nm) and purity (260/280 and 260/230 nm) were assessed by the spectrophotometer and quality by agarose gel electrophoresis. Samples with 260/230 nm ratios greater than 1.8 were used following established protocols for array comparative genomic hybridization (CGH). We designed the UBDA microarray which was then manufactured by Roche-Nimblegen (Madison, WI) as a custom 373K probe chip and genomic DNAs(1 μg) were labeled and hybridized on the UBDA chip as previously described ADDIN EN.CITE <EndNote><Cite><Author>Shallom</Author><Year>2011</Year><RecNum>444</RecNum><DisplayText>[18]</DisplayText><record><rec-number>444</rec-number><foreign-keys><key app="EN" db-id="wx90r9pt8rtr20eftvyvz0a4t02v0zsw02wv">444</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Shallom, S. J.</author><author>Weeks, J. N.</author><author>Galindo, C. L.</author><author>McIver, L.</author><author>Sun, Z.</author><author>McCormick, J.</author><author>Adams, L. G.</author><author>Garner, H. R.</author></authors></contributors><auth-address>Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, VA, USA. garner@vbi.vt.edu.</auth-address><titles><title>A species independent universal bio-detection microarray for pathogen forensics and phylogenetic classification of unknown microorganisms</title><secondary-title>BMC Microbiol</secondary-title><alt-title>BMC microbiology</alt-title></titles><periodical><full-title>BMC Microbiol</full-title></periodical><pages>132</pages><volume>11</volume><edition>2011/06/16</edition><dates><year>2011</year></dates><isbn>1471-2180 (Electronic)&#xD;1471-2180 (Linking)</isbn><accession-num>21672191</accession-num><urls><related-urls><url>;[18]. Data files from the UBDA arrays were imported individually into Nimblescan (Roche Nimblegen, Madison, WI,) and background corrected ADDIN EN.CITE <EndNote><Cite><Author>Ritchie</Author><Year>2007</Year><RecNum>457</RecNum><DisplayText>[28]</DisplayText><record><rec-number>457</rec-number><foreign-keys><key app="EN" db-id="wx90r9pt8rtr20eftvyvz0a4t02v0zsw02wv">457</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Ritchie, M. E.</author><author>Silver, J.</author><author>Oshlack, A.</author><author>Holmes, M.</author><author>Diyagama, D.</author><author>Holloway, A.</author><author>Smyth, G. K.</author></authors></contributors><auth-address>Department of Oncology, University of Cambridge, CRUK Cambridge Research Institute, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK.</auth-address><titles><title>A comparison of background correction methods for two-colour microarrays</title><secondary-title>Bioinformatics</secondary-title></titles><periodical><full-title>Bioinformatics</full-title></periodical><pages>2700-7</pages><volume>23</volume><number>20</number><edition>2007/08/28</edition><keywords><keyword>*Artifacts</keyword><keyword>Image Enhancement/*methods</keyword><keyword>Image Interpretation, Computer-Assisted/*methods</keyword><keyword>In Situ Hybridization, Fluorescence/*methods</keyword><keyword>Microscopy, Fluorescence, Multiphoton/*methods</keyword><keyword>Oligonucleotide Array Sequence Analysis/*methods</keyword><keyword>Reproducibility of Results</keyword><keyword>Sensitivity and Specificity</keyword></keywords><dates><year>2007</year><pub-dates><date>Oct 15</date></pub-dates></dates><isbn>1367-4811 (Electronic)&#xD;1367-4803 (Linking)</isbn><accession-num>17720982</accession-num><work-type>Comparative Study&#xD;Evaluation Studies</work-type><urls><related-urls><url>;[28]. A parsing script written in Perl was used to extract 9-mer (262,144 probes and replicates) probe intensities from the 373K UBDA array and signal intensity values were log2 transformed. Signal intensity values from 9-mer probes are available in Supplementary Table 6.3.5.5 Principal component analysis of UBDA array probe signal intensity values using singular value decompositionPrincipal component analysis (PCA) was employed to determine the isolate’s composite identity from the UBDA array data for the entire 9-mer probe set using a custom MATLAB (Natick, MA) script. For each sample the total sum of all distances for all probes was computed with respect to the reference sample B. abortus 2308 or B. suis 1330. The weighted distance was computed by dividing the total sum of distances by the number of probes which is 262,144. The statistical confidence for the detection limit was set at 0.6% and the species with the lower distance measure was used to determine the closest match to the field isolate. Samples for which similarity to the references were within 0.6% were designated as mixed or chimeric.3.5.6 Phylogenomic relationship tree based on UBDA signal intensity valuesFor each sample a Pearson's correlation matrix, which included self-similarity and similarity to the remaining samples in the matrix for the 9-mer probes on the array, was created. Then, the distance matrix was input to the neighbor-joining method implemented in the PHYLIP software suite and TreeView ADDIN EN.CITE <EndNote><Cite><Author>Page</Author><Year>1996</Year><RecNum>361</RecNum><DisplayText>[30]</DisplayText><record><rec-number>361</rec-number><foreign-keys><key app="EN" db-id="wx90r9pt8rtr20eftvyvz0a4t02v0zsw02wv">361</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Page, R. D.</author></authors></contributors><auth-address>Division of Environmental and Evolutionary Biology, University of Glasgow, UK. r.page@bio.gla.ac.uk</auth-address><titles><title>TreeView: an application to display phylogenetic trees on personal computers</title><secondary-title>Comput Appl Biosci</secondary-title></titles><periodical><full-title>Comput Appl Biosci</full-title></periodical><pages>357-8</pages><volume>12</volume><number>4</number><edition>1996/08/01</edition><keywords><keyword>Computer Graphics</keyword><keyword>Microcomputers</keyword><keyword>*Phylogeny</keyword><keyword>*Software</keyword></keywords><dates><year>1996</year><pub-dates><date>Aug</date></pub-dates></dates><isbn>0266-7061 (Print)&#xD;0266-7061 (Linking)</isbn><accession-num>8902363</accession-num><urls><related-urls><url>;[30] to produce a phylogenetic tree. For comparison, a phylogenomic tree was also created using RMA normalization method ADDIN EN.CITE <EndNote><Cite><Author>Irizarry</Author><Year>2003</Year><RecNum>162</RecNum><DisplayText>[23]</DisplayText><record><rec-number>162</rec-number><foreign-keys><key app="EN" db-id="wx90r9pt8rtr20eftvyvz0a4t02v0zsw02wv">162</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Irizarry, R. A.</author><author>Hobbs, B.</author><author>Collin, F.</author><author>Beazer-Barclay, Y. D.</author><author>Antonellis, K. J.</author><author>Scherf, U.</author><author>Speed, T. P.</author></authors></contributors><auth-address>Department of Biostatistics, Johns Hopkins University, Baltimore, MD 21205, USA. rafa@jhu.edu</auth-address><titles><title>Exploration, normalization, and summaries of high density oligonucleotide array probe level data</title><secondary-title>Biostatistics</secondary-title></titles><pages>249-64</pages><volume>4</volume><number>2</number><edition>2003/08/20</edition><keywords><keyword>Algorithms</keyword><keyword>Animals</keyword><keyword>DNA Probes/*genetics</keyword><keyword>*Data Interpretation, Statistical</keyword><keyword>Gene Expression Profiling/statistics &amp; numerical data</keyword><keyword>Humans</keyword><keyword>Linear Models</keyword><keyword>Mice</keyword><keyword>Normal Distribution</keyword><keyword>Oligonucleotide Array Sequence Analysis/*methods</keyword><keyword>Reproducibility of Results</keyword><keyword>Statistics, Nonparametric</keyword></keywords><dates><year>2003</year><pub-dates><date>Apr</date></pub-dates></dates><isbn>1465-4644 (Print)&#xD;1465-4644 (Linking)</isbn><accession-num>12925520</accession-num><urls><related-urls><url> [pii]</electronic-resource-num><language>eng</language></record></Cite></EndNote>[23]. The files were normalized in a batch mode using Nimblescan (Roche NimbleGen, Madison, WI).3.5.7 Sequence analysis using Illumina sequencerIllumina paired-end sequencing protocols were used to sequence nine TAHC field isolates genomic DNA and the original B. suis1330 DNA (76 cycles for isolate 2, 3, 17, 22, 29, 34 and 35, and 101 cycles for isolate 13, 33 and B. suis 1330) on the Illumina GAIIx sequencer (San Diego, CA). For accurate analysis, all low quality bases (< 0.99 quality score) from the sequencing reads were trimmed. Then, these reads were mapped to the genomic sequences of the five completely sequenced Brucella species including B. melitensis 16M, B. abortus 9-941, B. abortus 2308, B. suis 1330 and B. abortus ATCC 23445 by BWA ADDIN EN.CITE <EndNote><Cite><Author>Li</Author><Year>2009</Year><RecNum>373</RecNum><DisplayText>[24]</DisplayText><record><rec-number>373</rec-number><foreign-keys><key app="EN" db-id="wx90r9pt8rtr20eftvyvz0a4t02v0zsw02wv">373</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Li, H.</author><author>Durbin, R.</author></authors></contributors><auth-address>Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, CB10 1SA, UK.</auth-address><titles><title>Fast and accurate short read alignment with Burrows-Wheeler transform</title><secondary-title>Bioinformatics</secondary-title></titles><periodical><full-title>Bioinformatics</full-title></periodical><pages>1754-60</pages><volume>25</volume><number>14</number><edition>2009/05/20</edition><keywords><keyword>*Algorithms</keyword><keyword>Genomics/*methods</keyword><keyword>Sequence Alignment/*methods</keyword><keyword>Sequence Analysis, DNA/methods</keyword><keyword>*Software</keyword></keywords><dates><year>2009</year><pub-dates><date>Jul 15</date></pub-dates></dates><isbn>1367-4811 (Electronic)&#xD;1367-4803 (Linking)</isbn><accession-num>19451168</accession-num><urls><related-urls><url> [pii]&#xD;10.1093/bioinformatics/btp324</electronic-resource-num><language>eng</language></record></Cite></EndNote>[24] to determine the optimum reference for each sample based on similarity. Consensus sequences from the reads mapped to the selected references were then generated by SAMtools ADDIN EN.CITE <EndNote><Cite><Author>Li</Author><Year>2009</Year><RecNum>971</RecNum><DisplayText>[31]</DisplayText><record><rec-number>971</rec-number><foreign-keys><key app="EN" db-id="wx90r9pt8rtr20eftvyvz0a4t02v0zsw02wv">971</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Li, H.</author><author>Handsaker, B.</author><author>Wysoker, A.</author><author>Fennell, T.</author><author>Ruan, J.</author><author>Homer, N.</author><author>Marth, G.</author><author>Abecasis, G.</author><author>Durbin, R.</author></authors></contributors><auth-address>Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, CB10 1SA, UK, Broad Institute of MIT and Harvard, Cambridge, MA 02141, USA.</auth-address><titles><title>The Sequence Alignment/Map format and SAMtools</title><secondary-title>Bioinformatics</secondary-title></titles><periodical><full-title>Bioinformatics</full-title></periodical><pages>2078-9</pages><volume>25</volume><number>16</number><edition>2009/06/10</edition><keywords><keyword>Algorithms</keyword><keyword>Base Sequence</keyword><keyword>Computational Biology/*methods</keyword><keyword>Genome</keyword><keyword>Genomics</keyword><keyword>Molecular Sequence Data</keyword><keyword>Sequence Alignment/*methods</keyword><keyword>Sequence Analysis, DNA/*methods</keyword><keyword>*Software</keyword></keywords><dates><year>2009</year><pub-dates><date>Aug 15</date></pub-dates></dates><isbn>1367-4811 (Electronic)&#xD;1367-4803 (Linking)</isbn><accession-num>19505943</accession-num><work-type>Research Support, N.I.H., Extramural&#xD;Research Support, Non-U.S. Gov&apos;t</work-type><urls><related-urls><url>;[31]. Unmapped reads were also analyzed by BLASTN search PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5BbHRzY2h1bDwvQXV0aG9yPjxZZWFyPjE5OTA8L1llYXI+

PFJlY051bT45NzI8L1JlY051bT48RGlzcGxheVRleHQ+WzMyLCAzM108L0Rpc3BsYXlUZXh0Pjxy

ZWNvcmQ+PHJlYy1udW1iZXI+OTcyPC9yZWMtbnVtYmVyPjxmb3JlaWduLWtleXM+PGtleSBhcHA9

IkVOIiBkYi1pZD0id3g5MHI5cHQ4cnRyMjBlZnR2eXZ6MGE0dDAydjB6c3cwMnd2Ij45NzI8L2tl

eT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwvcmVm

LXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPkFsdHNjaHVsLCBTLiBGLjwvYXV0

aG9yPjxhdXRob3I+R2lzaCwgVy48L2F1dGhvcj48YXV0aG9yPk1pbGxlciwgVy48L2F1dGhvcj48

YXV0aG9yPk15ZXJzLCBFLiBXLjwvYXV0aG9yPjxhdXRob3I+TGlwbWFuLCBELiBKLjwvYXV0aG9y

PjwvYXV0aG9ycz48L2NvbnRyaWJ1dG9ycz48YXV0aC1hZGRyZXNzPk5hdGlvbmFsIENlbnRlciBm

b3IgQmlvdGVjaG5vbG9neSBJbmZvcm1hdGlvbiwgTmF0aW9uYWwgTGlicmFyeSBvZiBNZWRpY2lu

ZSwgTmF0aW9uYWwgSW5zdGl0dXRlcyBvZiBIZWFsdGgsIEJldGhlc2RhLCBNRCAyMDg5NC48L2F1

dGgtYWRkcmVzcz48dGl0bGVzPjx0aXRsZT5CYXNpYyBsb2NhbCBhbGlnbm1lbnQgc2VhcmNoIHRv

b2w8L3RpdGxlPjxzZWNvbmRhcnktdGl0bGU+SiBNb2wgQmlvbDwvc2Vjb25kYXJ5LXRpdGxlPjxh

bHQtdGl0bGU+Sm91cm5hbCBvZiBtb2xlY3VsYXIgYmlvbG9neTwvYWx0LXRpdGxlPjwvdGl0bGVz

PjxwZXJpb2RpY2FsPjxmdWxsLXRpdGxlPkogTW9sIEJpb2w8L2Z1bGwtdGl0bGU+PGFiYnItMT5K

b3VybmFsIG9mIG1vbGVjdWxhciBiaW9sb2d5PC9hYmJyLTE+PC9wZXJpb2RpY2FsPjxhbHQtcGVy

aW9kaWNhbD48ZnVsbC10aXRsZT5KIE1vbCBCaW9sPC9mdWxsLXRpdGxlPjxhYmJyLTE+Sm91cm5h

bCBvZiBtb2xlY3VsYXIgYmlvbG9neTwvYWJici0xPjwvYWx0LXBlcmlvZGljYWw+PHBhZ2VzPjQw

My0xMDwvcGFnZXM+PHZvbHVtZT4yMTU8L3ZvbHVtZT48bnVtYmVyPjM8L251bWJlcj48ZWRpdGlv

bj4xOTkwLzEwLzA1PC9lZGl0aW9uPjxrZXl3b3Jkcz48a2V5d29yZD5BbGdvcml0aG1zPC9rZXl3

b3JkPjxrZXl3b3JkPkFtaW5vIEFjaWQgU2VxdWVuY2U8L2tleXdvcmQ+PGtleXdvcmQ+KkJhc2Ug

U2VxdWVuY2U8L2tleXdvcmQ+PGtleXdvcmQ+RGF0YWJhc2VzLCBGYWN0dWFsPC9rZXl3b3JkPjxr

ZXl3b3JkPipNdXRhdGlvbjwva2V5d29yZD48a2V5d29yZD5TZW5zaXRpdml0eSBhbmQgU3BlY2lm

aWNpdHk8L2tleXdvcmQ+PGtleXdvcmQ+U2VxdWVuY2UgSG9tb2xvZ3ksIE51Y2xlaWMgQWNpZDwv

a2V5d29yZD48a2V5d29yZD4qU29mdHdhcmU8L2tleXdvcmQ+PC9rZXl3b3Jkcz48ZGF0ZXM+PHll

YXI+MTk5MDwveWVhcj48cHViLWRhdGVzPjxkYXRlPk9jdCA1PC9kYXRlPjwvcHViLWRhdGVzPjwv

ZGF0ZXM+PGlzYm4+MDAyMi0yODM2IChQcmludCkmI3hEOzAwMjItMjgzNiAoTGlua2luZyk8L2lz

Ym4+PGFjY2Vzc2lvbi1udW0+MjIzMTcxMjwvYWNjZXNzaW9uLW51bT48d29yay10eXBlPlJlc2Vh

cmNoIFN1cHBvcnQsIFUuUy4gR292JmFwb3M7dCwgUC5ILlMuPC93b3JrLXR5cGU+PHVybHM+PHJl

bGF0ZWQtdXJscz48dXJsPmh0dHA6Ly93d3cubmNiaS5ubG0ubmloLmdvdi9wdWJtZWQvMjIzMTcx

MjwvdXJsPjwvcmVsYXRlZC11cmxzPjwvdXJscz48ZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+MTAu

MTAxNi9TMDAyMi0yODM2KDA1KTgwMzYwLTI8L2VsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjxsYW5n

dWFnZT5lbmc8L2xhbmd1YWdlPjwvcmVjb3JkPjwvQ2l0ZT48Q2l0ZT48QXV0aG9yPkFsdHNjaHVs

PC9BdXRob3I+PFllYXI+MTk5NzwvWWVhcj48UmVjTnVtPjY1OTwvUmVjTnVtPjxyZWNvcmQ+PHJl

Yy1udW1iZXI+NjU5PC9yZWMtbnVtYmVyPjxmb3JlaWduLWtleXM+PGtleSBhcHA9IkVOIiBkYi1p

ZD0id3g5MHI5cHQ4cnRyMjBlZnR2eXZ6MGE0dDAydjB6c3cwMnd2Ij42NTk8L2tleT48L2ZvcmVp

Z24ta2V5cz48cmVmLXR5cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwvcmVmLXR5cGU+PGNv

bnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPkFsdHNjaHVsLCBTLiBGLjwvYXV0aG9yPjxhdXRo

b3I+TWFkZGVuLCBULiBMLjwvYXV0aG9yPjxhdXRob3I+U2NoYWZmZXIsIEEuIEEuPC9hdXRob3I+

PGF1dGhvcj5aaGFuZywgSi48L2F1dGhvcj48YXV0aG9yPlpoYW5nLCBaLjwvYXV0aG9yPjxhdXRo

b3I+TWlsbGVyLCBXLjwvYXV0aG9yPjxhdXRob3I+TGlwbWFuLCBELiBKLjwvYXV0aG9yPjwvYXV0

aG9ycz48L2NvbnRyaWJ1dG9ycz48YXV0aC1hZGRyZXNzPk5hdGlvbmFsIENlbnRlciBmb3IgQmlv

dGVjaG5vbG9neSBJbmZvcm1hdGlvbiwgTmF0aW9uYWwgTGlicmFyeSBvZiBNZWRpY2luZSwgTmF0

aW9uYWwgSW5zdGl0dXRlcyBvZiBIZWFsdGgsIEJldGhlc2RhLCBNRCAyMDg5NCwgVVNBLiBhbHRz

Y2h1bEBuY2JpLm5sbS5uaWguZ292PC9hdXRoLWFkZHJlc3M+PHRpdGxlcz48dGl0bGU+R2FwcGVk

IEJMQVNUIGFuZCBQU0ktQkxBU1Q6IGEgbmV3IGdlbmVyYXRpb24gb2YgcHJvdGVpbiBkYXRhYmFz

ZSBzZWFyY2ggcHJvZ3JhbXM8L3RpdGxlPjxzZWNvbmRhcnktdGl0bGU+TnVjbGVpYyBBY2lkcyBS

ZXM8L3NlY29uZGFyeS10aXRsZT48YWx0LXRpdGxlPk51Y2xlaWMgYWNpZHMgcmVzZWFyY2g8L2Fs

dC10aXRsZT48L3RpdGxlcz48cGVyaW9kaWNhbD48ZnVsbC10aXRsZT5OdWNsZWljIEFjaWRzIFJl

czwvZnVsbC10aXRsZT48L3BlcmlvZGljYWw+PHBhZ2VzPjMzODktNDAyPC9wYWdlcz48dm9sdW1l

PjI1PC92b2x1bWU+PG51bWJlcj4xNzwvbnVtYmVyPjxlZGl0aW9uPjE5OTcvMDkvMDE8L2VkaXRp

b24+PGtleXdvcmRzPjxrZXl3b3JkPkFsZ29yaXRobXM8L2tleXdvcmQ+PGtleXdvcmQ+QW1pbm8g

QWNpZCBTZXF1ZW5jZTwva2V5d29yZD48a2V5d29yZD5BbmltYWxzPC9rZXl3b3JkPjxrZXl3b3Jk

PkROQS8qY2hlbWlzdHJ5PC9rZXl3b3JkPjxrZXl3b3JkPipEYXRhYmFzZXMsIEZhY3R1YWw8L2tl

eXdvcmQ+PGtleXdvcmQ+SHVtYW5zPC9rZXl3b3JkPjxrZXl3b3JkPk1vbGVjdWxhciBTZXF1ZW5j

ZSBEYXRhPC9rZXl3b3JkPjxrZXl3b3JkPlByb3RlaW5zLypjaGVtaXN0cnk8L2tleXdvcmQ+PGtl

eXdvcmQ+KlNlcXVlbmNlIEFsaWdubWVudDwva2V5d29yZD48a2V5d29yZD4qU29mdHdhcmU8L2tl

eXdvcmQ+PC9rZXl3b3Jkcz48ZGF0ZXM+PHllYXI+MTk5NzwveWVhcj48cHViLWRhdGVzPjxkYXRl

PlNlcCAxPC9kYXRlPjwvcHViLWRhdGVzPjwvZGF0ZXM+PGlzYm4+MDMwNS0xMDQ4IChQcmludCkm

I3hEOzAzMDUtMTA0OCAoTGlua2luZyk8L2lzYm4+PGFjY2Vzc2lvbi1udW0+OTI1NDY5NDwvYWNj

ZXNzaW9uLW51bT48d29yay10eXBlPlJlc2VhcmNoIFN1cHBvcnQsIFUuUy4gR292JmFwb3M7dCwg

UC5ILlMuJiN4RDtSZXZpZXc8L3dvcmstdHlwZT48dXJscz48cmVsYXRlZC11cmxzPjx1cmw+aHR0

cDovL3d3dy5uY2JpLm5sbS5uaWguZ292L3B1Ym1lZC85MjU0Njk0PC91cmw+PC9yZWxhdGVkLXVy

bHM+PC91cmxzPjxjdXN0b20yPjE0NjkxNzwvY3VzdG9tMj48bGFuZ3VhZ2U+ZW5nPC9sYW5ndWFn

ZT48L3JlY29yZD48L0NpdGU+PC9FbmROb3RlPn==

ADDIN EN.CITE PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5BbHRzY2h1bDwvQXV0aG9yPjxZZWFyPjE5OTA8L1llYXI+

PFJlY051bT45NzI8L1JlY051bT48RGlzcGxheVRleHQ+WzMyLCAzM108L0Rpc3BsYXlUZXh0Pjxy

ZWNvcmQ+PHJlYy1udW1iZXI+OTcyPC9yZWMtbnVtYmVyPjxmb3JlaWduLWtleXM+PGtleSBhcHA9

IkVOIiBkYi1pZD0id3g5MHI5cHQ4cnRyMjBlZnR2eXZ6MGE0dDAydjB6c3cwMnd2Ij45NzI8L2tl

eT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwvcmVm

LXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPkFsdHNjaHVsLCBTLiBGLjwvYXV0

aG9yPjxhdXRob3I+R2lzaCwgVy48L2F1dGhvcj48YXV0aG9yPk1pbGxlciwgVy48L2F1dGhvcj48

YXV0aG9yPk15ZXJzLCBFLiBXLjwvYXV0aG9yPjxhdXRob3I+TGlwbWFuLCBELiBKLjwvYXV0aG9y

PjwvYXV0aG9ycz48L2NvbnRyaWJ1dG9ycz48YXV0aC1hZGRyZXNzPk5hdGlvbmFsIENlbnRlciBm

b3IgQmlvdGVjaG5vbG9neSBJbmZvcm1hdGlvbiwgTmF0aW9uYWwgTGlicmFyeSBvZiBNZWRpY2lu

ZSwgTmF0aW9uYWwgSW5zdGl0dXRlcyBvZiBIZWFsdGgsIEJldGhlc2RhLCBNRCAyMDg5NC48L2F1

dGgtYWRkcmVzcz48dGl0bGVzPjx0aXRsZT5CYXNpYyBsb2NhbCBhbGlnbm1lbnQgc2VhcmNoIHRv

b2w8L3RpdGxlPjxzZWNvbmRhcnktdGl0bGU+SiBNb2wgQmlvbDwvc2Vjb25kYXJ5LXRpdGxlPjxh

bHQtdGl0bGU+Sm91cm5hbCBvZiBtb2xlY3VsYXIgYmlvbG9neTwvYWx0LXRpdGxlPjwvdGl0bGVz

PjxwZXJpb2RpY2FsPjxmdWxsLXRpdGxlPkogTW9sIEJpb2w8L2Z1bGwtdGl0bGU+PGFiYnItMT5K

b3VybmFsIG9mIG1vbGVjdWxhciBiaW9sb2d5PC9hYmJyLTE+PC9wZXJpb2RpY2FsPjxhbHQtcGVy

aW9kaWNhbD48ZnVsbC10aXRsZT5KIE1vbCBCaW9sPC9mdWxsLXRpdGxlPjxhYmJyLTE+Sm91cm5h

bCBvZiBtb2xlY3VsYXIgYmlvbG9neTwvYWJici0xPjwvYWx0LXBlcmlvZGljYWw+PHBhZ2VzPjQw

My0xMDwvcGFnZXM+PHZvbHVtZT4yMTU8L3ZvbHVtZT48bnVtYmVyPjM8L251bWJlcj48ZWRpdGlv

bj4xOTkwLzEwLzA1PC9lZGl0aW9uPjxrZXl3b3Jkcz48a2V5d29yZD5BbGdvcml0aG1zPC9rZXl3

b3JkPjxrZXl3b3JkPkFtaW5vIEFjaWQgU2VxdWVuY2U8L2tleXdvcmQ+PGtleXdvcmQ+KkJhc2Ug

U2VxdWVuY2U8L2tleXdvcmQ+PGtleXdvcmQ+RGF0YWJhc2VzLCBGYWN0dWFsPC9rZXl3b3JkPjxr

ZXl3b3JkPipNdXRhdGlvbjwva2V5d29yZD48a2V5d29yZD5TZW5zaXRpdml0eSBhbmQgU3BlY2lm

aWNpdHk8L2tleXdvcmQ+PGtleXdvcmQ+U2VxdWVuY2UgSG9tb2xvZ3ksIE51Y2xlaWMgQWNpZDwv

a2V5d29yZD48a2V5d29yZD4qU29mdHdhcmU8L2tleXdvcmQ+PC9rZXl3b3Jkcz48ZGF0ZXM+PHll

YXI+MTk5MDwveWVhcj48cHViLWRhdGVzPjxkYXRlPk9jdCA1PC9kYXRlPjwvcHViLWRhdGVzPjwv

ZGF0ZXM+PGlzYm4+MDAyMi0yODM2IChQcmludCkmI3hEOzAwMjItMjgzNiAoTGlua2luZyk8L2lz

Ym4+PGFjY2Vzc2lvbi1udW0+MjIzMTcxMjwvYWNjZXNzaW9uLW51bT48d29yay10eXBlPlJlc2Vh

cmNoIFN1cHBvcnQsIFUuUy4gR292JmFwb3M7dCwgUC5ILlMuPC93b3JrLXR5cGU+PHVybHM+PHJl

bGF0ZWQtdXJscz48dXJsPmh0dHA6Ly93d3cubmNiaS5ubG0ubmloLmdvdi9wdWJtZWQvMjIzMTcx

MjwvdXJsPjwvcmVsYXRlZC11cmxzPjwvdXJscz48ZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+MTAu

MTAxNi9TMDAyMi0yODM2KDA1KTgwMzYwLTI8L2VsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjxsYW5n

dWFnZT5lbmc8L2xhbmd1YWdlPjwvcmVjb3JkPjwvQ2l0ZT48Q2l0ZT48QXV0aG9yPkFsdHNjaHVs

PC9BdXRob3I+PFllYXI+MTk5NzwvWWVhcj48UmVjTnVtPjY1OTwvUmVjTnVtPjxyZWNvcmQ+PHJl

Yy1udW1iZXI+NjU5PC9yZWMtbnVtYmVyPjxmb3JlaWduLWtleXM+PGtleSBhcHA9IkVOIiBkYi1p

ZD0id3g5MHI5cHQ4cnRyMjBlZnR2eXZ6MGE0dDAydjB6c3cwMnd2Ij42NTk8L2tleT48L2ZvcmVp

Z24ta2V5cz48cmVmLXR5cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwvcmVmLXR5cGU+PGNv

bnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPkFsdHNjaHVsLCBTLiBGLjwvYXV0aG9yPjxhdXRo

b3I+TWFkZGVuLCBULiBMLjwvYXV0aG9yPjxhdXRob3I+U2NoYWZmZXIsIEEuIEEuPC9hdXRob3I+

PGF1dGhvcj5aaGFuZywgSi48L2F1dGhvcj48YXV0aG9yPlpoYW5nLCBaLjwvYXV0aG9yPjxhdXRo

b3I+TWlsbGVyLCBXLjwvYXV0aG9yPjxhdXRob3I+TGlwbWFuLCBELiBKLjwvYXV0aG9yPjwvYXV0

aG9ycz48L2NvbnRyaWJ1dG9ycz48YXV0aC1hZGRyZXNzPk5hdGlvbmFsIENlbnRlciBmb3IgQmlv

dGVjaG5vbG9neSBJbmZvcm1hdGlvbiwgTmF0aW9uYWwgTGlicmFyeSBvZiBNZWRpY2luZSwgTmF0

aW9uYWwgSW5zdGl0dXRlcyBvZiBIZWFsdGgsIEJldGhlc2RhLCBNRCAyMDg5NCwgVVNBLiBhbHRz

Y2h1bEBuY2JpLm5sbS5uaWguZ292PC9hdXRoLWFkZHJlc3M+PHRpdGxlcz48dGl0bGU+R2FwcGVk

IEJMQVNUIGFuZCBQU0ktQkxBU1Q6IGEgbmV3IGdlbmVyYXRpb24gb2YgcHJvdGVpbiBkYXRhYmFz

ZSBzZWFyY2ggcHJvZ3JhbXM8L3RpdGxlPjxzZWNvbmRhcnktdGl0bGU+TnVjbGVpYyBBY2lkcyBS

ZXM8L3NlY29uZGFyeS10aXRsZT48YWx0LXRpdGxlPk51Y2xlaWMgYWNpZHMgcmVzZWFyY2g8L2Fs

dC10aXRsZT48L3RpdGxlcz48cGVyaW9kaWNhbD48ZnVsbC10aXRsZT5OdWNsZWljIEFjaWRzIFJl

czwvZnVsbC10aXRsZT48L3BlcmlvZGljYWw+PHBhZ2VzPjMzODktNDAyPC9wYWdlcz48dm9sdW1l

PjI1PC92b2x1bWU+PG51bWJlcj4xNzwvbnVtYmVyPjxlZGl0aW9uPjE5OTcvMDkvMDE8L2VkaXRp

b24+PGtleXdvcmRzPjxrZXl3b3JkPkFsZ29yaXRobXM8L2tleXdvcmQ+PGtleXdvcmQ+QW1pbm8g

QWNpZCBTZXF1ZW5jZTwva2V5d29yZD48a2V5d29yZD5BbmltYWxzPC9rZXl3b3JkPjxrZXl3b3Jk

PkROQS8qY2hlbWlzdHJ5PC9rZXl3b3JkPjxrZXl3b3JkPipEYXRhYmFzZXMsIEZhY3R1YWw8L2tl

eXdvcmQ+PGtleXdvcmQ+SHVtYW5zPC9rZXl3b3JkPjxrZXl3b3JkPk1vbGVjdWxhciBTZXF1ZW5j

ZSBEYXRhPC9rZXl3b3JkPjxrZXl3b3JkPlByb3RlaW5zLypjaGVtaXN0cnk8L2tleXdvcmQ+PGtl

eXdvcmQ+KlNlcXVlbmNlIEFsaWdubWVudDwva2V5d29yZD48a2V5d29yZD4qU29mdHdhcmU8L2tl

eXdvcmQ+PC9rZXl3b3Jkcz48ZGF0ZXM+PHllYXI+MTk5NzwveWVhcj48cHViLWRhdGVzPjxkYXRl

PlNlcCAxPC9kYXRlPjwvcHViLWRhdGVzPjwvZGF0ZXM+PGlzYm4+MDMwNS0xMDQ4IChQcmludCkm

I3hEOzAzMDUtMTA0OCAoTGlua2luZyk8L2lzYm4+PGFjY2Vzc2lvbi1udW0+OTI1NDY5NDwvYWNj

ZXNzaW9uLW51bT48d29yay10eXBlPlJlc2VhcmNoIFN1cHBvcnQsIFUuUy4gR292JmFwb3M7dCwg

UC5ILlMuJiN4RDtSZXZpZXc8L3dvcmstdHlwZT48dXJscz48cmVsYXRlZC11cmxzPjx1cmw+aHR0

cDovL3d3dy5uY2JpLm5sbS5uaWguZ292L3B1Ym1lZC85MjU0Njk0PC91cmw+PC9yZWxhdGVkLXVy

bHM+PC91cmxzPjxjdXN0b20yPjE0NjkxNzwvY3VzdG9tMj48bGFuZ3VhZ2U+ZW5nPC9sYW5ndWFn

ZT48L3JlY29yZD48L0NpdGU+PC9FbmROb3RlPn==

ADDIN EN.CITE.DATA [32, 33] against the nucleotide (NT) database (using options ‘-e 1e-15 -F F’). 3.5.8 Phylogenomic analysis using protein sequences of field isolatesSingle-copy genes were sought among annotated Brucella genomes obtained from the PATRIC (, July 31 2011) resource and nine whole genome sequenced isolates from TAHC. Protein sequences from all genomes were compared using BLAST (BLASTP with an –e parameters set to 1e-80). The BLAST results were clustered using MCL ADDIN EN.CITE <EndNote><Cite><Author>van Dongen</Author><Year>2008</Year><RecNum>695</RecNum><DisplayText>[34]</DisplayText><record><rec-number>695</rec-number><foreign-keys><key app="EN" db-id="wx90r9pt8rtr20eftvyvz0a4t02v0zsw02wv">695</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>van Dongen, S.</author><author>Abreu-Goodger, C.</author><author>Enright, A. J.</author></authors></contributors><auth-address>Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK.</auth-address><titles><title>Detecting microRNA binding and siRNA off-target effects from expression data</title><secondary-title>Nat Methods</secondary-title><alt-title>Nature methods</alt-title></titles><periodical><full-title>Nat Methods</full-title><abbr-1>Nature methods</abbr-1></periodical><alt-periodical><full-title>Nat Methods</full-title><abbr-1>Nature methods</abbr-1></alt-periodical><pages>1023-5</pages><volume>5</volume><number>12</number><edition>2008/11/04</edition><keywords><keyword>*Algorithms</keyword><keyword>Gene Expression Profiling/*methods</keyword><keyword>Gene Targeting/*methods</keyword><keyword>MicroRNAs/*genetics</keyword><keyword>RNA, Small Interfering/*genetics</keyword><keyword>Sequence Analysis, DNA/*methods</keyword><keyword>Software</keyword></keywords><dates><year>2008</year><pub-dates><date>Dec</date></pub-dates></dates><isbn>1548-7105 (Electronic)&#xD;1548-7091 (Linking)</isbn><accession-num>18978784</accession-num><work-type>Research Support, Non-U.S. Gov&apos;t</work-type><urls><related-urls><url>;[34] with default parameters. The resulting clusters showed a peak size category at 42 with 1154 clusters of this size. Amino-acid sequences were grouped into files by cluster and aligned using MUSCLE ADDIN EN.CITE <EndNote><Cite><Author>Edgar</Author><Year>2004</Year><RecNum>748</RecNum><DisplayText>[35]</DisplayText><record><rec-number>748</rec-number><foreign-keys><key app="EN" db-id="wx90r9pt8rtr20eftvyvz0a4t02v0zsw02wv">748</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Edgar, R. C.</author></authors></contributors><auth-address>bob@</auth-address><titles><title>MUSCLE: multiple sequence alignment with high accuracy and high throughput</title><secondary-title>Nucleic Acids Res</secondary-title><alt-title>Nucleic acids research</alt-title></titles><periodical><full-title>Nucleic Acids Res</full-title></periodical><pages>1792-7</pages><volume>32</volume><number>5</number><edition>2004/03/23</edition><keywords><keyword>Algorithms</keyword><keyword>Amino Acid Motifs</keyword><keyword>Amino Acid Sequence</keyword><keyword>Internet</keyword><keyword>Molecular Sequence Data</keyword><keyword>Reproducibility of Results</keyword><keyword>Sequence Alignment/*methods</keyword><keyword>Sequence Analysis, Protein/*methods</keyword><keyword>*Software</keyword><keyword>Time Factors</keyword></keywords><dates><year>2004</year></dates><isbn>1362-4962 (Electronic)&#xD;0305-1048 (Linking)</isbn><accession-num>15034147</accession-num><work-type>Comparative Study&#xD;Evaluation Studies</work-type><urls><related-urls><url>;[35] (version 3.7). Hidden Markov models were built from each protein alignment using hmmbuild PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5FZGR5PC9BdXRob3I+PFllYXI+MTk5NTwvWWVhcj48UmVj

TnVtPjc0OTwvUmVjTnVtPjxEaXNwbGF5VGV4dD5bMzZdPC9EaXNwbGF5VGV4dD48cmVjb3JkPjxy

ZWMtbnVtYmVyPjc0OTwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGIt

aWQ9Ind4OTByOXB0OHJ0cjIwZWZ0dnl2ejBhNHQwMnYwenN3MDJ3diI+NzQ5PC9rZXk+PC9mb3Jl

aWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBlPjxj

b250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5FZGR5LCBTLiBSLjwvYXV0aG9yPjwvYXV0aG9y

cz48L2NvbnRyaWJ1dG9ycz48YXV0aC1hZGRyZXNzPkRlcHQuIG9mIEdlbmV0aWNzLCBXYXNoaW5n

dG9uIFVuaXZlcnNpdHkgU2Nob29sIG9mIE1lZGljaW5lLCBTdC4gTG91aXMsIE1PIDYzMTEwLCBV

U0EuPC9hdXRoLWFkZHJlc3M+PHRpdGxlcz48dGl0bGU+TXVsdGlwbGUgYWxpZ25tZW50IHVzaW5n

IGhpZGRlbiBNYXJrb3YgbW9kZWxzPC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPlByb2MgSW50IENv

bmYgSW50ZWxsIFN5c3QgTW9sIEJpb2w8L3NlY29uZGFyeS10aXRsZT48YWx0LXRpdGxlPlByb2Nl

ZWRpbmdzIC8gLi4uIEludGVybmF0aW9uYWwgQ29uZmVyZW5jZSBvbiBJbnRlbGxpZ2VudCBTeXN0

ZW1zIGZvciBNb2xlY3VsYXIgQmlvbG9neSA7IElTTUIuIEludGVybmF0aW9uYWwgQ29uZmVyZW5j

ZSBvbiBJbnRlbGxpZ2VudCBTeXN0ZW1zIGZvciBNb2xlY3VsYXIgQmlvbG9neTwvYWx0LXRpdGxl

PjwvdGl0bGVzPjxwZXJpb2RpY2FsPjxmdWxsLXRpdGxlPlByb2MgSW50IENvbmYgSW50ZWxsIFN5

c3QgTW9sIEJpb2w8L2Z1bGwtdGl0bGU+PGFiYnItMT5Qcm9jZWVkaW5ncyAvIC4uLiBJbnRlcm5h

dGlvbmFsIENvbmZlcmVuY2Ugb24gSW50ZWxsaWdlbnQgU3lzdGVtcyBmb3IgTW9sZWN1bGFyIEJp

b2xvZ3kgOyBJU01CLiBJbnRlcm5hdGlvbmFsIENvbmZlcmVuY2Ugb24gSW50ZWxsaWdlbnQgU3lz

dGVtcyBmb3IgTW9sZWN1bGFyIEJpb2xvZ3k8L2FiYnItMT48L3BlcmlvZGljYWw+PGFsdC1wZXJp

b2RpY2FsPjxmdWxsLXRpdGxlPlByb2MgSW50IENvbmYgSW50ZWxsIFN5c3QgTW9sIEJpb2w8L2Z1

bGwtdGl0bGU+PGFiYnItMT5Qcm9jZWVkaW5ncyAvIC4uLiBJbnRlcm5hdGlvbmFsIENvbmZlcmVu

Y2Ugb24gSW50ZWxsaWdlbnQgU3lzdGVtcyBmb3IgTW9sZWN1bGFyIEJpb2xvZ3kgOyBJU01CLiBJ

bnRlcm5hdGlvbmFsIENvbmZlcmVuY2Ugb24gSW50ZWxsaWdlbnQgU3lzdGVtcyBmb3IgTW9sZWN1

bGFyIEJpb2xvZ3k8L2FiYnItMT48L2FsdC1wZXJpb2RpY2FsPjxwYWdlcz4xMTQtMjA8L3BhZ2Vz

Pjx2b2x1bWU+Mzwvdm9sdW1lPjxlZGl0aW9uPjE5OTUvMDEvMDE8L2VkaXRpb24+PGtleXdvcmRz

PjxrZXl3b3JkPkFsZ29yaXRobXM8L2tleXdvcmQ+PGtleXdvcmQ+QW1pbm8gQWNpZCBTZXF1ZW5j

ZTwva2V5d29yZD48a2V5d29yZD5CYXNlIFNlcXVlbmNlPC9rZXl3b3JkPjxrZXl3b3JkPipDb25z

ZW5zdXMgU2VxdWVuY2U8L2tleXdvcmQ+PGtleXdvcmQ+RE5BLypjaGVtaXN0cnk8L2tleXdvcmQ+

PGtleXdvcmQ+RXBpZGVybWFsIEdyb3d0aCBGYWN0b3IvY2hlbWlzdHJ5PC9rZXl3b3JkPjxrZXl3

b3JkPipNYXJrb3YgQ2hhaW5zPC9rZXl3b3JkPjxrZXl3b3JkPk1vbGVjdWxhciBTZXF1ZW5jZSBE

YXRhPC9rZXl3b3JkPjxrZXl3b3JkPk9kZHMgUmF0aW88L2tleXdvcmQ+PGtleXdvcmQ+UHJvYmFi

aWxpdHk8L2tleXdvcmQ+PGtleXdvcmQ+UHJvdGVpbnMvKmNoZW1pc3RyeTwva2V5d29yZD48a2V5

d29yZD4qU2VxdWVuY2UgSG9tb2xvZ3ksIEFtaW5vIEFjaWQ8L2tleXdvcmQ+PGtleXdvcmQ+KlNl

cXVlbmNlIEhvbW9sb2d5LCBOdWNsZWljIEFjaWQ8L2tleXdvcmQ+PC9rZXl3b3Jkcz48ZGF0ZXM+

PHllYXI+MTk5NTwveWVhcj48L2RhdGVzPjxpc2JuPjE1NTMtMDgzMyAoUHJpbnQpJiN4RDsxNTUz

LTA4MzMgKExpbmtpbmcpPC9pc2JuPjxhY2Nlc3Npb24tbnVtPjc1ODQ0MjY8L2FjY2Vzc2lvbi1u

dW0+PHdvcmstdHlwZT5Db21wYXJhdGl2ZSBTdHVkeSYjeEQ7UmVzZWFyY2ggU3VwcG9ydCwgTm9u

LVUuUy4gR292JmFwb3M7dCYjeEQ7UmVzZWFyY2ggU3VwcG9ydCwgVS5TLiBHb3YmYXBvczt0LCBQ

LkguUy48L3dvcmstdHlwZT48dXJscz48cmVsYXRlZC11cmxzPjx1cmw+aHR0cDovL3d3dy5uY2Jp

Lm5sbS5uaWguZ292L3B1Ym1lZC83NTg0NDI2PC91cmw+PC9yZWxhdGVkLXVybHM+PC91cmxzPjxs

YW5ndWFnZT5lbmc8L2xhbmd1YWdlPjwvcmVjb3JkPjwvQ2l0ZT48L0VuZE5vdGU+

ADDIN EN.CITE PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5FZGR5PC9BdXRob3I+PFllYXI+MTk5NTwvWWVhcj48UmVj

TnVtPjc0OTwvUmVjTnVtPjxEaXNwbGF5VGV4dD5bMzZdPC9EaXNwbGF5VGV4dD48cmVjb3JkPjxy

ZWMtbnVtYmVyPjc0OTwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGIt

aWQ9Ind4OTByOXB0OHJ0cjIwZWZ0dnl2ejBhNHQwMnYwenN3MDJ3diI+NzQ5PC9rZXk+PC9mb3Jl

aWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBlPjxj

b250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5FZGR5LCBTLiBSLjwvYXV0aG9yPjwvYXV0aG9y

cz48L2NvbnRyaWJ1dG9ycz48YXV0aC1hZGRyZXNzPkRlcHQuIG9mIEdlbmV0aWNzLCBXYXNoaW5n

dG9uIFVuaXZlcnNpdHkgU2Nob29sIG9mIE1lZGljaW5lLCBTdC4gTG91aXMsIE1PIDYzMTEwLCBV

U0EuPC9hdXRoLWFkZHJlc3M+PHRpdGxlcz48dGl0bGU+TXVsdGlwbGUgYWxpZ25tZW50IHVzaW5n

IGhpZGRlbiBNYXJrb3YgbW9kZWxzPC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPlByb2MgSW50IENv

bmYgSW50ZWxsIFN5c3QgTW9sIEJpb2w8L3NlY29uZGFyeS10aXRsZT48YWx0LXRpdGxlPlByb2Nl

ZWRpbmdzIC8gLi4uIEludGVybmF0aW9uYWwgQ29uZmVyZW5jZSBvbiBJbnRlbGxpZ2VudCBTeXN0

ZW1zIGZvciBNb2xlY3VsYXIgQmlvbG9neSA7IElTTUIuIEludGVybmF0aW9uYWwgQ29uZmVyZW5j

ZSBvbiBJbnRlbGxpZ2VudCBTeXN0ZW1zIGZvciBNb2xlY3VsYXIgQmlvbG9neTwvYWx0LXRpdGxl

PjwvdGl0bGVzPjxwZXJpb2RpY2FsPjxmdWxsLXRpdGxlPlByb2MgSW50IENvbmYgSW50ZWxsIFN5

c3QgTW9sIEJpb2w8L2Z1bGwtdGl0bGU+PGFiYnItMT5Qcm9jZWVkaW5ncyAvIC4uLiBJbnRlcm5h

dGlvbmFsIENvbmZlcmVuY2Ugb24gSW50ZWxsaWdlbnQgU3lzdGVtcyBmb3IgTW9sZWN1bGFyIEJp

b2xvZ3kgOyBJU01CLiBJbnRlcm5hdGlvbmFsIENvbmZlcmVuY2Ugb24gSW50ZWxsaWdlbnQgU3lz

dGVtcyBmb3IgTW9sZWN1bGFyIEJpb2xvZ3k8L2FiYnItMT48L3BlcmlvZGljYWw+PGFsdC1wZXJp

b2RpY2FsPjxmdWxsLXRpdGxlPlByb2MgSW50IENvbmYgSW50ZWxsIFN5c3QgTW9sIEJpb2w8L2Z1

bGwtdGl0bGU+PGFiYnItMT5Qcm9jZWVkaW5ncyAvIC4uLiBJbnRlcm5hdGlvbmFsIENvbmZlcmVu

Y2Ugb24gSW50ZWxsaWdlbnQgU3lzdGVtcyBmb3IgTW9sZWN1bGFyIEJpb2xvZ3kgOyBJU01CLiBJ

bnRlcm5hdGlvbmFsIENvbmZlcmVuY2Ugb24gSW50ZWxsaWdlbnQgU3lzdGVtcyBmb3IgTW9sZWN1

bGFyIEJpb2xvZ3k8L2FiYnItMT48L2FsdC1wZXJpb2RpY2FsPjxwYWdlcz4xMTQtMjA8L3BhZ2Vz

Pjx2b2x1bWU+Mzwvdm9sdW1lPjxlZGl0aW9uPjE5OTUvMDEvMDE8L2VkaXRpb24+PGtleXdvcmRz

PjxrZXl3b3JkPkFsZ29yaXRobXM8L2tleXdvcmQ+PGtleXdvcmQ+QW1pbm8gQWNpZCBTZXF1ZW5j

ZTwva2V5d29yZD48a2V5d29yZD5CYXNlIFNlcXVlbmNlPC9rZXl3b3JkPjxrZXl3b3JkPipDb25z

ZW5zdXMgU2VxdWVuY2U8L2tleXdvcmQ+PGtleXdvcmQ+RE5BLypjaGVtaXN0cnk8L2tleXdvcmQ+

PGtleXdvcmQ+RXBpZGVybWFsIEdyb3d0aCBGYWN0b3IvY2hlbWlzdHJ5PC9rZXl3b3JkPjxrZXl3

b3JkPipNYXJrb3YgQ2hhaW5zPC9rZXl3b3JkPjxrZXl3b3JkPk1vbGVjdWxhciBTZXF1ZW5jZSBE

YXRhPC9rZXl3b3JkPjxrZXl3b3JkPk9kZHMgUmF0aW88L2tleXdvcmQ+PGtleXdvcmQ+UHJvYmFi

aWxpdHk8L2tleXdvcmQ+PGtleXdvcmQ+UHJvdGVpbnMvKmNoZW1pc3RyeTwva2V5d29yZD48a2V5

d29yZD4qU2VxdWVuY2UgSG9tb2xvZ3ksIEFtaW5vIEFjaWQ8L2tleXdvcmQ+PGtleXdvcmQ+KlNl

cXVlbmNlIEhvbW9sb2d5LCBOdWNsZWljIEFjaWQ8L2tleXdvcmQ+PC9rZXl3b3Jkcz48ZGF0ZXM+

PHllYXI+MTk5NTwveWVhcj48L2RhdGVzPjxpc2JuPjE1NTMtMDgzMyAoUHJpbnQpJiN4RDsxNTUz

LTA4MzMgKExpbmtpbmcpPC9pc2JuPjxhY2Nlc3Npb24tbnVtPjc1ODQ0MjY8L2FjY2Vzc2lvbi1u

dW0+PHdvcmstdHlwZT5Db21wYXJhdGl2ZSBTdHVkeSYjeEQ7UmVzZWFyY2ggU3VwcG9ydCwgTm9u

LVUuUy4gR292JmFwb3M7dCYjeEQ7UmVzZWFyY2ggU3VwcG9ydCwgVS5TLiBHb3YmYXBvczt0LCBQ

LkguUy48L3dvcmstdHlwZT48dXJscz48cmVsYXRlZC11cmxzPjx1cmw+aHR0cDovL3d3dy5uY2Jp

Lm5sbS5uaWguZ292L3B1Ym1lZC83NTg0NDI2PC91cmw+PC9yZWxhdGVkLXVybHM+PC91cmxzPjxs

YW5ndWFnZT5lbmc8L2xhbmd1YWdlPjwvcmVjb3JkPjwvQ2l0ZT48L0VuZE5vdGU+

ADDIN EN.CITE.DATA [36]. The HMMs were then used to search the nucleotide genomes of the annotated Brucella genomes plus the new field isolate sequences (unannotated) using estwise of the WISE2 package ADDIN EN.CITE <EndNote><Cite><Author>Birney</Author><Year>2004</Year><RecNum>763</RecNum><DisplayText>[37]</DisplayText><record><rec-number>763</rec-number><foreign-keys><key app="EN" db-id="wx90r9pt8rtr20eftvyvz0a4t02v0zsw02wv">763</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Birney, E.</author><author>Clamp, M.</author><author>Durbin, R.</author></authors></contributors><auth-address>The European Bioinformatics Institute, The Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK. birney@ebi.ac.uk</auth-address><titles><title>GeneWise and Genomewise</title><secondary-title>Genome Res</secondary-title><alt-title>Genome research</alt-title></titles><periodical><full-title>Genome Res</full-title></periodical><pages>988-95</pages><volume>14</volume><number>5</number><edition>2004/05/05</edition><keywords><keyword>3&apos; Flanking Region</keyword><keyword>5&apos; Flanking Region</keyword><keyword>Algorithms</keyword><keyword>Computational Biology/methods</keyword><keyword>DNA, Complementary</keyword><keyword>Models, Theoretical</keyword><keyword>Predictive Value of Tests</keyword><keyword>Research Design</keyword><keyword>*Software</keyword></keywords><dates><year>2004</year><pub-dates><date>May</date></pub-dates></dates><isbn>1088-9051 (Print)&#xD;1088-9051 (Linking)</isbn><accession-num>15123596</accession-num><work-type>Comparative Study&#xD;Research Support, Non-U.S. Gov&apos;t&#xD;Research Support, U.S. Gov&apos;t, P.H.S.</work-type><urls><related-urls><url>;[37]. The estwise output was parsed to align nucleotides by codon position along with the amino acid encoded. HMMs for which the worst estwise score was less than 0.9 of the average score were deleted (as potential mismatched homologs or incomplete sequences), leaving 1006 high-quality single-copy genes comprising 357,745 codons. The program raxmlHPC ADDIN EN.CITE <EndNote><Cite><Author>Stamatakis</Author><Year>2006</Year><RecNum>797</RecNum><DisplayText>[38]</DisplayText><record><rec-number>797</rec-number><foreign-keys><key app="EN" db-id="wx90r9pt8rtr20eftvyvz0a4t02v0zsw02wv">797</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Stamatakis, A.</author></authors></contributors><auth-address>Swiss Federal Institute of Technology Lausanne, School of Computer and Communication Sciences Lab Prof. Moret, STATION 14, CH-1015 Lausanne, Switzerland. Alexandros.Stamatakis@epfl.ch</auth-address><titles><title>RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models</title><secondary-title>Bioinformatics</secondary-title></titles><periodical><full-title>Bioinformatics</full-title></periodical><pages>2688-90</pages><volume>22</volume><number>21</number><edition>2006/08/25</edition><keywords><keyword>Algorithms</keyword><keyword>Conserved Sequence</keyword><keyword>*Evolution, Molecular</keyword><keyword>*Models, Genetic</keyword><keyword>Models, Statistical</keyword><keyword>*Phylogeny</keyword><keyword>Sequence Alignment/*methods</keyword><keyword>Sequence Analysis, DNA/*methods</keyword><keyword>Sequence Homology, Nucleic Acid</keyword><keyword>*Software</keyword><keyword>Species Specificity</keyword></keywords><dates><year>2006</year><pub-dates><date>Nov 1</date></pub-dates></dates><isbn>1367-4811 (Electronic)&#xD;1367-4803 (Linking)</isbn><accession-num>16928733</accession-num><work-type>Evaluation Studies&#xD;Research Support, Non-U.S. Gov&apos;t</work-type><urls><related-urls><url>;[38] was used to infer the maximum likelihood phylogeny under the GTRGAMMA rate model with different rates for first, second and third codon positions.3.6 AcknowledgementsThis project was funded by subaward 570636 from DHS 2007-ST-061-000002 from the U.S. Department of Homeland Security - National Center of Excellence for Foreign Animal and Zoonotic Disease Defense at Texas A&M University and by the Director’s funds at Virginia Bioinformatics Institute, Virginia Tech. S. Shallom received funding from SREB (Southern Regional Education Board) state doctoral scholar award. Dr. Nammalwar Sriranganathan and Hamzeh Al Qublan from Biomedical and Veterinary Sciences at Virginia Tech kindly provided B. abortus 2308genomic DNA. Francisella tularensis LVS genomic DNA was kindly provided by Dr. Abey Bandara and Dr. Tom Inzana from the Department of Biology at Virginia Tech. The following reagent was obtained through the NIH Biodefense and Emerging Infections Research Resources Repository, NIAID, NIH: Genomic DNA from Brucella suis, Strain 1330 (NCTC 10316), NR-2526, Genomic DNA from Brucella melitensis, Strain 16M (NCTC 10094), NR-2525, Genomic DNA from Brucella abortus, Strain RB51, NR-2553. We would like to extend special thanks to Greg Thorne and Shaukat Rangwala at MoGene for their valuable technical assistance. The field isolates were sequenced by the Virginia Bioinformatics Institute’s Core Laboratory Facility at Virginia Tech. 3.7 AttributionS. Shallom designed and carried out experiments, analyzed the data, developed principal component analysis algorithm and wrote the manuscript. H. Tae, assembled and aligned the Brucella genomes and wrote the manuscript, C. Franck provided useful discussions, A. Dickerman contributed to the phylogenetic tree from protein coding regions on the Brucella genome, L. McIver provided computation expertise, D. Preston provided the Brucella field isolates, L. Sarmento extracted genomic DNA from the Brucella organism, G. Adams conceived of the study, reviewed the manuscript and provided useful discussions, H. Garner conceived of the study, participated in the study design and mentored in drafting the manuscript. 3.8 Bibliography ADDIN EN.REFLIST 1.Godfroid J, Cloeckaert A, Liautard JP, Kohler S, Fretin D, Walravens K, Garin-Bastuji B, Letesson JJ: From the discovery of the Malta fever's agent to the discovery of a marine mammal reservoir, brucellosis has continuously been a re-emerging zoonosis. Veterinary research 2005, 36(3):313-326.2.Morgan WJ: Brucella classification and regional distribution. Dev Biol Stand 1984, 56:43-53.3.Scholz HC, Hubalek Z, Sedlacek I, Vergnaud G, Tomaso H, Al Dahouk S, Melzer F, Kampfer P, Neubauer H, Cloeckaert A et al: Brucella microti sp. nov., isolated from the common vole Microtus arvalis. International journal of systematic and evolutionary microbiology 2008, 58(Pt 2):375-382.4.G.G A: Techniques for the brucellosis laboratory. In., 1988 edn. Paris: paris: Institut National de la Recherche Agronomique; 1988.5.De Klerk E, Anderson R: Comparative evaluation of the enzyme-linked immunosorbent assay in the laboratory diagnosis of brucellosis. J Clin Microbiol 1985, 21(3):381-386.6.Lindberg AA, Haeggman S, Karlson K, Carlsson HE, Mair NS: Enzyme immunoassay of the antibody response to Brucella and Yersinia enterocolitica 09 infections in humans. The Journal of hygiene 1982, 88(2):295-307.7.Caroff M, Bundle DR, Perry MB, Cherwonogrodzky JW, Duncan JR: Antigenic S-type lipopolysaccharide of Brucella abortus 1119-3. Infect Immun 1984, 46(2):384-388.8.Caroff M, Bundle DR, Perry MB: Structure of the O-chain of the phenol-phase soluble cellular lipopolysaccharide of Yersinia enterocolitica serotype O:9. European journal of biochemistry / FEBS 1984, 139(1):195-200.9.Corbel MJ, Stuart FA, Brewer RA: Observations on serological cross-reactions between smooth Brucella species and organisms of other genera. Dev Biol Stand 1984, 56:341-348.10.Cloeckaert A KP, Limet JN: Antibody response to Brucella ourter membrane proteins in bovine brucellosis: immunoblot analysis and competitive enzyme-linked immunosorbent assay using monoclonal antibodies.Journal of Clinical Microbiology 1992, 30:3168-3174.11.Samartino L, Gall D, Gregoret R, Nielsen K: Validation of enzyme-linked immunosorbent assays for the diagnosis of bovine brucellosis. Vet Microbiol 1999, 70(3-4):193-200.12.Bricker BJ: PCR as a diagnostic tool for brucellosis. Vet Microbiol 2002, 90(1-4):435-446.13.Bricker BJ, Halling SM: Differentiation of Brucella abortus bv. 1, 2, and 4, Brucella melitensis, Brucella ovis, and Brucella suis bv. 1 by PCR. J Clin Microbiol 1994, 32(11):2660-2666.14.Whatmore AM, Shankster SJ, Perrett LL, Murphy TJ, Brew SD, Thirlwall RE, Cutler SJ, MacMillan AP: Identification and characterization of variable-number tandem-repeat markers for typing of Brucella spp. J Clin Microbiol 2006, 44(6):1982-1993.15.Bricker BJ, Ewalt DR, Halling SM: Brucella 'HOOF-Prints': strain typing by multi-locus analysis of variable number tandem repeats (VNTRs). BMC Microbiol 2003, 3:15.16.Bricker BJ, Ewalt DR: Evaluation of the HOOF-Print assay for typing Brucella abortus strains isolated from cattle in the United States: results with four performance criteria. BMC Microbiol 2005, 5:37.17.Foster JT, Okinaka RT, Svensson R, Shaw K, De BK, Robison RA, Probert WS, Kenefic LJ, Brown WD, Keim P: Real-time PCR assays of single-nucleotide polymorphisms defining the major Brucella clades. J Clin Microbiol 2008, 46(1):296-301.18.Shallom SJ, Weeks JN, Galindo CL, McIver L, Sun Z, McCormick J, Adams LG, Garner HR: A species independent universal bio-detection microarray for pathogen forensics and phylogenetic classification of unknown microorganisms. BMC Microbiol 2011, 11:132.19.Darling AC, Mau B, Blattner FR, Perna NT: Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res 2004, 14(7):1394-1403.20.Holder MT, Zwickl DJ, Dessimoz C: Evaluating the robustness of phylogenetic methods to among-site variability in substitution processes. Philos Trans R Soc Lond B Biol Sci 2008, 363(1512):4013-4021.21.Galindo CL, McIver LJ, McCormick JF, Skinner MA, Xie Y, Gelhausen RA, Ng K, Kumar NM, Garner HR: Global microsatellite content distinguishes humans, primates, animals, and plants. Mol Biol Evol 2009, 26(12):2809-2819.22.Belosludtsev YY, Bowerman D, Weil R, Marthandan N, Balog R, Luebke K, Lawson J, Johnston SA, Lyons CR, Obrien K et al: Organism identification using a genome sequence-independent universal microarray probe set. Biotechniques 2004, 37(4):654-658, 660.23.Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U, Speed TP: Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 2003, 4(2):249-264.24.Li H, Durbin R: Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009, 25(14):1754-1760.25.Tae H, Shallom S, Settlage R, Preston D, Adams LG, Garner HR: Revised Genome Sequence of Brucella suis 1330. J Bacteriol 2011, 193(22):6410.26.Ocampo-Sosa AA, Garcia-Lobo JM: Demonstration of IS711 transposition in Brucella ovis and Brucella pinnipedialis. BMC Microbiol 2008, 8:17.27.Rossetti CA, Galindo CL, Lawhon SD, Garner HR, Adams LG: Brucella melitensis global gene expression study provides novel information on growth phase-specific gene regulation with potential insights for understanding Brucella:host initial interactions. Bmc Microbiology 2009, 9:-.28.Ritchie ME, Silver J, Oshlack A, Holmes M, Diyagama D, Holloway A, Smyth GK: A comparison of background correction methods for two-colour microarrays. Bioinformatics 2007, 23(20):2700-2707.29.Jackson EJ: A User's Guide to Principal Components. New Jersey: John Wiley & Sons, Inc.; 2003.30.Page RD: TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 1996, 12(4):357-358.31.Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R: The Sequence Alignment/Map format and SAMtools. Bioinformatics 2009, 25(16):2078-2079.32.Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic local alignment search tool. Journal of molecular biology 1990, 215(3):403-410.33.Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997, 25(17):3389-3402.34.van Dongen S, Abreu-Goodger C, Enright AJ: Detecting microRNA binding and siRNA off-target effects from expression data. Nature methods 2008, 5(12):1023-1025.35.Edgar RC: MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004, 32(5):1792-1797.36.Eddy SR: Multiple alignment using hidden Markov models. Proceedings / International Conference on Intelligent Systems for Molecular Biology ; ISMB International Conference on Intelligent Systems for Molecular Biology 1995, 3:114-120.37.Birney E, Clamp M, Durbin R: GeneWise and Genomewise. Genome Res 2004, 14(5):988-995.38.Stamatakis A: RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 2006, 22(21):2688-2690.3.9. Figures3.9.1 Figure 1: Locations of PCR primer sequences for B. suis and B. abortus in 5 completed Brucella genomes aligned by Mauve. Five completed genomes including B. melitensis 16M, B. abortus biovar 1 9-941, B. abortus2308, B. suis 1330 and B. suis ATCC 23445 were aligned by Mauve PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5EYXJsaW5nPC9BdXRob3I+PFllYXI+MjAwNDwvWWVhcj48

UmVjTnVtPjM3NDwvUmVjTnVtPjxEaXNwbGF5VGV4dD5bMTldPC9EaXNwbGF5VGV4dD48cmVjb3Jk

PjxyZWMtbnVtYmVyPjM3NDwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIg

ZGItaWQ9Ind4OTByOXB0OHJ0cjIwZWZ0dnl2ejBhNHQwMnYwenN3MDJ3diI+Mzc0PC9rZXk+PC9m

b3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBl

Pjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5EYXJsaW5nLCBBLiBDLjwvYXV0aG9yPjxh

dXRob3I+TWF1LCBCLjwvYXV0aG9yPjxhdXRob3I+QmxhdHRuZXIsIEYuIFIuPC9hdXRob3I+PGF1

dGhvcj5QZXJuYSwgTi4gVC48L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PGF1dGgt

YWRkcmVzcz5EZXBhcnRtZW50IG9mIENvbXB1dGVyIFNjaWVuY2UsIFVuaXZlcnNpdHkgb2YgV2lz

Y29uc2luLU1hZGlzb24sIE1hZGlzb24sIFdpc2NvbnNpbiA1MzcwNiwgVVNBLjwvYXV0aC1hZGRy

ZXNzPjx0aXRsZXM+PHRpdGxlPk1hdXZlOiBtdWx0aXBsZSBhbGlnbm1lbnQgb2YgY29uc2VydmVk

IGdlbm9taWMgc2VxdWVuY2Ugd2l0aCByZWFycmFuZ2VtZW50czwvdGl0bGU+PHNlY29uZGFyeS10

aXRsZT5HZW5vbWUgUmVzPC9zZWNvbmRhcnktdGl0bGU+PC90aXRsZXM+PHBlcmlvZGljYWw+PGZ1

bGwtdGl0bGU+R2Vub21lIFJlczwvZnVsbC10aXRsZT48L3BlcmlvZGljYWw+PHBhZ2VzPjEzOTQt

NDAzPC9wYWdlcz48dm9sdW1lPjE0PC92b2x1bWU+PG51bWJlcj43PC9udW1iZXI+PGVkaXRpb24+

MjAwNC8wNy8wMzwvZWRpdGlvbj48a2V5d29yZHM+PGtleXdvcmQ+Q2hyb21vc29tZXMsIEJhY3Rl

cmlhbC9nZW5ldGljczwva2V5d29yZD48a2V5d29yZD5Db21wdXRlciBTaW11bGF0aW9uPC9rZXl3

b3JkPjxrZXl3b3JkPkNvbnNlcnZlZCBTZXF1ZW5jZS8qZ2VuZXRpY3M8L2tleXdvcmQ+PGtleXdv

cmQ+RE5BLCBCYWN0ZXJpYWwvZ2VuZXRpY3M8L2tleXdvcmQ+PGtleXdvcmQ+RW50ZXJvYmFjdGVy

aWFjZWFlLypnZW5ldGljczwva2V5d29yZD48a2V5d29yZD5Fc2NoZXJpY2hpYSBjb2xpL2dlbmV0

aWNzPC9rZXl3b3JkPjxrZXl3b3JkPkVzY2hlcmljaGlhIGNvbGkgTzE1Ny9nZW5ldGljczwva2V5

d29yZD48a2V5d29yZD4qR2Vub21lLCBCYWN0ZXJpYWw8L2tleXdvcmQ+PGtleXdvcmQ+UmVjb21i

aW5hdGlvbiwgR2VuZXRpYy8qZ2VuZXRpY3M8L2tleXdvcmQ+PGtleXdvcmQ+U2FsbW9uZWxsYSB0

eXBoaS9nZW5ldGljczwva2V5d29yZD48a2V5d29yZD5TYWxtb25lbGxhIHR5cGhpbXVyaXVtL2dl

bmV0aWNzPC9rZXl3b3JkPjxrZXl3b3JkPlNlcXVlbmNlIEFsaWdubWVudC8qbWV0aG9kcy9zdGF0

aXN0aWNzICZhbXA7IG51bWVyaWNhbCBkYXRhPC9rZXl3b3JkPjxrZXl3b3JkPlNoaWdlbGxhIGZs

ZXhuZXJpL2dlbmV0aWNzPC9rZXl3b3JkPjxrZXl3b3JkPipTb2Z0d2FyZTwva2V5d29yZD48a2V5

d29yZD5Tb2Z0d2FyZSBEZXNpZ248L2tleXdvcmQ+PGtleXdvcmQ+U29mdHdhcmUgVmFsaWRhdGlv

bjwva2V5d29yZD48a2V5d29yZD5TcGVjaWVzIFNwZWNpZmljaXR5PC9rZXl3b3JkPjwva2V5d29y

ZHM+PGRhdGVzPjx5ZWFyPjIwMDQ8L3llYXI+PHB1Yi1kYXRlcz48ZGF0ZT5KdWw8L2RhdGU+PC9w

dWItZGF0ZXM+PC9kYXRlcz48aXNibj4xMDg4LTkwNTEgKFByaW50KSYjeEQ7MTA4OC05MDUxIChM

aW5raW5nKTwvaXNibj48YWNjZXNzaW9uLW51bT4xNTIzMTc1NDwvYWNjZXNzaW9uLW51bT48dXJs

cz48cmVsYXRlZC11cmxzPjx1cmw+aHR0cDovL3d3dy5uY2JpLm5sbS5uaWguZ292L2VudHJlei9x

dWVyeS5mY2dpP2NtZD1SZXRyaWV2ZSZhbXA7ZGI9UHViTWVkJmFtcDtkb3B0PUNpdGF0aW9uJmFt

cDtsaXN0X3VpZHM9MTUyMzE3NTQ8L3VybD48L3JlbGF0ZWQtdXJscz48L3VybHM+PGN1c3RvbTI+

NDQyMTU2PC9jdXN0b20yPjxlbGVjdHJvbmljLXJlc291cmNlLW51bT4xMC4xMTAxL2dyLjIyODk3

MDQmI3hEOzE0LzcvMTM5NCBbcGlpXTwvZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+PGxhbmd1YWdl

PmVuZzwvbGFuZ3VhZ2U+PC9yZWNvcmQ+PC9DaXRlPjwvRW5kTm90ZT5=

ADDIN EN.CITE PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5EYXJsaW5nPC9BdXRob3I+PFllYXI+MjAwNDwvWWVhcj48

UmVjTnVtPjM3NDwvUmVjTnVtPjxEaXNwbGF5VGV4dD5bMTldPC9EaXNwbGF5VGV4dD48cmVjb3Jk

PjxyZWMtbnVtYmVyPjM3NDwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIg

ZGItaWQ9Ind4OTByOXB0OHJ0cjIwZWZ0dnl2ejBhNHQwMnYwenN3MDJ3diI+Mzc0PC9rZXk+PC9m

b3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBl

Pjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5EYXJsaW5nLCBBLiBDLjwvYXV0aG9yPjxh

dXRob3I+TWF1LCBCLjwvYXV0aG9yPjxhdXRob3I+QmxhdHRuZXIsIEYuIFIuPC9hdXRob3I+PGF1

dGhvcj5QZXJuYSwgTi4gVC48L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PGF1dGgt

YWRkcmVzcz5EZXBhcnRtZW50IG9mIENvbXB1dGVyIFNjaWVuY2UsIFVuaXZlcnNpdHkgb2YgV2lz

Y29uc2luLU1hZGlzb24sIE1hZGlzb24sIFdpc2NvbnNpbiA1MzcwNiwgVVNBLjwvYXV0aC1hZGRy

ZXNzPjx0aXRsZXM+PHRpdGxlPk1hdXZlOiBtdWx0aXBsZSBhbGlnbm1lbnQgb2YgY29uc2VydmVk

IGdlbm9taWMgc2VxdWVuY2Ugd2l0aCByZWFycmFuZ2VtZW50czwvdGl0bGU+PHNlY29uZGFyeS10

aXRsZT5HZW5vbWUgUmVzPC9zZWNvbmRhcnktdGl0bGU+PC90aXRsZXM+PHBlcmlvZGljYWw+PGZ1

bGwtdGl0bGU+R2Vub21lIFJlczwvZnVsbC10aXRsZT48L3BlcmlvZGljYWw+PHBhZ2VzPjEzOTQt

NDAzPC9wYWdlcz48dm9sdW1lPjE0PC92b2x1bWU+PG51bWJlcj43PC9udW1iZXI+PGVkaXRpb24+

MjAwNC8wNy8wMzwvZWRpdGlvbj48a2V5d29yZHM+PGtleXdvcmQ+Q2hyb21vc29tZXMsIEJhY3Rl

cmlhbC9nZW5ldGljczwva2V5d29yZD48a2V5d29yZD5Db21wdXRlciBTaW11bGF0aW9uPC9rZXl3

b3JkPjxrZXl3b3JkPkNvbnNlcnZlZCBTZXF1ZW5jZS8qZ2VuZXRpY3M8L2tleXdvcmQ+PGtleXdv

cmQ+RE5BLCBCYWN0ZXJpYWwvZ2VuZXRpY3M8L2tleXdvcmQ+PGtleXdvcmQ+RW50ZXJvYmFjdGVy

aWFjZWFlLypnZW5ldGljczwva2V5d29yZD48a2V5d29yZD5Fc2NoZXJpY2hpYSBjb2xpL2dlbmV0

aWNzPC9rZXl3b3JkPjxrZXl3b3JkPkVzY2hlcmljaGlhIGNvbGkgTzE1Ny9nZW5ldGljczwva2V5

d29yZD48a2V5d29yZD4qR2Vub21lLCBCYWN0ZXJpYWw8L2tleXdvcmQ+PGtleXdvcmQ+UmVjb21i

aW5hdGlvbiwgR2VuZXRpYy8qZ2VuZXRpY3M8L2tleXdvcmQ+PGtleXdvcmQ+U2FsbW9uZWxsYSB0

eXBoaS9nZW5ldGljczwva2V5d29yZD48a2V5d29yZD5TYWxtb25lbGxhIHR5cGhpbXVyaXVtL2dl

bmV0aWNzPC9rZXl3b3JkPjxrZXl3b3JkPlNlcXVlbmNlIEFsaWdubWVudC8qbWV0aG9kcy9zdGF0

aXN0aWNzICZhbXA7IG51bWVyaWNhbCBkYXRhPC9rZXl3b3JkPjxrZXl3b3JkPlNoaWdlbGxhIGZs

ZXhuZXJpL2dlbmV0aWNzPC9rZXl3b3JkPjxrZXl3b3JkPipTb2Z0d2FyZTwva2V5d29yZD48a2V5

d29yZD5Tb2Z0d2FyZSBEZXNpZ248L2tleXdvcmQ+PGtleXdvcmQ+U29mdHdhcmUgVmFsaWRhdGlv

bjwva2V5d29yZD48a2V5d29yZD5TcGVjaWVzIFNwZWNpZmljaXR5PC9rZXl3b3JkPjwva2V5d29y

ZHM+PGRhdGVzPjx5ZWFyPjIwMDQ8L3llYXI+PHB1Yi1kYXRlcz48ZGF0ZT5KdWw8L2RhdGU+PC9w

dWItZGF0ZXM+PC9kYXRlcz48aXNibj4xMDg4LTkwNTEgKFByaW50KSYjeEQ7MTA4OC05MDUxIChM

aW5raW5nKTwvaXNibj48YWNjZXNzaW9uLW51bT4xNTIzMTc1NDwvYWNjZXNzaW9uLW51bT48dXJs

cz48cmVsYXRlZC11cmxzPjx1cmw+aHR0cDovL3d3dy5uY2JpLm5sbS5uaWguZ292L2VudHJlei9x

dWVyeS5mY2dpP2NtZD1SZXRyaWV2ZSZhbXA7ZGI9UHViTWVkJmFtcDtkb3B0PUNpdGF0aW9uJmFt

cDtsaXN0X3VpZHM9MTUyMzE3NTQ8L3VybD48L3JlbGF0ZWQtdXJscz48L3VybHM+PGN1c3RvbTI+

NDQyMTU2PC9jdXN0b20yPjxlbGVjdHJvbmljLXJlc291cmNlLW51bT4xMC4xMTAxL2dyLjIyODk3

MDQmI3hEOzE0LzcvMTM5NCBbcGlpXTwvZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+PGxhbmd1YWdl

PmVuZzwvbGFuZ3VhZ2U+PC9yZWNvcmQ+PC9DaXRlPjwvRW5kTm90ZT5=

ADDIN EN.CITE.DATA [19]. Most genomes are very similar except a few rearranged regions. All five genomes have PCR primer sequences for bio-assays of both B. abortus and B. suis species, but produce PCR products for only their corresponding species. 3.9.2 Figure 2: Phylogenomic relationships from 9-mer probe set between Brucella field isolates and other known reference genomes. All 262,144 9-mer data points for each of the samples were log2 transformed. A Pearson correlation matrix was created by comparing each sample against all other samples to generate a taxonomic relationship tree using the PHYLIP software and visualized in the Treeview program.3.9.3 Figure 3: Phylogenomic tree from nine recently sequenced Brucella field isolates and thirteen known previously sequenced Brucella genomes. The maximum likelihood tree based on 1,006 presumptively vertically inherited genes places the new field isolates in two locations on the tree, 6 nested within B. suis and 3 nested within B. abortus. The number of the new isolates is in parenthesis.3.10 Tables3.10.1 Table 1: Comparison of common variations between nine field samples to the B. suis 1330 genome. Each cell represents a number of common variations between two samples. Diagonal cells represent self-comparison for each sample, which is identical with the number of variations in each sample with respect to the B. suis 1330 genome ADDIN EN.CITE <EndNote><Cite><Author>Tae</Author><Year>2011</Year><RecNum>1042</RecNum><DisplayText>[25]</DisplayText><record><rec-number>1042</rec-number><foreign-keys><key app="EN" db-id="wx90r9pt8rtr20eftvyvz0a4t02v0zsw02wv">1042</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Tae, H.</author><author>Shallom, S.</author><author>Settlage, R.</author><author>Preston, D.</author><author>Adams, L. G.</author><author>Garner, H. R.</author></authors></contributors><auth-address>Virginia Bioinformatics Institute, Virginia Tech, Washington Street, MC0477, Blacksburg, VA 24061-0477. garner@vbi.vt.edu.</auth-address><titles><title>Revised Genome Sequence of Brucella suis 1330</title><secondary-title>J Bacteriol</secondary-title><alt-title>Journal of bacteriology</alt-title></titles><periodical><full-title>J Bacteriol</full-title></periodical><pages>6410</pages><volume>193</volume><number>22</number><edition>2011/11/01</edition><dates><year>2011</year><pub-dates><date>Nov</date></pub-dates></dates><isbn>1098-5530 (Electronic)&#xD;0021-9193 (Linking)</isbn><accession-num>22038969</accession-num><urls><related-urls><url>;[25].No.233313172229343527912773076763940393636363773079317676394039373736337676767680623940393737361339393980366535353617404040367439636664223939396539753738382936373735633771686334363737356638687264353636363664386364723.10 Supplementary Tables3.10.1A Supplementary Table 1A: Comparison of Biochemical Typing, Universal Biosignature Detection Array, PCR and Genome Sequence Analysis. Mixed infection is a combination of B. abortus and B. suis. Note that Genome sequence analysis indicated that some samples labeled with an “*” contained contamination of a minor species at between 1:1736 and 1: 13642. Statistical confidence measure was set at 0.6% for PCA analysis (Section 3.3.4. and Supplementary Table 2 and 5). No.Biochemical TypingSourceIS711 PCRUBDAGenome sequence analysis1B. abortus strain 19UnknownB. abortusB. abortus---2B. abortus biovar 2UnknownB. abortusmixed infectionB. abortus3B. abortus biovar 4UnknownB. abortusB. suisB. abortus4B. suis biovar 4UnknownB. abortusB. suis---5B. abortus biovar 1 strain 2308Bovine milkB. abortusB. suis---6B. abortus biovar 1 strain 2308Bovine milkB. abortusB. suis---7B. abortus strain 2308Bovine milkB. abortusB. abortus---8B. suis biovar 1Bovine milk, tissuemixed infectionB. abortus---9B. suis biovar 1Porcine tissuemixed infectionmixed infection---10B. suis biovar 1Porcine tissuemixed infectionB. suis---11B. abortus biovar 1 strain 2308Bovine tissueB. abortusmixed infection---12B. abortus biovar 1 strain 2308Bovine tissueB. abortusB. suis---13*B. suis biovar 1Equine tissuemixed infectionmixed infectionB. suis14B. abortus biovar 1Bovine milkB. abortusB. suis---15B. abortus biovar 1Bovine milkB. abortusB. abortus---16B. suis biovar 1Bovine milk, tissuemixed infectionmixed infection---17*B. suis biovar 1Porcine tissuemixed infectionB. suisB. suis18B. abortus strain 19Bovine tissuemixed infectionB. suis---19B. abortus biovar 4Bovine milkB. abortusB. abortus---20B. abortus biovar 1Bovine milk, tissueB. abortusmixed infection---21B. abortus biovar 1Bovine milk, tissueB. abortusB. abortus---22*B. suis biovar 1Bovine milkmixed infectionmixed infectionB. suis23B. abortus biovar 1strain 2308Bovine milkB. abortusmixed infection---24B. abortus biovar 1strain 2308Bovine milkB. abortusB. abortus---25B. abortus biovar 1strain 2308Bovine milkB. abortusB. abortus---26B. suis biovar 1Bovine tissuemixed infectionB. suis---29*B. suis biovar 1Bovine tissuemixed infectionB. suisB. suis30B. suis biovar 1Bovine tissuemixed infectionB. abortus---31B. suis biovar 1Bovine tissuemixed infectionB. abortus---32B. abortus strain 19Bovine milkB. abortusB. suis---33B. abortus strain 19Bovine milkB. abortusB. suisB. abortus34*B. suis biovar 1Bovine tissuemixed infectionB. suisB. suis35*B. suis biovar 1Bovine tissuemixed infectionB. suisB. suis36B. suis biovar 1Bovine tissueB. abortusB. suis---37B. suis biovar 1Bovine milkB. abortusB. suis---40B. suis biovar 1Bovine milkmixed infectionB. abortus---3.10.1B Supplementary Table 1B: Principal component analysis of field isolates with B. suis 1330 and B. abortus 2308 using 9-mer (262,144) probesNo.B. suis 1330 distance(all 9-mer probes)B. abortus 2308 distance (all 9-mer probes)B. suis 1330 (weighted distance)B. abortus 2308(weighted distance)Identity(9-mer probes)184826817060.3240.312B. abortus295434951650.3640.363mixed infection392150943140.3520.360B. suis490956931320.3470.355B. suis51033821054760.3940.402B. suis61924721969270.7340.751B. suis71050101022830.4010.390B. abortus897791957250.3730.365B. abortus980377802170.3070.306mixed infection1097508983180.3720.375B. suis1194407947150.3600.361mixed infection1298323995590.3750.380B. suis1396078963220.3670.367mixed infection141009381019910.3850.389B. suis1583143803670.3170.307B. abortus1683995838320.3200.320mixed infection1796578994610.3680.379B. suis1894542970690.3610.370B. suis1984293811690.3220.310B. abortus2093257936830.3560.357mixed infection2186248857370.3290.327B. abortus2284242813650.3210.310mixed infection2384569842070.3230.321mixed infection2482335791060.3140.302B. abortus2582841821700.3160.313B. abortus2696425966820.3680.369B. suis2993399956730.3560.365B. suis30100962999800.3850.381B. abortus3193537926400.3570.353B. abortus3296808974980.3690.372B. suis3393689978740.3570.373B. suis3493007951470.3550.363B. suis35994651003840.3790.383B. suis361040031048360.3970.400B. suis371009211034550.3850.395B. suis4079899761280.3050.290B. abortus3.10.2 Supplementary Table 2: Comparison of similarities among nine Brucella samples and two reference genomes; B. abortus biovar 1 9-941 and B. suis 1330.Sequencing reads of all nine isolates were mapped to B. abortus biovar 1 9-941 and B. suis 1330 separately for comparison of similarities among nine Brucella samples and two references. The mapping results show that isolates 2, 3 and 33 are highly similar to B. abortus biovar 1 9-941 while isolates 13, 17, 22, 29, 34 and 35 are highly similar to B. suis 1330.No. Identification by antibody testIdentification by PCR testMapping on B. abortus biovar 1 9-941 Mapping on B. suis 1330 coverage Base identity % # of consensusblocks # of variants coverage Base identity % # of consensusblocks # of variants ?2B. abortus biovar 2B. abortus102099.9912150100298.67624879123B. abortus biovar 4 B. abortus103499.9883299101598.197113793133B. abortus S19B. abortus179799.9644261177398.409149806213B. suis biovar IB. abortus B. suis143899.104797786146099.99328017B. suis biovar IB. abortus B. suis108499.2721447713109499.99627422B. suis biovar IB. abortus B. suis 110499.0941077693111499.99537529B. suis biovar IB. abortus B. suis94798.93957769095599.99637134B. suis biovar IB. abortus B. suis108199.023897690109199.99627235B. suis biovar IB. abortus B. suis101998.979697688102999.9962723.10.3 Supplementary Table 3: Analysis of unmapped reads using BLAST program against NT database. Each cell shows the number of reads identified as contamination by BLAST program. While the main contaminant components of the B. suis 1330 re-sequenced original sample is human DNA, contaminants of the other sample are either other Brucella strains, or other organisms. Detailed information for the other contaminant components is available in Supplementary table4.No.Map toReferenceTotalReadTotal Unmapped(% for total reads)Unmapped Reads (% for unmapped)No Hit in NT DBOtherBrucellaHumanBovinePorcineother2B. abortus9-94144,646,21815,412(0.03%)4,858(31.52%)1,081(7.01%)5,135(33.32%)51(0.33%)21(0.14%)4,266(27.68%)3B. abortus9-94145,344,85414,103(0.03%)3,787(26.85%)3,101(21.99%)4,627(32.81%)44(0.31%)23(0.16%)2,521(17.88%)33B. abortusS1963,154,92246,344(0.07%)11,673(25.19%)20,910(45.12%)1,825(3.94%)4(0.01%)16(0.03%)11,916(25.71%)13B. suis 133049,912,38866,035(0.13%)32,586(49.35%)5,953(9.01%)1,524(2.31%)2(3-5%)3(4-5%)25,967(39.32%)17B. suis 133057,946,1868,095(0.01%)3,521(43.50%)2,268(28.02%)1,144(14.13%)19(0.23%)1(0.01%)1,142(14.11%)22B. suis 133049,278,0367,942(0.02%)3,229(40.66%)2,397(30.18%)1,234(15.54%)6(0.08%)3(0.04%)1,073(13.51%)29B. suis 133042,295,60822,681(0.05%)5,640(24.87%)1,429(6.30%)7,003(30.88%)18(0.08%)24(0.11%)8,567(37.77%)34B. suis 133048,359,62610,603(0.02%)3,470(32.73%)1,662(15.67%)3,250(30.65%)21(0.20%)15(0.14%)2,185(20.61%)35B. suis 133045,641,28019,590(0.04%)6,770(34.56%)1,721(8.79%)7,597(38.78%)19(0.10%)137(0.70%)3,346(17.08%)B. suis 1330B. suis 133052,210,17236,184(0.07%)1,458(4.03%)907(2.51%)32,489(89.79%)4(0.01%)2(0.01%)1,324(3.66%)3.10.4 Supplementary Table 4: Analysis of the unmapped reads from other contaminant micro-organisms listed in supplementary table 3. The major genomes were from Propionibacterium, Mycobacterium, Staphylococcus, Escherichia, Ochrobactrum and Pseudomonas.No.PropionibacteriumMycobacteriumStaphylococcusEscherichiaOchrobactrumPseudomonasother21,9121,23466468813178931,40328466116139657331,84724,801151,451503,750134,705818,5045438622,245174792458616213672241018115294725366294,567189621,43624272,262341,596402273212476352,2239967163342866B. suis 13301240011881,1733.10.5 Supplementary Table 5: Sequence coverage on a non B. suis 1330 region. The read coverage at the sequence between 261,000th and 280,000th base (which does not exist in the B. suis 1330 genome) of B. abortus 9-941 genome was compared. While the coverage of the genome sequence of B. suis 1330 original sample was nil, the coverage of genome sequences of isolates 13, 17, 22, 29, 34 and 35 were approximately 0.07x to 0.63x, suggesting these field isolates were mixtures of B. suis and other Brucella. (Mixture ratio is estimated by comparing the read coverage at the whole genome to that at 261K~280Kof B. abortus 9-941.)Analysis2333131722293435B. suis 1330Coverage at 261K~280Kof B. abortus 9-9411066.81113.65709.30.350.630.280.070.170.110Mixture ratioof B. suisand other Brucella---4171:11736:13978:113642:16417:19354:103.10.6 Supplementary Table 6: Universal Bio-signature Detection Array probe intensities from 9-mer with Brucella field isolates hybridized on the array (log2 scale).File name: TAHC_UBDA_log2 (available at )3.11 Supplementary Figures3.11.1A Supplementary Figure 1A: PCR of genetic element IS711 from Brucella field isolates 1 through 9 with IS711 element B. abortus (a) and B. suis (s) primers.3.11.1B Supplementary Figure 1B: PCR of genetic element IS711 from Brucella field isolates 10 through 18 with IS711 element B. abortus (a) and B. suis (s) primers. 3.11.1C Supplementary Figure 1C: PCR of genetic element IS711 from Brucella field isolates 19 through 26 and 29 with IS711 element B. abortus (a) and B. suis (s) primers.3.11.1D Supplementary Figure 1D: PCR of genetic element IS711 from Brucella field isolates 30 through 32 with IS711 element B. abortus (a) and B. suis (s) primers.3.11.1E Supplementary Figure 1E: PCR of genetic element IS711 from Brucella field isolates 33 through 37 and 40 with IS711 element B. abortus (a) and B. suis (s) primers.3.11.2 Supplementary Figure 2: PCR assay of IS711 element primers from Brucella species suis (Bs), abortus (Ba) and melitensis (Bm) with B. suis 1330, B. abortus 2308, B. abortus RB51 and B. melitensis 16M for reference Brucella genomes.3.11.3 Supplementary Figure 3: Phylogenomic relationships from 9-mer probe set between Brucella field isolates and other known reference genomes. All 262,144 9-mer data points for each of the samples were RMA normalized and log2 transformed. A Pearson correlation matrix was created by comparing each sample against all other samples. The values were used to generate a taxonomic relationship tree using the PHYLIP software and visualized in the Treeview program.Chapter 4Development of molecular diagnostics using Universal Bio-signature Detection Array technology in host pathogen forensicsShamira J Shallom1, Lauren McIver1, Amanda Rumore1, Christopher Lawerence1, L Garry Adams2, Harold R Garner1§1Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, VA, USA; 2Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A & M University, College Station, TX, USA.1§Corresponding authorHarold R. GarnerDirector Medical Informatics and SystemsVirginia Bioinformatics InstituteVirginia TechWashington Street, MC0477Blacksburg, VA 24061-0477, USAEmail?: garner@vbi.vt.eduPhone: 540.231.2582Fax: 540.231.26064.1 Abstract BackgroundThis research describes the development of a broad based platform for identification of pathogens including variant strains from infected animals, environmental or laboratory samples on a high density universal biodefense oligonucleotide microarray. The detection and differentiation platform is an oligonucleotide array that contains all possible (49 combinations) 9-mer probes and is genome independent. In addition it has probes specific to bacteria, microsatellites, antibiotic resistance genes and control probes. The Universal Bio-signature Detection Array (UBDA) array is a 370K element 2-color array developed by the Garner laboratory and manufactured by Nimblegen. The development of this technology resulted in the creation an integrated biomarker-specific bio-signature, multiple select agent detection system. Currently, the repository comprises of approximately 100 pathogens and hosts hybridized to this array. The spectrum of organisms chosen for hybridization on this array were primarily bio-threat agents, micro-organisms infecting farm animals, food borne pathogens and organisms of molecular diagnostic importance in a clinical setting. We have expanded this method for viral and parasite detection in insect vectors.ResultsRegression analysis using curve fitting algorithm was used to de-convolute the bacterial organism from a complex mixture of genomic DNA extracted from the soil sample. A soil sample identified precisely the correct pathogen which was Bacillus anthracis Sterne strain spiked into the soil genomic DNA. Further this method has applications in detection of Aspergillus fumigatus fungal infection in human cells.Further, a surveillance method using the UBDA array platform was developed. The two test cases were detection of Dengue virus strains in Aedes aegypti mosquitoes and parasite genomic DNA from Leishmania species were spiked into Sand fly vector genomes. Principal component analysis algorithm was used to differentiate between the Dengue viral strains in the Aedes aegypti host background and the Leishmania species in the Sand fly (Phlebotomus papatasi) and determine the percentage of probes attributed to each of these organisms. ConclusionsThis microarray-based assay will propel classification of new pathogens or mixtures in relation to those that have already been tested on the array. The UBDA has the potential to be fully compatible with micro-machine based front end sample processing and preparation platforms. Along with a repository of unique hybridization signatures from several genomes of pathogens and their hosts, the UBDA array has the ability to rapidly identify biological threats and newly emerging infectious pathogens that are high priorities in biodefense. Application of the UBDA has the potential to be extended to food and environmental microbial monitoring and a surveillance of insect vectors as carriers of infectious disease. 4.2 Background The rapid identification of bacteria in clinical sample is important for patient management and antimicrobial therapy. Further food borne illnesses are of prime importance in public health and in biodefense. However, detection of pathogenic microorganisms by traditional methods suffers from several limitations. Even after the detection of growth in cultured blood which usually takes 6 to 12 hours of incubation, conventional blood cultures require at least another 24 to 48 hours for the definitive identification of the pathogen and the assessment of resistance to antibiotics PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5CZWVrbWFubjwvQXV0aG9yPjxZZWFyPjIwMDM8L1llYXI+

PFJlY051bT4xNTA8L1JlY051bT48RGlzcGxheVRleHQ+WzFdPC9EaXNwbGF5VGV4dD48cmVjb3Jk

PjxyZWMtbnVtYmVyPjE1MDwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIg

ZGItaWQ9Ind4OTByOXB0OHJ0cjIwZWZ0dnl2ejBhNHQwMnYwenN3MDJ3diI+MTUwPC9rZXk+PC9m

b3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBl

Pjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5CZWVrbWFubiwgUy4gRS48L2F1dGhvcj48

YXV0aG9yPkRpZWtlbWEsIEQuIEouPC9hdXRob3I+PGF1dGhvcj5DaGFwaW4sIEsuIEMuPC9hdXRo

b3I+PGF1dGhvcj5Eb2VybiwgRy4gVi48L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+

PGF1dGgtYWRkcmVzcz5EaXZpc2lvbiBvZiBNZWRpY2FsIE1pY3JvYmlvbG9neSwgRGVwYXJ0bWVu

dCBvZiBQYXRob2xvZ3ksIFVuaXZlcnNpdHkgb2YgSW93YSBDb2xsZWdlIG9mIE1lZGljaW5lLCBJ

b3dhIENpdHksIElvd2EgNTIyNDIsIFVTQS4gc3VzYW4tYmVla21hbm5AdWlvd2EuZWR1PC9hdXRo

LWFkZHJlc3M+PHRpdGxlcz48dGl0bGU+RWZmZWN0cyBvZiByYXBpZCBkZXRlY3Rpb24gb2YgYmxv

b2RzdHJlYW0gaW5mZWN0aW9ucyBvbiBsZW5ndGggb2YgaG9zcGl0YWxpemF0aW9uIGFuZCBob3Nw

aXRhbCBjaGFyZ2VzPC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPkogQ2xpbiBNaWNyb2Jpb2w8L3Nl

Y29uZGFyeS10aXRsZT48L3RpdGxlcz48cGVyaW9kaWNhbD48ZnVsbC10aXRsZT5KIENsaW4gTWlj

cm9iaW9sPC9mdWxsLXRpdGxlPjwvcGVyaW9kaWNhbD48cGFnZXM+MzExOS0yNTwvcGFnZXM+PHZv

bHVtZT40MTwvdm9sdW1lPjxudW1iZXI+NzwvbnVtYmVyPjxlZGl0aW9uPjIwMDMvMDcvMDU8L2Vk

aXRpb24+PGtleXdvcmRzPjxrZXl3b3JkPkFkb2xlc2NlbnQ8L2tleXdvcmQ+PGtleXdvcmQ+QWR1

bHQ8L2tleXdvcmQ+PGtleXdvcmQ+QWdlZDwva2V5d29yZD48a2V5d29yZD5BZ2VkLCA4MCBhbmQg

b3Zlcjwva2V5d29yZD48a2V5d29yZD5CYWN0ZXJlbWlhLypkaWFnbm9zaXMvKm1pY3JvYmlvbG9n

eTwva2V5d29yZD48a2V5d29yZD5CYWN0ZXJpYS9jbGFzc2lmaWNhdGlvbi9pc29sYXRpb24gJmFt

cDsgcHVyaWZpY2F0aW9uPC9rZXl3b3JkPjxrZXl3b3JkPkJsb29kL21pY3JvYmlvbG9neTwva2V5

d29yZD48a2V5d29yZD5DdWx0dXJlIE1lZGlhPC9rZXl3b3JkPjxrZXl3b3JkPkZlbWFsZTwva2V5

d29yZD48a2V5d29yZD5GdW5nZW1pYS8qZGlhZ25vc2lzLyptaWNyb2Jpb2xvZ3k8L2tleXdvcmQ+

PGtleXdvcmQ+RnVuZ2kvY2xhc3NpZmljYXRpb24vaXNvbGF0aW9uICZhbXA7IHB1cmlmaWNhdGlv

bjwva2V5d29yZD48a2V5d29yZD4qSG9zcGl0YWwgQ2hhcmdlczwva2V5d29yZD48a2V5d29yZD5I

dW1hbnM8L2tleXdvcmQ+PGtleXdvcmQ+Kkxlbmd0aCBvZiBTdGF5PC9rZXl3b3JkPjxrZXl3b3Jk

Pk1hbGU8L2tleXdvcmQ+PGtleXdvcmQ+TWlkZGxlIEFnZWQ8L2tleXdvcmQ+PGtleXdvcmQ+UHJv

c3BlY3RpdmUgU3R1ZGllczwva2V5d29yZD48a2V5d29yZD5SZWdyZXNzaW9uIEFuYWx5c2lzPC9r

ZXl3b3JkPjxrZXl3b3JkPlJpc2sgRmFjdG9yczwva2V5d29yZD48a2V5d29yZD5UaW1lIEZhY3Rv

cnM8L2tleXdvcmQ+PC9rZXl3b3Jkcz48ZGF0ZXM+PHllYXI+MjAwMzwveWVhcj48cHViLWRhdGVz

PjxkYXRlPkp1bDwvZGF0ZT48L3B1Yi1kYXRlcz48L2RhdGVzPjxpc2JuPjAwOTUtMTEzNyAoUHJp

bnQpJiN4RDswMDk1LTExMzcgKExpbmtpbmcpPC9pc2JuPjxhY2Nlc3Npb24tbnVtPjEyODQzMDUx

PC9hY2Nlc3Npb24tbnVtPjx1cmxzPjxyZWxhdGVkLXVybHM+PHVybD5odHRwOi8vd3d3Lm5jYmku

bmxtLm5paC5nb3YvZW50cmV6L3F1ZXJ5LmZjZ2k/Y21kPVJldHJpZXZlJmFtcDtkYj1QdWJNZWQm

YW1wO2RvcHQ9Q2l0YXRpb24mYW1wO2xpc3RfdWlkcz0xMjg0MzA1MTwvdXJsPjwvcmVsYXRlZC11

cmxzPjwvdXJscz48Y3VzdG9tMj4xNjUzNTk8L2N1c3RvbTI+PGxhbmd1YWdlPmVuZzwvbGFuZ3Vh

Z2U+PC9yZWNvcmQ+PC9DaXRlPjwvRW5kTm90ZT5=

ADDIN EN.CITE PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5CZWVrbWFubjwvQXV0aG9yPjxZZWFyPjIwMDM8L1llYXI+

PFJlY051bT4xNTA8L1JlY051bT48RGlzcGxheVRleHQ+WzFdPC9EaXNwbGF5VGV4dD48cmVjb3Jk

PjxyZWMtbnVtYmVyPjE1MDwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIg

ZGItaWQ9Ind4OTByOXB0OHJ0cjIwZWZ0dnl2ejBhNHQwMnYwenN3MDJ3diI+MTUwPC9rZXk+PC9m

b3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBl

Pjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5CZWVrbWFubiwgUy4gRS48L2F1dGhvcj48

YXV0aG9yPkRpZWtlbWEsIEQuIEouPC9hdXRob3I+PGF1dGhvcj5DaGFwaW4sIEsuIEMuPC9hdXRo

b3I+PGF1dGhvcj5Eb2VybiwgRy4gVi48L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+

PGF1dGgtYWRkcmVzcz5EaXZpc2lvbiBvZiBNZWRpY2FsIE1pY3JvYmlvbG9neSwgRGVwYXJ0bWVu

dCBvZiBQYXRob2xvZ3ksIFVuaXZlcnNpdHkgb2YgSW93YSBDb2xsZWdlIG9mIE1lZGljaW5lLCBJ

b3dhIENpdHksIElvd2EgNTIyNDIsIFVTQS4gc3VzYW4tYmVla21hbm5AdWlvd2EuZWR1PC9hdXRo

LWFkZHJlc3M+PHRpdGxlcz48dGl0bGU+RWZmZWN0cyBvZiByYXBpZCBkZXRlY3Rpb24gb2YgYmxv

b2RzdHJlYW0gaW5mZWN0aW9ucyBvbiBsZW5ndGggb2YgaG9zcGl0YWxpemF0aW9uIGFuZCBob3Nw

aXRhbCBjaGFyZ2VzPC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPkogQ2xpbiBNaWNyb2Jpb2w8L3Nl

Y29uZGFyeS10aXRsZT48L3RpdGxlcz48cGVyaW9kaWNhbD48ZnVsbC10aXRsZT5KIENsaW4gTWlj

cm9iaW9sPC9mdWxsLXRpdGxlPjwvcGVyaW9kaWNhbD48cGFnZXM+MzExOS0yNTwvcGFnZXM+PHZv

bHVtZT40MTwvdm9sdW1lPjxudW1iZXI+NzwvbnVtYmVyPjxlZGl0aW9uPjIwMDMvMDcvMDU8L2Vk

aXRpb24+PGtleXdvcmRzPjxrZXl3b3JkPkFkb2xlc2NlbnQ8L2tleXdvcmQ+PGtleXdvcmQ+QWR1

bHQ8L2tleXdvcmQ+PGtleXdvcmQ+QWdlZDwva2V5d29yZD48a2V5d29yZD5BZ2VkLCA4MCBhbmQg

b3Zlcjwva2V5d29yZD48a2V5d29yZD5CYWN0ZXJlbWlhLypkaWFnbm9zaXMvKm1pY3JvYmlvbG9n

eTwva2V5d29yZD48a2V5d29yZD5CYWN0ZXJpYS9jbGFzc2lmaWNhdGlvbi9pc29sYXRpb24gJmFt

cDsgcHVyaWZpY2F0aW9uPC9rZXl3b3JkPjxrZXl3b3JkPkJsb29kL21pY3JvYmlvbG9neTwva2V5

d29yZD48a2V5d29yZD5DdWx0dXJlIE1lZGlhPC9rZXl3b3JkPjxrZXl3b3JkPkZlbWFsZTwva2V5

d29yZD48a2V5d29yZD5GdW5nZW1pYS8qZGlhZ25vc2lzLyptaWNyb2Jpb2xvZ3k8L2tleXdvcmQ+

PGtleXdvcmQ+RnVuZ2kvY2xhc3NpZmljYXRpb24vaXNvbGF0aW9uICZhbXA7IHB1cmlmaWNhdGlv

bjwva2V5d29yZD48a2V5d29yZD4qSG9zcGl0YWwgQ2hhcmdlczwva2V5d29yZD48a2V5d29yZD5I

dW1hbnM8L2tleXdvcmQ+PGtleXdvcmQ+Kkxlbmd0aCBvZiBTdGF5PC9rZXl3b3JkPjxrZXl3b3Jk

Pk1hbGU8L2tleXdvcmQ+PGtleXdvcmQ+TWlkZGxlIEFnZWQ8L2tleXdvcmQ+PGtleXdvcmQ+UHJv

c3BlY3RpdmUgU3R1ZGllczwva2V5d29yZD48a2V5d29yZD5SZWdyZXNzaW9uIEFuYWx5c2lzPC9r

ZXl3b3JkPjxrZXl3b3JkPlJpc2sgRmFjdG9yczwva2V5d29yZD48a2V5d29yZD5UaW1lIEZhY3Rv

cnM8L2tleXdvcmQ+PC9rZXl3b3Jkcz48ZGF0ZXM+PHllYXI+MjAwMzwveWVhcj48cHViLWRhdGVz

PjxkYXRlPkp1bDwvZGF0ZT48L3B1Yi1kYXRlcz48L2RhdGVzPjxpc2JuPjAwOTUtMTEzNyAoUHJp

bnQpJiN4RDswMDk1LTExMzcgKExpbmtpbmcpPC9pc2JuPjxhY2Nlc3Npb24tbnVtPjEyODQzMDUx

PC9hY2Nlc3Npb24tbnVtPjx1cmxzPjxyZWxhdGVkLXVybHM+PHVybD5odHRwOi8vd3d3Lm5jYmku

bmxtLm5paC5nb3YvZW50cmV6L3F1ZXJ5LmZjZ2k/Y21kPVJldHJpZXZlJmFtcDtkYj1QdWJNZWQm

YW1wO2RvcHQ9Q2l0YXRpb24mYW1wO2xpc3RfdWlkcz0xMjg0MzA1MTwvdXJsPjwvcmVsYXRlZC11

cmxzPjwvdXJscz48Y3VzdG9tMj4xNjUzNTk8L2N1c3RvbTI+PGxhbmd1YWdlPmVuZzwvbGFuZ3Vh

Z2U+PC9yZWNvcmQ+PC9DaXRlPjwvRW5kTm90ZT5=

ADDIN EN.CITE.DATA [1]. The existing techniques suffer from several limitations, i.e. low success rate (less than 50%) of cultivation-based assays in samples from patients previously treated with antibiotics; long detection time required for cultivation-based assays; and poor performance of serological and immunological methods such as high false positive rates, poor reproducibility, lengthy processes and intensive labor. Array based platforms have been designed using the conserved and variable regions of 16s rRNA of specific pathogens PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5Fb208L0F1dGhvcj48WWVhcj4yMDA3PC9ZZWFyPjxSZWNO

dW0+MTE3MzwvUmVjTnVtPjxEaXNwbGF5VGV4dD5bMl08L0Rpc3BsYXlUZXh0PjxyZWNvcmQ+PHJl

Yy1udW1iZXI+MTE3MzwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGIt

aWQ9Ind4OTByOXB0OHJ0cjIwZWZ0dnl2ejBhNHQwMnYwenN3MDJ3diI+MTE3Mzwva2V5PjwvZm9y

ZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJKb3VybmFsIEFydGljbGUiPjE3PC9yZWYtdHlwZT48

Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+RW9tLCBILiBTLjwvYXV0aG9yPjxhdXRob3I+

SHdhbmcsIEIuIEguPC9hdXRob3I+PGF1dGhvcj5LaW0sIEQuIEguPC9hdXRob3I+PGF1dGhvcj5M

ZWUsIEkuIEIuPC9hdXRob3I+PGF1dGhvcj5LaW0sIFkuIEguPC9hdXRob3I+PGF1dGhvcj5DaGEs

IEguIEouPC9hdXRob3I+PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjxhdXRoLWFkZHJlc3M+RGl2

aXNpb24gb2YgTW9sZWN1bGFyIGFuZCBMaWZlIFNjaWVuY2VzLCBQb2hhbmcgVW5pdmVyc2l0eSBv

ZiBTY2llbmNlIGFuZCBUZWNobm9sb2d5LCBQb2hhbmcgNzkwLTc4NCwgUmVwdWJsaWMgb2YgS29y

ZWEuPC9hdXRoLWFkZHJlc3M+PHRpdGxlcz48dGl0bGU+TXVsdGlwbGUgZGV0ZWN0aW9uIG9mIGZv

b2QtYm9ybmUgcGF0aG9nZW5pYyBiYWN0ZXJpYSB1c2luZyBhIG5vdmVsIDE2UyByRE5BLWJhc2Vk

IG9saWdvbnVjbGVvdGlkZSBzaWduYXR1cmUgY2hpcDwvdGl0bGU+PHNlY29uZGFyeS10aXRsZT5C

aW9zZW5zIEJpb2VsZWN0cm9uPC9zZWNvbmRhcnktdGl0bGU+PGFsdC10aXRsZT5CaW9zZW5zb3Jz

ICZhbXA7IGJpb2VsZWN0cm9uaWNzPC9hbHQtdGl0bGU+PC90aXRsZXM+PHBlcmlvZGljYWw+PGZ1

bGwtdGl0bGU+Qmlvc2VucyBCaW9lbGVjdHJvbjwvZnVsbC10aXRsZT48YWJici0xPkJpb3NlbnNv

cnMgJmFtcDsgYmlvZWxlY3Ryb25pY3M8L2FiYnItMT48L3BlcmlvZGljYWw+PGFsdC1wZXJpb2Rp

Y2FsPjxmdWxsLXRpdGxlPkJpb3NlbnMgQmlvZWxlY3Ryb248L2Z1bGwtdGl0bGU+PGFiYnItMT5C

aW9zZW5zb3JzICZhbXA7IGJpb2VsZWN0cm9uaWNzPC9hYmJyLTE+PC9hbHQtcGVyaW9kaWNhbD48

cGFnZXM+ODQ1LTUzPC9wYWdlcz48dm9sdW1lPjIyPC92b2x1bWU+PG51bWJlcj42PC9udW1iZXI+

PGVkaXRpb24+MjAwNi8wNC8yMDwvZWRpdGlvbj48a2V5d29yZHM+PGtleXdvcmQ+QmFjdGVyaWEv

KmdlbmV0aWNzLyppc29sYXRpb24gJmFtcDsgcHVyaWZpY2F0aW9uL3BhdGhvZ2VuaWNpdHk8L2tl

eXdvcmQ+PGtleXdvcmQ+RE5BLCBCYWN0ZXJpYWwvYW5hbHlzaXMvKmdlbmV0aWNzPC9rZXl3b3Jk

PjxrZXl3b3JkPkVxdWlwbWVudCBEZXNpZ248L2tleXdvcmQ+PGtleXdvcmQ+RXF1aXBtZW50IEZh

aWx1cmUgQW5hbHlzaXM8L2tleXdvcmQ+PGtleXdvcmQ+Rm9vZCBBbmFseXNpcy9pbnN0cnVtZW50

YXRpb24vbWV0aG9kczwva2V5d29yZD48a2V5d29yZD5Gb29kIENvbnRhbWluYXRpb24vKmFuYWx5

c2lzPC9rZXl3b3JkPjxrZXl3b3JkPipGb29kIE1pY3JvYmlvbG9neTwva2V5d29yZD48a2V5d29y

ZD5PbGlnb251Y2xlb3RpZGUgQXJyYXkgU2VxdWVuY2UgQW5hbHlzaXMvKmluc3RydW1lbnRhdGlv

bi9tZXRob2RzPC9rZXl3b3JkPjxrZXl3b3JkPlJOQSwgUmlib3NvbWFsLCAxNlMvYW5hbHlzaXMv

KmdlbmV0aWNzPC9rZXl3b3JkPjxrZXl3b3JkPlJlcHJvZHVjaWJpbGl0eSBvZiBSZXN1bHRzPC9r

ZXl3b3JkPjxrZXl3b3JkPlNlbnNpdGl2aXR5IGFuZCBTcGVjaWZpY2l0eTwva2V5d29yZD48L2tl

eXdvcmRzPjxkYXRlcz48eWVhcj4yMDA3PC95ZWFyPjxwdWItZGF0ZXM+PGRhdGU+SmFuIDE1PC9k

YXRlPjwvcHViLWRhdGVzPjwvZGF0ZXM+PGlzYm4+MDk1Ni01NjYzIChQcmludCkmI3hEOzA5NTYt

NTY2MyAoTGlua2luZyk8L2lzYm4+PGFjY2Vzc2lvbi1udW0+MTY2MjE1MDM8L2FjY2Vzc2lvbi1u

dW0+PHdvcmstdHlwZT5FdmFsdWF0aW9uIFN0dWRpZXMmI3hEO1Jlc2VhcmNoIFN1cHBvcnQsIE5v

bi1VLlMuIEdvdiZhcG9zO3Q8L3dvcmstdHlwZT48dXJscz48cmVsYXRlZC11cmxzPjx1cmw+aHR0

cDovL3d3dy5uY2JpLm5sbS5uaWguZ292L3B1Ym1lZC8xNjYyMTUwMzwvdXJsPjwvcmVsYXRlZC11

cmxzPjwvdXJscz48ZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+MTAuMTAxNi9qLmJpb3MuMjAwNi4w

My4wMDU8L2VsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjxsYW5ndWFnZT5lbmc8L2xhbmd1YWdlPjwv

cmVjb3JkPjwvQ2l0ZT48L0VuZE5vdGU+

ADDIN EN.CITE PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5Fb208L0F1dGhvcj48WWVhcj4yMDA3PC9ZZWFyPjxSZWNO

dW0+MTE3MzwvUmVjTnVtPjxEaXNwbGF5VGV4dD5bMl08L0Rpc3BsYXlUZXh0PjxyZWNvcmQ+PHJl

Yy1udW1iZXI+MTE3MzwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGIt

aWQ9Ind4OTByOXB0OHJ0cjIwZWZ0dnl2ejBhNHQwMnYwenN3MDJ3diI+MTE3Mzwva2V5PjwvZm9y

ZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJKb3VybmFsIEFydGljbGUiPjE3PC9yZWYtdHlwZT48

Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+RW9tLCBILiBTLjwvYXV0aG9yPjxhdXRob3I+

SHdhbmcsIEIuIEguPC9hdXRob3I+PGF1dGhvcj5LaW0sIEQuIEguPC9hdXRob3I+PGF1dGhvcj5M

ZWUsIEkuIEIuPC9hdXRob3I+PGF1dGhvcj5LaW0sIFkuIEguPC9hdXRob3I+PGF1dGhvcj5DaGEs

IEguIEouPC9hdXRob3I+PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjxhdXRoLWFkZHJlc3M+RGl2

aXNpb24gb2YgTW9sZWN1bGFyIGFuZCBMaWZlIFNjaWVuY2VzLCBQb2hhbmcgVW5pdmVyc2l0eSBv

ZiBTY2llbmNlIGFuZCBUZWNobm9sb2d5LCBQb2hhbmcgNzkwLTc4NCwgUmVwdWJsaWMgb2YgS29y

ZWEuPC9hdXRoLWFkZHJlc3M+PHRpdGxlcz48dGl0bGU+TXVsdGlwbGUgZGV0ZWN0aW9uIG9mIGZv

b2QtYm9ybmUgcGF0aG9nZW5pYyBiYWN0ZXJpYSB1c2luZyBhIG5vdmVsIDE2UyByRE5BLWJhc2Vk

IG9saWdvbnVjbGVvdGlkZSBzaWduYXR1cmUgY2hpcDwvdGl0bGU+PHNlY29uZGFyeS10aXRsZT5C

aW9zZW5zIEJpb2VsZWN0cm9uPC9zZWNvbmRhcnktdGl0bGU+PGFsdC10aXRsZT5CaW9zZW5zb3Jz

ICZhbXA7IGJpb2VsZWN0cm9uaWNzPC9hbHQtdGl0bGU+PC90aXRsZXM+PHBlcmlvZGljYWw+PGZ1

bGwtdGl0bGU+Qmlvc2VucyBCaW9lbGVjdHJvbjwvZnVsbC10aXRsZT48YWJici0xPkJpb3NlbnNv

cnMgJmFtcDsgYmlvZWxlY3Ryb25pY3M8L2FiYnItMT48L3BlcmlvZGljYWw+PGFsdC1wZXJpb2Rp

Y2FsPjxmdWxsLXRpdGxlPkJpb3NlbnMgQmlvZWxlY3Ryb248L2Z1bGwtdGl0bGU+PGFiYnItMT5C

aW9zZW5zb3JzICZhbXA7IGJpb2VsZWN0cm9uaWNzPC9hYmJyLTE+PC9hbHQtcGVyaW9kaWNhbD48

cGFnZXM+ODQ1LTUzPC9wYWdlcz48dm9sdW1lPjIyPC92b2x1bWU+PG51bWJlcj42PC9udW1iZXI+

PGVkaXRpb24+MjAwNi8wNC8yMDwvZWRpdGlvbj48a2V5d29yZHM+PGtleXdvcmQ+QmFjdGVyaWEv

KmdlbmV0aWNzLyppc29sYXRpb24gJmFtcDsgcHVyaWZpY2F0aW9uL3BhdGhvZ2VuaWNpdHk8L2tl

eXdvcmQ+PGtleXdvcmQ+RE5BLCBCYWN0ZXJpYWwvYW5hbHlzaXMvKmdlbmV0aWNzPC9rZXl3b3Jk

PjxrZXl3b3JkPkVxdWlwbWVudCBEZXNpZ248L2tleXdvcmQ+PGtleXdvcmQ+RXF1aXBtZW50IEZh

aWx1cmUgQW5hbHlzaXM8L2tleXdvcmQ+PGtleXdvcmQ+Rm9vZCBBbmFseXNpcy9pbnN0cnVtZW50

YXRpb24vbWV0aG9kczwva2V5d29yZD48a2V5d29yZD5Gb29kIENvbnRhbWluYXRpb24vKmFuYWx5

c2lzPC9rZXl3b3JkPjxrZXl3b3JkPipGb29kIE1pY3JvYmlvbG9neTwva2V5d29yZD48a2V5d29y

ZD5PbGlnb251Y2xlb3RpZGUgQXJyYXkgU2VxdWVuY2UgQW5hbHlzaXMvKmluc3RydW1lbnRhdGlv

bi9tZXRob2RzPC9rZXl3b3JkPjxrZXl3b3JkPlJOQSwgUmlib3NvbWFsLCAxNlMvYW5hbHlzaXMv

KmdlbmV0aWNzPC9rZXl3b3JkPjxrZXl3b3JkPlJlcHJvZHVjaWJpbGl0eSBvZiBSZXN1bHRzPC9r

ZXl3b3JkPjxrZXl3b3JkPlNlbnNpdGl2aXR5IGFuZCBTcGVjaWZpY2l0eTwva2V5d29yZD48L2tl

eXdvcmRzPjxkYXRlcz48eWVhcj4yMDA3PC95ZWFyPjxwdWItZGF0ZXM+PGRhdGU+SmFuIDE1PC9k

YXRlPjwvcHViLWRhdGVzPjwvZGF0ZXM+PGlzYm4+MDk1Ni01NjYzIChQcmludCkmI3hEOzA5NTYt

NTY2MyAoTGlua2luZyk8L2lzYm4+PGFjY2Vzc2lvbi1udW0+MTY2MjE1MDM8L2FjY2Vzc2lvbi1u

dW0+PHdvcmstdHlwZT5FdmFsdWF0aW9uIFN0dWRpZXMmI3hEO1Jlc2VhcmNoIFN1cHBvcnQsIE5v

bi1VLlMuIEdvdiZhcG9zO3Q8L3dvcmstdHlwZT48dXJscz48cmVsYXRlZC11cmxzPjx1cmw+aHR0

cDovL3d3dy5uY2JpLm5sbS5uaWguZ292L3B1Ym1lZC8xNjYyMTUwMzwvdXJsPjwvcmVsYXRlZC11

cmxzPjwvdXJscz48ZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+MTAuMTAxNi9qLmJpb3MuMjAwNi4w

My4wMDU8L2VsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjxsYW5ndWFnZT5lbmc8L2xhbmd1YWdlPjwv

cmVjb3JkPjwvQ2l0ZT48L0VuZE5vdGU+

ADDIN EN.CITE.DATA [2], 23S rRNA and 16S-23S rRNA intergenic spacer region and gene segments from a group of pathogens PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5QYWxrYS1TYW50aW5pPC9BdXRob3I+PFllYXI+MjAwOTwv

WWVhcj48UmVjTnVtPjExNzY8L1JlY051bT48RGlzcGxheVRleHQ+WzNdPC9EaXNwbGF5VGV4dD48

cmVjb3JkPjxyZWMtbnVtYmVyPjExNzY8L3JlYy1udW1iZXI+PGZvcmVpZ24ta2V5cz48a2V5IGFw

cD0iRU4iIGRiLWlkPSJ3eDkwcjlwdDhydHIyMGVmdHZ5dnowYTR0MDJ2MHpzdzAyd3YiPjExNzY8

L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwv

cmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPlBhbGthLVNhbnRpbmksIE0u

PC9hdXRob3I+PGF1dGhvcj5DbGV2ZW4sIEIuIEUuPC9hdXRob3I+PGF1dGhvcj5FaWNoaW5nZXIs

IEwuPC9hdXRob3I+PGF1dGhvcj5Lcm9ua2UsIE0uPC9hdXRob3I+PGF1dGhvcj5LcnV0LCBPLjwv

YXV0aG9yPjwvYXV0aG9ycz48L2NvbnRyaWJ1dG9ycz48YXV0aC1hZGRyZXNzPkluc3RpdHV0ZSBm

b3IgTWVkaWNhbCBNaWNyb2Jpb2xvZ3ksIEltbXVub2xvZ3kgYW5kIEh5Z2llbmUsIE1lZGljYWwg

RmFjdWx0eSwgVW5pdmVyc2l0eSBvZiBDb2xvZ25lLCBHZXJtYW55LiBtcGFsa2Etc2FudGluaUBt

bW0uY29tPC9hdXRoLWFkZHJlc3M+PHRpdGxlcz48dGl0bGU+TGFyZ2Ugc2NhbGUgbXVsdGlwbGV4

IFBDUiBpbXByb3ZlcyBwYXRob2dlbiBkZXRlY3Rpb24gYnkgRE5BIG1pY3JvYXJyYXlzPC90aXRs

ZT48c2Vjb25kYXJ5LXRpdGxlPkJNQyBNaWNyb2Jpb2w8L3NlY29uZGFyeS10aXRsZT48YWx0LXRp

dGxlPkJNQyBtaWNyb2Jpb2xvZ3k8L2FsdC10aXRsZT48L3RpdGxlcz48cGVyaW9kaWNhbD48ZnVs

bC10aXRsZT5CTUMgTWljcm9iaW9sPC9mdWxsLXRpdGxlPjwvcGVyaW9kaWNhbD48cGFnZXM+MTwv

cGFnZXM+PHZvbHVtZT45PC92b2x1bWU+PGVkaXRpb24+MjAwOS8wMS8wNjwvZWRpdGlvbj48a2V5

d29yZHM+PGtleXdvcmQ+QmFjdGVyaWEvZ2VuZXRpY3MvKmlzb2xhdGlvbiAmYW1wOyBwdXJpZmlj

YXRpb248L2tleXdvcmQ+PGtleXdvcmQ+Q2FuZGlkYSBhbGJpY2Fucy9nZW5ldGljcy8qaXNvbGF0

aW9uICZhbXA7IHB1cmlmaWNhdGlvbjwva2V5d29yZD48a2V5d29yZD5ETkEgUHJpbWVyczwva2V5

d29yZD48a2V5d29yZD5ETkEsIEJhY3RlcmlhbC8qYW5hbHlzaXMvZ2VuZXRpY3M8L2tleXdvcmQ+

PGtleXdvcmQ+RW50ZXJvY29jY3VzIGZhZWNhbGlzL2dlbmV0aWNzL2lzb2xhdGlvbiAmYW1wOyBw

dXJpZmljYXRpb248L2tleXdvcmQ+PGtleXdvcmQ+RXNjaGVyaWNoaWEgY29saS9nZW5ldGljcy9p

c29sYXRpb24gJmFtcDsgcHVyaWZpY2F0aW9uPC9rZXl3b3JkPjxrZXl3b3JkPipHZW5lcywgQmFj

dGVyaWFsPC9rZXl3b3JkPjxrZXl3b3JkPkh1bWFuczwva2V5d29yZD48a2V5d29yZD5LbGVic2ll

bGxhIHBuZXVtb25pYWUvZ2VuZXRpY3MvaXNvbGF0aW9uICZhbXA7IHB1cmlmaWNhdGlvbjwva2V5

d29yZD48a2V5d29yZD5PbGlnb251Y2xlb3RpZGUgQXJyYXkgU2VxdWVuY2UgQW5hbHlzaXMvKm1l

dGhvZHM8L2tleXdvcmQ+PGtleXdvcmQ+UG9seW1lcmFzZSBDaGFpbiBSZWFjdGlvbi8qbWV0aG9k

czwva2V5d29yZD48a2V5d29yZD5Qcm90ZXVzIG1pcmFiaWxpcy9nZW5ldGljcy9pc29sYXRpb24g

JmFtcDsgcHVyaWZpY2F0aW9uPC9rZXl3b3JkPjxrZXl3b3JkPlBzZXVkb21vbmFzIGFlcnVnaW5v

c2EvZ2VuZXRpY3MvaXNvbGF0aW9uICZhbXA7IHB1cmlmaWNhdGlvbjwva2V5d29yZD48a2V5d29y

ZD5TZW5zaXRpdml0eSBhbmQgU3BlY2lmaWNpdHk8L2tleXdvcmQ+PGtleXdvcmQ+U3RhcGh5bG9j

b2NjdXMvZ2VuZXRpY3MvaXNvbGF0aW9uICZhbXA7IHB1cmlmaWNhdGlvbjwva2V5d29yZD48L2tl

eXdvcmRzPjxkYXRlcz48eWVhcj4yMDA5PC95ZWFyPjwvZGF0ZXM+PGlzYm4+MTQ3MS0yMTgwIChF

bGVjdHJvbmljKSYjeEQ7MTQ3MS0yMTgwIChMaW5raW5nKTwvaXNibj48YWNjZXNzaW9uLW51bT4x

OTEyMTIyMzwvYWNjZXNzaW9uLW51bT48d29yay10eXBlPlJlc2VhcmNoIFN1cHBvcnQsIE5vbi1V

LlMuIEdvdiZhcG9zO3Q8L3dvcmstdHlwZT48dXJscz48cmVsYXRlZC11cmxzPjx1cmw+aHR0cDov

L3d3dy5uY2JpLm5sbS5uaWguZ292L3B1Ym1lZC8xOTEyMTIyMzwvdXJsPjwvcmVsYXRlZC11cmxz

PjwvdXJscz48Y3VzdG9tMj4yNjMxNDQ3PC9jdXN0b20yPjxlbGVjdHJvbmljLXJlc291cmNlLW51

bT4xMC4xMTg2LzE0NzEtMjE4MC05LTE8L2VsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjxsYW5ndWFn

ZT5lbmc8L2xhbmd1YWdlPjwvcmVjb3JkPjwvQ2l0ZT48L0VuZE5vdGU+

ADDIN EN.CITE PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5QYWxrYS1TYW50aW5pPC9BdXRob3I+PFllYXI+MjAwOTwv

WWVhcj48UmVjTnVtPjExNzY8L1JlY051bT48RGlzcGxheVRleHQ+WzNdPC9EaXNwbGF5VGV4dD48

cmVjb3JkPjxyZWMtbnVtYmVyPjExNzY8L3JlYy1udW1iZXI+PGZvcmVpZ24ta2V5cz48a2V5IGFw

cD0iRU4iIGRiLWlkPSJ3eDkwcjlwdDhydHIyMGVmdHZ5dnowYTR0MDJ2MHpzdzAyd3YiPjExNzY8

L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwv

cmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPlBhbGthLVNhbnRpbmksIE0u

PC9hdXRob3I+PGF1dGhvcj5DbGV2ZW4sIEIuIEUuPC9hdXRob3I+PGF1dGhvcj5FaWNoaW5nZXIs

IEwuPC9hdXRob3I+PGF1dGhvcj5Lcm9ua2UsIE0uPC9hdXRob3I+PGF1dGhvcj5LcnV0LCBPLjwv

YXV0aG9yPjwvYXV0aG9ycz48L2NvbnRyaWJ1dG9ycz48YXV0aC1hZGRyZXNzPkluc3RpdHV0ZSBm

b3IgTWVkaWNhbCBNaWNyb2Jpb2xvZ3ksIEltbXVub2xvZ3kgYW5kIEh5Z2llbmUsIE1lZGljYWwg

RmFjdWx0eSwgVW5pdmVyc2l0eSBvZiBDb2xvZ25lLCBHZXJtYW55LiBtcGFsa2Etc2FudGluaUBt

bW0uY29tPC9hdXRoLWFkZHJlc3M+PHRpdGxlcz48dGl0bGU+TGFyZ2Ugc2NhbGUgbXVsdGlwbGV4

IFBDUiBpbXByb3ZlcyBwYXRob2dlbiBkZXRlY3Rpb24gYnkgRE5BIG1pY3JvYXJyYXlzPC90aXRs

ZT48c2Vjb25kYXJ5LXRpdGxlPkJNQyBNaWNyb2Jpb2w8L3NlY29uZGFyeS10aXRsZT48YWx0LXRp

dGxlPkJNQyBtaWNyb2Jpb2xvZ3k8L2FsdC10aXRsZT48L3RpdGxlcz48cGVyaW9kaWNhbD48ZnVs

bC10aXRsZT5CTUMgTWljcm9iaW9sPC9mdWxsLXRpdGxlPjwvcGVyaW9kaWNhbD48cGFnZXM+MTwv

cGFnZXM+PHZvbHVtZT45PC92b2x1bWU+PGVkaXRpb24+MjAwOS8wMS8wNjwvZWRpdGlvbj48a2V5

d29yZHM+PGtleXdvcmQ+QmFjdGVyaWEvZ2VuZXRpY3MvKmlzb2xhdGlvbiAmYW1wOyBwdXJpZmlj

YXRpb248L2tleXdvcmQ+PGtleXdvcmQ+Q2FuZGlkYSBhbGJpY2Fucy9nZW5ldGljcy8qaXNvbGF0

aW9uICZhbXA7IHB1cmlmaWNhdGlvbjwva2V5d29yZD48a2V5d29yZD5ETkEgUHJpbWVyczwva2V5

d29yZD48a2V5d29yZD5ETkEsIEJhY3RlcmlhbC8qYW5hbHlzaXMvZ2VuZXRpY3M8L2tleXdvcmQ+

PGtleXdvcmQ+RW50ZXJvY29jY3VzIGZhZWNhbGlzL2dlbmV0aWNzL2lzb2xhdGlvbiAmYW1wOyBw

dXJpZmljYXRpb248L2tleXdvcmQ+PGtleXdvcmQ+RXNjaGVyaWNoaWEgY29saS9nZW5ldGljcy9p

c29sYXRpb24gJmFtcDsgcHVyaWZpY2F0aW9uPC9rZXl3b3JkPjxrZXl3b3JkPipHZW5lcywgQmFj

dGVyaWFsPC9rZXl3b3JkPjxrZXl3b3JkPkh1bWFuczwva2V5d29yZD48a2V5d29yZD5LbGVic2ll

bGxhIHBuZXVtb25pYWUvZ2VuZXRpY3MvaXNvbGF0aW9uICZhbXA7IHB1cmlmaWNhdGlvbjwva2V5

d29yZD48a2V5d29yZD5PbGlnb251Y2xlb3RpZGUgQXJyYXkgU2VxdWVuY2UgQW5hbHlzaXMvKm1l

dGhvZHM8L2tleXdvcmQ+PGtleXdvcmQ+UG9seW1lcmFzZSBDaGFpbiBSZWFjdGlvbi8qbWV0aG9k

czwva2V5d29yZD48a2V5d29yZD5Qcm90ZXVzIG1pcmFiaWxpcy9nZW5ldGljcy9pc29sYXRpb24g

JmFtcDsgcHVyaWZpY2F0aW9uPC9rZXl3b3JkPjxrZXl3b3JkPlBzZXVkb21vbmFzIGFlcnVnaW5v

c2EvZ2VuZXRpY3MvaXNvbGF0aW9uICZhbXA7IHB1cmlmaWNhdGlvbjwva2V5d29yZD48a2V5d29y

ZD5TZW5zaXRpdml0eSBhbmQgU3BlY2lmaWNpdHk8L2tleXdvcmQ+PGtleXdvcmQ+U3RhcGh5bG9j

b2NjdXMvZ2VuZXRpY3MvaXNvbGF0aW9uICZhbXA7IHB1cmlmaWNhdGlvbjwva2V5d29yZD48L2tl

eXdvcmRzPjxkYXRlcz48eWVhcj4yMDA5PC95ZWFyPjwvZGF0ZXM+PGlzYm4+MTQ3MS0yMTgwIChF

bGVjdHJvbmljKSYjeEQ7MTQ3MS0yMTgwIChMaW5raW5nKTwvaXNibj48YWNjZXNzaW9uLW51bT4x

OTEyMTIyMzwvYWNjZXNzaW9uLW51bT48d29yay10eXBlPlJlc2VhcmNoIFN1cHBvcnQsIE5vbi1V

LlMuIEdvdiZhcG9zO3Q8L3dvcmstdHlwZT48dXJscz48cmVsYXRlZC11cmxzPjx1cmw+aHR0cDov

L3d3dy5uY2JpLm5sbS5uaWguZ292L3B1Ym1lZC8xOTEyMTIyMzwvdXJsPjwvcmVsYXRlZC11cmxz

PjwvdXJscz48Y3VzdG9tMj4yNjMxNDQ3PC9jdXN0b20yPjxlbGVjdHJvbmljLXJlc291cmNlLW51

bT4xMC4xMTg2LzE0NzEtMjE4MC05LTE8L2VsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjxsYW5ndWFn

ZT5lbmc8L2xhbmd1YWdlPjwvcmVjb3JkPjwvQ2l0ZT48L0VuZE5vdGU+

ADDIN EN.CITE.DATA [3].The universal and species specific probes to be spotted on the array are designed based on common and unique sequences from a set of bacterial sequences by comparing sequences within this group and others using multiple sequence alignments and a BLAST search PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5Zb288L0F1dGhvcj48WWVhcj4yMDA5PC9ZZWFyPjxSZWNO

dW0+MTE3NTwvUmVjTnVtPjxEaXNwbGF5VGV4dD5bNF08L0Rpc3BsYXlUZXh0PjxyZWNvcmQ+PHJl

Yy1udW1iZXI+MTE3NTwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGIt

aWQ9Ind4OTByOXB0OHJ0cjIwZWZ0dnl2ejBhNHQwMnYwenN3MDJ3diI+MTE3NTwva2V5PjwvZm9y

ZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJKb3VybmFsIEFydGljbGUiPjE3PC9yZWYtdHlwZT48

Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+WW9vLCBTLiBNLjwvYXV0aG9yPjxhdXRob3I+

TGVlLCBTLiBZLjwvYXV0aG9yPjxhdXRob3I+Q2hhbmcsIEsuIEguPC9hdXRob3I+PGF1dGhvcj5Z

b28sIFMuIFkuPC9hdXRob3I+PGF1dGhvcj5Zb28sIE4uIEMuPC9hdXRob3I+PGF1dGhvcj5LZXVt

LCBLLiBDLjwvYXV0aG9yPjxhdXRob3I+WW9vLCBXLiBNLjwvYXV0aG9yPjxhdXRob3I+S2ltLCBK

LiBNLjwvYXV0aG9yPjxhdXRob3I+Q2hvaSwgSi4gWS48L2F1dGhvcj48L2F1dGhvcnM+PC9jb250

cmlidXRvcnM+PGF1dGgtYWRkcmVzcz5EZXBhcnRtZW50IG9mIENoZW1pY2FsICZhbXA7IEJpb21v

bGVjdWxhciBFbmdpbmVlcmluZyAoQksyMSBQcm9ncmFtKSwgS0FJU1QsIERhZWplb24gMzA1LTcw

MSwgUmVwdWJsaWMgb2YgS29yZWEuPC9hdXRoLWFkZHJlc3M+PHRpdGxlcz48dGl0bGU+SGlnaC10

aHJvdWdocHV0IGlkZW50aWZpY2F0aW9uIG9mIGNsaW5pY2FsbHkgaW1wb3J0YW50IGJhY3Rlcmlh

bCBwYXRob2dlbnMgdXNpbmcgRE5BIG1pY3JvYXJyYXk8L3RpdGxlPjxzZWNvbmRhcnktdGl0bGU+

TW9sIENlbGwgUHJvYmVzPC9zZWNvbmRhcnktdGl0bGU+PGFsdC10aXRsZT5Nb2xlY3VsYXIgYW5k

IGNlbGx1bGFyIHByb2JlczwvYWx0LXRpdGxlPjwvdGl0bGVzPjxwZXJpb2RpY2FsPjxmdWxsLXRp

dGxlPk1vbCBDZWxsIFByb2JlczwvZnVsbC10aXRsZT48YWJici0xPk1vbGVjdWxhciBhbmQgY2Vs

bHVsYXIgcHJvYmVzPC9hYmJyLTE+PC9wZXJpb2RpY2FsPjxhbHQtcGVyaW9kaWNhbD48ZnVsbC10

aXRsZT5Nb2wgQ2VsbCBQcm9iZXM8L2Z1bGwtdGl0bGU+PGFiYnItMT5Nb2xlY3VsYXIgYW5kIGNl

bGx1bGFyIHByb2JlczwvYWJici0xPjwvYWx0LXBlcmlvZGljYWw+PHBhZ2VzPjE3MS03PC9wYWdl

cz48dm9sdW1lPjIzPC92b2x1bWU+PG51bWJlcj4zLTQ8L251bWJlcj48ZWRpdGlvbj4yMDA5LzA0

LzIxPC9lZGl0aW9uPjxrZXl3b3Jkcz48a2V5d29yZD5CYWN0ZXJpYS8qZ2VuZXRpY3MvKmlzb2xh

dGlvbiAmYW1wOyBwdXJpZmljYXRpb24vcGF0aG9nZW5pY2l0eTwva2V5d29yZD48a2V5d29yZD5C

YWN0ZXJpYWwgSW5mZWN0aW9ucy8qZGlhZ25vc2lzLyptaWNyb2Jpb2xvZ3k8L2tleXdvcmQ+PGtl

eXdvcmQ+Q29tbXVuaWNhYmxlIERpc2Vhc2VzL21pY3JvYmlvbG9neTwva2V5d29yZD48a2V5d29y

ZD5ETkEsIFJpYm9zb21hbCBTcGFjZXIvZ2VuZXRpY3M8L2tleXdvcmQ+PGtleXdvcmQ+RW50ZXJv

YmFjdGVyIGNsb2FjYWUvZ2VuZXRpY3MvaXNvbGF0aW9uICZhbXA7IHB1cmlmaWNhdGlvbi9wYXRo

b2dlbmljaXR5PC9rZXl3b3JkPjxrZXl3b3JkPkVudGVyb2NvY2N1cyBmYWVjaXVtL2dlbmV0aWNz

L2lzb2xhdGlvbiAmYW1wOyBwdXJpZmljYXRpb24vcGF0aG9nZW5pY2l0eTwva2V5d29yZD48a2V5

d29yZD5IdW1hbnM8L2tleXdvcmQ+PGtleXdvcmQ+T2xpZ29udWNsZW90aWRlIEFycmF5IFNlcXVl

bmNlIEFuYWx5c2lzLyptZXRob2RzPC9rZXl3b3JkPjxrZXl3b3JkPlJlcHJvZHVjaWJpbGl0eSBv

ZiBSZXN1bHRzPC9rZXl3b3JkPjxrZXl3b3JkPlNlbnNpdGl2aXR5IGFuZCBTcGVjaWZpY2l0eTwv

a2V5d29yZD48L2tleXdvcmRzPjxkYXRlcz48eWVhcj4yMDA5PC95ZWFyPjxwdWItZGF0ZXM+PGRh

dGU+SnVuLUF1ZzwvZGF0ZT48L3B1Yi1kYXRlcz48L2RhdGVzPjxpc2JuPjEwOTYtMTE5NCAoRWxl

Y3Ryb25pYykmI3hEOzA4OTAtODUwOCAoTGlua2luZyk8L2lzYm4+PGFjY2Vzc2lvbi1udW0+MTkz

NzQ5NDY8L2FjY2Vzc2lvbi1udW0+PHdvcmstdHlwZT5SZXNlYXJjaCBTdXBwb3J0LCBOb24tVS5T

LiBHb3YmYXBvczt0PC93b3JrLXR5cGU+PHVybHM+PHJlbGF0ZWQtdXJscz48dXJsPmh0dHA6Ly93

d3cubmNiaS5ubG0ubmloLmdvdi9wdWJtZWQvMTkzNzQ5NDY8L3VybD48L3JlbGF0ZWQtdXJscz48

L3VybHM+PGVsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjEwLjEwMTYvai5tY3AuMjAwOS4wMy4wMDQ8

L2VsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjxsYW5ndWFnZT5lbmc8L2xhbmd1YWdlPjwvcmVjb3Jk

PjwvQ2l0ZT48L0VuZE5vdGU+AG==

ADDIN EN.CITE PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5Zb288L0F1dGhvcj48WWVhcj4yMDA5PC9ZZWFyPjxSZWNO

dW0+MTE3NTwvUmVjTnVtPjxEaXNwbGF5VGV4dD5bNF08L0Rpc3BsYXlUZXh0PjxyZWNvcmQ+PHJl

Yy1udW1iZXI+MTE3NTwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGIt

aWQ9Ind4OTByOXB0OHJ0cjIwZWZ0dnl2ejBhNHQwMnYwenN3MDJ3diI+MTE3NTwva2V5PjwvZm9y

ZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJKb3VybmFsIEFydGljbGUiPjE3PC9yZWYtdHlwZT48

Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+WW9vLCBTLiBNLjwvYXV0aG9yPjxhdXRob3I+

TGVlLCBTLiBZLjwvYXV0aG9yPjxhdXRob3I+Q2hhbmcsIEsuIEguPC9hdXRob3I+PGF1dGhvcj5Z

b28sIFMuIFkuPC9hdXRob3I+PGF1dGhvcj5Zb28sIE4uIEMuPC9hdXRob3I+PGF1dGhvcj5LZXVt

LCBLLiBDLjwvYXV0aG9yPjxhdXRob3I+WW9vLCBXLiBNLjwvYXV0aG9yPjxhdXRob3I+S2ltLCBK

LiBNLjwvYXV0aG9yPjxhdXRob3I+Q2hvaSwgSi4gWS48L2F1dGhvcj48L2F1dGhvcnM+PC9jb250

cmlidXRvcnM+PGF1dGgtYWRkcmVzcz5EZXBhcnRtZW50IG9mIENoZW1pY2FsICZhbXA7IEJpb21v

bGVjdWxhciBFbmdpbmVlcmluZyAoQksyMSBQcm9ncmFtKSwgS0FJU1QsIERhZWplb24gMzA1LTcw

MSwgUmVwdWJsaWMgb2YgS29yZWEuPC9hdXRoLWFkZHJlc3M+PHRpdGxlcz48dGl0bGU+SGlnaC10

aHJvdWdocHV0IGlkZW50aWZpY2F0aW9uIG9mIGNsaW5pY2FsbHkgaW1wb3J0YW50IGJhY3Rlcmlh

bCBwYXRob2dlbnMgdXNpbmcgRE5BIG1pY3JvYXJyYXk8L3RpdGxlPjxzZWNvbmRhcnktdGl0bGU+

TW9sIENlbGwgUHJvYmVzPC9zZWNvbmRhcnktdGl0bGU+PGFsdC10aXRsZT5Nb2xlY3VsYXIgYW5k

IGNlbGx1bGFyIHByb2JlczwvYWx0LXRpdGxlPjwvdGl0bGVzPjxwZXJpb2RpY2FsPjxmdWxsLXRp

dGxlPk1vbCBDZWxsIFByb2JlczwvZnVsbC10aXRsZT48YWJici0xPk1vbGVjdWxhciBhbmQgY2Vs

bHVsYXIgcHJvYmVzPC9hYmJyLTE+PC9wZXJpb2RpY2FsPjxhbHQtcGVyaW9kaWNhbD48ZnVsbC10

aXRsZT5Nb2wgQ2VsbCBQcm9iZXM8L2Z1bGwtdGl0bGU+PGFiYnItMT5Nb2xlY3VsYXIgYW5kIGNl

bGx1bGFyIHByb2JlczwvYWJici0xPjwvYWx0LXBlcmlvZGljYWw+PHBhZ2VzPjE3MS03PC9wYWdl

cz48dm9sdW1lPjIzPC92b2x1bWU+PG51bWJlcj4zLTQ8L251bWJlcj48ZWRpdGlvbj4yMDA5LzA0

LzIxPC9lZGl0aW9uPjxrZXl3b3Jkcz48a2V5d29yZD5CYWN0ZXJpYS8qZ2VuZXRpY3MvKmlzb2xh

dGlvbiAmYW1wOyBwdXJpZmljYXRpb24vcGF0aG9nZW5pY2l0eTwva2V5d29yZD48a2V5d29yZD5C

YWN0ZXJpYWwgSW5mZWN0aW9ucy8qZGlhZ25vc2lzLyptaWNyb2Jpb2xvZ3k8L2tleXdvcmQ+PGtl

eXdvcmQ+Q29tbXVuaWNhYmxlIERpc2Vhc2VzL21pY3JvYmlvbG9neTwva2V5d29yZD48a2V5d29y

ZD5ETkEsIFJpYm9zb21hbCBTcGFjZXIvZ2VuZXRpY3M8L2tleXdvcmQ+PGtleXdvcmQ+RW50ZXJv

YmFjdGVyIGNsb2FjYWUvZ2VuZXRpY3MvaXNvbGF0aW9uICZhbXA7IHB1cmlmaWNhdGlvbi9wYXRo

b2dlbmljaXR5PC9rZXl3b3JkPjxrZXl3b3JkPkVudGVyb2NvY2N1cyBmYWVjaXVtL2dlbmV0aWNz

L2lzb2xhdGlvbiAmYW1wOyBwdXJpZmljYXRpb24vcGF0aG9nZW5pY2l0eTwva2V5d29yZD48a2V5

d29yZD5IdW1hbnM8L2tleXdvcmQ+PGtleXdvcmQ+T2xpZ29udWNsZW90aWRlIEFycmF5IFNlcXVl

bmNlIEFuYWx5c2lzLyptZXRob2RzPC9rZXl3b3JkPjxrZXl3b3JkPlJlcHJvZHVjaWJpbGl0eSBv

ZiBSZXN1bHRzPC9rZXl3b3JkPjxrZXl3b3JkPlNlbnNpdGl2aXR5IGFuZCBTcGVjaWZpY2l0eTwv

a2V5d29yZD48L2tleXdvcmRzPjxkYXRlcz48eWVhcj4yMDA5PC95ZWFyPjxwdWItZGF0ZXM+PGRh

dGU+SnVuLUF1ZzwvZGF0ZT48L3B1Yi1kYXRlcz48L2RhdGVzPjxpc2JuPjEwOTYtMTE5NCAoRWxl

Y3Ryb25pYykmI3hEOzA4OTAtODUwOCAoTGlua2luZyk8L2lzYm4+PGFjY2Vzc2lvbi1udW0+MTkz

NzQ5NDY8L2FjY2Vzc2lvbi1udW0+PHdvcmstdHlwZT5SZXNlYXJjaCBTdXBwb3J0LCBOb24tVS5T

LiBHb3YmYXBvczt0PC93b3JrLXR5cGU+PHVybHM+PHJlbGF0ZWQtdXJscz48dXJsPmh0dHA6Ly93

d3cubmNiaS5ubG0ubmloLmdvdi9wdWJtZWQvMTkzNzQ5NDY8L3VybD48L3JlbGF0ZWQtdXJscz48

L3VybHM+PGVsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjEwLjEwMTYvai5tY3AuMjAwOS4wMy4wMDQ8

L2VsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjxsYW5ndWFnZT5lbmc8L2xhbmd1YWdlPjwvcmVjb3Jk

PjwvQ2l0ZT48L0VuZE5vdGU+AG==

ADDIN EN.CITE.DATA [4]. However most studies on 16S rRNA sequences offer very low sequence diversity, thus difficulties arise in discrimination of phylogenetically close bacteria or subspecies. The probe specificity was affected by the sequence mismatches between the capture probe and the target probe and this affected probe specificity PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5Fb208L0F1dGhvcj48WWVhcj4yMDA3PC9ZZWFyPjxSZWNO

dW0+MTE3MzwvUmVjTnVtPjxEaXNwbGF5VGV4dD5bMl08L0Rpc3BsYXlUZXh0PjxyZWNvcmQ+PHJl

Yy1udW1iZXI+MTE3MzwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGIt

aWQ9Ind4OTByOXB0OHJ0cjIwZWZ0dnl2ejBhNHQwMnYwenN3MDJ3diI+MTE3Mzwva2V5PjwvZm9y

ZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJKb3VybmFsIEFydGljbGUiPjE3PC9yZWYtdHlwZT48

Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+RW9tLCBILiBTLjwvYXV0aG9yPjxhdXRob3I+

SHdhbmcsIEIuIEguPC9hdXRob3I+PGF1dGhvcj5LaW0sIEQuIEguPC9hdXRob3I+PGF1dGhvcj5M

ZWUsIEkuIEIuPC9hdXRob3I+PGF1dGhvcj5LaW0sIFkuIEguPC9hdXRob3I+PGF1dGhvcj5DaGEs

IEguIEouPC9hdXRob3I+PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjxhdXRoLWFkZHJlc3M+RGl2

aXNpb24gb2YgTW9sZWN1bGFyIGFuZCBMaWZlIFNjaWVuY2VzLCBQb2hhbmcgVW5pdmVyc2l0eSBv

ZiBTY2llbmNlIGFuZCBUZWNobm9sb2d5LCBQb2hhbmcgNzkwLTc4NCwgUmVwdWJsaWMgb2YgS29y

ZWEuPC9hdXRoLWFkZHJlc3M+PHRpdGxlcz48dGl0bGU+TXVsdGlwbGUgZGV0ZWN0aW9uIG9mIGZv

b2QtYm9ybmUgcGF0aG9nZW5pYyBiYWN0ZXJpYSB1c2luZyBhIG5vdmVsIDE2UyByRE5BLWJhc2Vk

IG9saWdvbnVjbGVvdGlkZSBzaWduYXR1cmUgY2hpcDwvdGl0bGU+PHNlY29uZGFyeS10aXRsZT5C

aW9zZW5zIEJpb2VsZWN0cm9uPC9zZWNvbmRhcnktdGl0bGU+PGFsdC10aXRsZT5CaW9zZW5zb3Jz

ICZhbXA7IGJpb2VsZWN0cm9uaWNzPC9hbHQtdGl0bGU+PC90aXRsZXM+PHBlcmlvZGljYWw+PGZ1

bGwtdGl0bGU+Qmlvc2VucyBCaW9lbGVjdHJvbjwvZnVsbC10aXRsZT48YWJici0xPkJpb3NlbnNv

cnMgJmFtcDsgYmlvZWxlY3Ryb25pY3M8L2FiYnItMT48L3BlcmlvZGljYWw+PGFsdC1wZXJpb2Rp

Y2FsPjxmdWxsLXRpdGxlPkJpb3NlbnMgQmlvZWxlY3Ryb248L2Z1bGwtdGl0bGU+PGFiYnItMT5C

aW9zZW5zb3JzICZhbXA7IGJpb2VsZWN0cm9uaWNzPC9hYmJyLTE+PC9hbHQtcGVyaW9kaWNhbD48

cGFnZXM+ODQ1LTUzPC9wYWdlcz48dm9sdW1lPjIyPC92b2x1bWU+PG51bWJlcj42PC9udW1iZXI+

PGVkaXRpb24+MjAwNi8wNC8yMDwvZWRpdGlvbj48a2V5d29yZHM+PGtleXdvcmQ+QmFjdGVyaWEv

KmdlbmV0aWNzLyppc29sYXRpb24gJmFtcDsgcHVyaWZpY2F0aW9uL3BhdGhvZ2VuaWNpdHk8L2tl

eXdvcmQ+PGtleXdvcmQ+RE5BLCBCYWN0ZXJpYWwvYW5hbHlzaXMvKmdlbmV0aWNzPC9rZXl3b3Jk

PjxrZXl3b3JkPkVxdWlwbWVudCBEZXNpZ248L2tleXdvcmQ+PGtleXdvcmQ+RXF1aXBtZW50IEZh

aWx1cmUgQW5hbHlzaXM8L2tleXdvcmQ+PGtleXdvcmQ+Rm9vZCBBbmFseXNpcy9pbnN0cnVtZW50

YXRpb24vbWV0aG9kczwva2V5d29yZD48a2V5d29yZD5Gb29kIENvbnRhbWluYXRpb24vKmFuYWx5

c2lzPC9rZXl3b3JkPjxrZXl3b3JkPipGb29kIE1pY3JvYmlvbG9neTwva2V5d29yZD48a2V5d29y

ZD5PbGlnb251Y2xlb3RpZGUgQXJyYXkgU2VxdWVuY2UgQW5hbHlzaXMvKmluc3RydW1lbnRhdGlv

bi9tZXRob2RzPC9rZXl3b3JkPjxrZXl3b3JkPlJOQSwgUmlib3NvbWFsLCAxNlMvYW5hbHlzaXMv

KmdlbmV0aWNzPC9rZXl3b3JkPjxrZXl3b3JkPlJlcHJvZHVjaWJpbGl0eSBvZiBSZXN1bHRzPC9r

ZXl3b3JkPjxrZXl3b3JkPlNlbnNpdGl2aXR5IGFuZCBTcGVjaWZpY2l0eTwva2V5d29yZD48L2tl

eXdvcmRzPjxkYXRlcz48eWVhcj4yMDA3PC95ZWFyPjxwdWItZGF0ZXM+PGRhdGU+SmFuIDE1PC9k

YXRlPjwvcHViLWRhdGVzPjwvZGF0ZXM+PGlzYm4+MDk1Ni01NjYzIChQcmludCkmI3hEOzA5NTYt

NTY2MyAoTGlua2luZyk8L2lzYm4+PGFjY2Vzc2lvbi1udW0+MTY2MjE1MDM8L2FjY2Vzc2lvbi1u

dW0+PHdvcmstdHlwZT5FdmFsdWF0aW9uIFN0dWRpZXMmI3hEO1Jlc2VhcmNoIFN1cHBvcnQsIE5v

bi1VLlMuIEdvdiZhcG9zO3Q8L3dvcmstdHlwZT48dXJscz48cmVsYXRlZC11cmxzPjx1cmw+aHR0

cDovL3d3dy5uY2JpLm5sbS5uaWguZ292L3B1Ym1lZC8xNjYyMTUwMzwvdXJsPjwvcmVsYXRlZC11

cmxzPjwvdXJscz48ZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+MTAuMTAxNi9qLmJpb3MuMjAwNi4w

My4wMDU8L2VsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjxsYW5ndWFnZT5lbmc8L2xhbmd1YWdlPjwv

cmVjb3JkPjwvQ2l0ZT48L0VuZE5vdGU+

ADDIN EN.CITE PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5Fb208L0F1dGhvcj48WWVhcj4yMDA3PC9ZZWFyPjxSZWNO

dW0+MTE3MzwvUmVjTnVtPjxEaXNwbGF5VGV4dD5bMl08L0Rpc3BsYXlUZXh0PjxyZWNvcmQ+PHJl

Yy1udW1iZXI+MTE3MzwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGIt

aWQ9Ind4OTByOXB0OHJ0cjIwZWZ0dnl2ejBhNHQwMnYwenN3MDJ3diI+MTE3Mzwva2V5PjwvZm9y

ZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJKb3VybmFsIEFydGljbGUiPjE3PC9yZWYtdHlwZT48

Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+RW9tLCBILiBTLjwvYXV0aG9yPjxhdXRob3I+

SHdhbmcsIEIuIEguPC9hdXRob3I+PGF1dGhvcj5LaW0sIEQuIEguPC9hdXRob3I+PGF1dGhvcj5M

ZWUsIEkuIEIuPC9hdXRob3I+PGF1dGhvcj5LaW0sIFkuIEguPC9hdXRob3I+PGF1dGhvcj5DaGEs

IEguIEouPC9hdXRob3I+PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjxhdXRoLWFkZHJlc3M+RGl2

aXNpb24gb2YgTW9sZWN1bGFyIGFuZCBMaWZlIFNjaWVuY2VzLCBQb2hhbmcgVW5pdmVyc2l0eSBv

ZiBTY2llbmNlIGFuZCBUZWNobm9sb2d5LCBQb2hhbmcgNzkwLTc4NCwgUmVwdWJsaWMgb2YgS29y

ZWEuPC9hdXRoLWFkZHJlc3M+PHRpdGxlcz48dGl0bGU+TXVsdGlwbGUgZGV0ZWN0aW9uIG9mIGZv

b2QtYm9ybmUgcGF0aG9nZW5pYyBiYWN0ZXJpYSB1c2luZyBhIG5vdmVsIDE2UyByRE5BLWJhc2Vk

IG9saWdvbnVjbGVvdGlkZSBzaWduYXR1cmUgY2hpcDwvdGl0bGU+PHNlY29uZGFyeS10aXRsZT5C

aW9zZW5zIEJpb2VsZWN0cm9uPC9zZWNvbmRhcnktdGl0bGU+PGFsdC10aXRsZT5CaW9zZW5zb3Jz

ICZhbXA7IGJpb2VsZWN0cm9uaWNzPC9hbHQtdGl0bGU+PC90aXRsZXM+PHBlcmlvZGljYWw+PGZ1

bGwtdGl0bGU+Qmlvc2VucyBCaW9lbGVjdHJvbjwvZnVsbC10aXRsZT48YWJici0xPkJpb3NlbnNv

cnMgJmFtcDsgYmlvZWxlY3Ryb25pY3M8L2FiYnItMT48L3BlcmlvZGljYWw+PGFsdC1wZXJpb2Rp

Y2FsPjxmdWxsLXRpdGxlPkJpb3NlbnMgQmlvZWxlY3Ryb248L2Z1bGwtdGl0bGU+PGFiYnItMT5C

aW9zZW5zb3JzICZhbXA7IGJpb2VsZWN0cm9uaWNzPC9hYmJyLTE+PC9hbHQtcGVyaW9kaWNhbD48

cGFnZXM+ODQ1LTUzPC9wYWdlcz48dm9sdW1lPjIyPC92b2x1bWU+PG51bWJlcj42PC9udW1iZXI+

PGVkaXRpb24+MjAwNi8wNC8yMDwvZWRpdGlvbj48a2V5d29yZHM+PGtleXdvcmQ+QmFjdGVyaWEv

KmdlbmV0aWNzLyppc29sYXRpb24gJmFtcDsgcHVyaWZpY2F0aW9uL3BhdGhvZ2VuaWNpdHk8L2tl

eXdvcmQ+PGtleXdvcmQ+RE5BLCBCYWN0ZXJpYWwvYW5hbHlzaXMvKmdlbmV0aWNzPC9rZXl3b3Jk

PjxrZXl3b3JkPkVxdWlwbWVudCBEZXNpZ248L2tleXdvcmQ+PGtleXdvcmQ+RXF1aXBtZW50IEZh

aWx1cmUgQW5hbHlzaXM8L2tleXdvcmQ+PGtleXdvcmQ+Rm9vZCBBbmFseXNpcy9pbnN0cnVtZW50

YXRpb24vbWV0aG9kczwva2V5d29yZD48a2V5d29yZD5Gb29kIENvbnRhbWluYXRpb24vKmFuYWx5

c2lzPC9rZXl3b3JkPjxrZXl3b3JkPipGb29kIE1pY3JvYmlvbG9neTwva2V5d29yZD48a2V5d29y

ZD5PbGlnb251Y2xlb3RpZGUgQXJyYXkgU2VxdWVuY2UgQW5hbHlzaXMvKmluc3RydW1lbnRhdGlv

bi9tZXRob2RzPC9rZXl3b3JkPjxrZXl3b3JkPlJOQSwgUmlib3NvbWFsLCAxNlMvYW5hbHlzaXMv

KmdlbmV0aWNzPC9rZXl3b3JkPjxrZXl3b3JkPlJlcHJvZHVjaWJpbGl0eSBvZiBSZXN1bHRzPC9r

ZXl3b3JkPjxrZXl3b3JkPlNlbnNpdGl2aXR5IGFuZCBTcGVjaWZpY2l0eTwva2V5d29yZD48L2tl

eXdvcmRzPjxkYXRlcz48eWVhcj4yMDA3PC95ZWFyPjxwdWItZGF0ZXM+PGRhdGU+SmFuIDE1PC9k

YXRlPjwvcHViLWRhdGVzPjwvZGF0ZXM+PGlzYm4+MDk1Ni01NjYzIChQcmludCkmI3hEOzA5NTYt

NTY2MyAoTGlua2luZyk8L2lzYm4+PGFjY2Vzc2lvbi1udW0+MTY2MjE1MDM8L2FjY2Vzc2lvbi1u

dW0+PHdvcmstdHlwZT5FdmFsdWF0aW9uIFN0dWRpZXMmI3hEO1Jlc2VhcmNoIFN1cHBvcnQsIE5v

bi1VLlMuIEdvdiZhcG9zO3Q8L3dvcmstdHlwZT48dXJscz48cmVsYXRlZC11cmxzPjx1cmw+aHR0

cDovL3d3dy5uY2JpLm5sbS5uaWguZ292L3B1Ym1lZC8xNjYyMTUwMzwvdXJsPjwvcmVsYXRlZC11

cmxzPjwvdXJscz48ZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+MTAuMTAxNi9qLmJpb3MuMjAwNi4w

My4wMDU8L2VsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjxsYW5ndWFnZT5lbmc8L2xhbmd1YWdlPjwv

cmVjb3JkPjwvQ2l0ZT48L0VuZE5vdGU+

ADDIN EN.CITE.DATA [2]. Further selected pathogenic bacteria were used to construct 16s rRNA oligonucleotide microarray capture probes ADDIN EN.CITE <EndNote><Cite><Author>Hwang</Author><Year>2010</Year><RecNum>1218</RecNum><DisplayText>[5]</DisplayText><record><rec-number>1218</rec-number><foreign-keys><key app="EN" db-id="wx90r9pt8rtr20eftvyvz0a4t02v0zsw02wv">1218</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Hwang, B. H.</author><author>Cha, H. J.</author></authors></contributors><auth-address>National Research Laboratory of Molecular Biotechnology, Department of Chemical Engineering, Pohang University of Science and Technology, Pohang 790-784, Korea.</auth-address><titles><title>Pattern-mapped multiple detection of 11 pathogenic bacteria using a 16s rDNA-based oligonucleotide microarray</title><secondary-title>Biotechnol Bioeng</secondary-title><alt-title>Biotechnology and bioengineering</alt-title></titles><periodical><full-title>Biotechnol Bioeng</full-title><abbr-1>Biotechnology and bioengineering</abbr-1></periodical><alt-periodical><full-title>Biotechnol Bioeng</full-title><abbr-1>Biotechnology and bioengineering</abbr-1></alt-periodical><pages>183-92</pages><volume>106</volume><number>2</number><edition>2010/01/22</edition><keywords><keyword>*Algorithms</keyword><keyword>Artificial Intelligence</keyword><keyword>Bacteria/classification/*genetics/*isolation &amp; purification</keyword><keyword>DNA, Bacterial/analysis/*genetics</keyword><keyword>Oligonucleotide Array Sequence Analysis/*methods</keyword><keyword>Pattern Recognition, Automated/*methods</keyword><keyword>RNA, Ribosomal, 16S/*genetics</keyword><keyword>Software</keyword></keywords><dates><year>2010</year><pub-dates><date>Jun 1</date></pub-dates></dates><isbn>1097-0290 (Electronic)&#xD;0006-3592 (Linking)</isbn><accession-num>20091734</accession-num><work-type>Research Support, Non-U.S. Gov&apos;t</work-type><urls><related-urls><url>;[5]. However some target species were difficult to discriminate by perfect match analysis due to nonspecific binding of conserved 16S rRNA derived capture probes with high sequence similarity. This group used pattern mapping statistical model using an artificial neural network algorithm trained on known pattern of a hybridization of a training set of organisms. UBDA research described in this manuscript demonstrates biodiversity studies done on soil borne bacteria and Bacillus anthracis using the UBDA array. Invasive aspergillosis is a major cause of morbidity and mortality in immune compromised and critically ill patients. Standard culture based methods for the diagnosis of Aspergillus infections have limited sensitivity and specificity and are time consuming ADDIN EN.CITE <EndNote><Cite><Author>Faber</Author><Year>2009</Year><RecNum>141</RecNum><DisplayText>[6]</DisplayText><record><rec-number>141</rec-number><foreign-keys><key app="EN" db-id="wx90r9pt8rtr20eftvyvz0a4t02v0zsw02wv">141</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Faber, J.</author><author>Moritz, N.</author><author>Henninger, N.</author><author>Zepp, F.</author><author>Knuf, M.</author></authors></contributors><auth-address>Children&apos;s Hospital, University of Mainz, Mainz, Germany.</auth-address><titles><title>Rapid detection of common pathogenic Aspergillus species by a novel real-time PCR approach</title><secondary-title>Mycoses</secondary-title></titles><pages>228-33</pages><volume>52</volume><number>3</number><edition>2008/07/23</edition><keywords><keyword>Aspergillosis/*diagnosis/*microbiology</keyword><keyword>Aspergillus/genetics/*isolation &amp; purification</keyword><keyword>DNA, Fungal/genetics</keyword><keyword>Humans</keyword><keyword>Polymerase Chain Reaction/*methods</keyword><keyword>Sensitivity and Specificity</keyword></keywords><dates><year>2009</year><pub-dates><date>May</date></pub-dates></dates><isbn>1439-0507 (Electronic)&#xD;0933-7407 (Linking)</isbn><accession-num>18643890</accession-num><urls><related-urls><url> [pii]&#xD;10.1111/j.1439-0507.2008.01565.x</electronic-resource-num><language>eng</language></record></Cite></EndNote>[6]. In patients with pulmonary aspergillosis, cultures of bronchoalveolar lavage fluid are frequently negative ADDIN EN.CITE <EndNote><Cite><Author>Kahn</Author><Year>1986</Year><RecNum>142</RecNum><DisplayText>[7]</DisplayText><record><rec-number>142</rec-number><foreign-keys><key app="EN" db-id="wx90r9pt8rtr20eftvyvz0a4t02v0zsw02wv">142</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Kahn, F. W.</author><author>Jones, J. M.</author><author>England, D. M.</author></authors></contributors><titles><title>The role of bronchoalveolar lavage in the diagnosis of invasive pulmonary aspergillosis</title><secondary-title>Am J Clin Pathol</secondary-title></titles><pages>518-23</pages><volume>86</volume><number>4</number><edition>1986/10/01</edition><keywords><keyword>Adult</keyword><keyword>Aged</keyword><keyword>Aspergillosis, Allergic Bronchopulmonary/diagnosis/*pathology</keyword><keyword>Bronchi/*pathology</keyword><keyword>Bronchoscopy</keyword><keyword>Female</keyword><keyword>Fiber Optic Technology/instrumentation</keyword><keyword>Humans</keyword><keyword>Irrigation</keyword><keyword>Male</keyword><keyword>Middle Aged</keyword><keyword>Pulmonary Alveoli/*pathology</keyword><keyword>Staining and Labeling</keyword></keywords><dates><year>1986</year><pub-dates><date>Oct</date></pub-dates></dates><isbn>0002-9173 (Print)&#xD;0002-9173 (Linking)</isbn><accession-num>2429543</accession-num><urls><related-urls><url>;[7] and by the time, that positive cultures are obtained, the disease is in its advanced stages ADDIN EN.CITE <EndNote><Cite><Author>Faber</Author><Year>2009</Year><RecNum>141</RecNum><DisplayText>[6]</DisplayText><record><rec-number>141</rec-number><foreign-keys><key app="EN" db-id="wx90r9pt8rtr20eftvyvz0a4t02v0zsw02wv">141</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Faber, J.</author><author>Moritz, N.</author><author>Henninger, N.</author><author>Zepp, F.</author><author>Knuf, M.</author></authors></contributors><auth-address>Children&apos;s Hospital, University of Mainz, Mainz, Germany.</auth-address><titles><title>Rapid detection of common pathogenic Aspergillus species by a novel real-time PCR approach</title><secondary-title>Mycoses</secondary-title></titles><pages>228-33</pages><volume>52</volume><number>3</number><edition>2008/07/23</edition><keywords><keyword>Aspergillosis/*diagnosis/*microbiology</keyword><keyword>Aspergillus/genetics/*isolation &amp; purification</keyword><keyword>DNA, Fungal/genetics</keyword><keyword>Humans</keyword><keyword>Polymerase Chain Reaction/*methods</keyword><keyword>Sensitivity and Specificity</keyword></keywords><dates><year>2009</year><pub-dates><date>May</date></pub-dates></dates><isbn>1439-0507 (Electronic)&#xD;0933-7407 (Linking)</isbn><accession-num>18643890</accession-num><urls><related-urls><url> [pii]&#xD;10.1111/j.1439-0507.2008.01565.x</electronic-resource-num><language>eng</language></record></Cite></EndNote>[6]. Antibody detection tests in immuno-compromised patients is very limited because of unpredictable humoral responses ADDIN EN.CITE <EndNote><Cite><Author>Young</Author><Year>1971</Year><RecNum>145</RecNum><DisplayText>[8]</DisplayText><record><rec-number>145</rec-number><foreign-keys><key app="EN" db-id="wx90r9pt8rtr20eftvyvz0a4t02v0zsw02wv">145</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Young, R. C.</author><author>Bennett, J. E.</author></authors></contributors><titles><title>Invasive aspergillosis. Absence of detectable antibody response</title><secondary-title>Am Rev Respir Dis</secondary-title></titles><pages>710-6</pages><volume>104</volume><number>5</number><edition>1971/11/01</edition><keywords><keyword>Antibodies, Anti-Idiotypic/analysis</keyword><keyword>*Antibody Formation</keyword><keyword>Aspergillosis/complications/diagnosis/*immunology</keyword><keyword>Aspergillus/immunology</keyword><keyword>Complement Fixation Tests</keyword><keyword>Fluorescent Antibody Technique</keyword><keyword>Humans</keyword><keyword>Immunodiffusion</keyword><keyword>Immunoelectrophoresis</keyword><keyword>Leukemia/complications</keyword><keyword>Lung Diseases, Fungal/*immunology</keyword><keyword>Serologic Tests</keyword></keywords><dates><year>1971</year><pub-dates><date>Nov</date></pub-dates></dates><isbn>0003-0805 (Print)&#xD;0003-0805 (Linking)</isbn><accession-num>5001473</accession-num><urls><related-urls><url>;[8]. BEAS-2B genomic DNA (Immortalized human lung epithelial cells) was spiked with Aspergillus fumigates and hybridized on the UBDA array. UBDA research described in this manuscript study demonstrates fungal infection bio-signatures on the UBDA array which could have a potential application in a clinical setting. The Dengue virus is a member of the virus family Flaviviridae and is transmitted to humans through the bite of the mosquitoes Aedes aegypti. Dengue virus is now believed to be the most common arthropod-borne disease in the world PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5LdW5paG9sbTwvQXV0aG9yPjxZZWFyPjIwMDY8L1llYXI+

PFJlY051bT4xMTc3PC9SZWNOdW0+PERpc3BsYXlUZXh0Pls5XTwvRGlzcGxheVRleHQ+PHJlY29y

ZD48cmVjLW51bWJlcj4xMTc3PC9yZWMtbnVtYmVyPjxmb3JlaWduLWtleXM+PGtleSBhcHA9IkVO

IiBkYi1pZD0id3g5MHI5cHQ4cnRyMjBlZnR2eXZ6MGE0dDAydjB6c3cwMnd2Ij4xMTc3PC9rZXk+

PC9mb3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10

eXBlPjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5LdW5paG9sbSwgTS4gSC48L2F1dGhv

cj48YXV0aG9yPldvbGZlLCBOLiBELjwvYXV0aG9yPjxhdXRob3I+SHVhbmcsIEMuIFkuPC9hdXRo

b3I+PGF1dGhvcj5NcG91ZGktTmdvbGUsIEUuPC9hdXRob3I+PGF1dGhvcj5UYW1vdWZlLCBVLjwv

YXV0aG9yPjxhdXRob3I+TGVCcmV0b24sIE0uPC9hdXRob3I+PGF1dGhvcj5CdXJrZSwgRC4gUy48

L2F1dGhvcj48YXV0aG9yPkd1YmxlciwgRC4gSi48L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmli

dXRvcnM+PGF1dGgtYWRkcmVzcz5EZXBhcnRtZW50IG9mIEVwaWRlbWlvbG9neSwgSm9obnMgSG9w

a2lucyBCbG9vbWJlcmcgU2Nob29sIG9mIFB1YmxpYyBIZWFsdGgsIEJhbHRpbW9yZSwgTWFyeWxh

bmQgMjEyMDUsIFVTQS4gbWt1bmlob2xAamhzcGguZWR1PC9hdXRoLWFkZHJlc3M+PHRpdGxlcz48

dGl0bGU+U2Vyb3ByZXZhbGVuY2UgYW5kIGRpc3RyaWJ1dGlvbiBvZiBGbGF2aXZpcmlkYWUsIFRv

Z2F2aXJpZGFlLCBhbmQgQnVueWF2aXJpZGFlIGFyYm92aXJhbCBpbmZlY3Rpb25zIGluIHJ1cmFs

IENhbWVyb29uaWFuIGFkdWx0czwvdGl0bGU+PHNlY29uZGFyeS10aXRsZT5BbSBKIFRyb3AgTWVk

IEh5Zzwvc2Vjb25kYXJ5LXRpdGxlPjxhbHQtdGl0bGU+VGhlIEFtZXJpY2FuIGpvdXJuYWwgb2Yg

dHJvcGljYWwgbWVkaWNpbmUgYW5kIGh5Z2llbmU8L2FsdC10aXRsZT48L3RpdGxlcz48cGVyaW9k

aWNhbD48ZnVsbC10aXRsZT5BbSBKIFRyb3AgTWVkIEh5ZzwvZnVsbC10aXRsZT48YWJici0xPlRo

ZSBBbWVyaWNhbiBqb3VybmFsIG9mIHRyb3BpY2FsIG1lZGljaW5lIGFuZCBoeWdpZW5lPC9hYmJy

LTE+PC9wZXJpb2RpY2FsPjxhbHQtcGVyaW9kaWNhbD48ZnVsbC10aXRsZT5BbSBKIFRyb3AgTWVk

IEh5ZzwvZnVsbC10aXRsZT48YWJici0xPlRoZSBBbWVyaWNhbiBqb3VybmFsIG9mIHRyb3BpY2Fs

IG1lZGljaW5lIGFuZCBoeWdpZW5lPC9hYmJyLTE+PC9hbHQtcGVyaW9kaWNhbD48cGFnZXM+MTA3

OC04MzwvcGFnZXM+PHZvbHVtZT43NDwvdm9sdW1lPjxudW1iZXI+NjwvbnVtYmVyPjxlZGl0aW9u

PjIwMDYvMDYvMDk8L2VkaXRpb24+PGtleXdvcmRzPjxrZXl3b3JkPkFkb2xlc2NlbnQ8L2tleXdv

cmQ+PGtleXdvcmQ+QWR1bHQ8L2tleXdvcmQ+PGtleXdvcmQ+QW50aWJvZGllcywgVmlyYWwvYmxv

b2Q8L2tleXdvcmQ+PGtleXdvcmQ+QXJib3ZpcnVzZXMvY2xhc3NpZmljYXRpb24vKmltbXVub2xv

Z3kvaXNvbGF0aW9uICZhbXA7IHB1cmlmaWNhdGlvbjwva2V5d29yZD48a2V5d29yZD5CdW55YXZp

cmlkYWUgSW5mZWN0aW9ucy8qZXBpZGVtaW9sb2d5PC9rZXl3b3JkPjxrZXl3b3JkPkNhbWVyb29u

L2VwaWRlbWlvbG9neTwva2V5d29yZD48a2V5d29yZD5EZW1vZ3JhcGh5PC9rZXl3b3JkPjxrZXl3

b3JkPkZlbWFsZTwva2V5d29yZD48a2V5d29yZD5GbGF2aXZpcnVzIEluZmVjdGlvbnMvKmVwaWRl

bWlvbG9neTwva2V5d29yZD48a2V5d29yZD5HZW9ncmFwaHk8L2tleXdvcmQ+PGtleXdvcmQ+SHVt

YW5zPC9rZXl3b3JkPjxrZXl3b3JkPk1hbGU8L2tleXdvcmQ+PGtleXdvcmQ+TWlkZGxlIEFnZWQ8

L2tleXdvcmQ+PGtleXdvcmQ+TmV1dHJhbGl6YXRpb24gVGVzdHM8L2tleXdvcmQ+PGtleXdvcmQ+

UmlzayBGYWN0b3JzPC9rZXl3b3JkPjxrZXl3b3JkPlJ1cmFsIFBvcHVsYXRpb248L2tleXdvcmQ+

PGtleXdvcmQ+U2Vyb2VwaWRlbWlvbG9naWMgU3R1ZGllczwva2V5d29yZD48a2V5d29yZD5Ub2dh

dmlyaWRhZSBJbmZlY3Rpb25zLyplcGlkZW1pb2xvZ3k8L2tleXdvcmQ+PC9rZXl3b3Jkcz48ZGF0

ZXM+PHllYXI+MjAwNjwveWVhcj48cHViLWRhdGVzPjxkYXRlPkp1bjwvZGF0ZT48L3B1Yi1kYXRl

cz48L2RhdGVzPjxpc2JuPjAwMDItOTYzNyAoUHJpbnQpJiN4RDswMDAyLTk2MzcgKExpbmtpbmcp

PC9pc2JuPjxhY2Nlc3Npb24tbnVtPjE2NzYwNTI0PC9hY2Nlc3Npb24tbnVtPjx3b3JrLXR5cGU+

Q29tcGFyYXRpdmUgU3R1ZHkmI3hEO1Jlc2VhcmNoIFN1cHBvcnQsIE4uSS5ILiwgRXh0cmFtdXJh

bCYjeEQ7UmVzZWFyY2ggU3VwcG9ydCwgVS5TLiBHb3YmYXBvczt0LCBOb24tUC5ILlMuPC93b3Jr

LXR5cGU+PHVybHM+PHJlbGF0ZWQtdXJscz48dXJsPmh0dHA6Ly93d3cubmNiaS5ubG0ubmloLmdv

di9wdWJtZWQvMTY3NjA1MjQ8L3VybD48L3JlbGF0ZWQtdXJscz48L3VybHM+PGxhbmd1YWdlPmVu

ZzwvbGFuZ3VhZ2U+PC9yZWNvcmQ+PC9DaXRlPjwvRW5kTm90ZT5=

ADDIN EN.CITE PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5LdW5paG9sbTwvQXV0aG9yPjxZZWFyPjIwMDY8L1llYXI+

PFJlY051bT4xMTc3PC9SZWNOdW0+PERpc3BsYXlUZXh0Pls5XTwvRGlzcGxheVRleHQ+PHJlY29y

ZD48cmVjLW51bWJlcj4xMTc3PC9yZWMtbnVtYmVyPjxmb3JlaWduLWtleXM+PGtleSBhcHA9IkVO

IiBkYi1pZD0id3g5MHI5cHQ4cnRyMjBlZnR2eXZ6MGE0dDAydjB6c3cwMnd2Ij4xMTc3PC9rZXk+

PC9mb3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10

eXBlPjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5LdW5paG9sbSwgTS4gSC48L2F1dGhv

cj48YXV0aG9yPldvbGZlLCBOLiBELjwvYXV0aG9yPjxhdXRob3I+SHVhbmcsIEMuIFkuPC9hdXRo

b3I+PGF1dGhvcj5NcG91ZGktTmdvbGUsIEUuPC9hdXRob3I+PGF1dGhvcj5UYW1vdWZlLCBVLjwv

YXV0aG9yPjxhdXRob3I+TGVCcmV0b24sIE0uPC9hdXRob3I+PGF1dGhvcj5CdXJrZSwgRC4gUy48

L2F1dGhvcj48YXV0aG9yPkd1YmxlciwgRC4gSi48L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmli

dXRvcnM+PGF1dGgtYWRkcmVzcz5EZXBhcnRtZW50IG9mIEVwaWRlbWlvbG9neSwgSm9obnMgSG9w

a2lucyBCbG9vbWJlcmcgU2Nob29sIG9mIFB1YmxpYyBIZWFsdGgsIEJhbHRpbW9yZSwgTWFyeWxh

bmQgMjEyMDUsIFVTQS4gbWt1bmlob2xAamhzcGguZWR1PC9hdXRoLWFkZHJlc3M+PHRpdGxlcz48

dGl0bGU+U2Vyb3ByZXZhbGVuY2UgYW5kIGRpc3RyaWJ1dGlvbiBvZiBGbGF2aXZpcmlkYWUsIFRv

Z2F2aXJpZGFlLCBhbmQgQnVueWF2aXJpZGFlIGFyYm92aXJhbCBpbmZlY3Rpb25zIGluIHJ1cmFs

IENhbWVyb29uaWFuIGFkdWx0czwvdGl0bGU+PHNlY29uZGFyeS10aXRsZT5BbSBKIFRyb3AgTWVk

IEh5Zzwvc2Vjb25kYXJ5LXRpdGxlPjxhbHQtdGl0bGU+VGhlIEFtZXJpY2FuIGpvdXJuYWwgb2Yg

dHJvcGljYWwgbWVkaWNpbmUgYW5kIGh5Z2llbmU8L2FsdC10aXRsZT48L3RpdGxlcz48cGVyaW9k

aWNhbD48ZnVsbC10aXRsZT5BbSBKIFRyb3AgTWVkIEh5ZzwvZnVsbC10aXRsZT48YWJici0xPlRo

ZSBBbWVyaWNhbiBqb3VybmFsIG9mIHRyb3BpY2FsIG1lZGljaW5lIGFuZCBoeWdpZW5lPC9hYmJy

LTE+PC9wZXJpb2RpY2FsPjxhbHQtcGVyaW9kaWNhbD48ZnVsbC10aXRsZT5BbSBKIFRyb3AgTWVk

IEh5ZzwvZnVsbC10aXRsZT48YWJici0xPlRoZSBBbWVyaWNhbiBqb3VybmFsIG9mIHRyb3BpY2Fs

IG1lZGljaW5lIGFuZCBoeWdpZW5lPC9hYmJyLTE+PC9hbHQtcGVyaW9kaWNhbD48cGFnZXM+MTA3

OC04MzwvcGFnZXM+PHZvbHVtZT43NDwvdm9sdW1lPjxudW1iZXI+NjwvbnVtYmVyPjxlZGl0aW9u

PjIwMDYvMDYvMDk8L2VkaXRpb24+PGtleXdvcmRzPjxrZXl3b3JkPkFkb2xlc2NlbnQ8L2tleXdv

cmQ+PGtleXdvcmQ+QWR1bHQ8L2tleXdvcmQ+PGtleXdvcmQ+QW50aWJvZGllcywgVmlyYWwvYmxv

b2Q8L2tleXdvcmQ+PGtleXdvcmQ+QXJib3ZpcnVzZXMvY2xhc3NpZmljYXRpb24vKmltbXVub2xv

Z3kvaXNvbGF0aW9uICZhbXA7IHB1cmlmaWNhdGlvbjwva2V5d29yZD48a2V5d29yZD5CdW55YXZp

cmlkYWUgSW5mZWN0aW9ucy8qZXBpZGVtaW9sb2d5PC9rZXl3b3JkPjxrZXl3b3JkPkNhbWVyb29u

L2VwaWRlbWlvbG9neTwva2V5d29yZD48a2V5d29yZD5EZW1vZ3JhcGh5PC9rZXl3b3JkPjxrZXl3

b3JkPkZlbWFsZTwva2V5d29yZD48a2V5d29yZD5GbGF2aXZpcnVzIEluZmVjdGlvbnMvKmVwaWRl

bWlvbG9neTwva2V5d29yZD48a2V5d29yZD5HZW9ncmFwaHk8L2tleXdvcmQ+PGtleXdvcmQ+SHVt

YW5zPC9rZXl3b3JkPjxrZXl3b3JkPk1hbGU8L2tleXdvcmQ+PGtleXdvcmQ+TWlkZGxlIEFnZWQ8

L2tleXdvcmQ+PGtleXdvcmQ+TmV1dHJhbGl6YXRpb24gVGVzdHM8L2tleXdvcmQ+PGtleXdvcmQ+

UmlzayBGYWN0b3JzPC9rZXl3b3JkPjxrZXl3b3JkPlJ1cmFsIFBvcHVsYXRpb248L2tleXdvcmQ+

PGtleXdvcmQ+U2Vyb2VwaWRlbWlvbG9naWMgU3R1ZGllczwva2V5d29yZD48a2V5d29yZD5Ub2dh

dmlyaWRhZSBJbmZlY3Rpb25zLyplcGlkZW1pb2xvZ3k8L2tleXdvcmQ+PC9rZXl3b3Jkcz48ZGF0

ZXM+PHllYXI+MjAwNjwveWVhcj48cHViLWRhdGVzPjxkYXRlPkp1bjwvZGF0ZT48L3B1Yi1kYXRl

cz48L2RhdGVzPjxpc2JuPjAwMDItOTYzNyAoUHJpbnQpJiN4RDswMDAyLTk2MzcgKExpbmtpbmcp

PC9pc2JuPjxhY2Nlc3Npb24tbnVtPjE2NzYwNTI0PC9hY2Nlc3Npb24tbnVtPjx3b3JrLXR5cGU+

Q29tcGFyYXRpdmUgU3R1ZHkmI3hEO1Jlc2VhcmNoIFN1cHBvcnQsIE4uSS5ILiwgRXh0cmFtdXJh

bCYjeEQ7UmVzZWFyY2ggU3VwcG9ydCwgVS5TLiBHb3YmYXBvczt0LCBOb24tUC5ILlMuPC93b3Jr

LXR5cGU+PHVybHM+PHJlbGF0ZWQtdXJscz48dXJsPmh0dHA6Ly93d3cubmNiaS5ubG0ubmloLmdv

di9wdWJtZWQvMTY3NjA1MjQ8L3VybD48L3JlbGF0ZWQtdXJscz48L3VybHM+PGxhbmd1YWdlPmVu

ZzwvbGFuZ3VhZ2U+PC9yZWNvcmQ+PC9DaXRlPjwvRW5kTm90ZT5=

ADDIN EN.CITE.DATA [9].In recent years Dengue viruses (serotypes 1, 2, 3 and 4) have spread tropical regions worldwide. Several regions have multiple Dengue virus serotypes are circulating concurrently, which may increase the risk for the more severe form of the disease, Dengue hemorrhagic fever. Current approaches rely on typing of Dengue viruses in clinical specimens (blood) and mosquitoes by Reverse Transcriptase PCR PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5IYXJyaXM8L0F1dGhvcj48WWVhcj4xOTk4PC9ZZWFyPjxS

ZWNOdW0+MTI4ODwvUmVjTnVtPjxEaXNwbGF5VGV4dD5bMTBdPC9EaXNwbGF5VGV4dD48cmVjb3Jk

PjxyZWMtbnVtYmVyPjEyODg8L3JlYy1udW1iZXI+PGZvcmVpZ24ta2V5cz48a2V5IGFwcD0iRU4i

IGRiLWlkPSJ3eDkwcjlwdDhydHIyMGVmdHZ5dnowYTR0MDJ2MHpzdzAyd3YiPjEyODg8L2tleT48

L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwvcmVmLXR5

cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPkhhcnJpcywgRS48L2F1dGhvcj48YXV0

aG9yPlJvYmVydHMsIFQuIEcuPC9hdXRob3I+PGF1dGhvcj5TbWl0aCwgTC48L2F1dGhvcj48YXV0

aG9yPlNlbGxlLCBKLjwvYXV0aG9yPjxhdXRob3I+S3JhbWVyLCBMLiBELjwvYXV0aG9yPjxhdXRo

b3I+VmFsbGUsIFMuPC9hdXRob3I+PGF1dGhvcj5TYW5kb3ZhbCwgRS48L2F1dGhvcj48YXV0aG9y

PkJhbG1hc2VkYSwgQS48L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PGF1dGgtYWRk

cmVzcz5Qcm9ncmFtIGluIE1vbGVjdWxhciBQYXRob2dlbmVzaXMsIFVuaXZlcnNpdHkgb2YgQ2Fs

aWZvcm5pYSwgU2FuIEZyYW5jaXNjbywgU2FuIEZyYW5jaXNjbywgQ2FsaWZvcm5pYSA5NDE0My0w

NDIyLCBVU0EuIGVoYXJyaXNAdWNsaW5rNC5iZXJrZWxleS5lZHU8L2F1dGgtYWRkcmVzcz48dGl0

bGVzPjx0aXRsZT5UeXBpbmcgb2YgZGVuZ3VlIHZpcnVzZXMgaW4gY2xpbmljYWwgc3BlY2ltZW5z

IGFuZCBtb3NxdWl0b2VzIGJ5IHNpbmdsZS10dWJlIG11bHRpcGxleCByZXZlcnNlIHRyYW5zY3Jp

cHRhc2UgUENSPC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPkogQ2xpbiBNaWNyb2Jpb2w8L3NlY29u

ZGFyeS10aXRsZT48YWx0LXRpdGxlPkpvdXJuYWwgb2YgY2xpbmljYWwgbWljcm9iaW9sb2d5PC9h

bHQtdGl0bGU+PC90aXRsZXM+PHBlcmlvZGljYWw+PGZ1bGwtdGl0bGU+SiBDbGluIE1pY3JvYmlv

bDwvZnVsbC10aXRsZT48L3BlcmlvZGljYWw+PGFsdC1wZXJpb2RpY2FsPjxmdWxsLXRpdGxlPkpv

dXJuYWwgb2YgQ2xpbmljYWwgTWljcm9iaW9sb2d5PC9mdWxsLXRpdGxlPjwvYWx0LXBlcmlvZGlj

YWw+PHBhZ2VzPjI2MzQtOTwvcGFnZXM+PHZvbHVtZT4zNjwvdm9sdW1lPjxudW1iZXI+OTwvbnVt

YmVyPjxlZGl0aW9uPjE5OTgvMDgvMTU8L2VkaXRpb24+PGtleXdvcmRzPjxrZXl3b3JkPkFlZGVz

Lyp2aXJvbG9neTwva2V5d29yZD48a2V5d29yZD5BbmltYWxzPC9rZXl3b3JkPjxrZXl3b3JkPkNl

bGwgTGluZTwva2V5d29yZD48a2V5d29yZD5ETkEgUHJpbWVyczwva2V5d29yZD48a2V5d29yZD5E

ZW5ndWUvKnZpcm9sb2d5PC9rZXl3b3JkPjxrZXl3b3JkPkRlbmd1ZSBWaXJ1cy8qY2xhc3NpZmlj

YXRpb24vZ2VuZXRpY3MvaXNvbGF0aW9uICZhbXA7IHB1cmlmaWNhdGlvbjwva2V5d29yZD48a2V5

d29yZD5IdW1hbnM8L2tleXdvcmQ+PGtleXdvcmQ+UGxhc21pZHM8L2tleXdvcmQ+PGtleXdvcmQ+

UG9seW1lcmFzZSBDaGFpbiBSZWFjdGlvbi9tZXRob2RzPC9rZXl3b3JkPjxrZXl3b3JkPlNlcm90

eXBpbmcvbWV0aG9kczwva2V5d29yZD48L2tleXdvcmRzPjxkYXRlcz48eWVhcj4xOTk4PC95ZWFy

PjxwdWItZGF0ZXM+PGRhdGU+U2VwPC9kYXRlPjwvcHViLWRhdGVzPjwvZGF0ZXM+PGlzYm4+MDA5

NS0xMTM3IChQcmludCkmI3hEOzAwOTUtMTEzNyAoTGlua2luZyk8L2lzYm4+PGFjY2Vzc2lvbi1u

dW0+OTcwNTQwNjwvYWNjZXNzaW9uLW51bT48d29yay10eXBlPlJlc2VhcmNoIFN1cHBvcnQsIE5v

bi1VLlMuIEdvdiZhcG9zO3QmI3hEO1Jlc2VhcmNoIFN1cHBvcnQsIFUuUy4gR292JmFwb3M7dCwg

UC5ILlMuPC93b3JrLXR5cGU+PHVybHM+PHJlbGF0ZWQtdXJscz48dXJsPmh0dHA6Ly93d3cubmNi

aS5ubG0ubmloLmdvdi9wdWJtZWQvOTcwNTQwNjwvdXJsPjwvcmVsYXRlZC11cmxzPjwvdXJscz48

Y3VzdG9tMj4xMDUxNzY8L2N1c3RvbTI+PGxhbmd1YWdlPmVuZzwvbGFuZ3VhZ2U+PC9yZWNvcmQ+

PC9DaXRlPjwvRW5kTm90ZT4A

ADDIN EN.CITE PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5IYXJyaXM8L0F1dGhvcj48WWVhcj4xOTk4PC9ZZWFyPjxS

ZWNOdW0+MTI4ODwvUmVjTnVtPjxEaXNwbGF5VGV4dD5bMTBdPC9EaXNwbGF5VGV4dD48cmVjb3Jk

PjxyZWMtbnVtYmVyPjEyODg8L3JlYy1udW1iZXI+PGZvcmVpZ24ta2V5cz48a2V5IGFwcD0iRU4i

IGRiLWlkPSJ3eDkwcjlwdDhydHIyMGVmdHZ5dnowYTR0MDJ2MHpzdzAyd3YiPjEyODg8L2tleT48

L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwvcmVmLXR5

cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPkhhcnJpcywgRS48L2F1dGhvcj48YXV0

aG9yPlJvYmVydHMsIFQuIEcuPC9hdXRob3I+PGF1dGhvcj5TbWl0aCwgTC48L2F1dGhvcj48YXV0

aG9yPlNlbGxlLCBKLjwvYXV0aG9yPjxhdXRob3I+S3JhbWVyLCBMLiBELjwvYXV0aG9yPjxhdXRo

b3I+VmFsbGUsIFMuPC9hdXRob3I+PGF1dGhvcj5TYW5kb3ZhbCwgRS48L2F1dGhvcj48YXV0aG9y

PkJhbG1hc2VkYSwgQS48L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PGF1dGgtYWRk

cmVzcz5Qcm9ncmFtIGluIE1vbGVjdWxhciBQYXRob2dlbmVzaXMsIFVuaXZlcnNpdHkgb2YgQ2Fs

aWZvcm5pYSwgU2FuIEZyYW5jaXNjbywgU2FuIEZyYW5jaXNjbywgQ2FsaWZvcm5pYSA5NDE0My0w

NDIyLCBVU0EuIGVoYXJyaXNAdWNsaW5rNC5iZXJrZWxleS5lZHU8L2F1dGgtYWRkcmVzcz48dGl0

bGVzPjx0aXRsZT5UeXBpbmcgb2YgZGVuZ3VlIHZpcnVzZXMgaW4gY2xpbmljYWwgc3BlY2ltZW5z

IGFuZCBtb3NxdWl0b2VzIGJ5IHNpbmdsZS10dWJlIG11bHRpcGxleCByZXZlcnNlIHRyYW5zY3Jp

cHRhc2UgUENSPC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPkogQ2xpbiBNaWNyb2Jpb2w8L3NlY29u

ZGFyeS10aXRsZT48YWx0LXRpdGxlPkpvdXJuYWwgb2YgY2xpbmljYWwgbWljcm9iaW9sb2d5PC9h

bHQtdGl0bGU+PC90aXRsZXM+PHBlcmlvZGljYWw+PGZ1bGwtdGl0bGU+SiBDbGluIE1pY3JvYmlv

bDwvZnVsbC10aXRsZT48L3BlcmlvZGljYWw+PGFsdC1wZXJpb2RpY2FsPjxmdWxsLXRpdGxlPkpv

dXJuYWwgb2YgQ2xpbmljYWwgTWljcm9iaW9sb2d5PC9mdWxsLXRpdGxlPjwvYWx0LXBlcmlvZGlj

YWw+PHBhZ2VzPjI2MzQtOTwvcGFnZXM+PHZvbHVtZT4zNjwvdm9sdW1lPjxudW1iZXI+OTwvbnVt

YmVyPjxlZGl0aW9uPjE5OTgvMDgvMTU8L2VkaXRpb24+PGtleXdvcmRzPjxrZXl3b3JkPkFlZGVz

Lyp2aXJvbG9neTwva2V5d29yZD48a2V5d29yZD5BbmltYWxzPC9rZXl3b3JkPjxrZXl3b3JkPkNl

bGwgTGluZTwva2V5d29yZD48a2V5d29yZD5ETkEgUHJpbWVyczwva2V5d29yZD48a2V5d29yZD5E

ZW5ndWUvKnZpcm9sb2d5PC9rZXl3b3JkPjxrZXl3b3JkPkRlbmd1ZSBWaXJ1cy8qY2xhc3NpZmlj

YXRpb24vZ2VuZXRpY3MvaXNvbGF0aW9uICZhbXA7IHB1cmlmaWNhdGlvbjwva2V5d29yZD48a2V5

d29yZD5IdW1hbnM8L2tleXdvcmQ+PGtleXdvcmQ+UGxhc21pZHM8L2tleXdvcmQ+PGtleXdvcmQ+

UG9seW1lcmFzZSBDaGFpbiBSZWFjdGlvbi9tZXRob2RzPC9rZXl3b3JkPjxrZXl3b3JkPlNlcm90

eXBpbmcvbWV0aG9kczwva2V5d29yZD48L2tleXdvcmRzPjxkYXRlcz48eWVhcj4xOTk4PC95ZWFy

PjxwdWItZGF0ZXM+PGRhdGU+U2VwPC9kYXRlPjwvcHViLWRhdGVzPjwvZGF0ZXM+PGlzYm4+MDA5

NS0xMTM3IChQcmludCkmI3hEOzAwOTUtMTEzNyAoTGlua2luZyk8L2lzYm4+PGFjY2Vzc2lvbi1u

dW0+OTcwNTQwNjwvYWNjZXNzaW9uLW51bT48d29yay10eXBlPlJlc2VhcmNoIFN1cHBvcnQsIE5v

bi1VLlMuIEdvdiZhcG9zO3QmI3hEO1Jlc2VhcmNoIFN1cHBvcnQsIFUuUy4gR292JmFwb3M7dCwg

UC5ILlMuPC93b3JrLXR5cGU+PHVybHM+PHJlbGF0ZWQtdXJscz48dXJsPmh0dHA6Ly93d3cubmNi

aS5ubG0ubmloLmdvdi9wdWJtZWQvOTcwNTQwNjwvdXJsPjwvcmVsYXRlZC11cmxzPjwvdXJscz48

Y3VzdG9tMj4xMDUxNzY8L2N1c3RvbTI+PGxhbmd1YWdlPmVuZzwvbGFuZ3VhZ2U+PC9yZWNvcmQ+

PC9DaXRlPjwvRW5kTm90ZT4A

ADDIN EN.CITE.DATA [10]. A rapid and sensitive microarray has been developed using 70-mer and 50-mer oligonucleotides from the most conserved region of several highly pathogenic viruses such as Chikunya virus, Japanese encephalitis virus, Yellow fever virus, Dengue virus, Hanta virus, SARS-CoV an H5N1 avian Influenza virus. Many of these viruses have been considered as potential biological warfare agents. Therefore accurate detection and identification of these pathogens is required for effective control of their transmission. These primers had to be carefully designed to avoid any contamination from the host genome PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5YaWFvLVBpbmc8L0F1dGhvcj48WWVhcj4yMDA5PC9ZZWFy

PjxSZWNOdW0+MTI4OTwvUmVjTnVtPjxEaXNwbGF5VGV4dD5bMTFdPC9EaXNwbGF5VGV4dD48cmVj

b3JkPjxyZWMtbnVtYmVyPjEyODk8L3JlYy1udW1iZXI+PGZvcmVpZ24ta2V5cz48a2V5IGFwcD0i

RU4iIGRiLWlkPSJ3eDkwcjlwdDhydHIyMGVmdHZ5dnowYTR0MDJ2MHpzdzAyd3YiPjEyODk8L2tl

eT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwvcmVm

LXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPlhpYW8tUGluZywgSy48L2F1dGhv

cj48YXV0aG9yPllvbmctUWlhbmcsIEwuPC9hdXRob3I+PGF1dGhvcj5RaW5nLUdlLCBTLjwvYXV0

aG9yPjxhdXRob3I+SG9uZywgTC48L2F1dGhvcj48YXV0aG9yPlFpbmctWXUsIFouPC9hdXRob3I+

PGF1dGhvcj5ZaW4tSHVpLCBZLjwvYXV0aG9yPjwvYXV0aG9ycz48L2NvbnRyaWJ1dG9ycz48YXV0

aC1hZGRyZXNzPlN0YXRlIEtleSBMYWJvcmF0b3J5IG9mIFBhdGhvZ2VuIGFuZCBCaW9zZWN1cml0

eSwgQmVpamluZyBJbnN0aXR1dGUgb2YgTWljcm9iaW9sb2d5IGFuZCBFcGlkZW1pb2xvZ3ksIEJl

aWppbmcgMTAwMDcxLCBDaGluYS48L2F1dGgtYWRkcmVzcz48dGl0bGVzPjx0aXRsZT5EZXZlbG9w

bWVudCBvZiBhIGNvbnNlbnN1cyBtaWNyb2FycmF5IG1ldGhvZCBmb3IgaWRlbnRpZmljYXRpb24g

b2Ygc29tZSBoaWdobHkgcGF0aG9nZW5pYyB2aXJ1c2VzPC90aXRsZT48c2Vjb25kYXJ5LXRpdGxl

PkogTWVkIFZpcm9sPC9zZWNvbmRhcnktdGl0bGU+PGFsdC10aXRsZT5Kb3VybmFsIG9mIG1lZGlj

YWwgdmlyb2xvZ3k8L2FsdC10aXRsZT48L3RpdGxlcz48cGVyaW9kaWNhbD48ZnVsbC10aXRsZT5K

IE1lZCBWaXJvbDwvZnVsbC10aXRsZT48YWJici0xPkpvdXJuYWwgb2YgbWVkaWNhbCB2aXJvbG9n

eTwvYWJici0xPjwvcGVyaW9kaWNhbD48YWx0LXBlcmlvZGljYWw+PGZ1bGwtdGl0bGU+SiBNZWQg

Vmlyb2w8L2Z1bGwtdGl0bGU+PGFiYnItMT5Kb3VybmFsIG9mIG1lZGljYWwgdmlyb2xvZ3k8L2Fi

YnItMT48L2FsdC1wZXJpb2RpY2FsPjxwYWdlcz4xOTQ1LTUwPC9wYWdlcz48dm9sdW1lPjgxPC92

b2x1bWU+PG51bWJlcj4xMTwvbnVtYmVyPjxlZGl0aW9uPjIwMDkvMDkvMjQ8L2VkaXRpb24+PGtl

eXdvcmRzPjxrZXl3b3JkPkFuaW1hbHM8L2tleXdvcmQ+PGtleXdvcmQ+QnJhaW4vdmlyb2xvZ3k8

L2tleXdvcmQ+PGtleXdvcmQ+Q2hpa3VuZ3VueWEgdmlydXMvaXNvbGF0aW9uICZhbXA7IHB1cmlm

aWNhdGlvbjwva2V5d29yZD48a2V5d29yZD5DaGluYTwva2V5d29yZD48a2V5d29yZD5DbGluaWNh

bCBMYWJvcmF0b3J5IFRlY2huaXF1ZXMvKm1ldGhvZHM8L2tleXdvcmQ+PGtleXdvcmQ+RGVuZ3Vl

IFZpcnVzL2lzb2xhdGlvbiAmYW1wOyBwdXJpZmljYXRpb248L2tleXdvcmQ+PGtleXdvcmQ+RW5j

ZXBoYWxpdGlzIFZpcnVzLCBKYXBhbmVzZS9pc29sYXRpb24gJmFtcDsgcHVyaWZpY2F0aW9uPC9r

ZXl3b3JkPjxrZXl3b3JkPkVuY2VwaGFsaXRpcyBWaXJ1c2VzLCBUaWNrLUJvcm5lPC9rZXl3b3Jk

PjxrZXl3b3JkPkh1bWFuczwva2V5d29yZD48a2V5d29yZD5JbmZsdWVuemEgQSBWaXJ1cywgSDVO

MSBTdWJ0eXBlL2lzb2xhdGlvbiAmYW1wOyBwdXJpZmljYXRpb248L2tleXdvcmQ+PGtleXdvcmQ+

TWljZTwva2V5d29yZD48a2V5d29yZD5NaWNyb2FycmF5IEFuYWx5c2lzLyptZXRob2RzPC9rZXl3

b3JkPjxrZXl3b3JkPk9saWdvbnVjbGVvdGlkZSBQcm9iZXMvZ2VuZXRpY3M8L2tleXdvcmQ+PGtl

eXdvcmQ+U3dpbmU8L2tleXdvcmQ+PGtleXdvcmQ+U3dpbmUgRGlzZWFzZXMvdmlyb2xvZ3k8L2tl

eXdvcmQ+PGtleXdvcmQ+VmlydXMgRGlzZWFzZXMvKmRpYWdub3Npcy8qdmV0ZXJpbmFyeTwva2V5

d29yZD48a2V5d29yZD5ZZWxsb3cgZmV2ZXIgdmlydXMvaXNvbGF0aW9uICZhbXA7IHB1cmlmaWNh

dGlvbjwva2V5d29yZD48L2tleXdvcmRzPjxkYXRlcz48eWVhcj4yMDA5PC95ZWFyPjxwdWItZGF0

ZXM+PGRhdGU+Tm92PC9kYXRlPjwvcHViLWRhdGVzPjwvZGF0ZXM+PGlzYm4+MTA5Ni05MDcxIChF

bGVjdHJvbmljKSYjeEQ7MDE0Ni02NjE1IChMaW5raW5nKTwvaXNibj48YWNjZXNzaW9uLW51bT4x

OTc3NDY5MjwvYWNjZXNzaW9uLW51bT48d29yay10eXBlPkV2YWx1YXRpb24gU3R1ZGllcyYjeEQ7

UmVzZWFyY2ggU3VwcG9ydCwgTm9uLVUuUy4gR292JmFwb3M7dDwvd29yay10eXBlPjx1cmxzPjxy

ZWxhdGVkLXVybHM+PHVybD5odHRwOi8vd3d3Lm5jYmkubmxtLm5paC5nb3YvcHVibWVkLzE5Nzc0

NjkyPC91cmw+PC9yZWxhdGVkLXVybHM+PC91cmxzPjxlbGVjdHJvbmljLXJlc291cmNlLW51bT4x

MC4xMDAyL2ptdi4yMTYwMjwvZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+PGxhbmd1YWdlPmVuZzwv

bGFuZ3VhZ2U+PC9yZWNvcmQ+PC9DaXRlPjwvRW5kTm90ZT5=

ADDIN EN.CITE PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5YaWFvLVBpbmc8L0F1dGhvcj48WWVhcj4yMDA5PC9ZZWFy

PjxSZWNOdW0+MTI4OTwvUmVjTnVtPjxEaXNwbGF5VGV4dD5bMTFdPC9EaXNwbGF5VGV4dD48cmVj

b3JkPjxyZWMtbnVtYmVyPjEyODk8L3JlYy1udW1iZXI+PGZvcmVpZ24ta2V5cz48a2V5IGFwcD0i

RU4iIGRiLWlkPSJ3eDkwcjlwdDhydHIyMGVmdHZ5dnowYTR0MDJ2MHpzdzAyd3YiPjEyODk8L2tl

eT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwvcmVm

LXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPlhpYW8tUGluZywgSy48L2F1dGhv

cj48YXV0aG9yPllvbmctUWlhbmcsIEwuPC9hdXRob3I+PGF1dGhvcj5RaW5nLUdlLCBTLjwvYXV0

aG9yPjxhdXRob3I+SG9uZywgTC48L2F1dGhvcj48YXV0aG9yPlFpbmctWXUsIFouPC9hdXRob3I+

PGF1dGhvcj5ZaW4tSHVpLCBZLjwvYXV0aG9yPjwvYXV0aG9ycz48L2NvbnRyaWJ1dG9ycz48YXV0

aC1hZGRyZXNzPlN0YXRlIEtleSBMYWJvcmF0b3J5IG9mIFBhdGhvZ2VuIGFuZCBCaW9zZWN1cml0

eSwgQmVpamluZyBJbnN0aXR1dGUgb2YgTWljcm9iaW9sb2d5IGFuZCBFcGlkZW1pb2xvZ3ksIEJl

aWppbmcgMTAwMDcxLCBDaGluYS48L2F1dGgtYWRkcmVzcz48dGl0bGVzPjx0aXRsZT5EZXZlbG9w

bWVudCBvZiBhIGNvbnNlbnN1cyBtaWNyb2FycmF5IG1ldGhvZCBmb3IgaWRlbnRpZmljYXRpb24g

b2Ygc29tZSBoaWdobHkgcGF0aG9nZW5pYyB2aXJ1c2VzPC90aXRsZT48c2Vjb25kYXJ5LXRpdGxl

PkogTWVkIFZpcm9sPC9zZWNvbmRhcnktdGl0bGU+PGFsdC10aXRsZT5Kb3VybmFsIG9mIG1lZGlj

YWwgdmlyb2xvZ3k8L2FsdC10aXRsZT48L3RpdGxlcz48cGVyaW9kaWNhbD48ZnVsbC10aXRsZT5K

IE1lZCBWaXJvbDwvZnVsbC10aXRsZT48YWJici0xPkpvdXJuYWwgb2YgbWVkaWNhbCB2aXJvbG9n

eTwvYWJici0xPjwvcGVyaW9kaWNhbD48YWx0LXBlcmlvZGljYWw+PGZ1bGwtdGl0bGU+SiBNZWQg

Vmlyb2w8L2Z1bGwtdGl0bGU+PGFiYnItMT5Kb3VybmFsIG9mIG1lZGljYWwgdmlyb2xvZ3k8L2Fi

YnItMT48L2FsdC1wZXJpb2RpY2FsPjxwYWdlcz4xOTQ1LTUwPC9wYWdlcz48dm9sdW1lPjgxPC92

b2x1bWU+PG51bWJlcj4xMTwvbnVtYmVyPjxlZGl0aW9uPjIwMDkvMDkvMjQ8L2VkaXRpb24+PGtl

eXdvcmRzPjxrZXl3b3JkPkFuaW1hbHM8L2tleXdvcmQ+PGtleXdvcmQ+QnJhaW4vdmlyb2xvZ3k8

L2tleXdvcmQ+PGtleXdvcmQ+Q2hpa3VuZ3VueWEgdmlydXMvaXNvbGF0aW9uICZhbXA7IHB1cmlm

aWNhdGlvbjwva2V5d29yZD48a2V5d29yZD5DaGluYTwva2V5d29yZD48a2V5d29yZD5DbGluaWNh

bCBMYWJvcmF0b3J5IFRlY2huaXF1ZXMvKm1ldGhvZHM8L2tleXdvcmQ+PGtleXdvcmQ+RGVuZ3Vl

IFZpcnVzL2lzb2xhdGlvbiAmYW1wOyBwdXJpZmljYXRpb248L2tleXdvcmQ+PGtleXdvcmQ+RW5j

ZXBoYWxpdGlzIFZpcnVzLCBKYXBhbmVzZS9pc29sYXRpb24gJmFtcDsgcHVyaWZpY2F0aW9uPC9r

ZXl3b3JkPjxrZXl3b3JkPkVuY2VwaGFsaXRpcyBWaXJ1c2VzLCBUaWNrLUJvcm5lPC9rZXl3b3Jk

PjxrZXl3b3JkPkh1bWFuczwva2V5d29yZD48a2V5d29yZD5JbmZsdWVuemEgQSBWaXJ1cywgSDVO

MSBTdWJ0eXBlL2lzb2xhdGlvbiAmYW1wOyBwdXJpZmljYXRpb248L2tleXdvcmQ+PGtleXdvcmQ+

TWljZTwva2V5d29yZD48a2V5d29yZD5NaWNyb2FycmF5IEFuYWx5c2lzLyptZXRob2RzPC9rZXl3

b3JkPjxrZXl3b3JkPk9saWdvbnVjbGVvdGlkZSBQcm9iZXMvZ2VuZXRpY3M8L2tleXdvcmQ+PGtl

eXdvcmQ+U3dpbmU8L2tleXdvcmQ+PGtleXdvcmQ+U3dpbmUgRGlzZWFzZXMvdmlyb2xvZ3k8L2tl

eXdvcmQ+PGtleXdvcmQ+VmlydXMgRGlzZWFzZXMvKmRpYWdub3Npcy8qdmV0ZXJpbmFyeTwva2V5

d29yZD48a2V5d29yZD5ZZWxsb3cgZmV2ZXIgdmlydXMvaXNvbGF0aW9uICZhbXA7IHB1cmlmaWNh

dGlvbjwva2V5d29yZD48L2tleXdvcmRzPjxkYXRlcz48eWVhcj4yMDA5PC95ZWFyPjxwdWItZGF0

ZXM+PGRhdGU+Tm92PC9kYXRlPjwvcHViLWRhdGVzPjwvZGF0ZXM+PGlzYm4+MTA5Ni05MDcxIChF

bGVjdHJvbmljKSYjeEQ7MDE0Ni02NjE1IChMaW5raW5nKTwvaXNibj48YWNjZXNzaW9uLW51bT4x

OTc3NDY5MjwvYWNjZXNzaW9uLW51bT48d29yay10eXBlPkV2YWx1YXRpb24gU3R1ZGllcyYjeEQ7

UmVzZWFyY2ggU3VwcG9ydCwgTm9uLVUuUy4gR292JmFwb3M7dDwvd29yay10eXBlPjx1cmxzPjxy

ZWxhdGVkLXVybHM+PHVybD5odHRwOi8vd3d3Lm5jYmkubmxtLm5paC5nb3YvcHVibWVkLzE5Nzc0

NjkyPC91cmw+PC9yZWxhdGVkLXVybHM+PC91cmxzPjxlbGVjdHJvbmljLXJlc291cmNlLW51bT4x

MC4xMDAyL2ptdi4yMTYwMjwvZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+PGxhbmd1YWdlPmVuZzwv

bGFuZ3VhZ2U+PC9yZWNvcmQ+PC9DaXRlPjwvRW5kTm90ZT5=

ADDIN EN.CITE.DATA [11]. In general 60-80% global sequence similarity between two sequences can cause substantial cross hybridization ADDIN EN.CITE <EndNote><Cite><Author>Kane</Author><Year>2000</Year><RecNum>351</RecNum><DisplayText>[12]</DisplayText><record><rec-number>351</rec-number><foreign-keys><key app="EN" db-id="wx90r9pt8rtr20eftvyvz0a4t02v0zsw02wv">351</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Kane, M. D.</author><author>Jatkoe, T. A.</author><author>Stumpf, C. R.</author><author>Lu, J.</author><author>Thomas, J. D.</author><author>Madore, S. J.</author></authors></contributors><auth-address>Department of Molecular Biology and Genomics and Department of Infectious Diseases, Pfizer Global Research and Development, Ann Arbor, MI 48105, USA.</auth-address><titles><title>Assessment of the sensitivity and specificity of oligonucleotide (50mer) microarrays</title><secondary-title>Nucleic Acids Res</secondary-title></titles><periodical><full-title>Nucleic Acids Res</full-title></periodical><pages>4552-7</pages><volume>28</volume><number>22</number><edition>2000/11/10</edition><keywords><keyword>Animals</keyword><keyword>Bacillus subtilis/genetics</keyword><keyword>Base Sequence</keyword><keyword>DNA Probes</keyword><keyword>Gene Expression Regulation, Bacterial</keyword><keyword>Genes, Bacterial/genetics</keyword><keyword>Molecular Sequence Data</keyword><keyword>Oligonucleotide Array Sequence Analysis/*methods</keyword><keyword>Oligonucleotides/*genetics</keyword><keyword>RNA, Messenger/genetics/metabolism</keyword><keyword>Rats</keyword><keyword>Sensitivity and Specificity</keyword></keywords><dates><year>2000</year><pub-dates><date>Nov 15</date></pub-dates></dates><isbn>1362-4962 (Electronic)&#xD;0305-1048 (Linking)</isbn><accession-num>11071945</accession-num><urls><related-urls><url>;[12] . The UBDA array detected the Dengue virus strain spiked into the Aedes aegypti mosquitoes.Leishmaniasis is a worldwide vector-borne zoonotic disease caused by several species of the genus Leishmania. By clinical symptoms, the disease is mainly classified into cutaneous and visceral Leishmaniasis. Cutaneous Leishmaniasis is usually caused by Leishmania major, Leishmania tropica and other species. Visceral Leishmaniasis is caused by Leishmania infantum ADDIN EN.CITE <EndNote><Cite><Author>Katakura</Author><Year>2009</Year><RecNum>1200</RecNum><DisplayText>[13]</DisplayText><record><rec-number>1200</rec-number><foreign-keys><key app="EN" db-id="wx90r9pt8rtr20eftvyvz0a4t02v0zsw02wv">1200</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Katakura, K.</author></authors></contributors><auth-address>Laboratory of Parasitology, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan. kenkata@vetmed.hokudai.ac.jp</auth-address><titles><title>Molecular epidemiology of leishmaniasis in Asia (focus on cutaneous infections)</title><secondary-title>Curr Opin Infect Dis</secondary-title><alt-title>Current opinion in infectious diseases</alt-title></titles><periodical><full-title>Curr Opin Infect Dis</full-title><abbr-1>Current opinion in infectious diseases</abbr-1></periodical><alt-periodical><full-title>Curr Opin Infect Dis</full-title><abbr-1>Current opinion in infectious diseases</abbr-1></alt-periodical><pages>126-30</pages><volume>22</volume><number>2</number><edition>2009/03/12</edition><keywords><keyword>Animals</keyword><keyword>Asia/epidemiology</keyword><keyword>DNA Fingerprinting</keyword><keyword>DNA, Protozoan/genetics</keyword><keyword>Humans</keyword><keyword>Leishmania/*classification/genetics/*isolation &amp; purification</keyword><keyword>Leishmaniasis, Cutaneous/*epidemiology/*parasitology</keyword><keyword>Microsatellite Repeats</keyword><keyword>Molecular Epidemiology</keyword></keywords><dates><year>2009</year><pub-dates><date>Apr</date></pub-dates></dates><isbn>1473-6527 (Electronic)&#xD;0951-7375 (Linking)</isbn><accession-num>19276879</accession-num><work-type>Research Support, Non-U.S. Gov&apos;t&#xD;Review</work-type><urls><related-urls><url>;[13]. It is important to distinguish between the species of Leishmania, since the treatment is different for cutaneous and visceral Leishmaniasis. The PCR-RFLP (restriction fragment length polymorphism) analysis of the internal transcribed spacer 1 is used to distinguish L. donovani and L. major from other species ADDIN EN.CITE <EndNote><Cite><Author>Katakura</Author><Year>2009</Year><RecNum>1200</RecNum><DisplayText>[13]</DisplayText><record><rec-number>1200</rec-number><foreign-keys><key app="EN" db-id="wx90r9pt8rtr20eftvyvz0a4t02v0zsw02wv">1200</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Katakura, K.</author></authors></contributors><auth-address>Laboratory of Parasitology, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan. kenkata@vetmed.hokudai.ac.jp</auth-address><titles><title>Molecular epidemiology of leishmaniasis in Asia (focus on cutaneous infections)</title><secondary-title>Curr Opin Infect Dis</secondary-title><alt-title>Current opinion in infectious diseases</alt-title></titles><periodical><full-title>Curr Opin Infect Dis</full-title><abbr-1>Current opinion in infectious diseases</abbr-1></periodical><alt-periodical><full-title>Curr Opin Infect Dis</full-title><abbr-1>Current opinion in infectious diseases</abbr-1></alt-periodical><pages>126-30</pages><volume>22</volume><number>2</number><edition>2009/03/12</edition><keywords><keyword>Animals</keyword><keyword>Asia/epidemiology</keyword><keyword>DNA Fingerprinting</keyword><keyword>DNA, Protozoan/genetics</keyword><keyword>Humans</keyword><keyword>Leishmania/*classification/genetics/*isolation &amp; purification</keyword><keyword>Leishmaniasis, Cutaneous/*epidemiology/*parasitology</keyword><keyword>Microsatellite Repeats</keyword><keyword>Molecular Epidemiology</keyword></keywords><dates><year>2009</year><pub-dates><date>Apr</date></pub-dates></dates><isbn>1473-6527 (Electronic)&#xD;0951-7375 (Linking)</isbn><accession-num>19276879</accession-num><work-type>Research Support, Non-U.S. Gov&apos;t&#xD;Review</work-type><urls><related-urls><url>;[13]. Primers specific for the Leishmania minicircle PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5LYXRvPC9BdXRob3I+PFllYXI+MjAwNzwvWWVhcj48UmVj

TnVtPjEyOTM8L1JlY051bT48RGlzcGxheVRleHQ+WzE0XTwvRGlzcGxheVRleHQ+PHJlY29yZD48

cmVjLW51bWJlcj4xMjkzPC9yZWMtbnVtYmVyPjxmb3JlaWduLWtleXM+PGtleSBhcHA9IkVOIiBk

Yi1pZD0id3g5MHI5cHQ4cnRyMjBlZnR2eXZ6MGE0dDAydjB6c3cwMnd2Ij4xMjkzPC9rZXk+PC9m

b3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBl

Pjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5LYXRvLCBILjwvYXV0aG9yPjxhdXRob3I+

VWV6YXRvLCBILjwvYXV0aG9yPjxhdXRob3I+R29tZXosIEUuIEEuPC9hdXRob3I+PGF1dGhvcj5U

ZXJheWFtYSwgWS48L2F1dGhvcj48YXV0aG9yPkNhbHZvcGluYSwgTS48L2F1dGhvcj48YXV0aG9y

Pkl3YXRhLCBILjwvYXV0aG9yPjxhdXRob3I+SGFzaGlndWNoaSwgWS48L2F1dGhvcj48L2F1dGhv

cnM+PC9jb250cmlidXRvcnM+PGF1dGgtYWRkcmVzcz5EZXBhcnRtZW50IG9mIFZldGVyaW5hcnkg

SHlnaWVuZSwgRmFjdWx0eSBvZiBBZ3JpY3VsdHVyZSwgWWFtYWd1Y2hpIFVuaXZlcnNpdHksIDE2

NzctMSBZb3NoaWRhLCBZYW1hZ3VjaGkgNzUzLTg1MTUsIEphcGFuLiBrYXRvaEB5YW1hZ3VjaGkt

dS5hYy5qcDwvYXV0aC1hZGRyZXNzPjx0aXRsZXM+PHRpdGxlPkVzdGFibGlzaG1lbnQgb2YgYSBt

YXNzIHNjcmVlbmluZyBtZXRob2Qgb2Ygc2FuZCBmbHkgdmVjdG9ycyBmb3IgTGVpc2htYW5pYSBp

bmZlY3Rpb24gYnkgbW9sZWN1bGFyIGJpb2xvZ2ljYWwgbWV0aG9kczwvdGl0bGU+PHNlY29uZGFy

eS10aXRsZT5BbSBKIFRyb3AgTWVkIEh5Zzwvc2Vjb25kYXJ5LXRpdGxlPjxhbHQtdGl0bGU+VGhl

IEFtZXJpY2FuIGpvdXJuYWwgb2YgdHJvcGljYWwgbWVkaWNpbmUgYW5kIGh5Z2llbmU8L2FsdC10

aXRsZT48L3RpdGxlcz48cGVyaW9kaWNhbD48ZnVsbC10aXRsZT5BbSBKIFRyb3AgTWVkIEh5Zzwv

ZnVsbC10aXRsZT48YWJici0xPlRoZSBBbWVyaWNhbiBqb3VybmFsIG9mIHRyb3BpY2FsIG1lZGlj

aW5lIGFuZCBoeWdpZW5lPC9hYmJyLTE+PC9wZXJpb2RpY2FsPjxhbHQtcGVyaW9kaWNhbD48ZnVs

bC10aXRsZT5BbSBKIFRyb3AgTWVkIEh5ZzwvZnVsbC10aXRsZT48YWJici0xPlRoZSBBbWVyaWNh

biBqb3VybmFsIG9mIHRyb3BpY2FsIG1lZGljaW5lIGFuZCBoeWdpZW5lPC9hYmJyLTE+PC9hbHQt

cGVyaW9kaWNhbD48cGFnZXM+MzI0LTk8L3BhZ2VzPjx2b2x1bWU+Nzc8L3ZvbHVtZT48bnVtYmVy

PjI8L251bWJlcj48ZWRpdGlvbj4yMDA3LzA4LzExPC9lZGl0aW9uPjxrZXl3b3Jkcz48a2V5d29y

ZD5BbmltYWxzPC9rZXl3b3JkPjxrZXl3b3JkPkN5dG9jaHJvbWVzIGIvY2hlbWlzdHJ5L2dlbmV0

aWNzPC9rZXl3b3JkPjxrZXl3b3JkPkROQSwgUHJvdG96b2FuL2NoZW1pc3RyeS9nZW5ldGljczwv

a2V5d29yZD48a2V5d29yZD5FY3VhZG9yL2VwaWRlbWlvbG9neTwva2V5d29yZD48a2V5d29yZD5J

bnNlY3QgVmVjdG9ycy8qcGFyYXNpdG9sb2d5PC9rZXl3b3JkPjxrZXl3b3JkPkxlaXNobWFuaWEv

Z2VuZXRpY3MvKmlzb2xhdGlvbiAmYW1wOyBwdXJpZmljYXRpb248L2tleXdvcmQ+PGtleXdvcmQ+

TGVpc2htYW5pYXNpcy9lcGlkZW1pb2xvZ3kvcGFyYXNpdG9sb2d5Lyp0cmFuc21pc3Npb248L2tl

eXdvcmQ+PGtleXdvcmQ+UGh5bG9nZW55PC9rZXl3b3JkPjxrZXl3b3JkPlBvbHltZXJhc2UgQ2hh

aW4gUmVhY3Rpb24vKm1ldGhvZHM8L2tleXdvcmQ+PGtleXdvcmQ+UG9seW1vcnBoaXNtLCBSZXN0

cmljdGlvbiBGcmFnbWVudCBMZW5ndGg8L2tleXdvcmQ+PGtleXdvcmQ+UHN5Y2hvZGlkYWUvKnBh

cmFzaXRvbG9neTwva2V5d29yZD48a2V5d29yZD5STkEsIFJpYm9zb21hbCwgMThTL2NoZW1pc3Ry

eS9nZW5ldGljczwva2V5d29yZD48a2V5d29yZD5TZW5zaXRpdml0eSBhbmQgU3BlY2lmaWNpdHk8

L2tleXdvcmQ+PC9rZXl3b3Jkcz48ZGF0ZXM+PHllYXI+MjAwNzwveWVhcj48cHViLWRhdGVzPjxk

YXRlPkF1ZzwvZGF0ZT48L3B1Yi1kYXRlcz48L2RhdGVzPjxpc2JuPjAwMDItOTYzNyAoUHJpbnQp

JiN4RDswMDAyLTk2MzcgKExpbmtpbmcpPC9pc2JuPjxhY2Nlc3Npb24tbnVtPjE3NjkwNDA2PC9h

Y2Nlc3Npb24tbnVtPjx3b3JrLXR5cGU+UmVzZWFyY2ggU3VwcG9ydCwgTm9uLVUuUy4gR292JmFw

b3M7dDwvd29yay10eXBlPjx1cmxzPjxyZWxhdGVkLXVybHM+PHVybD5odHRwOi8vd3d3Lm5jYmku

bmxtLm5paC5nb3YvcHVibWVkLzE3NjkwNDA2PC91cmw+PC9yZWxhdGVkLXVybHM+PC91cmxzPjxs

YW5ndWFnZT5lbmc8L2xhbmd1YWdlPjwvcmVjb3JkPjwvQ2l0ZT48L0VuZE5vdGU+AG==

ADDIN EN.CITE PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5LYXRvPC9BdXRob3I+PFllYXI+MjAwNzwvWWVhcj48UmVj

TnVtPjEyOTM8L1JlY051bT48RGlzcGxheVRleHQ+WzE0XTwvRGlzcGxheVRleHQ+PHJlY29yZD48

cmVjLW51bWJlcj4xMjkzPC9yZWMtbnVtYmVyPjxmb3JlaWduLWtleXM+PGtleSBhcHA9IkVOIiBk

Yi1pZD0id3g5MHI5cHQ4cnRyMjBlZnR2eXZ6MGE0dDAydjB6c3cwMnd2Ij4xMjkzPC9rZXk+PC9m

b3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBl

Pjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5LYXRvLCBILjwvYXV0aG9yPjxhdXRob3I+

VWV6YXRvLCBILjwvYXV0aG9yPjxhdXRob3I+R29tZXosIEUuIEEuPC9hdXRob3I+PGF1dGhvcj5U

ZXJheWFtYSwgWS48L2F1dGhvcj48YXV0aG9yPkNhbHZvcGluYSwgTS48L2F1dGhvcj48YXV0aG9y

Pkl3YXRhLCBILjwvYXV0aG9yPjxhdXRob3I+SGFzaGlndWNoaSwgWS48L2F1dGhvcj48L2F1dGhv

cnM+PC9jb250cmlidXRvcnM+PGF1dGgtYWRkcmVzcz5EZXBhcnRtZW50IG9mIFZldGVyaW5hcnkg

SHlnaWVuZSwgRmFjdWx0eSBvZiBBZ3JpY3VsdHVyZSwgWWFtYWd1Y2hpIFVuaXZlcnNpdHksIDE2

NzctMSBZb3NoaWRhLCBZYW1hZ3VjaGkgNzUzLTg1MTUsIEphcGFuLiBrYXRvaEB5YW1hZ3VjaGkt

dS5hYy5qcDwvYXV0aC1hZGRyZXNzPjx0aXRsZXM+PHRpdGxlPkVzdGFibGlzaG1lbnQgb2YgYSBt

YXNzIHNjcmVlbmluZyBtZXRob2Qgb2Ygc2FuZCBmbHkgdmVjdG9ycyBmb3IgTGVpc2htYW5pYSBp

bmZlY3Rpb24gYnkgbW9sZWN1bGFyIGJpb2xvZ2ljYWwgbWV0aG9kczwvdGl0bGU+PHNlY29uZGFy

eS10aXRsZT5BbSBKIFRyb3AgTWVkIEh5Zzwvc2Vjb25kYXJ5LXRpdGxlPjxhbHQtdGl0bGU+VGhl

IEFtZXJpY2FuIGpvdXJuYWwgb2YgdHJvcGljYWwgbWVkaWNpbmUgYW5kIGh5Z2llbmU8L2FsdC10

aXRsZT48L3RpdGxlcz48cGVyaW9kaWNhbD48ZnVsbC10aXRsZT5BbSBKIFRyb3AgTWVkIEh5Zzwv

ZnVsbC10aXRsZT48YWJici0xPlRoZSBBbWVyaWNhbiBqb3VybmFsIG9mIHRyb3BpY2FsIG1lZGlj

aW5lIGFuZCBoeWdpZW5lPC9hYmJyLTE+PC9wZXJpb2RpY2FsPjxhbHQtcGVyaW9kaWNhbD48ZnVs

bC10aXRsZT5BbSBKIFRyb3AgTWVkIEh5ZzwvZnVsbC10aXRsZT48YWJici0xPlRoZSBBbWVyaWNh

biBqb3VybmFsIG9mIHRyb3BpY2FsIG1lZGljaW5lIGFuZCBoeWdpZW5lPC9hYmJyLTE+PC9hbHQt

cGVyaW9kaWNhbD48cGFnZXM+MzI0LTk8L3BhZ2VzPjx2b2x1bWU+Nzc8L3ZvbHVtZT48bnVtYmVy

PjI8L251bWJlcj48ZWRpdGlvbj4yMDA3LzA4LzExPC9lZGl0aW9uPjxrZXl3b3Jkcz48a2V5d29y

ZD5BbmltYWxzPC9rZXl3b3JkPjxrZXl3b3JkPkN5dG9jaHJvbWVzIGIvY2hlbWlzdHJ5L2dlbmV0

aWNzPC9rZXl3b3JkPjxrZXl3b3JkPkROQSwgUHJvdG96b2FuL2NoZW1pc3RyeS9nZW5ldGljczwv

a2V5d29yZD48a2V5d29yZD5FY3VhZG9yL2VwaWRlbWlvbG9neTwva2V5d29yZD48a2V5d29yZD5J

bnNlY3QgVmVjdG9ycy8qcGFyYXNpdG9sb2d5PC9rZXl3b3JkPjxrZXl3b3JkPkxlaXNobWFuaWEv

Z2VuZXRpY3MvKmlzb2xhdGlvbiAmYW1wOyBwdXJpZmljYXRpb248L2tleXdvcmQ+PGtleXdvcmQ+

TGVpc2htYW5pYXNpcy9lcGlkZW1pb2xvZ3kvcGFyYXNpdG9sb2d5Lyp0cmFuc21pc3Npb248L2tl

eXdvcmQ+PGtleXdvcmQ+UGh5bG9nZW55PC9rZXl3b3JkPjxrZXl3b3JkPlBvbHltZXJhc2UgQ2hh

aW4gUmVhY3Rpb24vKm1ldGhvZHM8L2tleXdvcmQ+PGtleXdvcmQ+UG9seW1vcnBoaXNtLCBSZXN0

cmljdGlvbiBGcmFnbWVudCBMZW5ndGg8L2tleXdvcmQ+PGtleXdvcmQ+UHN5Y2hvZGlkYWUvKnBh

cmFzaXRvbG9neTwva2V5d29yZD48a2V5d29yZD5STkEsIFJpYm9zb21hbCwgMThTL2NoZW1pc3Ry

eS9nZW5ldGljczwva2V5d29yZD48a2V5d29yZD5TZW5zaXRpdml0eSBhbmQgU3BlY2lmaWNpdHk8

L2tleXdvcmQ+PC9rZXl3b3Jkcz48ZGF0ZXM+PHllYXI+MjAwNzwveWVhcj48cHViLWRhdGVzPjxk

YXRlPkF1ZzwvZGF0ZT48L3B1Yi1kYXRlcz48L2RhdGVzPjxpc2JuPjAwMDItOTYzNyAoUHJpbnQp

JiN4RDswMDAyLTk2MzcgKExpbmtpbmcpPC9pc2JuPjxhY2Nlc3Npb24tbnVtPjE3NjkwNDA2PC9h

Y2Nlc3Npb24tbnVtPjx3b3JrLXR5cGU+UmVzZWFyY2ggU3VwcG9ydCwgTm9uLVUuUy4gR292JmFw

b3M7dDwvd29yay10eXBlPjx1cmxzPjxyZWxhdGVkLXVybHM+PHVybD5odHRwOi8vd3d3Lm5jYmku

bmxtLm5paC5nb3YvcHVibWVkLzE3NjkwNDA2PC91cmw+PC9yZWxhdGVkLXVybHM+PC91cmxzPjxs

YW5ndWFnZT5lbmc8L2xhbmd1YWdlPjwvcmVjb3JkPjwvQ2l0ZT48L0VuZE5vdGU+AG==

ADDIN EN.CITE.DATA [14] have been used in detection of Sand flies infected with Leishmania. In addition, 18S rRNA has small interspecies variability and is difficult to distinguish ADDIN EN.CITE <EndNote><Cite><Author>Hughes</Author><Year>2003</Year><RecNum>1295</RecNum><DisplayText>[15]</DisplayText><record><rec-number>1295</rec-number><foreign-keys><key app="EN" db-id="wx90r9pt8rtr20eftvyvz0a4t02v0zsw02wv">1295</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Hughes, A. L.</author><author>Piontkivska, H.</author></authors></contributors><auth-address>Department of Biological Sciences, University of South Carolina, USA. austin@biol.sc.edu</auth-address><titles><title>Phylogeny of Trypanosomatidae and Bodonidae (Kinetoplastida) based on 18S rRNA: evidence for paraphyly of Trypanosoma and six other genera</title><secondary-title>Mol Biol Evol</secondary-title><alt-title>Molecular biology and evolution</alt-title></titles><periodical><full-title>Mol Biol Evol</full-title></periodical><pages>644-52</pages><volume>20</volume><number>4</number><edition>2003/04/08</edition><keywords><keyword>Animals</keyword><keyword>DNA, Kinetoplast/*genetics</keyword><keyword>Genes, Protozoan</keyword><keyword>Kinetoplastida/*classification/genetics</keyword><keyword>*Phylogeny</keyword><keyword>RNA, Protozoan/genetics</keyword><keyword>RNA, Ribosomal, 18S/*genetics</keyword><keyword>Sequence Analysis, DNA</keyword><keyword>Symbiosis</keyword><keyword>Trypanosomatina/*classification/genetics</keyword></keywords><dates><year>2003</year><pub-dates><date>Apr</date></pub-dates></dates><isbn>0737-4038 (Print)&#xD;0737-4038 (Linking)</isbn><accession-num>12679543</accession-num><work-type>Comparative Study&#xD;Research Support, U.S. Gov&apos;t, P.H.S.</work-type><urls><related-urls><url>;[15] ADDIN EN.CITE <EndNote><Cite><Author>Stevens</Author><Year>2001</Year><RecNum>1296</RecNum><DisplayText>[16]</DisplayText><record><rec-number>1296</rec-number><foreign-keys><key app="EN" db-id="wx90r9pt8rtr20eftvyvz0a4t02v0zsw02wv">1296</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Stevens, J. R.</author><author>Noyes, H. A.</author><author>Schofield, C. J.</author><author>Gibson, W.</author></authors></contributors><auth-address>School of Biological Sciences, University of Exeter, UK.</auth-address><titles><title>The molecular evolution of Trypanosomatidae</title><secondary-title>Adv Parasitol</secondary-title><alt-title>Advances in parasitology</alt-title></titles><periodical><full-title>Adv Parasitol</full-title><abbr-1>Advances in parasitology</abbr-1></periodical><alt-periodical><full-title>Adv Parasitol</full-title><abbr-1>Advances in parasitology</abbr-1></alt-periodical><pages>1-56</pages><volume>48</volume><edition>2000/10/03</edition><keywords><keyword>Animals</keyword><keyword>DNA, Protozoan/genetics</keyword><keyword>*Evolution, Molecular</keyword><keyword>Humans</keyword><keyword>Phylogeny</keyword><keyword>Protozoan Infections/*parasitology</keyword><keyword>*Trypanosomatina/genetics</keyword></keywords><dates><year>2001</year></dates><isbn>0065-308X (Print)&#xD;0065-308X (Linking)</isbn><accession-num>11013754</accession-num><work-type>Research Support, Non-U.S. Gov&apos;t&#xD;Review</work-type><urls><related-urls><url>;[16]. However the species of Leishmania cannot be distinguished. Further 7SL RNA gene sequences from LeishmaniaPEVuZE5vdGU+PENpdGU+PEF1dGhvcj5aZWxhem55PC9BdXRob3I+PFllYXI+MjAwNTwvWWVhcj48

UmVjTnVtPjEyMTM8L1JlY051bT48RGlzcGxheVRleHQ+WzE3XTwvRGlzcGxheVRleHQ+PHJlY29y

ZD48cmVjLW51bWJlcj4xMjEzPC9yZWMtbnVtYmVyPjxmb3JlaWduLWtleXM+PGtleSBhcHA9IkVO

IiBkYi1pZD0id3g5MHI5cHQ4cnRyMjBlZnR2eXZ6MGE0dDAydjB6c3cwMnd2Ij4xMjEzPC9rZXk+

PC9mb3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10

eXBlPjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5aZWxhem55LCBBLiBNLjwvYXV0aG9y

PjxhdXRob3I+RmVkb3JrbywgRC4gUC48L2F1dGhvcj48YXV0aG9yPkxpLCBMLjwvYXV0aG9yPjxh

dXRob3I+TmV2YSwgRi4gQS48L2F1dGhvcj48YXV0aG9yPkZpc2NoZXIsIFMuIEguPC9hdXRob3I+

PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjxhdXRoLWFkZHJlc3M+TWljcm9iaW9sb2d5IFNlcnZp

Y2UsIERlcGFydG1lbnQgb2YgTGFib3JhdG9yeSBNZWRpY2luZSwgQ2xpbmljYWwgQ2VudGVyLCBO

YXRpb25hbCBJbnN0aXR1dGUgb2YgQWxsZXJneSBhbmQgSW5mZWN0aW91cyBEaXNlYXNlcywgTmF0

aW9uYWwgSW5zdGl0dXRlcyBvZiBIZWFsdGgsIEJldGhlc2RhLCBNYXJ5bGFuZCAyMDg5MiwgVVNB

LiBhemVsYXpueUBjYy5uaWguZ292ICZsdDthemVsYXpueUBjYy5uaWguZ292Jmd0OzwvYXV0aC1h

ZGRyZXNzPjx0aXRsZXM+PHRpdGxlPkV2YWx1YXRpb24gb2YgN1NMIFJOQSBnZW5lIHNlcXVlbmNl

cyBmb3IgdGhlIGlkZW50aWZpY2F0aW9uIG9mIExlaXNobWFuaWEgc3BwPC90aXRsZT48c2Vjb25k

YXJ5LXRpdGxlPkFtIEogVHJvcCBNZWQgSHlnPC9zZWNvbmRhcnktdGl0bGU+PGFsdC10aXRsZT5U

aGUgQW1lcmljYW4gam91cm5hbCBvZiB0cm9waWNhbCBtZWRpY2luZSBhbmQgaHlnaWVuZTwvYWx0

LXRpdGxlPjwvdGl0bGVzPjxwZXJpb2RpY2FsPjxmdWxsLXRpdGxlPkFtIEogVHJvcCBNZWQgSHln

PC9mdWxsLXRpdGxlPjxhYmJyLTE+VGhlIEFtZXJpY2FuIGpvdXJuYWwgb2YgdHJvcGljYWwgbWVk

aWNpbmUgYW5kIGh5Z2llbmU8L2FiYnItMT48L3BlcmlvZGljYWw+PGFsdC1wZXJpb2RpY2FsPjxm

dWxsLXRpdGxlPkFtIEogVHJvcCBNZWQgSHlnPC9mdWxsLXRpdGxlPjxhYmJyLTE+VGhlIEFtZXJp

Y2FuIGpvdXJuYWwgb2YgdHJvcGljYWwgbWVkaWNpbmUgYW5kIGh5Z2llbmU8L2FiYnItMT48L2Fs

dC1wZXJpb2RpY2FsPjxwYWdlcz40MTUtMjA8L3BhZ2VzPjx2b2x1bWU+NzI8L3ZvbHVtZT48bnVt

YmVyPjQ8L251bWJlcj48ZWRpdGlvbj4yMDA1LzA0LzE0PC9lZGl0aW9uPjxrZXl3b3Jkcz48a2V5

d29yZD5BbmltYWxzPC9rZXl3b3JkPjxrZXl3b3JkPkJhc2UgU2VxdWVuY2U8L2tleXdvcmQ+PGtl

eXdvcmQ+RE5BIFByaW1lcnM8L2tleXdvcmQ+PGtleXdvcmQ+TGVpc2htYW5pYS8qY2xhc3NpZmlj

YXRpb24vZ2VuZXRpY3M8L2tleXdvcmQ+PGtleXdvcmQ+TW9sZWN1bGFyIFNlcXVlbmNlIERhdGE8

L2tleXdvcmQ+PGtleXdvcmQ+UGh5bG9nZW55PC9rZXl3b3JkPjxrZXl3b3JkPlBvbHltZXJhc2Ug

Q2hhaW4gUmVhY3Rpb248L2tleXdvcmQ+PGtleXdvcmQ+Uk5BLCBQcm90b3pvYW4vKmdlbmV0aWNz

PC9rZXl3b3JkPjxrZXl3b3JkPlNlcXVlbmNlIEhvbW9sb2d5LCBOdWNsZWljIEFjaWQ8L2tleXdv

cmQ+PC9rZXl3b3Jkcz48ZGF0ZXM+PHllYXI+MjAwNTwveWVhcj48cHViLWRhdGVzPjxkYXRlPkFw

cjwvZGF0ZT48L3B1Yi1kYXRlcz48L2RhdGVzPjxpc2JuPjAwMDItOTYzNyAoUHJpbnQpJiN4RDsw

MDAyLTk2MzcgKExpbmtpbmcpPC9pc2JuPjxhY2Nlc3Npb24tbnVtPjE1ODI3Mjc4PC9hY2Nlc3Np

b24tbnVtPjx3b3JrLXR5cGU+RXZhbHVhdGlvbiBTdHVkaWVzPC93b3JrLXR5cGU+PHVybHM+PHJl

bGF0ZWQtdXJscz48dXJsPmh0dHA6Ly93d3cubmNiaS5ubG0ubmloLmdvdi9wdWJtZWQvMTU4Mjcy

Nzg8L3VybD48L3JlbGF0ZWQtdXJscz48L3VybHM+PGxhbmd1YWdlPmVuZzwvbGFuZ3VhZ2U+PC9y

ZWNvcmQ+PC9DaXRlPjwvRW5kTm90ZT4A

ADDIN EN.CITE PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5aZWxhem55PC9BdXRob3I+PFllYXI+MjAwNTwvWWVhcj48

UmVjTnVtPjEyMTM8L1JlY051bT48RGlzcGxheVRleHQ+WzE3XTwvRGlzcGxheVRleHQ+PHJlY29y

ZD48cmVjLW51bWJlcj4xMjEzPC9yZWMtbnVtYmVyPjxmb3JlaWduLWtleXM+PGtleSBhcHA9IkVO

IiBkYi1pZD0id3g5MHI5cHQ4cnRyMjBlZnR2eXZ6MGE0dDAydjB6c3cwMnd2Ij4xMjEzPC9rZXk+

PC9mb3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10

eXBlPjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5aZWxhem55LCBBLiBNLjwvYXV0aG9y

PjxhdXRob3I+RmVkb3JrbywgRC4gUC48L2F1dGhvcj48YXV0aG9yPkxpLCBMLjwvYXV0aG9yPjxh

dXRob3I+TmV2YSwgRi4gQS48L2F1dGhvcj48YXV0aG9yPkZpc2NoZXIsIFMuIEguPC9hdXRob3I+

PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjxhdXRoLWFkZHJlc3M+TWljcm9iaW9sb2d5IFNlcnZp

Y2UsIERlcGFydG1lbnQgb2YgTGFib3JhdG9yeSBNZWRpY2luZSwgQ2xpbmljYWwgQ2VudGVyLCBO

YXRpb25hbCBJbnN0aXR1dGUgb2YgQWxsZXJneSBhbmQgSW5mZWN0aW91cyBEaXNlYXNlcywgTmF0

aW9uYWwgSW5zdGl0dXRlcyBvZiBIZWFsdGgsIEJldGhlc2RhLCBNYXJ5bGFuZCAyMDg5MiwgVVNB

LiBhemVsYXpueUBjYy5uaWguZ292ICZsdDthemVsYXpueUBjYy5uaWguZ292Jmd0OzwvYXV0aC1h

ZGRyZXNzPjx0aXRsZXM+PHRpdGxlPkV2YWx1YXRpb24gb2YgN1NMIFJOQSBnZW5lIHNlcXVlbmNl

cyBmb3IgdGhlIGlkZW50aWZpY2F0aW9uIG9mIExlaXNobWFuaWEgc3BwPC90aXRsZT48c2Vjb25k

YXJ5LXRpdGxlPkFtIEogVHJvcCBNZWQgSHlnPC9zZWNvbmRhcnktdGl0bGU+PGFsdC10aXRsZT5U

aGUgQW1lcmljYW4gam91cm5hbCBvZiB0cm9waWNhbCBtZWRpY2luZSBhbmQgaHlnaWVuZTwvYWx0

LXRpdGxlPjwvdGl0bGVzPjxwZXJpb2RpY2FsPjxmdWxsLXRpdGxlPkFtIEogVHJvcCBNZWQgSHln

PC9mdWxsLXRpdGxlPjxhYmJyLTE+VGhlIEFtZXJpY2FuIGpvdXJuYWwgb2YgdHJvcGljYWwgbWVk

aWNpbmUgYW5kIGh5Z2llbmU8L2FiYnItMT48L3BlcmlvZGljYWw+PGFsdC1wZXJpb2RpY2FsPjxm

dWxsLXRpdGxlPkFtIEogVHJvcCBNZWQgSHlnPC9mdWxsLXRpdGxlPjxhYmJyLTE+VGhlIEFtZXJp

Y2FuIGpvdXJuYWwgb2YgdHJvcGljYWwgbWVkaWNpbmUgYW5kIGh5Z2llbmU8L2FiYnItMT48L2Fs

dC1wZXJpb2RpY2FsPjxwYWdlcz40MTUtMjA8L3BhZ2VzPjx2b2x1bWU+NzI8L3ZvbHVtZT48bnVt

YmVyPjQ8L251bWJlcj48ZWRpdGlvbj4yMDA1LzA0LzE0PC9lZGl0aW9uPjxrZXl3b3Jkcz48a2V5

d29yZD5BbmltYWxzPC9rZXl3b3JkPjxrZXl3b3JkPkJhc2UgU2VxdWVuY2U8L2tleXdvcmQ+PGtl

eXdvcmQ+RE5BIFByaW1lcnM8L2tleXdvcmQ+PGtleXdvcmQ+TGVpc2htYW5pYS8qY2xhc3NpZmlj

YXRpb24vZ2VuZXRpY3M8L2tleXdvcmQ+PGtleXdvcmQ+TW9sZWN1bGFyIFNlcXVlbmNlIERhdGE8

L2tleXdvcmQ+PGtleXdvcmQ+UGh5bG9nZW55PC9rZXl3b3JkPjxrZXl3b3JkPlBvbHltZXJhc2Ug

Q2hhaW4gUmVhY3Rpb248L2tleXdvcmQ+PGtleXdvcmQ+Uk5BLCBQcm90b3pvYW4vKmdlbmV0aWNz

PC9rZXl3b3JkPjxrZXl3b3JkPlNlcXVlbmNlIEhvbW9sb2d5LCBOdWNsZWljIEFjaWQ8L2tleXdv

cmQ+PC9rZXl3b3Jkcz48ZGF0ZXM+PHllYXI+MjAwNTwveWVhcj48cHViLWRhdGVzPjxkYXRlPkFw

cjwvZGF0ZT48L3B1Yi1kYXRlcz48L2RhdGVzPjxpc2JuPjAwMDItOTYzNyAoUHJpbnQpJiN4RDsw

MDAyLTk2MzcgKExpbmtpbmcpPC9pc2JuPjxhY2Nlc3Npb24tbnVtPjE1ODI3Mjc4PC9hY2Nlc3Np

b24tbnVtPjx3b3JrLXR5cGU+RXZhbHVhdGlvbiBTdHVkaWVzPC93b3JrLXR5cGU+PHVybHM+PHJl

bGF0ZWQtdXJscz48dXJsPmh0dHA6Ly93d3cubmNiaS5ubG0ubmloLmdvdi9wdWJtZWQvMTU4Mjcy

Nzg8L3VybD48L3JlbGF0ZWQtdXJscz48L3VybHM+PGxhbmd1YWdlPmVuZzwvbGFuZ3VhZ2U+PC9y

ZWNvcmQ+PC9DaXRlPjwvRW5kTm90ZT4A

ADDIN EN.CITE.DATA [17] has been successfully used in differentiating Leishmania species. Leishmania species are highly similar for 7SL RNA gene in the range of 81 to 99.3%. In this study, principal component analysis (PCA) was used in distinguishing Leishmania species in Sand fly genomic DNA sample.4.3 Results The sensitivity of detection on the UBDA array is estimated between a concentration of 1.5 to 5 ng determined from the spike in of 70-mer oligonucleotides into the human genomic DNA sample ADDIN EN.CITE <EndNote><Cite><Author>Shallom</Author><Year>2011</Year><RecNum>444</RecNum><DisplayText>[18]</DisplayText><record><rec-number>444</rec-number><foreign-keys><key app="EN" db-id="wx90r9pt8rtr20eftvyvz0a4t02v0zsw02wv">444</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Shallom, S. J.</author><author>Weeks, J. N.</author><author>Galindo, C. L.</author><author>McIver, L.</author><author>Sun, Z.</author><author>McCormick, J.</author><author>Adams, L. G.</author><author>Garner, H. R.</author></authors></contributors><auth-address>Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, VA, USA. garner@vbi.vt.edu.</auth-address><titles><title>A species independent universal bio-detection microarray for pathogen forensics and phylogenetic classification of unknown microorganisms</title><secondary-title>BMC Microbiol</secondary-title><alt-title>BMC microbiology</alt-title></titles><periodical><full-title>BMC Microbiol</full-title></periodical><pages>132</pages><volume>11</volume><edition>2011/06/16</edition><dates><year>2011</year></dates><isbn>1471-2180 (Electronic)&#xD;1471-2180 (Linking)</isbn><accession-num>21672191</accession-num><urls><related-urls><url>;[18]. The first application described is the detection of Bacillus anthracis in a soil sample. The second application is detection of a fungal infection in a human genomic DNA background. The third application is development of a surveillance platform for the detection of Dengue viral strains and Leishmania parasite species in a host insect vector background.4.3.1 Use of the UBDA array in direct biodefense application: Detection of Bacillus anthracis Sterne strain contamination in a soil sample.The first example presented in this case study is a biodefense application of detection of Bacillus anthracis in a soil sample. Regression analysis shows that the closest match is the Bacillus anthracis strain which lacks the pXO2 plasmid (Figure 2 and Table 1). Principal component analysis shows that Bacillus anthracis constitutes about 22% of the hybridization intensity compared to 78% from soil genomic DNA (Table 2). 4.3.2 Diagnostic utility in determining genomic signature of a fungal pathogen: Aspergillus fumigatus in BEAS B2B human cell lineAs described in the methods section a synthetic genomic DNA mixture was created to simulate a fungal infection in a human patient. Aspergillus fumigatus 293 genomic DNA was spiked at a concentration of 10%. The closest match was Candida albicans which is a fungal sample and Aspergillus fumigatus 293 (Table 3). The soil sample is not considered since it is a highly heterogeneous sample. Table 4 shows the percentage of probes attributed to Aspergillus fumigatus.4.3.3 Surveillance method for vector borne disease4.3.3.1 Detection of Dengue Virus in Aedes aegypti mosquitoesPrincipal component analysis was used to distinguish the Dengue viral strain that was spiked into the Aedes aegypti host background. This method was also used to quantitate the number of probes attributed to the Dengue viral strain. Table 5 shows that Dengue virus strain 2 was spiked into the mosquito genomic DNA. The amount of spike in was 5% of the total sample hybridized to the array. The number of probes attributed the Dengue virus 2 was 16.9%. The number of probes attributed to Dengue virus stain 4 could be attributed to shared bio-signatures between the two viral strains.4.3.3.2 Detection of Leishmania species in Phlebotomus papatasi Sand flyHierarchical clustering was used to determine the shows unique signature pattern in the Sand fly Phlebotomus papatasi versus the Leishmania species Figure 1. Leishmania donovani and Leishmania tropica species are similar to each other and Leishmania infantum and Leishmania major are similar in pattern. Principal component analysis was used to determine the number of probes attributed to each of the spiked Leishmania species. The UBDA array was able to correctly identify the 10% spiked in L. major and L. infantum and the 1% spiked in L. donovani and L. tropica. The array was able to correctly identify L. infantum at the 0.1% spiked in level.4.4 Discussion The analysis of closely related strains and species by microarray-based comparative genomics provides a measure of genetic variability within natural populations and identifies crucial differences between pathogen and host.Bacillus anthracis the microbial agent responsible for the disease anthrax ADDIN EN.CITE <EndNote><Cite><Author>Mock</Author><Year>2001</Year><RecNum>1089</RecNum><DisplayText>[19]</DisplayText><record><rec-number>1089</rec-number><foreign-keys><key app="EN" db-id="wx90r9pt8rtr20eftvyvz0a4t02v0zsw02wv">1089</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Mock, M.</author><author>Fouet, A.</author></authors></contributors><auth-address>Toxines et Pathogenie Bacterienne, (CNRS URA 2172), Institut Pasteur, Paris Cedex 15, France. mmock@pasteur.fr</auth-address><titles><title>Anthrax</title><secondary-title>Annu Rev Microbiol</secondary-title><alt-title>Annual review of microbiology</alt-title></titles><periodical><full-title>Annu Rev Microbiol</full-title><abbr-1>Annual review of microbiology</abbr-1></periodical><alt-periodical><full-title>Annu Rev Microbiol</full-title><abbr-1>Annual review of microbiology</abbr-1></alt-periodical><pages>647-71</pages><volume>55</volume><edition>2001/09/07</edition><keywords><keyword>Animals</keyword><keyword>Anthrax/*microbiology/prevention &amp; control</keyword><keyword>Bacillus cereus/immunology/pathogenicity/*physiology</keyword><keyword>Bacterial Toxins/immunology/metabolism</keyword><keyword>Bacterial Vaccines/administration &amp; dosage</keyword><keyword>Humans</keyword><keyword>Spores, Bacterial/immunology</keyword><keyword>Virulence</keyword></keywords><dates><year>2001</year></dates><isbn>0066-4227 (Print)&#xD;0066-4227 (Linking)</isbn><accession-num>11544370</accession-num><work-type>Review</work-type><urls><related-urls><url>;[19]. To exhibit pathogenic characteristics, B. anthracis must carry pXO1 and pXO2, two virulence factor encoding plasmids. The Ames strain carries both these plasmids however, the Sterne strain has only the pXO1 plasmid. The size of the pXO1 plasmid is 181,677 bases and the size of the pXO2 plasmid is 94,830 bases. UBDA array can distinguish between these two closely related strains. The level of detection of Bacillus anthracis in a soil sample is 5 x105 cell copy number as determined from ADDIN EN.CITE <EndNote><Cite><Author>Call</Author><Year>2003</Year><RecNum>1305</RecNum><DisplayText>[20]</DisplayText><record><rec-number>1305</rec-number><foreign-keys><key app="EN" db-id="wx90r9pt8rtr20eftvyvz0a4t02v0zsw02wv">1305</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Call, D. R.</author><author>Borucki, M. K.</author><author>Besser, T. E.</author></authors></contributors><auth-address>Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, Washington 99164-7040, USA. drcall@wsu.edu</auth-address><titles><title>Mixed-genome microarrays reveal multiple serotype and lineage-specific differences among strains of Listeria monocytogenes</title><secondary-title>J Clin Microbiol</secondary-title><alt-title>Journal of clinical microbiology</alt-title></titles><periodical><full-title>J Clin Microbiol</full-title></periodical><alt-periodical><full-title>Journal of Clinical Microbiology</full-title></alt-periodical><pages>632-9</pages><volume>41</volume><number>2</number><edition>2003/02/08</edition><keywords><keyword>Cluster Analysis</keyword><keyword>DNA Probes</keyword><keyword>DNA, Bacterial/analysis</keyword><keyword>Humans</keyword><keyword>Linkage Disequilibrium</keyword><keyword>Listeria monocytogenes/*classification/genetics</keyword><keyword>Oligonucleotide Array Sequence Analysis</keyword><keyword>Phylogeny</keyword><keyword>Serotyping/methods</keyword></keywords><dates><year>2003</year><pub-dates><date>Feb</date></pub-dates></dates><isbn>0095-1137 (Print)&#xD;0095-1137 (Linking)</isbn><accession-num>12574259</accession-num><work-type>Research Support, Non-U.S. Gov&apos;t&#xD;Research Support, U.S. Gov&apos;t, Non-P.H.S.</work-type><urls><related-urls><url>;[20]. The UBDA array was able to detect the 8 x 106 copies of B. anthracis Sterne strain spiked into the sample. The regression analysis shows a high similarity to Candida albicans in a human cell line genomic DNA spiked with Aspergillus fumigatus since both are fungal organisms. The UBDA array can accurately distinguish between the Dengue viral strains spiked into the mosquito sample. The type of Leishmania species spiked into the Sand fly genome can be detected at the 1% (1.3 x 105) and 0.1 % (1.3 x 104) copies.4.5 Conclusions The UBDA array was used to de-convolute the identity of a spiked in pathogen such as Bacillus anthracis in a soil sample. Further it can quantitate the amount of pathogen present in the host background as shown with spike in of the Aspergillus fumigatus fungal genomic DNA into human genomic DNA sample. UBDA can be used as a potential surveillance detection system for investigating an insect population for viruses or parasites that cause disease in humans.4.6 Methods4.6.1 Extraction of genomic DNA from soilApproximately 1g of sediment in 1x extraction buffer was put into a 50 ml corning tube and mixed. Sediment extraction buffer mix (1ml) was aliquoted into 10, 2ml tubes containing 0.5 g of sterile glass beads. Lysozyme stock 25 ?l (20mg/l) (Sigma MO) was added. This was mixed and incubated for 4 hours at 37? C and later 50 ?l of 20% SDS was added and mixed. The sample was incubated at room temperature for 20 minutes and then 50ul of 350 mg/ml DTT was added. This was incubated at room temperature for 20 minutes and mixed for 15 seconds and held on ice in between vortex repetitions. Proteinase K (6.5 ?l of stock 20 mg/ml) (Sigma MO) was added, mixed and incubated at 65? C for 30 minutes in a water bath. Liquid from all 10 tubes was pooled into one 50 ml corning tube. Equal volume of phenol, chloroform, isoamyl alcohol (25:24:1) was added, emulsified by mixing. The tubes were centrifuged at 7,500 g for 15 minutes in a large centrifuge. The aqueous layer was transferred to a fresh corning tube. The extraction procedure was repeated. Further, equal volume of chloroform isoamyl alcohol (24:1) was added and repeat extraction procedure by centrifugation was carried out. The aqueous layer was collected and the supernatant was measured. Sodium acetate (0.1 volume, pH 5.2) was added and mixed and one volume of isopropanol was added and was left at room temperature for 30 minutes. The tubes were then centrifuged at 10,000 g for 10 minutes. The supernatant was decanted and the pellet was washed with 1 ml of cold 70% ethanol. The tube was then centrifuged at 10,000 g for one minute. The alcohol wash was repeated and the tube was dried at room temperature. The DNA was dissolved in 1x Tris EDTA buffer (10mM Tris, 1mM EDTA) and stored at -20? C. 4.6.2 Sample preparation of genomic DNA from mosquitoes and Dengue viral cDNADNA was extracted from Aedes aegypti mosquitoes using Blood and Cell culture DNA mini kit (Qiagen, Valencia CA). Dengue viral RNA was converted to a double stranded cDNA using the SuperScript double stranded cDNA synthesis kit (Life Technologies, Invitrogen, Grand Island, NY).4.6.3 Microarray procedure and array data processingDNA concentration (260 nm) and purity (260/280 and 260/230 nm) were assessed by the spectrophotometer and quality by agarose gel electrophoresis. Samples with 260/230 nm ratios greater than 1.8 were used following established protocols for array comparative genomic hybridization (CGH). We designed the UBDA microarray which was then manufactured by Roche-Nimblegen (Madison, WI) as a custom 373K probe chip and genomic DNAs(1 μg) were labeled and hybridized on the UBDA chip as previously described ADDIN EN.CITE <EndNote><Cite><Author>Shallom</Author><Year>2011</Year><RecNum>444</RecNum><DisplayText>[18]</DisplayText><record><rec-number>444</rec-number><foreign-keys><key app="EN" db-id="wx90r9pt8rtr20eftvyvz0a4t02v0zsw02wv">444</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Shallom, S. J.</author><author>Weeks, J. N.</author><author>Galindo, C. L.</author><author>McIver, L.</author><author>Sun, Z.</author><author>McCormick, J.</author><author>Adams, L. G.</author><author>Garner, H. R.</author></authors></contributors><auth-address>Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, VA, USA. garner@vbi.vt.edu.</auth-address><titles><title>A species independent universal bio-detection microarray for pathogen forensics and phylogenetic classification of unknown microorganisms</title><secondary-title>BMC Microbiol</secondary-title><alt-title>BMC microbiology</alt-title></titles><periodical><full-title>BMC Microbiol</full-title></periodical><pages>132</pages><volume>11</volume><edition>2011/06/16</edition><dates><year>2011</year></dates><isbn>1471-2180 (Electronic)&#xD;1471-2180 (Linking)</isbn><accession-num>21672191</accession-num><urls><related-urls><url>;[18]. Data files from the UBDA arrays were imported individually into Nimblescan (Roche Nimblegen, Madison, WI,) and background corrected. A parsing script written in Perl was used to extract 9-mer (262,144 probes and replicates) probe intensities from the 373K UBDA array and signal intensity values were log2 transformed.4.6.4 Regression analysis using curve fitPreviously hyper spectral imaging using regression curve fit analysis has been used to discriminate multiple colors in a fluorescent sample labeled with multiple fluorophores ADDIN EN.CITE <EndNote><Cite><Author>Schultz</Author><Year>2001</Year><RecNum>1050</RecNum><DisplayText>[21]</DisplayText><record><rec-number>1050</rec-number><foreign-keys><key app="EN" db-id="wx90r9pt8rtr20eftvyvz0a4t02v0zsw02wv">1050</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Schultz, R. A.</author><author>Nielsen, T.</author><author>Zavaleta, J. R.</author><author>Ruch, R.</author><author>Wyatt, R.</author><author>Garner, H. R.</author></authors></contributors><auth-address>McDermott Center for Human Growth and Development, The University of Texas Southwestern Medical Center, Dallas, Texas 75235-8591, USA.</auth-address><titles><title>Hyperspectral imaging: a novel approach for microscopic analysis</title><secondary-title>Cytometry</secondary-title><alt-title>Cytometry</alt-title></titles><periodical><full-title>Cytometry</full-title><abbr-1>Cytometry</abbr-1></periodical><alt-periodical><full-title>Cytometry</full-title><abbr-1>Cytometry</abbr-1></alt-periodical><pages>239-47</pages><volume>43</volume><number>4</number><edition>2001/03/22</edition><keywords><keyword>Humans</keyword><keyword>Image Cytometry/*instrumentation/methods</keyword><keyword>Image Processing, Computer-Assisted</keyword><keyword>Imaging, Three-Dimensional/*instrumentation/methods</keyword><keyword>In Situ Hybridization, Fluorescence</keyword><keyword>Microscopy, Fluorescence/*instrumentation/methods</keyword><keyword>Microspheres</keyword><keyword>Spectrometry, Fluorescence/*instrumentation/methods</keyword><keyword>Staining and Labeling</keyword></keywords><dates><year>2001</year><pub-dates><date>Apr 1</date></pub-dates></dates><isbn>0196-4763 (Print)&#xD;0196-4763 (Linking)</isbn><accession-num>11260591</accession-num><work-type>Research Support, Non-U.S. Gov&apos;t</work-type><urls><related-urls><url>;[21]. Differentially colored fluorescent calibration standard microspheres were used. Custom code was written in the program IDL and contributions from each individual fluorophore were determined. This has been further applied to determining protein quantification in a dot blot assay ADDIN EN.CITE <EndNote><Cite><Author>Rosenblatt</Author><Year>2012</Year><RecNum>1051</RecNum><DisplayText>[22]</DisplayText><record><rec-number>1051</rec-number><foreign-keys><key app="EN" db-id="wx90r9pt8rtr20eftvyvz0a4t02v0zsw02wv">1051</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Rosenblatt, K. P.</author><author>Huebschman, M. L.</author><author>Garner, H. R.</author></authors></contributors><auth-address>Health Science Center CCTS Proteomics Core, The Brown Foundation Institute of Molecular Medicine/UT, Houston, TX, USA. Kevin.Rosenblatt@uth.tmc.edu</auth-address><titles><title>Construction and hyperspectral imaging of quantum dot lysate arrays</title><secondary-title>Methods Mol Biol</secondary-title><alt-title>Methods in molecular biology</alt-title></titles><periodical><full-title>Methods Mol Biol</full-title></periodical><pages>311-24</pages><volume>823</volume><edition>2011/11/15</edition><dates><year>2012</year></dates><isbn>1940-6029 (Electronic)&#xD;1064-3745 (Linking)</isbn><accession-num>22081354</accession-num><urls><related-urls><url>;[22]. Recently this algorithm has been used to determine the amount of a particular molecular marker present in a tumor sample ADDIN EN.CITE <EndNote><Cite><Author>Uhr</Author><Year>2012</Year><RecNum>1316</RecNum><DisplayText>[23]</DisplayText><record><rec-number>1316</rec-number><foreign-keys><key app="EN" db-id="wx90r9pt8rtr20eftvyvz0a4t02v0zsw02wv">1316</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Uhr, J. W.</author><author>Huebschman, M. L.</author><author>Frenkel, E. P.</author><author>Lane, N. L.</author><author>Ashfaq, R.</author><author>Liu, H.</author><author>Rana, D. R.</author><author>Cheng, L.</author><author>Lin, A. T.</author><author>Hughes, G. A.</author><author>Zhang, X. J.</author><author>Garner, H. R.</author></authors></contributors><auth-address>Cancer Immunobiology Center, Department of Internal Medicine, at the University of Texas Southwestern Medical Center, Dallas, TX.</auth-address><titles><title>Molecular profiling of individual tumor cells by hyperspectral microscopic imaging</title><secondary-title>Transl Res</secondary-title><alt-title>Translational research : the journal of laboratory and clinical medicine</alt-title></titles><periodical><full-title>Transl Res</full-title><abbr-1>Translational research : the journal of laboratory and clinical medicine</abbr-1></periodical><alt-periodical><full-title>Transl Res</full-title><abbr-1>Translational research : the journal of laboratory and clinical medicine</abbr-1></alt-periodical><pages>366-75</pages><volume>159</volume><number>5</number><edition>2012/04/17</edition><dates><year>2012</year><pub-dates><date>May</date></pub-dates></dates><isbn>1878-1810 (Electronic)&#xD;1878-1810 (Linking)</isbn><accession-num>22500509</accession-num><urls><related-urls><url>;[23]. A similar custom code was applied to signal intensities generated from the UBDA array. The sum of intensities for all probes was computed for each of the pure samples and this is divided by the total number of samples. The unknown sample is then compared by regression analysis to the library of values generated from the pure reference sample using the curve fit function in IDL code (Boulder, CO). 4.6.5 Quantification of pathogen in a host background using principal component analysisPrincipal component analysis (PCA) was employed to determine the isolate’s composite identity from the UBDA array data. Principal component analysis ADDIN EN.CITE <EndNote><Cite><Author>Raychaudhuri</Author><Year>2000</Year><RecNum>1049</RecNum><DisplayText>[24]</DisplayText><record><rec-number>1049</rec-number><foreign-keys><key app="EN" db-id="wx90r9pt8rtr20eftvyvz0a4t02v0zsw02wv">1049</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Raychaudhuri, S.</author><author>Stuart, J. M.</author><author>Altman, R. B.</author></authors></contributors><auth-address>Stanford Medical Informatics, Stanford University, CA 94305-5479, USA. sxr@smi.stanford.edu</auth-address><titles><title>Principal components analysis to summarize microarray experiments: application to sporulation time series</title><secondary-title>Pac Symp Biocomput</secondary-title><alt-title>Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing</alt-title></titles><periodical><full-title>Pac Symp Biocomput</full-title><abbr-1>Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing</abbr-1></periodical><alt-periodical><full-title>Pac Symp Biocomput</full-title><abbr-1>Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing</abbr-1></alt-periodical><pages>455-66</pages><edition>2000/07/21</edition><keywords><keyword>Computer Simulation</keyword><keyword>Databases, Factual</keyword><keyword>Gene Expression</keyword><keyword>Genes, Fungal</keyword><keyword>*Models, Genetic</keyword><keyword>Oligonucleotide Array Sequence Analysis</keyword><keyword>Saccharomyces cerevisiae/*genetics/*physiology</keyword><keyword>Spores, Fungal/genetics/physiology</keyword></keywords><dates><year>2000</year></dates><isbn>1793-5091 (Print)</isbn><accession-num>10902193</accession-num><work-type>Research Support, Non-U.S. Gov&apos;t&#xD;Research Support, U.S. Gov&apos;t, Non-P.H.S.&#xD;Research Support, U.S. Gov&apos;t, P.H.S.</work-type><urls><related-urls><url>;[24] was calculated for the entire 9-mer probe set using a custom MATLAB (Natick, MA) script. PCA was calculated in order to determine the linear fit for a given 2-component data array. The Eigen vectors were used to generate a linear fit. The Euclidean distance measure was used to calculate the orthogonal distance from each data point ( for each probe) generated from Cartesian coordinates between the two samples to the linear fit line. The score with the shortest distance was determined for each probe across multiple two by two comparisons between the unknown sample and the reference (pure) sample. These scores were ranked to create the percentage of probes attributed to a given reference or pure sample that are part of the unknown sample.4.7 Acknowledgements Soil sample extraction protocol was provided by Dr. Biswarup Mukhopadhay and Dwi Susanti at Virginia Bioinformatics Institute, Virginia Tech. Genomic DNA from Apsergillus fumigatus and BEAS 2B cells was kindly provide by Dr. Rumore and Dr. Lawrence at Virginia Bioinformatics Institute, Virginia Tech. Dengue virus RNA and Aedes aegypti mosquitoes were provided by Dr. Myles at Virginia Tech. All other genomic DNA listed was obtained from BEI resources or ATCC. Leishmania species detection in Sand fly was funded by the Department of the Army to Dr. Sriram Shanker (Lynntech) and Dr. Harold Garner (VBI). Leishmania donovani was kindly provided by Dr. Soong from University of Texas Medical branch. This project was funded by subaward 570636 from DHS 2007-ST-061-000002 from the U.S. Department of Homeland Security - National Center of Excellence for Foreign Animal and Zoonotic Disease Defense at Texas A&M University to Dr. Harold Garner. S. Shallom received funding from SREB (Southern Regional Education Board) state doctoral scholar award.4.8 AttributionS. Shallom designed and carried out experiments, analyzed the data, developed principal component analysis algorithm in MATLAB and wrote the manuscript. L. McIver provided computation expertise. A. Rumore extracted fungal and human genomic DNA and participated in study design. C. Lawrence participated in study design. G. Adams provided useful discussions, H. Garner conceived of the study, participated in study design and mentored in drafting the manuscript. 4. 9 Bibliography ADDIN EN.REFLIST 1.Beekmann SE, Diekema DJ, Chapin KC, Doern GV: Effects of rapid detection of bloodstream infections on length of hospitalization and hospital charges. J Clin Microbiol 2003, 41(7):3119-3125.2.Eom HS, Hwang BH, Kim DH, Lee IB, Kim YH, Cha HJ: Multiple detection of food-borne pathogenic bacteria using a novel 16S rDNA-based oligonucleotide signature chip. Biosensors & bioelectronics 2007, 22(6):845-853.3.Palka-Santini M, Cleven BE, Eichinger L, Kronke M, Krut O: Large scale multiplex PCR improves pathogen detection by DNA microarrays. BMC Microbiol 2009, 9:1.4.Yoo SM, Lee SY, Chang KH, Yoo SY, Yoo NC, Keum KC, Yoo WM, Kim JM, Choi JY: High-throughput identification of clinically important bacterial pathogens using DNA microarray. Molecular and cellular probes 2009, 23(3-4):171-177.5.Hwang BH, Cha HJ: Pattern-mapped multiple detection of 11 pathogenic bacteria using a 16s rDNA-based oligonucleotide microarray. Biotechnology and bioengineering 2010, 106(2):183-192.6.Faber J, Moritz N, Henninger N, Zepp F, Knuf M: Rapid detection of common pathogenic Aspergillus species by a novel real-time PCR approach. Mycoses 2009, 52(3):228-233.7.Kahn FW, Jones JM, England DM: The role of bronchoalveolar lavage in the diagnosis of invasive pulmonary aspergillosis. Am J Clin Pathol 1986, 86(4):518-523.8.Young RC, Bennett JE: Invasive aspergillosis. Absence of detectable antibody response. Am Rev Respir Dis 1971, 104(5):710-716.9.Kuniholm MH, Wolfe ND, Huang CY, Mpoudi-Ngole E, Tamoufe U, LeBreton M, Burke DS, Gubler DJ: Seroprevalence and distribution of Flaviviridae, Togaviridae, and Bunyaviridae arboviral infections in rural Cameroonian adults. The American journal of tropical medicine and hygiene 2006, 74(6):1078-1083.10.Harris E, Roberts TG, Smith L, Selle J, Kramer LD, Valle S, Sandoval E, Balmaseda A: Typing of dengue viruses in clinical specimens and mosquitoes by single-tube multiplex reverse transcriptase PCR. J Clin Microbiol 1998, 36(9):2634-2639.11.Xiao-Ping K, Yong-Qiang L, Qing-Ge S, Hong L, Qing-Yu Z, Yin-Hui Y: Development of a consensus microarray method for identification of some highly pathogenic viruses. Journal of medical virology 2009, 81(11):1945-1950.12.Kane MD, Jatkoe TA, Stumpf CR, Lu J, Thomas JD, Madore SJ: Assessment of the sensitivity and specificity of oligonucleotide (50mer) microarrays. Nucleic Acids Res 2000, 28(22):4552-4557.13.Katakura K: Molecular epidemiology of leishmaniasis in Asia (focus on cutaneous infections). Current opinion in infectious diseases 2009, 22(2):126-130.14.Kato H, Uezato H, Gomez EA, Terayama Y, Calvopina M, Iwata H, Hashiguchi Y: Establishment of a mass screening method of sand fly vectors for Leishmania infection by molecular biological methods. The American journal of tropical medicine and hygiene 2007, 77(2):324-329.15.Hughes AL, Piontkivska H: Phylogeny of Trypanosomatidae and Bodonidae (Kinetoplastida) based on 18S rRNA: evidence for paraphyly of Trypanosoma and six other genera. Mol Biol Evol 2003, 20(4):644-652.16.Stevens JR, Noyes HA, Schofield CJ, Gibson W: The molecular evolution of Trypanosomatidae. Advances in parasitology 2001, 48:1-56.17.Zelazny AM, Fedorko DP, Li L, Neva FA, Fischer SH: Evaluation of 7SL RNA gene sequences for the identification of Leishmania spp. The American journal of tropical medicine and hygiene 2005, 72(4):415-420.18.Shallom SJ, Weeks JN, Galindo CL, McIver L, Sun Z, McCormick J, Adams LG, Garner HR: A species independent universal bio-detection microarray for pathogen forensics and phylogenetic classification of unknown microorganisms. BMC Microbiol 2011, 11:132.19.Mock M, Fouet A: Anthrax. Annual review of microbiology 2001, 55:647-671.20.Call DR, Borucki MK, Besser TE: Mixed-genome microarrays reveal multiple serotype and lineage-specific differences among strains of Listeria monocytogenes. J Clin Microbiol 2003, 41(2):632-639.21.Schultz RA, Nielsen T, Zavaleta JR, Ruch R, Wyatt R, Garner HR: Hyperspectral imaging: a novel approach for microscopic analysis. Cytometry 2001, 43(4):239-247.22.Rosenblatt KP, Huebschman ML, Garner HR: Construction and hyperspectral imaging of quantum dot lysate arrays. Methods Mol Biol 2012, 823:311-324.23.Uhr JW, Huebschman ML, Frenkel EP, Lane NL, Ashfaq R, Liu H, Rana DR, Cheng L, Lin AT, Hughes GA et al: Molecular profiling of individual tumor cells by hyperspectral microscopic imaging. Translational research : the journal of laboratory and clinical medicine 2012, 159(5):366-375.24.Raychaudhuri S, Stuart JM, Altman RB: Principal components analysis to summarize microarray experiments: application to sporulation time series. Pacific Symposium on Biocomputing Pacific Symposium on Biocomputing 2000:455-466.4.10 Figures4.10.1 Figure 1: Comparison of Phlebotomus (both channels) and Leishmania species pure bio-signaturesAll 9-mer data points for each of the samples were background corrected individually and log2 transformed. Phlebotomus signatures from both dye channels are represented. Only intensity signals with a fold change of 3 or greater with 27,574 elements were included. These elements were subjected to hierarchical clustering algorithm using the Euclidean distance being used as a similarity measure with centroid linkage. The signal intensity values were represented on a Log2 scale. The range of log2 values ranged from 8.5 (blue) to 13.5 (red).4.10.2 Figure 2: Regression analysis of soil sample spiked with Bacillus anthracis Sterne strain4.11 Tables4.11.1 Table 1: Regression analysis of Soil sample spiked with Bacillus anthracis OrganismSoil sample spiked with Bacillus anthracisBacillus anthracis, Strain Sterne ΔGBAA19410.322813Bacillus anthracis Strain Ames350.28986Salmonella sp 356640.065335Aedes aegypti0.061832Mannheimia haemolytica 333960.06011Staphylococcus lugdunensis0.050337Aspergillus fumigatus 2930.04948Streptococcus agalactiae 279560.03502Streptococcus agalactiae 279560.033043 Influenza A Virus (H10N7)0.022402Clostridium difficile 1930.015179Staphylococcus xylosus 7004041.34E-05Clostridium botulinum VPI 44041.34E-05Escherichia coli 259227.42E-06Clostridium alkali2.30E-06Thermotoga composti1.93E-06Salmonella enterica serovar Braenderup BAA-6641.70E-06Rhodococcus equi 69368.57E-07Brucella melitensis 16M8.49E-07Methanococcus jannaschii8.15E-07Rhodococcus equi 69396.83E-07BEAS B2B human cell line1.29E-07Brucella abortus 23081.14E-07Escherichia coli 352184.63E-08Candida albicans 90028-4.45E-09Pseudomonas aeruginosa 27853-1.93E-08Streptococcus pneumoniae 49619-7.17E-08Dengue virus DNV4-8.56E-08Clostridium difficile NAP8-1.25E-06Influenza A virus A/New Jersey/11/76 (H1N1) Mutant, High (H) Yield-1.64E-06Staphylococcus epidermidis 12228-1.69E-06soil genomic DNA-3.45E-06Dengue virus DNV2-5.21E-06Brucella suis 1330-2.67E-05Brucella abortus RB51-3.95E-05Camphylobacter jejuni D3071-6.12E-05Clostridium difficile NAP7-0.000414.11.2 Table 2: Quantification of probe signal intensity attributed to the pathogen spiked soil sample. In parenthesis is described the number of probes on the UBDA array attributed to the particular sampleSampleBacillus anthracis Sterne strainSoil genomic DNASpiked in amountSoil genomic DNA spiked with Bacillus anthracis22.3%(58,668)77.6%(203,476)10%4.11.3 Table 3: Regression analysis of Human genomic DNA spiked with Aspergillus fumigatusOrganismHuman cell line spiked with Aspergillus fumigatusBEAS B2B human cell line0.373678soil genomic DNA0.168418Candida albicans 900280.109529Aspergillus fumigatus 2930.108016Salmonella sp 356640.0975944Clostridium difficile 1930.057521Streptococcus agalactiae 279560.0358861Dengue virus DNV20.0293556Aedes aegypti0.0177858Clostridium difficile NAP70.0129463Clostridium difficile NAP80.00401249Streptococcus agalactiae 279560.00336875Influenza A virus A/New Jersey/11/76 (H1N1) 0.00174856Brucella suis 13300.000912651Camphylobacter jejuni D30710.000324419Brucella abortus RB510.000242184Thermotoga composti0.000238669Brucella melitensis 16M0.000213086Rhodococcus equi 69390.000155674Pseudomonas aeruginosa 278530.000139877Staphylococcus xylosus 7004040.000105951 Influenza A Virus, A/chicken/Germany/N/49 (H10N7)5.99E-05Staphylococcus epidermidis 122285.15E-05Escherichia coli 352182.91E-05Bacillus anthracis, Strain Sterne ΔGBAA1941-7.30E-09Salmonella enterica serovar Braenderup BAA-664-2.18E-05Methanococcus jannaschii-2.65E-05Rhodococcus equi 6936-4.09E-05Escherichia coli 25922-7.36E-05Clostridium alkali-7.44E-05Dengue virus DNV4-0.000135834Clostridium botulinum VPI 4404-0.000277169Streptococcus pneumoniae 49619-0.000297945Bacillus anthracis Strain Ames35-0.000392961Staphylococcus lugdunensis-0.000549802Mannheimia haemolytica 33396-0.00101925Brucella abortus 2308-0.001477534.11.4 Table 4: Quantification of probe signal intensity attributed to the fungal signature in a human host background. In parenthesis is described the number of probes on the UBDA array attributed to the particular sampleSampleAspergillus fumigatusBEAS B2BCandida albicansSpiked amountHuman genomic DNAspiked with Aspergillusfumigatus28.6%(75,059)35.1%(92,221)36.1%(94,864)10%4.11.5 Table 5: Quantification of probe signal intensity attributed to Dengue virus bio-signature in the Aedes aegypti mosquito host.SampleDengue virus 2Dengue virus 4Aedes aegyptiSpiked in amountAedes aegypti genomic DNA spiked with Dengue virus 216.9%(44,352)7.6%(20,100)75.4%(205,234)5%4.11.6 Table 6: Quantification of probe signal intensity bio-signatures attributed to four species of Leishmania in a the Sand fly host Phlebotomus papatasiSamplePhlebotomusL. majorL. infantumL. donovaniL. tropica10% L. major spike101,56341,50038,07140,66940,33810% L. infantum spike94,18539,94844,18143,15140,6791% L. major spike108,42837,06733,42342,93140,2961% L. infantum spike143,63626,68327,98631,79532,0441% L. donovani spike74,70041,21935,58660,06250,5751% L. tropica spike131,74024,34723,84834,46447,7440.1% L. major spike111,31433,52237,10941,31938,8780.1% L. infantum spike98,31736,69443,88841,47141,772Chapter 55. Outlooks and PerspectivesThis research addressed the development of a pipeline for comparative genome analysis and creation of a data repository of bio-signatures specific for organisms under study. The library comprises of over 100 pathogen and host ‘patterns’ and expands and increases in resolving power as more samples are processed. The array is also very sensitive, for it can use whole genome amplified DNA at or below 10 nanograms, which has been demonstrated with a greater than 0.9 correlation with unamplified samples. Further the taxonomic tree generated using UBDA signal intensities from the mathematically derived genome independent probes was successful at distinguishing between mammalian, bacterial and viral genomes. It has the ability to identify intermediate, variant Brucella spp. (suis versus abortus or mixed) genotypes. It can detect the composition of a mixed bacterial sample and assign percentage scores to a given mixture. This is also applicable to a detection of a pathogen in a host background.Another potential robust method that can be applied to the UBDA technology is Support Vector machines (SVM), a supervised learning algorithm that is used to solve many classification problems. An SVM algorithm classifies the data by finding the optimal hyper-plane between the classes of data. The training data that lie on this optimal hyper-plane are called support vectors PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5aaGFuZzwvQXV0aG9yPjxZZWFyPjIwMDY8L1llYXI+PFJl

Y051bT4xMDg0PC9SZWNOdW0+PERpc3BsYXlUZXh0PlsyMV08L0Rpc3BsYXlUZXh0PjxyZWNvcmQ+

PHJlYy1udW1iZXI+MTA4NDwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIg

ZGItaWQ9Ind4OTByOXB0OHJ0cjIwZWZ0dnl2ejBhNHQwMnYwenN3MDJ3diI+MTA4NDwva2V5Pjwv

Zm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJKb3VybmFsIEFydGljbGUiPjE3PC9yZWYtdHlw

ZT48Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+WmhhbmcsIEMuPC9hdXRob3I+PGF1dGhv

cj5MaSwgUC48L2F1dGhvcj48YXV0aG9yPlJhamVuZHJhbiwgQS48L2F1dGhvcj48YXV0aG9yPkRl

bmcsIFkuPC9hdXRob3I+PGF1dGhvcj5DaGVuLCBELjwvYXV0aG9yPjwvYXV0aG9ycz48L2NvbnRy

aWJ1dG9ycz48YXV0aC1hZGRyZXNzPlNjaG9vbCBvZiBDb21wdXRpbmcsIFVuaXZlcnNpdHkgb2Yg

U291dGhlcm4gTWlzc2lzc2lwcGksIEhhdHRpZXNidXJnLCBNUyAzOTQwNiwgVVNBLiBjaGFveWFu

Zy56aGFuZ0B1c20uZWR1PC9hdXRoLWFkZHJlc3M+PHRpdGxlcz48dGl0bGU+UGFyYWxsZWxpemF0

aW9uIG9mIG11bHRpY2F0ZWdvcnkgc3VwcG9ydCB2ZWN0b3IgbWFjaGluZXMgKFBNQy1TVk0pIGZv

ciBjbGFzc2lmeWluZyBtaWNyb2FycmF5IGRhdGE8L3RpdGxlPjxzZWNvbmRhcnktdGl0bGU+Qk1D

IEJpb2luZm9ybWF0aWNzPC9zZWNvbmRhcnktdGl0bGU+PGFsdC10aXRsZT5CTUMgYmlvaW5mb3Jt

YXRpY3M8L2FsdC10aXRsZT48L3RpdGxlcz48cGVyaW9kaWNhbD48ZnVsbC10aXRsZT5CTUMgQmlv

aW5mb3JtYXRpY3M8L2Z1bGwtdGl0bGU+PGFiYnItMT5CTUMgYmlvaW5mb3JtYXRpY3M8L2FiYnIt

MT48L3BlcmlvZGljYWw+PGFsdC1wZXJpb2RpY2FsPjxmdWxsLXRpdGxlPkJNQyBCaW9pbmZvcm1h

dGljczwvZnVsbC10aXRsZT48YWJici0xPkJNQyBiaW9pbmZvcm1hdGljczwvYWJici0xPjwvYWx0

LXBlcmlvZGljYWw+PHBhZ2VzPlMxNTwvcGFnZXM+PHZvbHVtZT43IFN1cHBsIDQ8L3ZvbHVtZT48

ZWRpdGlvbj4yMDA3LzAxLzE2PC9lZGl0aW9uPjxrZXl3b3Jkcz48a2V5d29yZD5BbGdvcml0aG1z

PC9rZXl3b3JkPjxrZXl3b3JkPkFydGlmaWNpYWwgSW50ZWxsaWdlbmNlPC9rZXl3b3JkPjxrZXl3

b3JkPipDbHVzdGVyIEFuYWx5c2lzPC9rZXl3b3JkPjxrZXl3b3JkPkNvbXB1dGluZyBNZXRob2Rv

bG9naWVzPC9rZXl3b3JkPjxrZXl3b3JkPkRpYWdub3NpcywgQ29tcHV0ZXItQXNzaXN0ZWQvbWV0

aG9kczwva2V5d29yZD48a2V5d29yZD5HZW5lIEV4cHJlc3Npb24gUHJvZmlsaW5nLyptZXRob2Rz

PC9rZXl3b3JkPjxrZXl3b3JkPkh1bWFuczwva2V5d29yZD48a2V5d29yZD5OZW9wbGFzbSBQcm90

ZWlucy8qYW5hbHlzaXM8L2tleXdvcmQ+PGtleXdvcmQ+TmVvcGxhc21zL2RpYWdub3Npcy8qbWV0

YWJvbGlzbTwva2V5d29yZD48a2V5d29yZD5PbGlnb251Y2xlb3RpZGUgQXJyYXkgU2VxdWVuY2Ug

QW5hbHlzaXMvKm1ldGhvZHM8L2tleXdvcmQ+PGtleXdvcmQ+UGF0dGVybiBSZWNvZ25pdGlvbiwg

QXV0b21hdGVkLyptZXRob2RzPC9rZXl3b3JkPjxrZXl3b3JkPlR1bW9yIE1hcmtlcnMsIEJpb2xv

Z2ljYWwvKmFuYWx5c2lzPC9rZXl3b3JkPjwva2V5d29yZHM+PGRhdGVzPjx5ZWFyPjIwMDY8L3ll

YXI+PC9kYXRlcz48aXNibj4xNDcxLTIxMDUgKEVsZWN0cm9uaWMpJiN4RDsxNDcxLTIxMDUgKExp

bmtpbmcpPC9pc2JuPjxhY2Nlc3Npb24tbnVtPjE3MjE3NTA3PC9hY2Nlc3Npb24tbnVtPjx3b3Jr

LXR5cGU+RXZhbHVhdGlvbiBTdHVkaWVzJiN4RDtSZXNlYXJjaCBTdXBwb3J0LCBOLkkuSC4sIEV4

dHJhbXVyYWwmI3hEO1Jlc2VhcmNoIFN1cHBvcnQsIE5vbi1VLlMuIEdvdiZhcG9zO3Q8L3dvcmst

dHlwZT48dXJscz48cmVsYXRlZC11cmxzPjx1cmw+aHR0cDovL3d3dy5uY2JpLm5sbS5uaWguZ292

L3B1Ym1lZC8xNzIxNzUwNzwvdXJsPjwvcmVsYXRlZC11cmxzPjwvdXJscz48Y3VzdG9tMj4xNzgw

MTI2PC9jdXN0b20yPjxlbGVjdHJvbmljLXJlc291cmNlLW51bT4xMC4xMTg2LzE0NzEtMjEwNS03

LVM0LVMxNTwvZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+PGxhbmd1YWdlPmVuZzwvbGFuZ3VhZ2U+

PC9yZWNvcmQ+PC9DaXRlPjwvRW5kTm90ZT5=

ADDIN EN.CITE PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5aaGFuZzwvQXV0aG9yPjxZZWFyPjIwMDY8L1llYXI+PFJl

Y051bT4xMDg0PC9SZWNOdW0+PERpc3BsYXlUZXh0PlsyMV08L0Rpc3BsYXlUZXh0PjxyZWNvcmQ+

PHJlYy1udW1iZXI+MTA4NDwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIg

ZGItaWQ9Ind4OTByOXB0OHJ0cjIwZWZ0dnl2ejBhNHQwMnYwenN3MDJ3diI+MTA4NDwva2V5Pjwv

Zm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJKb3VybmFsIEFydGljbGUiPjE3PC9yZWYtdHlw

ZT48Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+WmhhbmcsIEMuPC9hdXRob3I+PGF1dGhv

cj5MaSwgUC48L2F1dGhvcj48YXV0aG9yPlJhamVuZHJhbiwgQS48L2F1dGhvcj48YXV0aG9yPkRl

bmcsIFkuPC9hdXRob3I+PGF1dGhvcj5DaGVuLCBELjwvYXV0aG9yPjwvYXV0aG9ycz48L2NvbnRy

aWJ1dG9ycz48YXV0aC1hZGRyZXNzPlNjaG9vbCBvZiBDb21wdXRpbmcsIFVuaXZlcnNpdHkgb2Yg

U291dGhlcm4gTWlzc2lzc2lwcGksIEhhdHRpZXNidXJnLCBNUyAzOTQwNiwgVVNBLiBjaGFveWFu

Zy56aGFuZ0B1c20uZWR1PC9hdXRoLWFkZHJlc3M+PHRpdGxlcz48dGl0bGU+UGFyYWxsZWxpemF0

aW9uIG9mIG11bHRpY2F0ZWdvcnkgc3VwcG9ydCB2ZWN0b3IgbWFjaGluZXMgKFBNQy1TVk0pIGZv

ciBjbGFzc2lmeWluZyBtaWNyb2FycmF5IGRhdGE8L3RpdGxlPjxzZWNvbmRhcnktdGl0bGU+Qk1D

IEJpb2luZm9ybWF0aWNzPC9zZWNvbmRhcnktdGl0bGU+PGFsdC10aXRsZT5CTUMgYmlvaW5mb3Jt

YXRpY3M8L2FsdC10aXRsZT48L3RpdGxlcz48cGVyaW9kaWNhbD48ZnVsbC10aXRsZT5CTUMgQmlv

aW5mb3JtYXRpY3M8L2Z1bGwtdGl0bGU+PGFiYnItMT5CTUMgYmlvaW5mb3JtYXRpY3M8L2FiYnIt

MT48L3BlcmlvZGljYWw+PGFsdC1wZXJpb2RpY2FsPjxmdWxsLXRpdGxlPkJNQyBCaW9pbmZvcm1h

dGljczwvZnVsbC10aXRsZT48YWJici0xPkJNQyBiaW9pbmZvcm1hdGljczwvYWJici0xPjwvYWx0

LXBlcmlvZGljYWw+PHBhZ2VzPlMxNTwvcGFnZXM+PHZvbHVtZT43IFN1cHBsIDQ8L3ZvbHVtZT48

ZWRpdGlvbj4yMDA3LzAxLzE2PC9lZGl0aW9uPjxrZXl3b3Jkcz48a2V5d29yZD5BbGdvcml0aG1z

PC9rZXl3b3JkPjxrZXl3b3JkPkFydGlmaWNpYWwgSW50ZWxsaWdlbmNlPC9rZXl3b3JkPjxrZXl3

b3JkPipDbHVzdGVyIEFuYWx5c2lzPC9rZXl3b3JkPjxrZXl3b3JkPkNvbXB1dGluZyBNZXRob2Rv

bG9naWVzPC9rZXl3b3JkPjxrZXl3b3JkPkRpYWdub3NpcywgQ29tcHV0ZXItQXNzaXN0ZWQvbWV0

aG9kczwva2V5d29yZD48a2V5d29yZD5HZW5lIEV4cHJlc3Npb24gUHJvZmlsaW5nLyptZXRob2Rz

PC9rZXl3b3JkPjxrZXl3b3JkPkh1bWFuczwva2V5d29yZD48a2V5d29yZD5OZW9wbGFzbSBQcm90

ZWlucy8qYW5hbHlzaXM8L2tleXdvcmQ+PGtleXdvcmQ+TmVvcGxhc21zL2RpYWdub3Npcy8qbWV0

YWJvbGlzbTwva2V5d29yZD48a2V5d29yZD5PbGlnb251Y2xlb3RpZGUgQXJyYXkgU2VxdWVuY2Ug

QW5hbHlzaXMvKm1ldGhvZHM8L2tleXdvcmQ+PGtleXdvcmQ+UGF0dGVybiBSZWNvZ25pdGlvbiwg

QXV0b21hdGVkLyptZXRob2RzPC9rZXl3b3JkPjxrZXl3b3JkPlR1bW9yIE1hcmtlcnMsIEJpb2xv

Z2ljYWwvKmFuYWx5c2lzPC9rZXl3b3JkPjwva2V5d29yZHM+PGRhdGVzPjx5ZWFyPjIwMDY8L3ll

YXI+PC9kYXRlcz48aXNibj4xNDcxLTIxMDUgKEVsZWN0cm9uaWMpJiN4RDsxNDcxLTIxMDUgKExp

bmtpbmcpPC9pc2JuPjxhY2Nlc3Npb24tbnVtPjE3MjE3NTA3PC9hY2Nlc3Npb24tbnVtPjx3b3Jr

LXR5cGU+RXZhbHVhdGlvbiBTdHVkaWVzJiN4RDtSZXNlYXJjaCBTdXBwb3J0LCBOLkkuSC4sIEV4

dHJhbXVyYWwmI3hEO1Jlc2VhcmNoIFN1cHBvcnQsIE5vbi1VLlMuIEdvdiZhcG9zO3Q8L3dvcmst

dHlwZT48dXJscz48cmVsYXRlZC11cmxzPjx1cmw+aHR0cDovL3d3dy5uY2JpLm5sbS5uaWguZ292

L3B1Ym1lZC8xNzIxNzUwNzwvdXJsPjwvcmVsYXRlZC11cmxzPjwvdXJscz48Y3VzdG9tMj4xNzgw

MTI2PC9jdXN0b20yPjxlbGVjdHJvbmljLXJlc291cmNlLW51bT4xMC4xMTg2LzE0NzEtMjEwNS03

LVM0LVMxNTwvZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+PGxhbmd1YWdlPmVuZzwvbGFuZ3VhZ2U+

PC9yZWNvcmQ+PC9DaXRlPjwvRW5kTm90ZT5=

ADDIN EN.CITE.DATA [21], which has been used to evaluate microarray data sets from different cancer types and normal tissues and other applications.The development of the web user interface for the Universal Bio-signature Detection array platform is ongoing. The UBDA currently has a website which describes the project and allows users to view and sort through experimental data (). This site includes the UBDA array design, which is made available for download. In the future user login into the site will allow access to the UBDA analysis tools. The site was written in Python using the Django framework and runs on an Apache server which is backed up regularly. The custom UBDA analysis tools will allow the user to upload their raw microarray data for clustering computations using custom software written in Perl, MATLAB and IDL following the coding approaches used in many of our other projects (see ). This platform has commercial applications for the development of a cost effective reliable platform for accurate screening of large number of samples for bio-threat agents in forensic analysis, pathogens that routinely infect animals of farm value, food borne pathogens and as a molecular diagnostic of micro-organisms in a clinical environment. This platform is highly attractive because it has multiplex capacity where knowledge can be drawn from the various probe sets available on the array without prior knowledge of the sample. These probe sets will be translated into a knowledge base repository of bio-signatures that future users of this technology can compare and draw inferences related to the sample under study. In addition a scaled down version of the Universal Bio-signature Detection Assay (UBDA) oligonucleotide microarray will be fabricated and manufactured as a move towards a more cost effective, deployable version of the detection system. This platform has significant advantages over other approaches. Antibody-based tests, biochemistry or PCR that are usually employed in testing laboratories are serial, and can be confounded by pathogen mixtures or genomic drift, although the cost for each stepwise test is reasonable, on the order of $25 per sample test. An emerging alternative is complete genome sequencing, which we propose to examine in this proposal, which has the ultimate resolution, but at a significant cost in money (~$1-2 thousand per sample) and time (days to a week to acquire and analyze the results). And although the cost per base of ‘deep sequencing’ has and is continuing to drop rapidly, the cost per sample because of the complex steps (isolation, library preparation, readout, assembly) may take some time, if at all, before it can drop to the cost of the UBDA array ($100 per sample, now).The current cost for the UBDA array is approximately $350 per sample, which includes reagents and processing costs. The current turnaround time for this forensics technology is less than 24 hours. This is a single experimental procedure compared to other technologies, which involve a series of methods such as serological, biochemical and genomic based. Genome specific arrays are in the similar price range as the UBDA array; however researchers can only assay a single genome or a small subset of them. At the conclusion of this study the analysis pipeline will be a ‘complete’ system, making it available to any user. The ‘product’ will be a finalized array design and analysis environment, including a large, high-resolution bio-signature pattern library, and released versions of both so that anybody can use the UBDA either in-house or via an established service. Depending on the results of our technological, economic and speed analysis, we may further produce an automated or pseudo-automated process for whole genome pathogen assembly and analysis from next generation sequence data such that it rapidly produces actionable data, even for unique pathogens that have drifted, naturally or intentionally. All findings, designs and tools will be released (opened) so that ‘customers’ can re-create the entire process within their walls, necessary for certain secure applications, or use our existing established arrays or services. The most likely targeted customer will be USDA/APHIS/Veterinary services and State/Federal Diagnostic labs and also FDA/USDA for the Food Safety Network testing and field surveillance. Additional target customers include the major agro-business companies producing human and animal based food.Additional Bibliography ADDIN EN.REFLIST 1.Pannucci J, Cai H, Pardington PE, Williams E, Okinaka RT, Kuske CR, Cary RB: Virulence signatures: microarray-based approaches to discovery and analysis. Biosens Bioelectron 2004, 20(4):706-718.2.Call DR: Challenges and opportunities for pathogen detection using DNA microarrays. Crit Rev Microbiol 2005, 31(2):91-99.3.Warsen AE, Krug MJ, LaFrentz S, Stanek DR, Loge FJ, Call DR: Simultaneous discrimination between 15 fish pathogens by using 16S ribosomal DNA PCR and DNA microarrays. Appl Environ Microbiol 2004, 70(7):4216-4221.4.Call DR, Brockman FJ, Chandler DP: Detecting and genotyping Escherichia coli O157:H7 using multiplexed PCR and nucleic acid microarrays. Int J Food Microbiol 2001, 67(1-2):71-80.5.Chizhikov V, Wagner M, Ivshina A, Hoshino Y, Kapikian AZ, Chumakov K: Detection and genotyping of human group A rotaviruses by oligonucleotide microarray hybridization. J Clin Microbiol 2002, 40(7):2398-2407.6.Wilson WJ, Strout CL, DeSantis TZ, Stilwell JL, Carrano AV, Andersen GL: Sequence-specific identification of 18 pathogenic microorganisms using microarray technology. Mol Cell Probes 2002, 16(2):119-127.7.Wang D, Coscoy L, Zylberberg M, Avila PC, Boushey HA, Ganem D, DeRisi JL: Microarray-based detection and genotyping of viral pathogens. Proc Natl Acad Sci U S A 2002, 99(24):15687-15692.8.Pease AC, Solas D, Sullivan EJ, Cronin MT, Holmes CP, Fodor SP: Light-generated oligonucleotide arrays for rapid DNA sequence analysis. Proc Natl Acad Sci U S A 1994, 91(11):5022-5026.9.Royce TE, Rozowsky JS, Gerstein MB: Toward a universal microarray: prediction of gene expression through nearest-neighbor probe sequence identification. Nucleic Acids Res 2007, 35(15):e99.10.Luebke KJ, Balog RP, Mittelman D, Garner HR: Digital optical chemistry: A novel system for the rapid fabrication of custom oligonucleotide arrays. Microfabricated Sensors 2002, 815:87-106.11.Luebke KJ, Balog RP, Garner HR: Prioritized selection of oligodeoxyribonucleotide probes for efficient hybridization to RNA transcripts. Nucleic Acids Research 2003, 31(2):750-758.12.Balog RP, de Souza YE, Tang HM, DeMasellis GM, Gao B, Avila A, Gaban DJ, Mittelman D, Minna JD, Luebke KJ et al: Parallel assessment of CpG methylation by two-color hybridization with oligonucleotide arrays. Analytical Biochemistry 2002, 309(2):301-310.13.McGall GH, Fidanza JA: Photolithographic synthesis of high-density oligonucleotide arrays. Methods Mol Biol 2001, 170:71-101.14.Frades I, Matthiesen R: Overview on techniques in cluster analysis. Methods Mol Biol 2010, 593:81-107.15.Eisen MB, Spellman PT, Brown PO, Botstein D: Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci U S A 1998, 95(25):14863-14868.16.Huttenhower C, Flamholz AI, Landis JN, Sahi S, Myers CL, Olszewski KL, Hibbs MA, Siemers NO, Troyanskaya OG, Coller HA: Nearest Neighbor Networks: clustering expression data based on gene neighborhoods. BMC bioinformatics 2007, 8:250.17.Raychaudhuri S, Stuart JM, Altman RB: Principal components analysis to summarize microarray experiments: application to sporulation time series. Pacific Symposium on Biocomputing Pacific Symposium on Biocomputing 2000:455-466.18.Schultz RA, Nielsen T, Zavaleta JR, Ruch R, Wyatt R, Garner HR: Hyperspectral imaging: a novel approach for microscopic analysis. Cytometry 2001, 43(4):239-247.19.Rosenblatt KP, Huebschman ML, Garner HR: Construction and hyperspectral imaging of quantum dot lysate arrays. Methods Mol Biol 2012, 823:311-324.20.Shallom SJ, Weeks JN, Galindo CL, McIver L, Sun Z, McCormick J, Adams LG, Garner HR: A species independent universal bio-detection microarray for pathogen forensics and phylogenetic classification of unknown microorganisms. BMC Microbiol 2011, 11:132.21.Zhang C, Li P, Rajendran A, Deng Y, Chen D: Parallelization of multicategory support vector machines (PMC-SVM) for classifying microarray data. BMC bioinformatics 2006, 7 Suppl 4:S15. ................
................

In order to avoid copyright disputes, this page is only a partial summary.

Google Online Preview   Download