Companion to Real Analysis
Companion to Real Analysis John M. Erdman
Portland State University Version November 20, 2012
c 2007 John M. Erdman This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit .
E-mail address: erdman@pdx.edu
Contents
PREFACE
vii
Greek Letters
ix
Fraktur Fonts
x
Chapter 1. SETS
1
1.1. Set Notation
1
1.2. Families of Sets
1
1.3. Subsets
2
1.4. Unions and Intersections
2
1.5. Complements
3
1.6. Symmetric Difference
4
1.7. Notation for Sets of Numbers
5
Chapter 2. FUNCTIONS
7
2.1. Cartesian Products
7
2.2. Relations
7
2.3. Functions
8
2.4. Images and Inverse Images
9
2.5. Composition of Functions
9
2.6. The Identity Function
9
2.7. Diagrams
10
2.8. Some Special Functions
10
2.9. Injections, Surjections, and Bijections
11
2.10. Inverse Functions
12
2.11. Equivalence Relations and Quotients
14
Chapter 3. CARDINALITY
17
3.1. Finite and Infinite Sets
17
3.2. Countable and Uncountable Sets
18
Chapter 4. GROUPS, VECTOR SPACES, AND ALGEBRAS
21
4.1. Operations
21
4.2. Groups
22
4.3. Homomorphisms of Semigroups and Groups
23
4.4. Vector Spaces
25
4.5. Linear Transformations
26
4.6. Rings and Algebras
28
4.7. Ring and Algebra Homomorphisms
30
Chapter 5. PARTIALLY ORDERED SETS
33
5.1. Partial and Linear Orderings
33
5.2. Infima and Suprema
34
5.3. Zorn's Lemma
35
5.4. Lattices
37
iii
iv
CONTENTS
5.5. Lattice Homomorphisms
39
5.6. Boolean Algebras
39
Chapter 6. THE REAL NUMBERS
43
6.1. Axioms Defining the Real Numbers
43
6.2. Construction of the Real Numbers
44
6.3. Elementary Functions
47
6.4. Absolute Value
47
6.5. Some Useful Inequalities
48
6.6. Complex Numbers
49
Chapter 7. SEQUENCES AND INDEXED FAMILIES
51
7.1. Sequences
51
7.2. Indexed Families of Sets
52
7.3. Limit Inferior and Limit Superior (for Sets)
53
7.4. Limit Inferior and Limit Superior (for Real Numbers)
54
7.5. Subsequences and Cluster Points
58
Chapter 8. CATEGORIES
59
8.1. Objects and Morphisms
59
8.2. Quotients
61
8.3. Products
63
8.4. Coproducts
65
Chapter 9. ORDERED VECTOR SPACES
67
9.1. Partially Orderings on Vector Spaces
67
9.2. Convexity
68
9.3. Positive Cones
68
9.4. Finitely Additive Set Functions
69
Chapter 10. TOPOLOGICAL SPACES
71
10.1. Definition of Topology
71
10.2. Base for a Topology
73
10.3. Some Elementary Topological Properties
74
10.4. Metric Spaces
74
10.5. Interiors and Closures
79
Chapter 11. CONTINUITY AND WEAK TOPOLOGIES
81
11.1. Continuity--the Global Property
81
11.2. Continuity--the Local Property
82
11.3. Uniform Continuity
83
11.4. Weak Topologies
84
11.5. Subspaces
85
11.6. Quotient Topologies
86
Chapter 12. NORMED LINEAR SPACES
89
12.1. Norms
89
12.2. Bounded Linear Maps
92
12.3. Products of Normed Linear Spaces
94
12.4. Quotients of Normed Linear Spaces
96
Chapter 13. DIFFERENTIATION
97
13.1. Tangency
97
13.2. The Differential
98
CONTENTS
v
Chapter 14. RIESZ SPACES
101
14.1. Definition and Elementary Properties
101
14.2. Riesz Homomorphisms and Positive Operators
104
14.3. The Order Dual of a Riesz Space
106
Chapter 15. MEASURABLE SPACES
109
15.1. -Algebras of Sets
109
15.2. Borel Sets
110
15.3. Measurable Functions
111
15.4. Functors
112
Chapter 16. THE RIESZ SPACE OF REAL MEASURES
115
16.1. Real Measures
115
16.2. Ideals in Riesz Spaces
117
16.3. Bands in Riesz spaces
119
16.4. Nets
119
16.5. Disjointness in Riesz Spaces
123
16.6. Absolute Continuity
125
Chapter 17. COMPACT SPACES
127
17.1. Compactness
127
17.2. Local Compactness
130
17.3. Compactifications
131
Chapter 18. LEBESGUE MEASURE
135
18.1. Positive Measures
135
18.2. Outer Measures
136
18.3. Lebesgue Measure on R
138
18.4. The Space L(S)
140
Chapter 19. THE LEBESGUE INTEGRAL
143
19.1. Integration of Simple Functions
143
19.2. Integration of Positive Functions
145
19.3. Integration of Real and Complex Valued Functions
147
Chapter 20. COMPLETE METRIC SPACES
151
20.1. Cauchy Sequences
151
20.2. Completions and Universal Morphisms
153
20.3. Compact Subsets of C(X)
155
20.4. Banach Spaces; Lp-spaces
156
20.5. Banach Algebras
158
20.6. Hilbert spaces
159
Chapter 21. ALGEBRAS AND LATTICES OF CONTINUOUS FUNCTIONS
163
21.1. Banach Lattices
163
21.2. The Stone-Weierstrass Theorems
164
21.3. Semicontinuous Functions
165
21.4. Normal Topological Spaces
166
21.5. The Hahn-Tong-Katetov Theorem
167
21.6. Ideals in C(X)
169
Chapter 22. FUNCTIONS OF BOUNDED VARIATION
171
22.1. Preliminaries on Monotone Functions
171
22.2. Variation
172
................
................
In order to avoid copyright disputes, this page is only a partial summary.
To fulfill the demand for quickly locating and searching documents.
It is intelligent file search solution for home and business.
Related download
- real analysis h l royden sv
- elementary real analysis
- introduction to real analysis trinity university
- an introduction to real analysis john k hunter
- real and complex analysis
- basic analysis i
- basic analysis introduction to real analysis
- juha kinnunen real analysis aalto
- introduction to real analysis williams college
- real analysis part i
Related searches
- real analysis mathematics pdf
- real analysis notes pdf
- introduction to real analysis pdf
- real analysis examples
- elementary real analysis pdf
- real analysis solution manual
- real analysis pdf book
- basic real analysis pdf
- real analysis proof
- elementary real analysis solutions pdf
- elementary real analysis solution
- real analysis exam