A Level Mathematics Questionbanks
1. a) 2sinx cosx = sinx B1
sinx (2cosx − 1) = 0 M1 A1
sinx = 0 or cosx = [pic]
x = 0, 180, 60, 300 A3 (-1 eeoo)
[6]
b) From (a), have 2x = 0, 180, 60, 300 M1
x = 0, 90, 30, 150 A2 ft
[3]
2. a) cos2x + sin2x ( 1 ( cosA =[pic], cosB = [pic] M1 A1
sin(A+B) ( sinA cosB + cosA sinB B1
= [pic] M1 A1
[5]
b) cos2A ( 2cos2A − 1 B1
= [pic] M1 A1 cao
[3]
3. a) cos2θ ( 2cos2θ − 1 B1
[pic] M1
a2 = 2(b+1) A1
[3]
b) cos2θ ( 1 − 2sin2θ B1
a = 1 − 2(b−2)2 M1 A1
[3]
c) sin2θ ( 2sinθ cosθ B1
sin22θ ( 4sin2θ cos2θ M1
cos2θ ( 1 − sin2θ M1
(a − 2)2 = 4b2(1 − b2) A1
[4]
4. a) cos 3A ( cos(2A+A) M1
cos3A ( cos2A cosA − sin2A sinA B1
But cos2A ( cos2A − sin2A and sin2A ( 2sinAcosA B1
( cos3A ( (cos2A − sin2A)cosA − 2sinAcosAsinA A1
But sin2A ( 1 − cos2A B1
( cos3A ( (2cos2A − 1)cosA − 2cosA(1 − cos2A) M1
( 4cos3A − 3cosA A1
[7]
b) 4cos3A − 3cosA + 2cosA = 0 M1
4cos3A − cosA = 0
cosA (4cos2A − 1) = 0 M1
cosA = 0, [pic], -[pic]
A = [pic],[pic],[pic] A3 ( -1 if degrees)
[5]
5. a) 2cosx cos60 − 2sinx sin60 = 1
cosx cos60 − sinx sin60 = [pic] M1 A1
cos(x + 60) = [pic] M1
0(x(360 ( 60(x+60(420
x + 60 = 60, 300, 420 A2 (-1 eeoo)
x = 0, 240, 360 A1
[6]
b) i) From above, [pic]x = 0, 240, 360 M1
x = 0 only A1 ft
[2]
ii) x − 30 = 0, 240, 360 M1
x = 30, 270, 390. But 390 outside range
x = 30, 270 only A1 ft
[2]
6. a) sin (50 + 10) =sin60=[pic] M1 A1
[2]
b) cos(75 + 15) =cos90 = 0 M1 A1
[2]
c) tan(80 + 55) = tan135= -1 M1 A1
[2]
d) sin(2(75) = sin150 = [pic] M1 A1
[2]
e) cos(2(15) = cos30 =[pic] M1 A1
[2]
7. a) 6sin [pic]x cos[pic]x ( 3sinx B1
3sinx + cosx = 0 M1
tanx = -[pic] A1
x = 161.6, 341.6 A2
[5]
b) cos2x ( 1 − 2sin2x B1
3 (1 − 2sin2x) + sinx = 1 M1
6sin2x − sinx − 2 = 0
(3sinx − 2)(2sinx + 1) = 0 M1 A1
sinx = [pic]or -[pic]
x = 41.8, 138.2, -30, -150 A3 (-1 eeoo)
[7]
8. a) [pic] M1
[pic] M1
But sin2x + cos2x (1 and sinxcosx ( [pic] sin2x B1
[pic] M1
So tanx + cotx ( 2cosec 2x A1
[5]
b) [pic] M1A1
But sec2x − tan2x ( 1 B1
Hence [pic] A1
[4]
9. a) i) [pic] M1
[pic] M1 A1
[pic] A1
[4]
ii) [pic] M1 A1
( tan ([pic]x) A1
[3]
b) sin2θ − cos2θ = sinθ + cosθ
sin2θ − sinθ = cos2θ + cosθ M1
[pic] M1
tan([pic]θ) = 1 M1
0(θ(π B1
[pic]θ ’ [pic] ( θ ’ [pic] A1
[5]
10. a) 2cos2x − 1=cosx B1
(2cosx + 1)(cosx − 1) = 0 M1 A1
cosx = -[pic] or 1
x = 120, 240, 0 A2 (-1 eeoo)
[5]
b) From a), have [pic]x = 120, 240, 0 M1
x = 240, 480, 0 A2 ft
[3]
11. [pic] M1 A1
[pic] M1
[pic] A1
= tanA −tanB A1
[5]
12. a) 2cos(x − 45) = 2(cosx cos45 + sinx sin45) M1
= 2 ( cosx + sinx) A1
(2
= (2(cosx + sinx) A1
[3]
b) i) [pic]cos(x−45)=1 M1
cos(x−45) =[pic]
x−45 = (45 A1
x= 0, 90 M1 A1
[4]
ii) 4 [ (2cos(x − 45)]4 = 1 M1
4( 4cos4(x − 45) = 1
cos4 (x − 45) = [pic] A1
cos(x − 45) = ([pic] A1 (both)
x − 45 = 60, 300, 120, 240 A2
x = 105, 345, 165, 285 A1 ft
[6]
13.a) i) sin3θ + sinθ ( 2sin2θ cosθ M1 A1 A1
[3]
ii) cos 3θ +cosθ ( 2cos2θcosθ B1 B1
[2]
b) [pic] M1
[pic] M1
( tan2θ A1
[3]
14. a) [pic] B1
2tanx + tanx (1 − tan2x) = 0 M1
tanx (tan2x − 3) = 0
tanx = 0, ((3 A1
x = 0, 60, -60 A2 (-1 eeoo)
[5]
b) [pic] M1 M1 A1
4sinxcosx = 3sinx
sinx(4cosx – 3) =0 M1
sinx = 0 or cosx = ¾ A1 (both)
x= 41.4o A1 (only answer)
[6]
15. a) sin15 = sin(45 − 30) M1
= sin45 cos30 − sin30 cos45 B1
=[pic] A1
=[pic] A1 cao
[4]
b) cos 165 = cos(120 + 45)
= cos120 cos45 − sin120 sin45 M1
= [pic] A1
= [pic] (or [pic]) A1 cao
OR: cos165 = -cos15
= -(cos45cos30 + sin45sin30) M1 A1
=[pic] A1
[3]
c) tan75 = tan(45 + 30)
=[pic] M1
=[pic] A1
= [pic] M1
= 2 + (3 A1
OR: tan75 = [pic] M1
=[pic] M1
= [pic] A1 ft
= 2 + (3 A1
[4]
16. a) 2sinx cosx ( cosx + sin2x = 1 M1
2cos2x sinx + (1 − cos2x) = 1 M1
cos2x (2sinx − 1) = 0 A1
x = [pic],[pic],[pic],[pic] A3 (-1 eeoo)
[6]
b) tanx ( [pic] = 1 M1
2tan2x = 1 − tan2x A1
tanx =[pic] A1
x = ([pic], ([pic] A2
[5]
17. a) Since A + B + C = 180, C = 180 − (A+B) M1
sinC = sin [180 − (A+B)]
sinC = sin(A+B) A1
[2]
b) sin(A − B) + sinC = sin(A − B) + sin (A+B)
= sinAcosB − cosAsinB + sinAcosB + cosAsinB M1 A1
= 2sinA cosB A1
[3]
c) sinC = sin(B+60+B) M1
= sin(2B + 60)
= sin2Bcos60 + cos2Bsin60 M1
= [pic] ( sin2B + [pic]( cos2B A1
= [pic] ( sin2B + (3cos2B) A1
[4]
18 a) (tanx + secx)2 ( tan2x + 2tanxsecx + sec2x M1
[pic]
([pic] A1
[pic] [pic][pic]
[pic] A1
[5]
b) [pic] M1 (using identity)
4sinx + 4 = 5 – 5sinx M1
9sinx = 1
sinx = [pic] A1
x= 6.38o, 1730 A1 A1
[5]
19. 3cosx + 4sinx (Rcos(x−α)( Rcosxcosα + Rsinxsinα M1
3 = Rcosα 4 = Rsinα
R2 = 32 + 42 ( R=5 M1 A1
tanα = [pic]( α = 53.1o A1
5cos(x −53.1) = 2
cos(x −53.1) = 0.4 M1
x −53.1 = 66.4, 294 A1
x= 120, 347 A1 A1
[8]
20. a) cosx + 7sinx (Rcos(x−α) ( Rcosxcosα + Rsinxsinα Μ1
1 ’ Rcosα 7 = Rsinα
R2 = 12 + 72 ( R=(50 M1 A1
tanα = 7( α = 81.9o A1
[4]
b)(50cos(x – 81.9) = 5
cos(x−81.9) =[pic] M1
x – 81.9 = (45 A1
x= 36.9, 127 A1 A1
[4]
21. a) 2sinx + 3cosx (Rsin(x+α) ( Rsinxcosα + Rcosxsinα Μ1
2 ’ Rcosα 3 = Rsinα
R2 = 22 + 32 ( R=(13 M1 A1
tanα = 1.5 ( α = 56.3o A1
[4]
b) -1(sin(x+56.3)(1 M1
So -(13((13sin(x+56.3)((13 A1
So 4 −(13( 2sinx + 3cosx + 4 ( 4 + (13 A1
[3]
22. a) cos(x+40) = 3sin(x+50)
cosxcos40 – sinxsin40 = 3sinxcos50 + 3cosxsin50 M1 A1
cosx(cos40 – 3sin50) = sinx(3cos50 + sin40)
[pic] M1
-0.5959 = tanx A1
[4]
b) tan-1(-0.5959) = -30.8 M1
149.2, 329.2 A1 A1
[3]
23. a) cos2x − (3sin2x (Rcos(2x+α) ( Rcos2xcosα + Rsin2xsinα Μ1
1 ’ Rcosα (3 = Rsinα
R2 = 12 + ((3)2 ( R=2 M1 A1
tanα = (3 ( α = 60o A1
[4]
b) G1 (shape)
G1 (2 & -2)
G2 (intersections)
G1 (max & min)
[5]
-----------------------
(0,1)
(285,0)
(195,0)
(105,0)
(15,0)
(330, 2)
(240, -2)
(150, 2)
(60, -2)
y=2cos(2x+60)
................
................
In order to avoid copyright disputes, this page is only a partial summary.
To fulfill the demand for quickly locating and searching documents.
It is intelligent file search solution for home and business.
Related searches
- ordinary level mathematics study notes
- o level mathematics notes pdf
- a level mathematics revision
- a level mathematics past paper
- pure mathematics a level notes
- a level pure mathematics pdf
- a level mathematics textbook pdf
- a level mathematics pdf
- a level further mathematics pdf
- a level mathematics formula sheet
- a level mathematics notes
- a level mathematics questions