Chapter 1
ISyE 6201: Manufacturing Systems
Instructor : Spyros Reveliotis
Spring 2006
Solutions for Homework #5
A. Problems Chapter 3
11. For item A, the 120 units on hand cover the demands for periods 1 and 2. The first demand occurs in period 3. Thus, we could plan to receive either
i. 49 units with 0 part-periods,
ii. 49 + 42 = 91 units with 42 part-periods,
iii. 49 + 42 + 84 = 175 units with 42 + 2*84 = 210 part-periods, or
iv. 49 + 42 + 84 + 86 = 261 units with 42 + 2*84 + 3*86 = 468 part-periods
Since the ratio of setup cost to carrying cost is 200 we need go no further and choose a lot size of 175. This covers demand for periods 3, 4 and 5.
We now decide how much to receive in period 6. The choices are
i. 86 units with 0 part-periods,
ii. 86 + 7 = 93 units with 7 part-periods,
iii. 93 +18 = 111 units with 7 + 2*18 = 43 part-periods,
iv. 111 + 49 = 160 units with 43 + 3*49 = 190 part-periods, or
v. 160 + 30 = 190 units with 190 + 4*30 = 310 part-periods.
The choice is to combine periods 6, 7, 8 and 9 and to make 160 units. This covers through period 9.
The quantity to receive in period 10 is simply 30 units.
The MRP tableau for Item A:
We are now ready to process all parts with a low level code of 1. The only item is item 400.
Part 400 is composed of one unit of 200 and one of 300, both raw materials. Thus, these parts are of level code 2.
For part 200, the first uncovered demand occurs in period 1 and is equal to 185. Since there is a scheduled receipt to arrive in period 3, it must be expedited to period 1. This may or may not be possible but it is better than releasing a new order in period 1 with a short lead-time. Similarly, the scheduled receipt in period 5 must also be expedited. For the rest of the demand that are not covered by these two scheduled receipts, we can plan productions as usual and allow the regular lead-time. The final schedule is shown below:
For Part 300, the first scheduled receipt combined with the on-hand inventory covers all demand. Consequently, the second scheduled receipt is canceled and does not appear in the “Adj Sch Receipts” row (although notice that such cancellations of scheduled receipts might not be always possible; e.g., depending on the applied contracts, nature of the required processing, etc.)
12. (a) The bills of capacity are constructed using the bill of material information and adding up the time that is spent, for all components, in Lamination (Lam) and Core Circuitize (Core Circ). The result is show below:
Bill of Capacity
(b) The load for the next six weeks is given by multiplying the value given in the bill of capacity by the requirements for the week and summing over the three board types for each process center. For instance, in week one for lamination we have (7474)(0.064) + (6489)(0.066) + (3898)(0.066) = 1163.88. The time available for Lamination is given by (5 days/wk)(6 presses)(24 hr./day) = 720 press hr./wk. Surplus (shortage) is computed by simply subtracting the load from the available. The results for all the boards in all the weeks is shown below:
B. Questions Chapter 4
17. Relatively constant volume and mix are essential to kanban because, under this production authorization mechanism, we seek to support a certain production rate by capping appropriately the system WIP. However, we can achieve this effect only when the system is operated in “steady state”. An unstable production volume and/or product mix constitutes a departure from the steady state regime which compromises the aforementioned relationship between the applied WIP levels and target throughput. A potential remedy to this problem would be to maintain very large WIP buffers, but this approach essentially defeats the whole notion and purpose of JIT production.
19. Pull systems authorize production in response to a change in plant status (e.g, the release of a KANBAN at a certain station), while push systems schedule production with a process exogenous to the plant (e.g., an MRP-generated production schedule).
20. In a push system, the best place for the bottleneck is at the front of the line, since this would (i) simplify the scheduling of this bottleneck (in a bottleneck-based scheduling framework according to the Theory of Constraints) and (ii) it would tend to prevent “WIP explosions” because the rest of the line would be able to clear out whatever it received from the bottleneck. In a pull system, the location of the bottleneck is less important, since releases will be tied to the amount of WIP in the system (and hence in front of the bottleneck) regardless of where it is located.
21. In the following, “K” indicates kanban and “M” indicates MRP. Then, based on the response of Question 17 above, a pertinent selection is as follows:
• Auto plant producing three styles of vehicle – K
• Custom job shop – M
• Circuit board plant with 40,000 active part numbers – M
• Circuit board plant with 12 active part numbers – K
• One assembly line where all parts are purchased – M
C. MIP for the Micro-brewery Production Scheduling Problem
1) Production Scheduling Problem Allowing Arbitrary Lot Sizes: (The terminology used in the following discussion is based on the terminology used in the corresponding slides presented in class.)
Problem Parameters:
srit: Scheduled receipt for product i at period t. These fixed quantities are previously planned and are in production at the beginning of the planning horizon.
Problem Decision Variables:
Xit: Scheduled release for product i at period t, in cases of beer.
Problem Auxiliary Variables:
Iit: inventory position for product i at (the end of) period t, defined by the first constraint. This constraint is also called the Material Balance Equation. Notice that the 3rd term in the right-hand-side of the constraint is the quantity of product i becoming available at period t due to a production initiated li periods earlier.
Wit: number of fermentors allocated to product i due to a scheduled release at period t.
Vit: number of fermentors allocated to product i due to a scheduled receipt to be delivered at period t.
Oit: number of fermentors allocated to product i at period t (fermentor occupancy for product i at period t), defined by the fourth constraint.
Problem Objective And Constraints:
min [pic]
s.t. [pic]
[pic]
[pic]
[pic]
[pic]
[pic]
2) Production Scheduling Problem Allowing Backorders:
Additional Auxiliary Variables:
Iit+, Iit-: These variables model respectively the positive and the negative part of the inventory position for product i at (the end of) period t. Hence, we can write IPit = Iit+- Iit-.
Problem Objective:
min[pic]
Problem Constraints:
The following new Material Balance Equation and non-negativity constraint replaces the first constraint and the second to the last constraint in the previous formulation:
[pic]
3) Production Scheduling Problem with Maximal Allowed Shelf-Life:
Additional Auxiliary Variables:
SPit: Quantity of product i discarded at period t due to spoilage, which as shown in class, under the assumption of First-Come-First-Sell consumption, is equal to:
SPit = max{0, [pic]}.
The constraints following this paragraph are a linearized version of this characterization and implement [pic]; In order to force the equality, we must modify the objective function as indicated below.
Additional Constraints:
[pic]
The Material Balance Equation is replaced by:
[pic]
Problem Objective:
min [pic]
The last term in the summation is introduced to penalize the occurrence of unnecessary spoilage. In particular, the added term ensures that a unit of spoilage is always more expensive than one unit of carried inventory. If this term is not added, the solver will tend to treat as spoilage any accumulated inventory not necessary for the satisfaction of some product demand
D. Extra credit (30%)
1. Consider a schedule S that violates the EDD rule for some pair of consecutive jobs. There exist consecutive jobs, j and k, that are not in EDD order, i.e. cj < ck and dj > dk. Let Ls be the maximum job lateness for S. By definition, Ls ≥ lateness (k) = ck - dk.
If j and k are swapped in the schedule, we have the new completion times cj’= ck and ck’ = ck - tj
New lateness of job j = ck - dj < ck - dk≤ Ls
New lateness of job k = ck - tj - dk ≤ ck - dk≤ Ls
Since the lateness of all other jobs remain the same, the maximum lateness of the new schedule must be less than or equal to Ls. It follows that scheduling jobs according to the EDD rule gives an optimal schedule to the min-max lateness problem.
By definition the tardiness Tj of a job j is equal to max{0,Lj}, i.e., equal to the job lateness, if the latter is positive, and zero, otherwise. Hence, to minimize the max tardiness, it is adequate to minimize the max lateness: If the minimized max lateness happens to be negative, then, we have a schedule with zero tardiness across all jobs. If the minimized max lateness is positive, then this defines also the minimum max tardiness (since any other schedule will have an even greater max lateness).
Hence, the EDD rule also gives an optimal schedule to the min-max tardiness problem.
2. Let t[j] and c[j] be the processing time and the completion time, respectively, of the jth job on a given schedule. Then [pic], for j = 1, …, n, and the average cycle time
[pic]
Clearly, the above expression is minimized by matching the largest weights, n, (n-1), etc, with the smallest possible processing times.
3. By the Little’s Law, WIP = TH * CT. Since the processing time tj’s are given, the throughput [pic] is fixed. Hence, minimizing the average job cycle time CT is equivalent to minimizing the average WIP. It implies that a schedule that follows the SPT rule will also have a minimum average WIP.
Another way to approach this question is to interpret [pic]as the cumulative WIP level.
From part (2), we know that[pic]. Meanwhile, we know that from time 0 to t[1], the WIP level is n jobs; in the next t[2] unit of time, the WIP level is n-1; and so on.
Therefore, the average WIP level is given by [pic] and is minimized when the total (or equivalently the average) cycle time is minimized.
4. The average job lateness[pic]
Since dj’s are given, minimizing the average job lateness [pic]is equivalent to minimizing the average job cycle time [pic]. It follows from the result 2 above that SPT also minimizes the average job lateness.
................
................
In order to avoid copyright disputes, this page is only a partial summary.
To fulfill the demand for quickly locating and searching documents.
It is intelligent file search solution for home and business.
Related searches
- genesis chapter 1 questions and answers
- biology 101 chapter 1 quiz
- chapter 1 psychology test answers
- strategic management chapter 1 quiz
- psychology chapter 1 questions and answers
- cooper heron heward chapter 1 powerpoint
- chapter 1 psychology quiz
- chapter 1 what is psychology
- chapter 1 cooper heron heward
- medical terminology chapter 1 quiz
- holt physics chapter 1 test
- dod fmr volume 2a chapter 1 definitions