MathCity.org Exercise 2.8 (Solutions)



Merging man and maths

Exercise 2.8 (Solutions)Page 101

Calculus and Analytic Geometry, MATHEMATICS 12 Available online @ , Version: 3.0

Taylor Series Expansion of Function

f (x + h) = f (x) + hf (x) + h2 f (x) + h3 f (x) + ....

2!

3!

Maclaurin Series

f (x) = f (0) + xf (0) + x2 f (0) + x3 f (0) + ....

2!

3!

Question # 1 Apply the Maclaurin series expansion to prove that: (i) ln(1 + x) = x - x2 + x3 - x4 + ......

234 (ii) cos x = 1 - x2 + x4 - x6 + ......

2! 4! 6! (iii) 1 + x = 1 + x - x2 + x3 + .....

2 8 16 (iv) ex = 1 + x + x2 + x3 + .....

2! 3! (v) e2x = 1 + 2x + 4x2 + 8x3 + .....

2! 3! Solution (i) Let f (x) = ln(1 + x)

f (0) = ln(1 + 0) = 0

f (x) = d ln(1 + x) = 1

dx

1+ x

f (0) = 1 = 1 1+ 0

f (x) = d (1 + x)-1 = - (1 + x)-2

dx

f (0) = - (1 + 0)-2 = -1

f (x)

=

d dx

-(1

+

x)-2

=

+ 2(1 + x)-3

f (0) = 2(1 + 0)-3 = 2

f (iv) (x) = d 2(1 + x)-3 = - 6(1 + x)-4

dx

f (iv) (0) = - 6(1 + 0)-4

= -6

By Maclaurin series



FSc-II / Ex- 2.8 - 2

f (x) = f (0) + xf (0) + x2 f (0) + x3 f (0) + ......

2!

3!

ln(1 + x) = 0 + x(1) + x2 (-1) + x3 (2) + x4 (-6) + ......

2!

3! 4!

= x - x2 + x3 (2) - x4 (6) + ...... 21 3 21 43 21

= x - x2 + x3 - x4 + ...... 234

(ii) Let f (x) = cos x f (0) = cos(0) = 1

f (x) = d cos x = - sin x dx

f (0) = - sin(0) = 0

f (x) = d (-sin x) = - cos x

dx

f (0) = - cos(0) = -1

f (x) = d (-cos x) = + sin x

dx

f (0) = sin(0) = 0

f (iv) (x) = d sin x = cos x dx

f (iv) (x) = cos(0) = 1

f (v) (x) = d cos x = - sin x f (v) (x) = - sin(0) = 0 dx

f (vi) (0) = d (-sin x) = - cos x

dx

f (vi) (0) = - cos(0) = -1

Now by Maclaurin series

f (x) = f (0) + xf (0) + x2 f (0) + x3 f (0) + ......

2!

3!

cos x = 1 + x(0) + x2 (-1) + x3 (0) + x4 (1) + x5 (0) + x6 (-1) + ......

2!

3! 4! 5! 6!

= 1 + 0 - x2 + 0 + x4 + 0 - x6 + ......

2!

4!

6!

= 1 - x2 + x4 - x6 + ...... 2! 4! 6!

(iii) Let f (x) = 1 + x

=

(1

+

x

)

1 2

1

f (0) = (1 + 0)2

= 1

f (x) =

d

(1 +

x

)

1 2

dx

=

1

(1

+

x

)-

1 2

(1)

=

1

(1

+

x

)-

1 2

2

2

f (0) =

1

(1

+

0

)-

1 2

=

1

2

2

f ( x)

=

d dx

1 2

(1 +

x)-

1 2

=

-

1

(1

+

x)-

3 2

4

f (0)

=

-

1

(1

+

0

)

-

3 2

=

- 1

4

4

f (x)

=

-

1 4

d dx

(1

+

x

)-

3 2

=

-

1 4

-

3 2

(1

+

x)-

5 2

=

3

(1

+

x)-

5 2

8

f (0)

=

3 (1+

)0

-

5 2

=

3

8

8

Now by Maclaurin series

f (x) = f (0) + xf (0) + x2 f (0) + x3 f (0) + ......

2!

3!

1+ x

=

1+ x 1 + 2

x2 2!

-

1 4

+

x3 3 + ..... 3! 8

=

1+ x 1 + 2

x2 2

-

1 4

+

x3 6

3 + ..... 8

= 1 + x - x2 + x3 + ..... 2 8 16

(iv) Let f (x) = ex f (0) = e0 = 1

( ) f ( x) = d ex = ex f (0) = e0 = 1 dx

( ) f ( x) = d ex = ex f (0) = e0 = 1 dx

( ) f ( x) = d ex = ex f (0) = e0 = 1 dx

By Maclaurin series

f (x) = f (0) + xf (0) + x2 f (0) + x3 f (0) + ......

2!

3!

ex = 1 + x(1) + x2 (1) + x3 (1) + ..... 2! 3!

= 1 + x + x2 + x3 + ..... 2! 3!

(v) Let f (x) = e2x f (0) = e2(0) = e0 = 1

( ) f ( x) = d e2x = 2e2x dx

FSc-II / Ex- 2.8 - 3

FSc-II / Ex- 2.8 - 4

f (0) = 2e2(0) = 2(1) = 2

( ) ( ) f ( x) = 2 d e2x = 2 2e2x = 4e2x dx

f (0) = 4e2(0) = 4(1) = 4

( ) ( ) f ( x) = 4 d e2x = 4 2e2x = 8e2x dx

f (0) = 8e2(0) = 8

By Maclaurin series

f (x) = f (0) + xf (0) + x2 f (0) + x3 f (0) + ......

2!

3!

e2x = 1 + x(2) + x2 (4) + x3 (8) + ..... 2! 3!

= 1 + 2x + 4x2 + 8x3 + ..... 2! 3!

[

Question # 2

Show that

cos( x + h) = cos x - hsin x - h2 cos x + h3 sin x + ......

2

3

and evaluate cos61 .

Solution Let f (x) = cos x

f ( x) = d cos x = - sin x

dx

f ( x) = - d sin x = - cos x

dx

f ( x) = - d cos x = - (-sin x) = sin x

dx

By Taylor series

f (x + h) = f (x) + hf (x) + h2 f (x) + h3 f (x) + ....

2!

3!

cos( x + h) = cos x + h(-sin x) + h2 (-cos x) + h3 (sin x) + ......

2!

3!

cos( x + h) = cos x - hsin x - h2 cos x + h3 sin x + ......

2

3

Put x = 60 and h = 1 = = 0.01745 rad 180

cos(60 +1) = cos60 - (0.01745)sin 60 - (0.01745)2 cos60 + (0.01745)3 sin 60 + ......

2

3

FSc-II / Ex- 2.8 - 5

cos61 = 0.5 - (0.01745)(0.866) - (0.000305) (0.5) + (0.00000531) (0.866) + ......

2

6

= 0.5 - 0.0151117 - 0.000076125 + 0.000000072 + ...... = 0.484812247 0.4848

Question # 3

Show that

2x+h =

2x

1

+

(ln

2)h

+

(ln

2)2

h2 2!

+

(ln

2)3

h3 3!

+

......

Solution Let f (x) = 2x

f (x) = d 2x

dx

d ax = ax ln a dx

= 2x ln 2

( ) f ( x) = ln 2 d 2x = ln 2 2x ln 2 = (ln 2)2 2x dx

f ( x) = (ln 2)2 d 2x = (ln 2)2 2x ln 2 = (ln 2)3 2x

dx

Now by Taylor series

f (x + h) = f (x) + hf (x) + h2 f (x) + h3 f (x) + ....

2!

3!

2x+h = 2x + h 2x ln 2 + h2 (ln 2)2 2x + h3 (ln 2)3 2x + ......

2!

3!

=

2x

1 +

(ln

2)

h

+

(ln

2)2

h2 2!

+

(ln

2)3

h3 3!

+

......

Book:

Exercise 2.8, page 101 Text Book of Algebra and Trigonometry Class XII Punjab Textbook Board, Lahore.

Available online at in PDF Format (Picture format to view online). Updated: September,12,2017.

These resources are shared under the licence AttributionNonCommercial-NoDerivatives 4.0 International Under this licence if you remix, transform, or build upon the material, you may not distribute the modified material.

................
................

In order to avoid copyright disputes, this page is only a partial summary.

Google Online Preview   Download