The Integral - Penn Math
[Pages:10]CHAPTER
5
The Integral
5.1 Approximating and Computing Area
Preliminary Questions
1. The interval [2, 5] is divided into 6 subintervals in order to calculate R6 for some function. What are the right-endpoints of those subintervals? What are the left-endpoints?
2. If f (x) = x-2 on [3, 7], which is larger: RN or L N ?
3. Which of the following pairs of sums are not equal?
(a)
4 i =1
i,
4 =1
(b)
4 j =1
j2,
5 k=2
k2
(c)
4 j =1
j,
5 i =2
(i
-
1)
(d)
4 i =1
i (i
+
1),
5j=2( j - 1) j
4. The interval [1, 5] is divided into 16 subintervals.
(a) What are the left endpoints of the first and last subintervals? (b) What are the right endpoints of the first two subintervals?
5. True or False: (a) The right-endpoint rectangles lie below the graph of an increasing function. (b) If f is monotonic, then the area under the graph lies in between RN and L N . (c) If f is not monotonic, then L N and RN may converge to different limits as N . (d) If f (x) is constant, then the right-endpoint rectangles all have the same height.
Exercises
1. An athlete runs with velocity 4 mph for half an hour, 6 mph for the next hour, and 5 mph for another half-hour. Compute the total distance traveled and indicate on a graph how this quantity can be interpreted as an area.
The
total
distance
traveled
is
(4)
(
1 2
)
+
(6)
(1)
+
(5)
(
1 2
)
=
10
1 2
miles.
1
2 Chapter 5 The Integral
6 5 4 mph 3 2 1
0
0.5
1 1.5
2
hours
2.
Figure 1 shows the velocity of an object over a 3-minute interval. Determine the distance
3. tArasvsuelmede othvaetrtthheevienltoercvitaylso[f0a,n3]obanjedct[1is, 23.25t]f(tr/es.mUesmebEeqr.to(?c?o)ntvoedrtefterorminmepthhetodmistialensceper
mtraivneulted).by the object over the time intervals (in seconds) [0, 2] and [2, 5].
The total distance traveled is given by the area under the graph of v = 32t.
During the interval [0, 2], the object tFraivgeulsre12 (12)(64) = 64 ft.
During
the
interval
[2,
5],
the
object
travels
1 2
(3)(160
-
64)
+
(3)(64)
=
336
ft.
160
140
120
100
80
60
40
20
0
0
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
4.
Consider f (x) = 2x + 3 on [0, 3]. 5. Let (fa()x)D=etexr2m+inxe -the2l.eft- and right-endpoints if [0, 3] is divided into 6 subintervals.
(a) C(ba)lcCuloamtepRut3eaRnd6 aLn3dfoLr6.the interval [2, 5]. (b) S(ck)etFchintdhethgereaxpahcotfarfeaanudsinthgegreeocmtanetgrlyesanthdactommapkueteuptheeaecrhroorf itnhethaeptpwrooxciamlcautiloantiso.ns of (b).
Let f (x) = x2 + x - 2 and set a = 2, b = 5, n = 3, h = x = (b - a) /n = (5 - 2) /3 = 1. (a) Let xk = a + kh, k = 0, 1, 2, 3.
Selecting left endpoints of subintervals, xk, k = 0, 1, 2, or {2, 3, 4}, we have
2
2
L3 = f (xk) x = h f (xk) = (1) (4 + 10 + 18) = 32
k=0
k=0
Selecting right endpoints of subintervals, xk, k = 1, 2, 3, or {3, 4, 5}, we have
3
3
R3 = f (xk) x = h f (xk) = (1) (10 + 18 + 28) = 56
k=1
k=1
(b) Here are figures of the three sets of rectangles that approximate the area under the curve f (x) over the interval [2, 5].
5.1 Approximating and Computing Area
3
x2+x-2 30
25
x2+x-2 30
25
20
20
15
15
10
10
5
5
6.
2
2.5
3
3.5
4
4.5
5
x
2
2.5
3
3.5
4
4.5
5
x
Let f (x) = cos x.
7.
Cons(iad)erCfal(cxu)la=te5Rx4oannd[0L, 34 ]f.or the interval [0,
2
].
(a) F(bin)dSakfeotcrmh tuhlea gforar pRhNo(fusfeafnodrmthuelare(c?t?a)n)g. les that make up each of the approximations.
(b) I(sc)RNIsbthigegaerreoarusnmdaelrlethrethgarnapthhelaarrgeearuonrdsemr athlleergrthapanh?R4? Than L4? (c) Calculate limN RN .
(d) Calculate the area under the graph using geometry and verify your answer to (c).
Let f (x) = 5x on [0, 3]. Let n be a (symbolic) positive integer and set a = 0, b = 3, h = x = (b - a) /n = (3 - 0) /n = 3/n.
(a) Let xk = a + kh = 3k/n, k = 1, 2, . . . , n be the right endpoints of the n subintervals of [0, 3]. Then
n
Rn = h
k=1
f (xk) =
3 n
n
5
k=1
3k n
= 45
n2 n +
= 45 + 45
n2 2 2
2 2n
= 45 n k n2 k=1
(b) Since f (x) = 5x is increasing, the right endpoint approximation Rn is greater than the area under the graph.
45 45 45
(c)
The
area
under
the
graph
is
lim
n
Rn
= lim n
+ 2 2n
= = 22.5. 2
(d)
The area under the graph is the area of a triangle:
A
=
1 2
B
H
=
1 2
(3) (15)
=
45 2
,
which
agrees with the answer in (c).
8. Estimate R6 and L6 over [0, 1.5] for the function shown in Figure 2.
9. Estimate R6 and L6 for the graph in Figure 3.
Figure 2
1 .5
0 121452
33
33
Figure 3
Let
f (x) on [0, 2] be given by the figure in the text. For n
=
6, h
= (2 - 0)/6 =
1 3
,
{xk }6k=0 =
0,
1 3
,
2 3
,
1,
4 3
,
5 3
,
2
.
4 Chapter 5 The Integral
Therefore
L6
=
1 3
5 k=0
f (xk) =
1 3
R6
=
1 3
6 k=1
f (xk) =
1 3
1 + 5 + 7 + 9 + 1 + 3 = 1.625
2888
4
5 + 7 + 9 + 1 + 3 + 1 1.792
888
4
In Exercises 10?19, calculate the approximation for the given function and interval. 10.
R8, 7 - x, [3, 5] 11. R6, 2x2 - x + 2, [1, 4]
Let
f (x) =
2x2 - x
+ 2 on [1, 4]. For n
=
6, h
= (4 - 1)/6 =
1 2
,
{xk }6k=0 =
1,
1
1 2
,
2,
2
1 2
,
3,
3
1 2
,
4
. Therefore
R6
=
1 2
6
(2xk2
k=1
-
xk
+ 2)
=
47.5
12. L6, 2x2 - x + 2, [1, 4]
13. R4, x3 - 2x + 5, [0, 1]
Let
f (x) =
x3
- 2x
+ 5 on [0, 1]. For n
=
4, h
= (1 - 0)/4 =
1 4
,
{xk }4k=0 =
0,
1 4
,
1 2
,
3 4
,
1
. Therefore
R4
=
1 4
4
(xk3
k=1
- 2xk
+ 5)
4.140625
14.
R4, x3 - 2x + 5, [-2, 2]
15.
R5,
sin
x,
[
4
,
3 4
]
Let
f (x) = sin x
on
[
4
,
3 4
].
For
n
= 5, h
=
(3/4-/4) 5
=
10
,
{xk }5k=0 =
4
,
7 20
,
9 20
,
11 20
,
13 20
,
3 4
. Therefore
5 R5 = 10 k=1 sin xk 1.402563
16. 17.
L5, L4,
x -1, x -2,
[1, [1,
2] 3]
Let
f (x) = x-2 on [1, 3]. For n
= 4, h
= (3 - 1)/4 =
1 2
,
{xk }4k=0
=
1,
3 2
,
2,
5 2
,
3
.
Therefore
L4
=
1 2
3 k=0
xk-2
0.927222
18. 19.
L L
4, 5,
cos x x2 +
,
[
4
3|x
, |,
2
]
[-3,
2]
Let f (x) = x2 + 3 |x| on [-3, 2]. For n = 5, h = (2 - (-3))/5 = 1, {xk}5k=0 = {-3, -2, -1, 0, 1, 2}. Therefore
4
L5 = 1 (xk2 + 3 |x |) = 36
k=0
5.1 Approximating and Computing Area
5
20. R & W Compute the average of R5 and L5 to approximate the area under the graph of
21. Cf a(xlc)ul=atext-h1e osvuemrs[:3.5, 5]. Explain why the average is more accurate than either endpoint a(ap)pro5xim3 ation.
i =1
5
(b) 3
i =0
4
(c) k3
k=2
4
(d) sin j
j =3
2
When the number of summands is small, we may compute the sum directly. Where
applicable (especially when the number of summands is large), we may use summation
laws. For illustration, both ways are shown in this exercise.
5
(a) Do this directly: 3 = 3 + 3 + 3 + 3 + 3 = 15. Or use the law for summing a
i =1 5
constant: 3 = (3)(5) = 15.
i =1
5
5
(b) Here 3 = 3 + 3 + 3 + 3 + 3 + 3 = 18 or 3 = (3)(6) = 18.
i =0
i =0
4
(c) Again, k3 = 23 + 33 + 43 = 99 or
k=2
4
k3 =
k=2
=
4
1
k3 -
k3
k=1
k=1
44 43 42 ++ -
424
14 13 12 ++
424
= 99.
4
j
(d) Finally, sin
= 1 + 0 + (-1) + 0 = 0.
j =1
2
In Exercises 22?34, use the Linearity Rules and formulas (??)?(??) to rewrite and evaluate the
sums.
22.
6
10
j3
23. j4=1j 3
j =1
We have 24.
10
10 j =1
4 j3
=
4
20 2 j 25. j=1 (2k + 1)
k=1
10 j =1
j3 = 4
104 4
+
103 2
+
102 4
= 12100.
We have
20 k=1
(2k
+
1)
=
2
26.
15
(6 - 3i)
i =1
20 k=1
k
+
20 k=1
1
=
2
202 + 20
2
2
+ 20 = 440.
6 Chapter 5 The Integral
10
27. ( 3 - 2 2)
=1
We have
10 =1
(
3-2
2) =
28.
30
18 (3s2 - 4s - 1)
29. s=1 (4i - 2i 2 + 9)
i =1
10 =1
3-2
10 =1
2=
104 + 103 + 102
4
2
4
We have
18 i =1
(4i
-
2i 2
+
9)
=
4
18 i =1
i
-
2
18 i =1
i
2
+
9
4
182 2
+
18 2
-2
183 3
+
182 2
+
18 6
+ (9)(18) = -3372.
30.
10
200 j 2 Hint: write as a difference of two sums.
31. j=5j
j =101
-2
103 + 102 + 10
3
2
6
18 i =1
1
=
= 2255.
We have 32.
50
200 j =101
j=
20 (7 j - 9) 33. j=4 6 j 2
j =10
200 j =1
j-
100 j =1
j=
+ 2002 200
2
2
-
+ 1002
100
2
2
= 15050.
We have
20 j =10
6 j2
=
6
20 j =1
j2 - 6
9 j =1
j2 = 6
203 3
+
202 2
+
20 6
-6
93 3
+
92 2
+
9 6
= 15510.
34.
10
35. Writ(e6tjh3e-sujm2)of the cubes of the whole numbers from 100 to 250 in summation notation.
j =3
250
The sum of the first 100 cubes may be written in summation notation as k3.
36.
k=100
Write the sum
In Exercises 37?41, calculate the1su+m1, 3a+ssum2in+g 2th3a+t a?1? =? +-1,n +i1=n013 ai = 10, and
in summation notation. 10
37. 2ai
i =1
10
10
We have 2ai = 2 ai = (2)(10) = 20.
38.
i =1
i =1
10
10 (ai - bi ) 39. i=1 (3a + 4b )
=1
We have
10 i =1
bi
=
7.
10
10
10
(3ai + 4bi ) = 3 ai + 4 bi
i =1
i =1
i =1
= (3)(10) + (4)(7) = 58.
40. 10
41. Canayi ou calculate
10 i =1
ai bi
from
the
information
given?
i =2
10
From the information given, ai bi cannot be computed.
i =1
5.1 Approximating and Computing Area
7
42.
ni
43.
Evaluate lim Evaluate nlim
n i =1
in22 -. i
+1 .
n i =1
n3
Now
sn
=
n i =1
i2 - i + 1 n3
=
1 n3
=1 n3
n3 + n2 + n 3 26
n
i2 -
i =1
- n2 + n 22
n
n
i+ 1
i =1
i =1
+ (n) = 1 + 2 . 3 3n2
Therefore,
lim
n
sn
=
1 .
3
In Exercises 44?59, use formulas (??)?(??) to find a formula for RN for the given function and interval. Then compute the area under the graph as a limit. 44. x; [0, 3] 45. x; [2, 7]
Let f (x) = x on the interval [2, 7]. Then x = 7 - 2 = 5 and a = 2. Hence, NN
RN =
N
x
f (2 + j
x) = 5
N
2+ j 5
j =1
N j=1
N
= 10 N 1 + 25 N j
N j=1
N 2 j=1
=
10 N
+
25
N2 + N
= 10 + 25 + 25
N
N2 2 2
2 2N
and
25 25 45
lim
N
RN
=
lim
N
10 + + 2 2N
= = 22.5. 2
46. 3 - x; [1, 2] 47. 2x + 7; [3, 6]
Let f (x) = 2x + 7 on the interval [3, 6]. Then
x = 6 - 3 = 3 and a = 3. Hence, NN
RN =
N
x
f (3 + j
x) = 3
N
2 3+ j 3
j =1
N j=1
N
+7
= 39
N 1 + 18
N
j
=
39 N
+
18
N2 + N
= 39 + 9 + 9
N j=1
N 2 j=1
N
N2 2 2
N
and
lim
N
RN
=
lim
N
48 + 9 N
= 48.
48. x2; [0, 1]
49. x2; [2, 4]
8 Chapter 5 The Integral
Let f (x) = x2 on the interval [2, 4]. Then
x
=
4-2 N
=
2 N
and a
= 2. Hence,
RN =
N
x f (2 + j
j =1
2N x) =
N j=1
4 + j 8 + j2 4
N
N2
= 8 N 1 + 16 N j + 8 N j 2 = 8 N + 16
N j=1
N 2 j=1
N 3 j=1
N
N2
+ 8 N3 + N2 + N N3 3 2 6
=8+8+ 8 + 8 + 4 + 4 N 3 N 3N2
N2 + N 22
and
lim RN = lim
N
N
56 + 12 + 4 3 N 3N2
18.6667.
50. 4 - x2; [0, 2]
51. 3x2 - x + 4; [0, 1] Let f (x) = 3x2 - x + 4 on the interval [0, 1]. Then
x = 1 - 0 = 1 and a = 0. Hence, NN
RN =
N
x
f (0 + j
x) = 1
N
j =1
N j=1
3j2 1 - j 1 + 4 N2 N
=3
N j2 - 1
N
4N
j+
1
N 3 j=1
N 2 j=1
N j=1
=3
N3 N2 N ++
-1
N2 N +
+ 4N
N3 3 2 6
N2 2 2
N
=1+ 3 + 1 - 1 - 1 +4 2N 2N2 2 2N
and
11
lim
N
RN
=
lim
N
4.5 + + N 2N2
= 4.5.
52. 3x2 - x + 4; [1, 5]
53. 4x3 - 3x; [0, 2] Let f (x) = 4x3 - 3x on the interval [0, 2]. Then
x = 2 - 0 = 2 and a = 0. Hence, NN
N
2N
RN =
x f (0 + j x) =
j =1
N j=1
= 64 N j 3 - 12 N j = 64
N 4 j=1
N 2 j=1
N4
32 16
6
= 16 + + - 6 -
N N2
N
4j3 8 - 3j 2
N3
N
N4 + N3 + N2 424
- 12 N2
N2 + N 22
and
lim
N
R
N
=
lim
N
10 + 26 + 16 N N2
= 10.
................
................
In order to avoid copyright disputes, this page is only a partial summary.
To fulfill the demand for quickly locating and searching documents.
It is intelligent file search solution for home and business.
Related download
- unit 6 lesson 1 tape diagrams and equations
- chapter 14 algebraic fractions and equations and
- dividing fractions word problems 1
- 5 the integral college of the holy cross
- chapter 6 ratio and proportion
- translating words into algebra leeward community college
- three ways to show division mr tolbert s grade 5 math
- interpolation polynomial approximation hermite
- the integral penn math
- mathematics instructional plan dividing polynomials using
Related searches
- exponential integral of the second
- what does the u in math mean
- the inn at penn philadelphia
- the penn hotel hershey
- math integral solver
- conditions for the integral test
- what is the integral test
- calculate the integral calculator
- the integral test examples
- the penn hotel
- what is the integral of tanx
- finding the indefinite integral calculator