Abstract - Centers for Disease Control and Prevention



Trends in PM2.5 emissions, concentrations and apportionments in Detroit and Chicago Chad Milando, Lei Huang, Stuart Batterman*Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA*Corresponding author Email: Stuartb@umich.edu Tel: 734 763-2417 Fax: 734 763-8095January 4, 2016AbstractPM2.5 concentrations throughout much of the U.S. have decreased over the last 15 years, but emissions and concentration trends can vary by location and source type. Such trends should be understood to inform air quality management and policies. This work examines trends in emissions, concentrations and source apportionments in two large Midwest U.S. cities, Detroit, Michigan, and Chicago, Illinois. Annual and seasonal trends were investigated using National Emission Inventory (NEI) data for 2002 to 2011, speciated ambient PM2.5 data from 2001 to 2014, apportionments from positive matrix factorization (PMF) receptor modeling, and quantile regression. Over the study period, county-wide data suggest emissions from point sources decreased (Detroit) or held constant (Chicago), while emissions from on-road mobile sources were constant (Detroit) or increased (Chicago), however changes in methodology limit the interpretation of inventory trends. Ambient concentration data also suggest source and apportionment trends, e.g., annual median concentrations of PM2.5 in the two cities declined by 3.2 to 3.6 %/yr (faster than national trends), and sulfate concentrations (due to coal-fired facilities and other point source emissions) declined even faster; in contrast, organic and elemental carbon (tracers of gasoline and diesel vehicle exhaust) declined more slowly or held constant. The PMF models identified nine sources in Detroit and eight in Chicago, the most important being secondary sulfate, secondary nitrate and vehicle emissions. A minor crustal dust source, metals sources, and a biomass source also were present in both cities. These apportionments showed that the median relative contributions from secondary sulfate sources decreased by 4.2 to 5.5% per year in Detroit and Chicago, while contributions from metals sources, biomass sources, and vehicles increased from 1.3 to 9.2% per year. This first application of quantile regression to trend analyses of speciated PM2.5 data reveals that source contributions to PM2.5 varied as PM2.5 concentrations decreased, and that the fraction of PM2.5 due to emissions from vehicles and other local emissions has increased. Each data source has uncertainties, but emissions, monitoring and PMF data provide complementary information that can help to discern trends and identify contributing sources. Study results emphasize the need to target specific sources in policies and regulations aimed at decreasing PM2.5 concentrations in urban areas.KeywordsSource Apportionment, Receptor Modeling, Positive Matrix Factorization, Quantile RegressionHighlightsSince 2001, PM2.5 concentrations have declined and compositions have changed.Changes in methodology limit interpretation of emission inventory trends.Quantile regression allows for trend assessment at various relevant percentiles.Emissions from vehicles, biomass, and metals sources are of growing importance.1. IntroductionHistorical ambient air quality monitoring data permit a wide range of trend, apportionment, health risk and other analyses. In the U.S., the Interagency Monitoring of Protected Visual Environments (IMPROVE) network ADDIN EN.CITE <EndNote><Cite><Author>Hand</Author><Year>2011</Year><RecNum>97</RecNum><DisplayText><style face="italic">[1]</style></DisplayText><record><rec-number>97</rec-number><foreign-keys><key app="EN" db-id="xtp0t5fro0zvd0ev2fi5vwf9a2adtr2vzwza">97</key></foreign-keys><ref-type name="Web Page">12</ref-type><contributors><authors><author>Hand, Jenny</author></authors></contributors><titles><title>Spatial and Seasonal Patterns and Temporal Variability of Haze and its Constituents in the United States: Report V</title></titles><dates><year>2011</year></dates><urls><related-urls><url>;[1] and the Chemical Speciation Network (CSN) ADDIN EN.CITE <EndNote><Cite><Year>2014</Year><RecNum>77</RecNum><DisplayText><style face="italic">[2]</style></DisplayText><record><rec-number>77</rec-number><foreign-keys><key app="EN" db-id="xtp0t5fro0zvd0ev2fi5vwf9a2adtr2vzwza">77</key></foreign-keys><ref-type name="Online Database">45</ref-type><contributors></contributors><titles><title>Chemical Speciation Network Database</title></titles><dates><year>2014</year></dates><publisher>U.S. Environmental Protection Agency</publisher><urls><related-urls><url>;[2] have collected ambient data since the mid-1980s that can facilitate these analyses. As examples, trend analyses can help evaluate the effectiveness of mitigation and control measures, e.g., low emission zones ADDIN EN.CITE <EndNote><Cite><Author>Jones</Author><Year>2012</Year><RecNum>100</RecNum><DisplayText><style face="italic">[3]</style></DisplayText><record><rec-number>100</rec-number><foreign-keys><key app="EN" db-id="xtp0t5fro0zvd0ev2fi5vwf9a2adtr2vzwza">100</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Jones, Alan M.</author><author>Harrison, Roy M.</author><author>Barratt, Benjamin</author><author>Fuller, Gary</author></authors></contributors><titles><title>A large reduction in airborne particle number concentrations at the time of the introduction of “sulphur free” diesel and the London Low Emission Zone</title><secondary-title>Atmospheric Environment</secondary-title></titles><periodical><full-title>Atmospheric Environment</full-title></periodical><pages>129-138</pages><volume>50</volume><dates><year>2012</year></dates><isbn>13522310</isbn><urls></urls><electronic-resource-num>10.1016/j.atmosenv.2011.12.050</electronic-resource-num></record></Cite></EndNote>[3], and receptor models can identify and apportion contributions of pollutant sources. Both trend and apportionment studies can help to evaluate dispersion and exposure models ADDIN EN.CITE <EndNote><Cite><Author>Haupt</Author><Year>2005</Year><RecNum>105</RecNum><DisplayText><style face="italic">[4]</style></DisplayText><record><rec-number>105</rec-number><foreign-keys><key app="EN" db-id="xtp0t5fro0zvd0ev2fi5vwf9a2adtr2vzwza">105</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Haupt, Sue Ellen</author></authors></contributors><titles><title>A demonstration of coupled receptor/dispersion modeling with a genetic algorithm</title><secondary-title>Atmospheric Environment</secondary-title></titles><periodical><full-title>Atmospheric Environment</full-title></periodical><pages>7181-7189</pages><volume>39</volume><number>37</number><dates><year>2005</year></dates><isbn>13522310</isbn><urls></urls><electronic-resource-num>10.1016/j.atmosenv.2005.08.027</electronic-resource-num></record></Cite></EndNote>[4]. Monitoring data also have been widely used to estimate exposures for epidemiology and risk studies investigating and predicting the health consequences of pollutant exposure PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5QYXJrPC9BdXRob3I+PFllYXI+MjAxMDwvWWVhcj48UmVj

TnVtPjEwMzwvUmVjTnVtPjxEaXNwbGF5VGV4dD48c3R5bGUgZmFjZT0iaXRhbGljIj5bNV08L3N0

eWxlPjwvRGlzcGxheVRleHQ+PHJlY29yZD48cmVjLW51bWJlcj4xMDM8L3JlYy1udW1iZXI+PGZv

cmVpZ24ta2V5cz48a2V5IGFwcD0iRU4iIGRiLWlkPSJ4dHAwdDVmcm8wenZkMGV2MmZpNXZ3Zjlh

MmFkdHIydnp3emEiPjEwMzwva2V5PjwvZm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJKb3Vy

bmFsIEFydGljbGUiPjE3PC9yZWYtdHlwZT48Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+

UGFyaywgUy4gSy48L2F1dGhvcj48YXV0aG9yPkF1Y2hpbmNsb3NzLCBBLiBILjwvYXV0aG9yPjxh

dXRob3I+TyZhcG9zO05laWxsLCBNLiBTLjwvYXV0aG9yPjxhdXRob3I+UHJpbmVhcywgUi48L2F1

dGhvcj48YXV0aG9yPkNvcnJlYSwgSi4gQy48L2F1dGhvcj48YXV0aG9yPktlZWxlciwgSi48L2F1

dGhvcj48YXV0aG9yPkJhcnIsIFIuIEcuPC9hdXRob3I+PGF1dGhvcj5LYXVmbWFuLCBKLiBELjwv

YXV0aG9yPjxhdXRob3I+RGlleiBSb3V4LCBBLiBWLjwvYXV0aG9yPjwvYXV0aG9ycz48L2NvbnRy

aWJ1dG9ycz48YXV0aC1hZGRyZXNzPkRlcGFydG1lbnQgb2YgRW52aXJvbm1lbnRhbCBIZWFsdGgg

U2NpZW5jZXMsIFNjaG9vbCBvZiBQdWJsaWMgSGVhbHRoLCBVbml2ZXJzaXR5IG9mIE1pY2hpZ2Fu

LCBBbm4gQXJib3IsIE1pY2hpZ2FuIDQ4MTA5LCBVU0EuIHN1bmdreXVuQHVtaWNoLmVkdTwvYXV0

aC1hZGRyZXNzPjx0aXRsZXM+PHRpdGxlPlBhcnRpY3VsYXRlIGFpciBwb2xsdXRpb24sIG1ldGFi

b2xpYyBzeW5kcm9tZSwgYW5kIGhlYXJ0IHJhdGUgdmFyaWFiaWxpdHk6IHRoZSBtdWx0aS1ldGhu

aWMgc3R1ZHkgb2YgYXRoZXJvc2NsZXJvc2lzIChNRVNBKTwvdGl0bGU+PHNlY29uZGFyeS10aXRs

ZT5FbnZpcm9uIEhlYWx0aCBQZXJzcGVjdDwvc2Vjb25kYXJ5LXRpdGxlPjxhbHQtdGl0bGU+RW52

aXJvbm1lbnRhbCBoZWFsdGggcGVyc3BlY3RpdmVzPC9hbHQtdGl0bGU+PC90aXRsZXM+PHBlcmlv

ZGljYWw+PGZ1bGwtdGl0bGU+RW52aXJvbiBIZWFsdGggUGVyc3BlY3Q8L2Z1bGwtdGl0bGU+PGFi

YnItMT5FbnZpcm9ubWVudGFsIGhlYWx0aCBwZXJzcGVjdGl2ZXM8L2FiYnItMT48L3BlcmlvZGlj

YWw+PGFsdC1wZXJpb2RpY2FsPjxmdWxsLXRpdGxlPkVudmlyb24gSGVhbHRoIFBlcnNwZWN0PC9m

dWxsLXRpdGxlPjxhYmJyLTE+RW52aXJvbm1lbnRhbCBoZWFsdGggcGVyc3BlY3RpdmVzPC9hYmJy

LTE+PC9hbHQtcGVyaW9kaWNhbD48cGFnZXM+MTQwNi0xMTwvcGFnZXM+PHZvbHVtZT4xMTg8L3Zv

bHVtZT48bnVtYmVyPjEwPC9udW1iZXI+PGtleXdvcmRzPjxrZXl3b3JkPkFnZWQ8L2tleXdvcmQ+

PGtleXdvcmQ+QWdlZCwgODAgYW5kIG92ZXI8L2tleXdvcmQ+PGtleXdvcmQ+KkFpciBQb2xsdXRp

b248L2tleXdvcmQ+PGtleXdvcmQ+QXRoZXJvc2NsZXJvc2lzLypjaGVtaWNhbGx5IGluZHVjZWQv

Y29tcGxpY2F0aW9ucy9ldGhub2xvZ3kvcGh5c2lvcGF0aG9sb2d5PC9rZXl3b3JkPjxrZXl3b3Jk

PipIZWFydCBSYXRlPC9rZXl3b3JkPjxrZXl3b3JkPkh1bWFuczwva2V5d29yZD48a2V5d29yZD5N

ZXRhYm9saWMgU3luZHJvbWUgWC8qY29tcGxpY2F0aW9uczwva2V5d29yZD48a2V5d29yZD5NaWRk

bGUgQWdlZDwva2V5d29yZD48L2tleXdvcmRzPjxkYXRlcz48eWVhcj4yMDEwPC95ZWFyPjxwdWIt

ZGF0ZXM+PGRhdGU+T2N0PC9kYXRlPjwvcHViLWRhdGVzPjwvZGF0ZXM+PGlzYm4+MTU1Mi05OTI0

IChFbGVjdHJvbmljKSYjeEQ7MDA5MS02NzY1IChMaW5raW5nKTwvaXNibj48YWNjZXNzaW9uLW51

bT4yMDUyOTc2MTwvYWNjZXNzaW9uLW51bT48dXJscz48cmVsYXRlZC11cmxzPjx1cmw+aHR0cDov

L3d3dy5uY2JpLm5sbS5uaWguZ292L3B1Ym1lZC8yMDUyOTc2MTwvdXJsPjwvcmVsYXRlZC11cmxz

PjwvdXJscz48Y3VzdG9tMj4yOTU3OTIwPC9jdXN0b20yPjxlbGVjdHJvbmljLXJlc291cmNlLW51

bT4xMC4xMjg5L2VocC4wOTAxNzc4PC9lbGVjdHJvbmljLXJlc291cmNlLW51bT48L3JlY29yZD48

L0NpdGU+PC9FbmROb3RlPgB=

ADDIN EN.CITE PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5QYXJrPC9BdXRob3I+PFllYXI+MjAxMDwvWWVhcj48UmVj

TnVtPjEwMzwvUmVjTnVtPjxEaXNwbGF5VGV4dD48c3R5bGUgZmFjZT0iaXRhbGljIj5bNV08L3N0

eWxlPjwvRGlzcGxheVRleHQ+PHJlY29yZD48cmVjLW51bWJlcj4xMDM8L3JlYy1udW1iZXI+PGZv

cmVpZ24ta2V5cz48a2V5IGFwcD0iRU4iIGRiLWlkPSJ4dHAwdDVmcm8wenZkMGV2MmZpNXZ3Zjlh

MmFkdHIydnp3emEiPjEwMzwva2V5PjwvZm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJKb3Vy

bmFsIEFydGljbGUiPjE3PC9yZWYtdHlwZT48Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+

UGFyaywgUy4gSy48L2F1dGhvcj48YXV0aG9yPkF1Y2hpbmNsb3NzLCBBLiBILjwvYXV0aG9yPjxh

dXRob3I+TyZhcG9zO05laWxsLCBNLiBTLjwvYXV0aG9yPjxhdXRob3I+UHJpbmVhcywgUi48L2F1

dGhvcj48YXV0aG9yPkNvcnJlYSwgSi4gQy48L2F1dGhvcj48YXV0aG9yPktlZWxlciwgSi48L2F1

dGhvcj48YXV0aG9yPkJhcnIsIFIuIEcuPC9hdXRob3I+PGF1dGhvcj5LYXVmbWFuLCBKLiBELjwv

YXV0aG9yPjxhdXRob3I+RGlleiBSb3V4LCBBLiBWLjwvYXV0aG9yPjwvYXV0aG9ycz48L2NvbnRy

aWJ1dG9ycz48YXV0aC1hZGRyZXNzPkRlcGFydG1lbnQgb2YgRW52aXJvbm1lbnRhbCBIZWFsdGgg

U2NpZW5jZXMsIFNjaG9vbCBvZiBQdWJsaWMgSGVhbHRoLCBVbml2ZXJzaXR5IG9mIE1pY2hpZ2Fu

LCBBbm4gQXJib3IsIE1pY2hpZ2FuIDQ4MTA5LCBVU0EuIHN1bmdreXVuQHVtaWNoLmVkdTwvYXV0

aC1hZGRyZXNzPjx0aXRsZXM+PHRpdGxlPlBhcnRpY3VsYXRlIGFpciBwb2xsdXRpb24sIG1ldGFi

b2xpYyBzeW5kcm9tZSwgYW5kIGhlYXJ0IHJhdGUgdmFyaWFiaWxpdHk6IHRoZSBtdWx0aS1ldGhu

aWMgc3R1ZHkgb2YgYXRoZXJvc2NsZXJvc2lzIChNRVNBKTwvdGl0bGU+PHNlY29uZGFyeS10aXRs

ZT5FbnZpcm9uIEhlYWx0aCBQZXJzcGVjdDwvc2Vjb25kYXJ5LXRpdGxlPjxhbHQtdGl0bGU+RW52

aXJvbm1lbnRhbCBoZWFsdGggcGVyc3BlY3RpdmVzPC9hbHQtdGl0bGU+PC90aXRsZXM+PHBlcmlv

ZGljYWw+PGZ1bGwtdGl0bGU+RW52aXJvbiBIZWFsdGggUGVyc3BlY3Q8L2Z1bGwtdGl0bGU+PGFi

YnItMT5FbnZpcm9ubWVudGFsIGhlYWx0aCBwZXJzcGVjdGl2ZXM8L2FiYnItMT48L3BlcmlvZGlj

YWw+PGFsdC1wZXJpb2RpY2FsPjxmdWxsLXRpdGxlPkVudmlyb24gSGVhbHRoIFBlcnNwZWN0PC9m

dWxsLXRpdGxlPjxhYmJyLTE+RW52aXJvbm1lbnRhbCBoZWFsdGggcGVyc3BlY3RpdmVzPC9hYmJy

LTE+PC9hbHQtcGVyaW9kaWNhbD48cGFnZXM+MTQwNi0xMTwvcGFnZXM+PHZvbHVtZT4xMTg8L3Zv

bHVtZT48bnVtYmVyPjEwPC9udW1iZXI+PGtleXdvcmRzPjxrZXl3b3JkPkFnZWQ8L2tleXdvcmQ+

PGtleXdvcmQ+QWdlZCwgODAgYW5kIG92ZXI8L2tleXdvcmQ+PGtleXdvcmQ+KkFpciBQb2xsdXRp

b248L2tleXdvcmQ+PGtleXdvcmQ+QXRoZXJvc2NsZXJvc2lzLypjaGVtaWNhbGx5IGluZHVjZWQv

Y29tcGxpY2F0aW9ucy9ldGhub2xvZ3kvcGh5c2lvcGF0aG9sb2d5PC9rZXl3b3JkPjxrZXl3b3Jk

PipIZWFydCBSYXRlPC9rZXl3b3JkPjxrZXl3b3JkPkh1bWFuczwva2V5d29yZD48a2V5d29yZD5N

ZXRhYm9saWMgU3luZHJvbWUgWC8qY29tcGxpY2F0aW9uczwva2V5d29yZD48a2V5d29yZD5NaWRk

bGUgQWdlZDwva2V5d29yZD48L2tleXdvcmRzPjxkYXRlcz48eWVhcj4yMDEwPC95ZWFyPjxwdWIt

ZGF0ZXM+PGRhdGU+T2N0PC9kYXRlPjwvcHViLWRhdGVzPjwvZGF0ZXM+PGlzYm4+MTU1Mi05OTI0

IChFbGVjdHJvbmljKSYjeEQ7MDA5MS02NzY1IChMaW5raW5nKTwvaXNibj48YWNjZXNzaW9uLW51

bT4yMDUyOTc2MTwvYWNjZXNzaW9uLW51bT48dXJscz48cmVsYXRlZC11cmxzPjx1cmw+aHR0cDov

L3d3dy5uY2JpLm5sbS5uaWguZ292L3B1Ym1lZC8yMDUyOTc2MTwvdXJsPjwvcmVsYXRlZC11cmxz

PjwvdXJscz48Y3VzdG9tMj4yOTU3OTIwPC9jdXN0b20yPjxlbGVjdHJvbmljLXJlc291cmNlLW51

bT4xMC4xMjg5L2VocC4wOTAxNzc4PC9lbGVjdHJvbmljLXJlc291cmNlLW51bT48L3JlY29yZD48

L0NpdGU+PC9FbmROb3RlPgB=

ADDIN EN.CITE.DATA [5]. Such applications are especially important in areas with susceptible populations and where concentrations exceed ambient standards, and for those emission sources that are difficult to characterize or that have changed rapidly, e.g., on-road emissions, due to recent shifts in fuels, emission controls, and fleet mix.This study examines focuses on Detroit, MI and Chicago, IL, two U.S. Midwestern cities that have high concentrations of industry, extensive vehicle traffic, historical exceedances of air quality standards, and large low income and minority populations that are susceptible to pollutants. These cities were selected due to the length of the data record available, and to contrast trends in the two cities (in adjacent states) potentially differentially affected by the 2008 recession. In Detroit, receptor model apportionments starting in 1985 have identified key PM2.5 sources, which include secondary sulfate aerosol (SO4=, especially in the summer), secondary nitrate (NO3-), metal processing, biomass burning, other manufacturing and industrial operations, vehicle-related emissions (including primary and secondary aerosols from tire and brake wear, and entrained dust), and crustal-derived emissions PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5Xb2xmZjwvQXV0aG9yPjxZZWFyPjE5ODU8L1llYXI+PFJl

Y051bT43MzwvUmVjTnVtPjxEaXNwbGF5VGV4dD48c3R5bGUgZmFjZT0iaXRhbGljIj5bNi0xNF08

L3N0eWxlPjwvRGlzcGxheVRleHQ+PHJlY29yZD48cmVjLW51bWJlcj43MzwvcmVjLW51bWJlcj48

Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9Inh0cDB0NWZybzB6dmQwZXYyZmk1dndm

OWEyYWR0cjJ2end6YSI+NzM8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iSm91

cm5hbCBBcnRpY2xlIj4xNzwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9y

PldvbGZmLCBHLlQuPC9hdXRob3I+PGF1dGhvcj5Lb3Jzb2csIFAuRS48L2F1dGhvcj48YXV0aG9y

PktlbGx5LCBOLkEuPC9hdXRob3I+PGF1dGhvcj5GZXJtYW4sIE0uQS48L2F1dGhvcj48L2F1dGhv

cnM+PC9jb250cmlidXRvcnM+PHRpdGxlcz48dGl0bGU+UmVsYXRpb25zaGlwcyBiZXR3ZWVuIGZp

bmUgcGFydGljdWxhdGUgc3BlY2llcywgZ2FzZW91cyBwb2xsdXRhbnRzLCBhbmQgbWV0ZW9yb2xv

Z2ljYWwgcGFyYW1ldGVycyBpbiBEZXRyb2l0PC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPkF0bW9z

cGhlcmljIEVudmlyb25tZW50PC9zZWNvbmRhcnktdGl0bGU+PC90aXRsZXM+PHBlcmlvZGljYWw+

PGZ1bGwtdGl0bGU+QXRtb3NwaGVyaWMgRW52aXJvbm1lbnQ8L2Z1bGwtdGl0bGU+PC9wZXJpb2Rp

Y2FsPjxwYWdlcz4xMzQxLTEzNDk8L3BhZ2VzPjx2b2x1bWU+MTk8L3ZvbHVtZT48bnVtYmVyPjg8

L251bWJlcj48ZGF0ZXM+PHllYXI+MTk4NTwveWVhcj48L2RhdGVzPjx1cmxzPjwvdXJscz48L3Jl

Y29yZD48L0NpdGU+PENpdGU+PEF1dGhvcj5Nb3Jpc2hpdGE8L0F1dGhvcj48WWVhcj4yMDA2PC9Z

ZWFyPjxSZWNOdW0+NTI8L1JlY051bT48cmVjb3JkPjxyZWMtbnVtYmVyPjUyPC9yZWMtbnVtYmVy

Pjxmb3JlaWduLWtleXM+PGtleSBhcHA9IkVOIiBkYi1pZD0ieHRwMHQ1ZnJvMHp2ZDBldjJmaTV2

d2Y5YTJhZHRyMnZ6d3phIj41Mjwva2V5PjwvZm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJK

b3VybmFsIEFydGljbGUiPjE3PC9yZWYtdHlwZT48Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRo

b3I+TW9yaXNoaXRhLCBNYXNha288L2F1dGhvcj48YXV0aG9yPktlZWxlciwgR2VyYWxkIEouPC9h

dXRob3I+PGF1dGhvcj5XYWduZXIsIEphbWVzIEcuPC9hdXRob3I+PGF1dGhvcj5IYXJrZW1hLCBK

YWNrIFIuPC9hdXRob3I+PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjx0aXRsZXM+PHRpdGxlPlNv

dXJjZSBpZGVudGlmaWNhdGlvbiBvZiBhbWJpZW50IFBNMi41IGR1cmluZyBzdW1tZXIgaW5oYWxh

dGlvbiBleHBvc3VyZSBzdHVkaWVzIGluIERldHJvaXQsIE1JPC90aXRsZT48c2Vjb25kYXJ5LXRp

dGxlPkF0bW9zcGhlcmljIEVudmlyb25tZW50PC9zZWNvbmRhcnktdGl0bGU+PC90aXRsZXM+PHBl

cmlvZGljYWw+PGZ1bGwtdGl0bGU+QXRtb3NwaGVyaWMgRW52aXJvbm1lbnQ8L2Z1bGwtdGl0bGU+

PC9wZXJpb2RpY2FsPjxwYWdlcz4zODIzLTM4MzQ8L3BhZ2VzPjx2b2x1bWU+NDA8L3ZvbHVtZT48

bnVtYmVyPjIxPC9udW1iZXI+PGRhdGVzPjx5ZWFyPjIwMDY8L3llYXI+PC9kYXRlcz48aXNibj4x

MzUyMjMxMDwvaXNibj48dXJscz48L3VybHM+PGVsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjEwLjEw

MTYvai5hdG1vc2Vudi4yMDA2LjAzLjAwNTwvZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+PC9yZWNv

cmQ+PC9DaXRlPjxDaXRlPjxBdXRob3I+TW9yaXNoaXRhPC9BdXRob3I+PFllYXI+MjAxMTwvWWVh

cj48UmVjTnVtPjY5PC9SZWNOdW0+PHJlY29yZD48cmVjLW51bWJlcj42OTwvcmVjLW51bWJlcj48

Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9Inh0cDB0NWZybzB6dmQwZXYyZmk1dndm

OWEyYWR0cjJ2end6YSI+Njk8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iSm91

cm5hbCBBcnRpY2xlIj4xNzwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9y

Pk1vcmlzaGl0YSwgTWFzYWtvPC9hdXRob3I+PGF1dGhvcj5LZWVsZXIsIEdlcmFsZCBKLjwvYXV0

aG9yPjxhdXRob3I+S2FtYWwsIEFsaSBTLjwvYXV0aG9yPjxhdXRob3I+V2FnbmVyLCBKYW1lcyBH

LjwvYXV0aG9yPjxhdXRob3I+SGFya2VtYSwgSmFjayBSLjwvYXV0aG9yPjxhdXRob3I+Um9ociwg

QW5uZXR0ZSBDLjwvYXV0aG9yPjwvYXV0aG9ycz48L2NvbnRyaWJ1dG9ycz48dGl0bGVzPjx0aXRs

ZT5JZGVudGlmaWNhdGlvbiBvZiBhbWJpZW50IFBNMi41IHNvdXJjZXMgYW5kIGFuYWx5c2lzIG9m

IHBvbGx1dGlvbiBlcGlzb2RlcyBpbsKgRGV0cm9pdCwgTWljaGlnYW4gdXNpbmcgaGlnaGx5IHRp

bWUtcmVzb2x2ZWQgbWVhc3VyZW1lbnRzPC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPkF0bW9zcGhl

cmljIEVudmlyb25tZW50PC9zZWNvbmRhcnktdGl0bGU+PC90aXRsZXM+PHBlcmlvZGljYWw+PGZ1

bGwtdGl0bGU+QXRtb3NwaGVyaWMgRW52aXJvbm1lbnQ8L2Z1bGwtdGl0bGU+PC9wZXJpb2RpY2Fs

PjxwYWdlcz4xNjI3LTE2Mzc8L3BhZ2VzPjx2b2x1bWU+NDU8L3ZvbHVtZT48bnVtYmVyPjg8L251

bWJlcj48ZGF0ZXM+PHllYXI+MjAxMTwveWVhcj48L2RhdGVzPjxpc2JuPjEzNTIyMzEwPC9pc2Ju

Pjx1cmxzPjwvdXJscz48ZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+MTAuMTAxNi9qLmF0bW9zZW52

LjIwMTAuMDkuMDYyPC9lbGVjdHJvbmljLXJlc291cmNlLW51bT48L3JlY29yZD48L0NpdGU+PENp

dGU+PEF1dGhvcj5CdXpjdS1HdXZlbjwvQXV0aG9yPjxZZWFyPjIwMDc8L1llYXI+PFJlY051bT44

OTwvUmVjTnVtPjxyZWNvcmQ+PHJlYy1udW1iZXI+ODk8L3JlYy1udW1iZXI+PGZvcmVpZ24ta2V5

cz48a2V5IGFwcD0iRU4iIGRiLWlkPSJ4dHAwdDVmcm8wenZkMGV2MmZpNXZ3ZjlhMmFkdHIydnp3

emEiPjg5PC9rZXk+PC9mb3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNs

ZSI+MTc8L3JlZi10eXBlPjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5CdXpjdS1HdXZl

biwgQmlybnVyPC9hdXRob3I+PGF1dGhvcj5Ccm93biwgU3RldmVuIEcuPC9hdXRob3I+PGF1dGhv

cj5GcmFua2VsLCBBbm5hPC9hdXRob3I+PGF1dGhvcj5IYWZuZXIsIEhpbGFyeSBSLjwvYXV0aG9y

PjxhdXRob3I+Um9iZXJ0cywgUGF1bCBULjwvYXV0aG9yPjwvYXV0aG9ycz48L2NvbnRyaWJ1dG9y

cz48dGl0bGVzPjx0aXRsZT5BbmFseXNpcyBhbmQgQXBwb3J0aW9ubWVudCBvZiBPcmdhbmljIENh

cmJvbiBhbmQgRmluZSBQYXJ0aWN1bGF0ZSBNYXR0ZXIgU291cmNlcyBhdCBNdWx0aXBsZSBTaXRl

cyBpbiB0aGUgTWlkd2VzdGVybiBVbml0ZWQgU3RhdGVzPC90aXRsZT48c2Vjb25kYXJ5LXRpdGxl

PkpvdXJuYWwgb2YgdGhlIEFpciAmYW1wOyBXYXN0ZSBNYW5hZ2VtZW50IEFzc29jaWF0aW9uPC9z

ZWNvbmRhcnktdGl0bGU+PC90aXRsZXM+PHBlcmlvZGljYWw+PGZ1bGwtdGl0bGU+Sm91cm5hbCBv

ZiB0aGUgQWlyICZhbXA7IFdhc3RlIE1hbmFnZW1lbnQgQXNzb2NpYXRpb248L2Z1bGwtdGl0bGU+

PC9wZXJpb2RpY2FsPjxwYWdlcz42MDYtNjE5PC9wYWdlcz48dm9sdW1lPjU3PC92b2x1bWU+PG51

bWJlcj41PC9udW1iZXI+PGRhdGVzPjx5ZWFyPjIwMDc8L3llYXI+PC9kYXRlcz48aXNibj4xMDk2

LTIyNDc8L2lzYm4+PHVybHM+PC91cmxzPjxlbGVjdHJvbmljLXJlc291cmNlLW51bT4xMC4zMTU1

LzEwNDctMzI4OS41Ny41LjYwNjwvZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+PC9yZWNvcmQ+PC9D

aXRlPjxDaXRlPjxBdXRob3I+V2lsbGlhbXM8L0F1dGhvcj48WWVhcj4yMDA5PC9ZZWFyPjxSZWNO

dW0+NzI8L1JlY051bT48cmVjb3JkPjxyZWMtbnVtYmVyPjcyPC9yZWMtbnVtYmVyPjxmb3JlaWdu

LWtleXM+PGtleSBhcHA9IkVOIiBkYi1pZD0ieHRwMHQ1ZnJvMHp2ZDBldjJmaTV2d2Y5YTJhZHRy

MnZ6d3phIj43Mjwva2V5PjwvZm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJKb3VybmFsIEFy

dGljbGUiPjE3PC9yZWYtdHlwZT48Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+V2lsbGlh

bXMsIFIuPC9hdXRob3I+PGF1dGhvcj5SZWEsIEEuPC9hdXRob3I+PGF1dGhvcj5WZXR0ZSwgQS48

L2F1dGhvcj48YXV0aG9yPkNyb2doYW4sIEMuPC9hdXRob3I+PGF1dGhvcj5XaGl0YWtlciwgRC48

L2F1dGhvcj48YXV0aG9yPlN0ZXZlbnMsIEMuPC9hdXRob3I+PGF1dGhvcj5NY0RvdywgUy48L2F1

dGhvcj48YXV0aG9yPkZvcnRtYW5uLCBSLjwvYXV0aG9yPjxhdXRob3I+U2hlbGRvbiwgTC48L2F1

dGhvcj48YXV0aG9yPldpbHNvbiwgSC48L2F1dGhvcj48YXV0aG9yPlRob3JuYnVyZywgSi48L2F1

dGhvcj48YXV0aG9yPlBoaWxsaXBzLCBNLjwvYXV0aG9yPjxhdXRob3I+TGF3bGVzcywgUC48L2F1

dGhvcj48YXV0aG9yPlJvZGVzLCBDLjwvYXV0aG9yPjxhdXRob3I+RGF1Z2h0cmV5LCBILjwvYXV0

aG9yPjwvYXV0aG9ycz48L2NvbnRyaWJ1dG9ycz48YXV0aC1hZGRyZXNzPk5hdGlvbmFsIEV4cG9z

dXJlIFJlc2VhcmNoIExhYm9yYXRvcnksIFVTIEVudmlyb25tZW50YWwgUHJvdGVjdGlvbiBBZ2Vu

Y3ksIE1EIEUtMjA0LTA1LCBSZXNlYXJjaCBUcmlhbmdsZSBQYXJrLCBOQyAyNzcxMSwgVVNBLiB3

aWxsaWFtcy5yb25hbGRAZXBhLmdvdjwvYXV0aC1hZGRyZXNzPjx0aXRsZXM+PHRpdGxlPlRoZSBk

ZXNpZ24gYW5kIGZpZWxkIGltcGxlbWVudGF0aW9uIG9mIHRoZSBEZXRyb2l0IEV4cG9zdXJlIGFu

ZCBBZXJvc29sIFJlc2VhcmNoIFN0dWR5PC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPkogRXhwbyBT

Y2kgRW52aXJvbiBFcGlkZW1pb2w8L3NlY29uZGFyeS10aXRsZT48YWx0LXRpdGxlPkpvdXJuYWwg

b2YgZXhwb3N1cmUgc2NpZW5jZSAmYW1wOyBlbnZpcm9ubWVudGFsIGVwaWRlbWlvbG9neTwvYWx0

LXRpdGxlPjwvdGl0bGVzPjxwZXJpb2RpY2FsPjxmdWxsLXRpdGxlPkogRXhwbyBTY2kgRW52aXJv

biBFcGlkZW1pb2w8L2Z1bGwtdGl0bGU+PGFiYnItMT5Kb3VybmFsIG9mIGV4cG9zdXJlIHNjaWVu

Y2UgJmFtcDsgZW52aXJvbm1lbnRhbCBlcGlkZW1pb2xvZ3k8L2FiYnItMT48L3BlcmlvZGljYWw+

PGFsdC1wZXJpb2RpY2FsPjxmdWxsLXRpdGxlPkogRXhwbyBTY2kgRW52aXJvbiBFcGlkZW1pb2w8

L2Z1bGwtdGl0bGU+PGFiYnItMT5Kb3VybmFsIG9mIGV4cG9zdXJlIHNjaWVuY2UgJmFtcDsgZW52

aXJvbm1lbnRhbCBlcGlkZW1pb2xvZ3k8L2FiYnItMT48L2FsdC1wZXJpb2RpY2FsPjxwYWdlcz42

NDMtNTk8L3BhZ2VzPjx2b2x1bWU+MTk8L3ZvbHVtZT48bnVtYmVyPjc8L251bWJlcj48a2V5d29y

ZHM+PGtleXdvcmQ+QWVyb3NvbHMvKmFuYWx5c2lzL3RveGljaXR5PC9rZXl3b3JkPjxrZXl3b3Jk

PkFpciBQb2xsdXRhbnRzLyphbmFseXNpcy90b3hpY2l0eTwva2V5d29yZD48a2V5d29yZD5DaXRp

ZXM8L2tleXdvcmQ+PGtleXdvcmQ+RGF0YSBDb2xsZWN0aW9uPC9rZXl3b3JkPjxrZXl3b3JkPipF

bnZpcm9ubWVudGFsIE1vbml0b3Jpbmc8L2tleXdvcmQ+PGtleXdvcmQ+RmFtaWx5IENoYXJhY3Rl

cmlzdGljczwva2V5d29yZD48a2V5d29yZD5HZW9ncmFwaHk8L2tleXdvcmQ+PGtleXdvcmQ+SHVt

YW5zPC9rZXl3b3JkPjxrZXl3b3JkPk1pY2hpZ2FuPC9rZXl3b3JkPjxrZXl3b3JkPlBhcnRpY3Vs

YXRlIE1hdHRlci9hbmFseXNpcy90b3hpY2l0eTwva2V5d29yZD48a2V5d29yZD5UaW1lIEZhY3Rv

cnM8L2tleXdvcmQ+PGtleXdvcmQ+VW5pdGVkIFN0YXRlczwva2V5d29yZD48a2V5d29yZD5Vbml0

ZWQgU3RhdGVzIEVudmlyb25tZW50YWwgUHJvdGVjdGlvbiBBZ2VuY3k8L2tleXdvcmQ+PGtleXdv

cmQ+VXJiYW4gSGVhbHRoPC9rZXl3b3JkPjxrZXl3b3JkPlZvbGF0aWxpemF0aW9uPC9rZXl3b3Jk

Pjwva2V5d29yZHM+PGRhdGVzPjx5ZWFyPjIwMDk8L3llYXI+PHB1Yi1kYXRlcz48ZGF0ZT5Ob3Y8

L2RhdGU+PC9wdWItZGF0ZXM+PC9kYXRlcz48aXNibj4xNTU5LTA2NFggKEVsZWN0cm9uaWMpJiN4

RDsxNTU5LTA2MzEgKExpbmtpbmcpPC9pc2JuPjxhY2Nlc3Npb24tbnVtPjE4OTQxNDgwPC9hY2Nl

c3Npb24tbnVtPjx1cmxzPjxyZWxhdGVkLXVybHM+PHVybD5odHRwOi8vd3d3Lm5jYmkubmxtLm5p

aC5nb3YvcHVibWVkLzE4OTQxNDgwPC91cmw+PC9yZWxhdGVkLXVybHM+PC91cmxzPjxlbGVjdHJv

bmljLXJlc291cmNlLW51bT4xMC4xMDM4L2plcy4yMDA4LjYxPC9lbGVjdHJvbmljLXJlc291cmNl

LW51bT48L3JlY29yZD48L0NpdGU+PENpdGU+PEF1dGhvcj5EdXZhbGw8L0F1dGhvcj48WWVhcj4y

MDEyPC9ZZWFyPjxSZWNOdW0+MzwvUmVjTnVtPjxyZWNvcmQ+PHJlYy1udW1iZXI+MzwvcmVjLW51

bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9Inh0cDB0NWZybzB6dmQwZXYy

Zmk1dndmOWEyYWR0cjJ2end6YSI+Mzwva2V5PjwvZm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1l

PSJKb3VybmFsIEFydGljbGUiPjE3PC9yZWYtdHlwZT48Y29udHJpYnV0b3JzPjxhdXRob3JzPjxh

dXRob3I+RHV2YWxsLCBSYWNoZWxsZSBNLjwvYXV0aG9yPjxhdXRob3I+Tm9ycmlzLCBHYXJ5IEEu

PC9hdXRob3I+PGF1dGhvcj5CdXJrZSwgSmFuZXQgTS48L2F1dGhvcj48YXV0aG9yPk9sc29uLCBE

YXZpZCBBLjwvYXV0aG9yPjxhdXRob3I+VmVkYW50aGFtLCBSYW08L2F1dGhvcj48YXV0aG9yPldp

bGxpYW1zLCBSb248L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PHRpdGxlcz48dGl0

bGU+RGV0ZXJtaW5pbmcgc3BhdGlhbCB2YXJpYWJpbGl0eSBpbiBQTTIuNSBzb3VyY2UgaW1wYWN0

cyBhY3Jvc3MgRGV0cm9pdCwgTUk8L3RpdGxlPjxzZWNvbmRhcnktdGl0bGU+QXRtb3NwaGVyaWMg

RW52aXJvbm1lbnQ8L3NlY29uZGFyeS10aXRsZT48L3RpdGxlcz48cGVyaW9kaWNhbD48ZnVsbC10

aXRsZT5BdG1vc3BoZXJpYyBFbnZpcm9ubWVudDwvZnVsbC10aXRsZT48L3BlcmlvZGljYWw+PHBh

Z2VzPjQ5MS00OTg8L3BhZ2VzPjx2b2x1bWU+NDc8L3ZvbHVtZT48ZGF0ZXM+PHllYXI+MjAxMjwv

eWVhcj48L2RhdGVzPjxpc2JuPjEzNTIyMzEwPC9pc2JuPjx1cmxzPjwvdXJscz48ZWxlY3Ryb25p

Yy1yZXNvdXJjZS1udW0+MTAuMTAxNi9qLmF0bW9zZW52LjIwMTEuMDkuMDcxPC9lbGVjdHJvbmlj

LXJlc291cmNlLW51bT48L3JlY29yZD48L0NpdGU+PENpdGU+PEF1dGhvcj5HaWxkZW1laXN0ZXI8

L0F1dGhvcj48WWVhcj4yMDA3PC9ZZWFyPjxSZWNOdW0+NTwvUmVjTnVtPjxyZWNvcmQ+PHJlYy1u

dW1iZXI+NTwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9Inh0

cDB0NWZybzB6dmQwZXYyZmk1dndmOWEyYWR0cjJ2end6YSI+NTwva2V5PjwvZm9yZWlnbi1rZXlz

PjxyZWYtdHlwZSBuYW1lPSJKb3VybmFsIEFydGljbGUiPjE3PC9yZWYtdHlwZT48Y29udHJpYnV0

b3JzPjxhdXRob3JzPjxhdXRob3I+R2lsZGVtZWlzdGVyLCBBLiBFLjwvYXV0aG9yPjxhdXRob3I+

SG9wa2UsIFAuIEsuPC9hdXRob3I+PGF1dGhvcj5LaW0sIEUuPC9hdXRob3I+PC9hdXRob3JzPjwv

Y29udHJpYnV0b3JzPjxhdXRoLWFkZHJlc3M+Q2VudGVyIGZvciBBaXIgUmVzb3VyY2VzIEVuZ2lu

ZWVyaW5nIGFuZCBTY2llbmNlLCBEZXBhcnRtZW50IG9mIENoZW1pY2FsIEVuZ2luZWVyaW5nLCBD

bGFya3NvbiBVbml2ZXJzaXR5LCA4IENsYXJrc29uIEF2ZW51ZSwgQm94IDU3MDgsIFBvdHNkYW0s

IE5ZIDEzNjk5LTU3MDgsIFVTQS48L2F1dGgtYWRkcmVzcz48dGl0bGVzPjx0aXRsZT5Tb3VyY2Vz

IG9mIGZpbmUgdXJiYW4gcGFydGljdWxhdGUgbWF0dGVyIGluIERldHJvaXQsIE1JPC90aXRsZT48

c2Vjb25kYXJ5LXRpdGxlPkNoZW1vc3BoZXJlPC9zZWNvbmRhcnktdGl0bGU+PGFsdC10aXRsZT5D

aGVtb3NwaGVyZTwvYWx0LXRpdGxlPjwvdGl0bGVzPjxwZXJpb2RpY2FsPjxmdWxsLXRpdGxlPkNo

ZW1vc3BoZXJlPC9mdWxsLXRpdGxlPjxhYmJyLTE+Q2hlbW9zcGhlcmU8L2FiYnItMT48L3Blcmlv

ZGljYWw+PGFsdC1wZXJpb2RpY2FsPjxmdWxsLXRpdGxlPkNoZW1vc3BoZXJlPC9mdWxsLXRpdGxl

PjxhYmJyLTE+Q2hlbW9zcGhlcmU8L2FiYnItMT48L2FsdC1wZXJpb2RpY2FsPjxwYWdlcz4xMDY0

LTc0PC9wYWdlcz48dm9sdW1lPjY5PC92b2x1bWU+PG51bWJlcj43PC9udW1iZXI+PGtleXdvcmRz

PjxrZXl3b3JkPkFpciBQb2xsdXRpb24vKmFuYWx5c2lzPC9rZXl3b3JkPjxrZXl3b3JkPkNpdGll

czwva2V5d29yZD48a2V5d29yZD5FbnZpcm9ubWVudGFsIE1vbml0b3Jpbmc8L2tleXdvcmQ+PGtl

eXdvcmQ+TWljaGlnYW48L2tleXdvcmQ+PGtleXdvcmQ+TW9kZWxzLCBUaGVvcmV0aWNhbDwva2V5

d29yZD48a2V5d29yZD5QYXJ0aWNsZSBTaXplPC9rZXl3b3JkPjxrZXl3b3JkPlBhcnRpY3VsYXRl

IE1hdHRlci8qYW5hbHlzaXM8L2tleXdvcmQ+PGtleXdvcmQ+U2Vhc29uczwva2V5d29yZD48a2V5

d29yZD5UaW1lIEZhY3RvcnM8L2tleXdvcmQ+PGtleXdvcmQ+VmVoaWNsZSBFbWlzc2lvbnM8L2tl

eXdvcmQ+PGtleXdvcmQ+V2luZDwva2V5d29yZD48L2tleXdvcmRzPjxkYXRlcz48eWVhcj4yMDA3

PC95ZWFyPjxwdWItZGF0ZXM+PGRhdGU+T2N0PC9kYXRlPjwvcHViLWRhdGVzPjwvZGF0ZXM+PGlz

Ym4+MDA0NS02NTM1IChQcmludCkmI3hEOzAwNDUtNjUzNSAoTGlua2luZyk8L2lzYm4+PGFjY2Vz

c2lvbi1udW0+MTc1Mzc0ODA8L2FjY2Vzc2lvbi1udW0+PHVybHM+PHJlbGF0ZWQtdXJscz48dXJs

Pmh0dHA6Ly93d3cubmNiaS5ubG0ubmloLmdvdi9wdWJtZWQvMTc1Mzc0ODA8L3VybD48L3JlbGF0

ZWQtdXJscz48L3VybHM+PGVsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjEwLjEwMTYvai5jaGVtb3Nw

aGVyZS4yMDA3LjA0LjAyNzwvZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+PC9yZWNvcmQ+PC9DaXRl

PjxDaXRlPjxBdXRob3I+S3VuZHU8L0F1dGhvcj48WWVhcj4yMDE0PC9ZZWFyPjxSZWNOdW0+NzQ8

L1JlY051bT48cmVjb3JkPjxyZWMtbnVtYmVyPjc0PC9yZWMtbnVtYmVyPjxmb3JlaWduLWtleXM+

PGtleSBhcHA9IkVOIiBkYi1pZD0ieHRwMHQ1ZnJvMHp2ZDBldjJmaTV2d2Y5YTJhZHRyMnZ6d3ph

Ij43NDwva2V5PjwvZm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJKb3VybmFsIEFydGljbGUi

PjE3PC9yZWYtdHlwZT48Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+S3VuZHUsIFMuPC9h

dXRob3I+PGF1dGhvcj5TdG9uZSwgRS4gQS48L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRv

cnM+PGF1dGgtYWRkcmVzcz5EZXBhcnRtZW50IG9mIENoZW1pc3RyeSwgVW5pdmVyc2l0eSBvZiBJ

b3dhLCBJb3dhIENpdHksIElBIDUyMjQyLCBVU0EuIGJldHN5LXN0b25lQHVpb3dhLmVkdS48L2F1

dGgtYWRkcmVzcz48dGl0bGVzPjx0aXRsZT5Db21wb3NpdGlvbiBhbmQgc291cmNlcyBvZiBmaW5l

IHBhcnRpY3VsYXRlIG1hdHRlciBhY3Jvc3MgdXJiYW4gYW5kIHJ1cmFsIHNpdGVzIGluIHRoZSBN

aWR3ZXN0ZXJuIFVuaXRlZCBTdGF0ZXM8L3RpdGxlPjxzZWNvbmRhcnktdGl0bGU+RW52aXJvbiBT

Y2kgUHJvY2VzcyBJbXBhY3RzPC9zZWNvbmRhcnktdGl0bGU+PGFsdC10aXRsZT5FbnZpcm9ubWVu

dGFsIHNjaWVuY2UuIFByb2Nlc3NlcyAmYW1wOyBpbXBhY3RzPC9hbHQtdGl0bGU+PC90aXRsZXM+

PHBlcmlvZGljYWw+PGZ1bGwtdGl0bGU+RW52aXJvbiBTY2kgUHJvY2VzcyBJbXBhY3RzPC9mdWxs

LXRpdGxlPjxhYmJyLTE+RW52aXJvbm1lbnRhbCBzY2llbmNlLiBQcm9jZXNzZXMgJmFtcDsgaW1w

YWN0czwvYWJici0xPjwvcGVyaW9kaWNhbD48YWx0LXBlcmlvZGljYWw+PGZ1bGwtdGl0bGU+RW52

aXJvbiBTY2kgUHJvY2VzcyBJbXBhY3RzPC9mdWxsLXRpdGxlPjxhYmJyLTE+RW52aXJvbm1lbnRh

bCBzY2llbmNlLiBQcm9jZXNzZXMgJmFtcDsgaW1wYWN0czwvYWJici0xPjwvYWx0LXBlcmlvZGlj

YWw+PHBhZ2VzPjEzNjAtNzA8L3BhZ2VzPjx2b2x1bWU+MTY8L3ZvbHVtZT48bnVtYmVyPjY8L251

bWJlcj48a2V5d29yZHM+PGtleXdvcmQ+QWlyIFBvbGx1dGFudHMvKmFuYWx5c2lzPC9rZXl3b3Jk

PjxrZXl3b3JkPkFpciBQb2xsdXRpb24vc3RhdGlzdGljcyAmYW1wOyBudW1lcmljYWwgZGF0YTwv

a2V5d29yZD48a2V5d29yZD4qRW52aXJvbm1lbnRhbCBNb25pdG9yaW5nPC9rZXl3b3JkPjxrZXl3

b3JkPk1pZHdlc3Rlcm4gVW5pdGVkIFN0YXRlczwva2V5d29yZD48a2V5d29yZD5QYXJ0aWNsZSBT

aXplPC9rZXl3b3JkPjxrZXl3b3JkPlBhcnRpY3VsYXRlIE1hdHRlci8qYW5hbHlzaXM8L2tleXdv

cmQ+PC9rZXl3b3Jkcz48ZGF0ZXM+PHllYXI+MjAxNDwveWVhcj48cHViLWRhdGVzPjxkYXRlPk1h

eTwvZGF0ZT48L3B1Yi1kYXRlcz48L2RhdGVzPjxpc2JuPjIwNTAtNzg5NSAoRWxlY3Ryb25pYykm

I3hEOzIwNTAtNzg4NyAoTGlua2luZyk8L2lzYm4+PGFjY2Vzc2lvbi1udW0+MjQ3MzY3OTc8L2Fj

Y2Vzc2lvbi1udW0+PHVybHM+PHJlbGF0ZWQtdXJscz48dXJsPmh0dHA6Ly93d3cubmNiaS5ubG0u

bmloLmdvdi9wdWJtZWQvMjQ3MzY3OTc8L3VybD48L3JlbGF0ZWQtdXJscz48L3VybHM+PGN1c3Rv

bTI+NDE5MTkyMzwvY3VzdG9tMj48ZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+MTAuMTAzOS9jM2Vt

MDA3MTlnPC9lbGVjdHJvbmljLXJlc291cmNlLW51bT48L3JlY29yZD48L0NpdGU+PENpdGU+PEF1

dGhvcj5IYW1tb25kPC9BdXRob3I+PFllYXI+MjAwODwvWWVhcj48UmVjTnVtPjY8L1JlY051bT48

cmVjb3JkPjxyZWMtbnVtYmVyPjY8L3JlYy1udW1iZXI+PGZvcmVpZ24ta2V5cz48a2V5IGFwcD0i

RU4iIGRiLWlkPSJ4dHAwdDVmcm8wenZkMGV2MmZpNXZ3ZjlhMmFkdHIydnp3emEiPjY8L2tleT48

L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwvcmVmLXR5

cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPkhhbW1vbmQsIERhdnlkYSBNLjwvYXV0

aG9yPjxhdXRob3I+RHZvbmNoLCBKLiBUaW1vdGh5PC9hdXRob3I+PGF1dGhvcj5LZWVsZXIsIEdl

cmFsZCBKLjwvYXV0aG9yPjxhdXRob3I+UGFya2VyLCBFZGl0aCBBLjwvYXV0aG9yPjxhdXRob3I+

S2FtYWwsIEFsaSBTLjwvYXV0aG9yPjxhdXRob3I+QmFycmVzLCBKYW1lcyBBLjwvYXV0aG9yPjxh

dXRob3I+WWlwLCBGdXl1ZW4gWS48L2F1dGhvcj48YXV0aG9yPkJyYWtlZmllbGQtQ2FsZHdlbGws

IFdpbG1hPC9hdXRob3I+PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjx0aXRsZXM+PHRpdGxlPlNv

dXJjZXMgb2YgYW1iaWVudCBmaW5lIHBhcnRpY3VsYXRlIG1hdHRlciBhdCB0d28gY29tbXVuaXR5

IHNpdGVzIGluIERldHJvaXQsIE1pY2hpZ2FuPC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPkF0bW9z

cGhlcmljIEVudmlyb25tZW50PC9zZWNvbmRhcnktdGl0bGU+PC90aXRsZXM+PHBlcmlvZGljYWw+

PGZ1bGwtdGl0bGU+QXRtb3NwaGVyaWMgRW52aXJvbm1lbnQ8L2Z1bGwtdGl0bGU+PC9wZXJpb2Rp

Y2FsPjxwYWdlcz43MjAtNzMyPC9wYWdlcz48dm9sdW1lPjQyPC92b2x1bWU+PG51bWJlcj40PC9u

dW1iZXI+PGRhdGVzPjx5ZWFyPjIwMDg8L3llYXI+PC9kYXRlcz48aXNibj4xMzUyMjMxMDwvaXNi

bj48dXJscz48L3VybHM+PGVsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjEwLjEwMTYvai5hdG1vc2Vu

di4yMDA3LjA5LjA2NTwvZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+PC9yZWNvcmQ+PC9DaXRlPjwv

RW5kTm90ZT5=

ADDIN EN.CITE PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5Xb2xmZjwvQXV0aG9yPjxZZWFyPjE5ODU8L1llYXI+PFJl

Y051bT43MzwvUmVjTnVtPjxEaXNwbGF5VGV4dD48c3R5bGUgZmFjZT0iaXRhbGljIj5bNi0xNF08

L3N0eWxlPjwvRGlzcGxheVRleHQ+PHJlY29yZD48cmVjLW51bWJlcj43MzwvcmVjLW51bWJlcj48

Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9Inh0cDB0NWZybzB6dmQwZXYyZmk1dndm

OWEyYWR0cjJ2end6YSI+NzM8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iSm91

cm5hbCBBcnRpY2xlIj4xNzwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9y

PldvbGZmLCBHLlQuPC9hdXRob3I+PGF1dGhvcj5Lb3Jzb2csIFAuRS48L2F1dGhvcj48YXV0aG9y

PktlbGx5LCBOLkEuPC9hdXRob3I+PGF1dGhvcj5GZXJtYW4sIE0uQS48L2F1dGhvcj48L2F1dGhv

cnM+PC9jb250cmlidXRvcnM+PHRpdGxlcz48dGl0bGU+UmVsYXRpb25zaGlwcyBiZXR3ZWVuIGZp

bmUgcGFydGljdWxhdGUgc3BlY2llcywgZ2FzZW91cyBwb2xsdXRhbnRzLCBhbmQgbWV0ZW9yb2xv

Z2ljYWwgcGFyYW1ldGVycyBpbiBEZXRyb2l0PC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPkF0bW9z

cGhlcmljIEVudmlyb25tZW50PC9zZWNvbmRhcnktdGl0bGU+PC90aXRsZXM+PHBlcmlvZGljYWw+

PGZ1bGwtdGl0bGU+QXRtb3NwaGVyaWMgRW52aXJvbm1lbnQ8L2Z1bGwtdGl0bGU+PC9wZXJpb2Rp

Y2FsPjxwYWdlcz4xMzQxLTEzNDk8L3BhZ2VzPjx2b2x1bWU+MTk8L3ZvbHVtZT48bnVtYmVyPjg8

L251bWJlcj48ZGF0ZXM+PHllYXI+MTk4NTwveWVhcj48L2RhdGVzPjx1cmxzPjwvdXJscz48L3Jl

Y29yZD48L0NpdGU+PENpdGU+PEF1dGhvcj5Nb3Jpc2hpdGE8L0F1dGhvcj48WWVhcj4yMDA2PC9Z

ZWFyPjxSZWNOdW0+NTI8L1JlY051bT48cmVjb3JkPjxyZWMtbnVtYmVyPjUyPC9yZWMtbnVtYmVy

Pjxmb3JlaWduLWtleXM+PGtleSBhcHA9IkVOIiBkYi1pZD0ieHRwMHQ1ZnJvMHp2ZDBldjJmaTV2

d2Y5YTJhZHRyMnZ6d3phIj41Mjwva2V5PjwvZm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJK

b3VybmFsIEFydGljbGUiPjE3PC9yZWYtdHlwZT48Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRo

b3I+TW9yaXNoaXRhLCBNYXNha288L2F1dGhvcj48YXV0aG9yPktlZWxlciwgR2VyYWxkIEouPC9h

dXRob3I+PGF1dGhvcj5XYWduZXIsIEphbWVzIEcuPC9hdXRob3I+PGF1dGhvcj5IYXJrZW1hLCBK

YWNrIFIuPC9hdXRob3I+PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjx0aXRsZXM+PHRpdGxlPlNv

dXJjZSBpZGVudGlmaWNhdGlvbiBvZiBhbWJpZW50IFBNMi41IGR1cmluZyBzdW1tZXIgaW5oYWxh

dGlvbiBleHBvc3VyZSBzdHVkaWVzIGluIERldHJvaXQsIE1JPC90aXRsZT48c2Vjb25kYXJ5LXRp

dGxlPkF0bW9zcGhlcmljIEVudmlyb25tZW50PC9zZWNvbmRhcnktdGl0bGU+PC90aXRsZXM+PHBl

cmlvZGljYWw+PGZ1bGwtdGl0bGU+QXRtb3NwaGVyaWMgRW52aXJvbm1lbnQ8L2Z1bGwtdGl0bGU+

PC9wZXJpb2RpY2FsPjxwYWdlcz4zODIzLTM4MzQ8L3BhZ2VzPjx2b2x1bWU+NDA8L3ZvbHVtZT48

bnVtYmVyPjIxPC9udW1iZXI+PGRhdGVzPjx5ZWFyPjIwMDY8L3llYXI+PC9kYXRlcz48aXNibj4x

MzUyMjMxMDwvaXNibj48dXJscz48L3VybHM+PGVsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjEwLjEw

MTYvai5hdG1vc2Vudi4yMDA2LjAzLjAwNTwvZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+PC9yZWNv

cmQ+PC9DaXRlPjxDaXRlPjxBdXRob3I+TW9yaXNoaXRhPC9BdXRob3I+PFllYXI+MjAxMTwvWWVh

cj48UmVjTnVtPjY5PC9SZWNOdW0+PHJlY29yZD48cmVjLW51bWJlcj42OTwvcmVjLW51bWJlcj48

Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9Inh0cDB0NWZybzB6dmQwZXYyZmk1dndm

OWEyYWR0cjJ2end6YSI+Njk8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iSm91

cm5hbCBBcnRpY2xlIj4xNzwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9y

Pk1vcmlzaGl0YSwgTWFzYWtvPC9hdXRob3I+PGF1dGhvcj5LZWVsZXIsIEdlcmFsZCBKLjwvYXV0

aG9yPjxhdXRob3I+S2FtYWwsIEFsaSBTLjwvYXV0aG9yPjxhdXRob3I+V2FnbmVyLCBKYW1lcyBH

LjwvYXV0aG9yPjxhdXRob3I+SGFya2VtYSwgSmFjayBSLjwvYXV0aG9yPjxhdXRob3I+Um9ociwg

QW5uZXR0ZSBDLjwvYXV0aG9yPjwvYXV0aG9ycz48L2NvbnRyaWJ1dG9ycz48dGl0bGVzPjx0aXRs

ZT5JZGVudGlmaWNhdGlvbiBvZiBhbWJpZW50IFBNMi41IHNvdXJjZXMgYW5kIGFuYWx5c2lzIG9m

IHBvbGx1dGlvbiBlcGlzb2RlcyBpbsKgRGV0cm9pdCwgTWljaGlnYW4gdXNpbmcgaGlnaGx5IHRp

bWUtcmVzb2x2ZWQgbWVhc3VyZW1lbnRzPC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPkF0bW9zcGhl

cmljIEVudmlyb25tZW50PC9zZWNvbmRhcnktdGl0bGU+PC90aXRsZXM+PHBlcmlvZGljYWw+PGZ1

bGwtdGl0bGU+QXRtb3NwaGVyaWMgRW52aXJvbm1lbnQ8L2Z1bGwtdGl0bGU+PC9wZXJpb2RpY2Fs

PjxwYWdlcz4xNjI3LTE2Mzc8L3BhZ2VzPjx2b2x1bWU+NDU8L3ZvbHVtZT48bnVtYmVyPjg8L251

bWJlcj48ZGF0ZXM+PHllYXI+MjAxMTwveWVhcj48L2RhdGVzPjxpc2JuPjEzNTIyMzEwPC9pc2Ju

Pjx1cmxzPjwvdXJscz48ZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+MTAuMTAxNi9qLmF0bW9zZW52

LjIwMTAuMDkuMDYyPC9lbGVjdHJvbmljLXJlc291cmNlLW51bT48L3JlY29yZD48L0NpdGU+PENp

dGU+PEF1dGhvcj5CdXpjdS1HdXZlbjwvQXV0aG9yPjxZZWFyPjIwMDc8L1llYXI+PFJlY051bT44

OTwvUmVjTnVtPjxyZWNvcmQ+PHJlYy1udW1iZXI+ODk8L3JlYy1udW1iZXI+PGZvcmVpZ24ta2V5

cz48a2V5IGFwcD0iRU4iIGRiLWlkPSJ4dHAwdDVmcm8wenZkMGV2MmZpNXZ3ZjlhMmFkdHIydnp3

emEiPjg5PC9rZXk+PC9mb3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNs

ZSI+MTc8L3JlZi10eXBlPjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5CdXpjdS1HdXZl

biwgQmlybnVyPC9hdXRob3I+PGF1dGhvcj5Ccm93biwgU3RldmVuIEcuPC9hdXRob3I+PGF1dGhv

cj5GcmFua2VsLCBBbm5hPC9hdXRob3I+PGF1dGhvcj5IYWZuZXIsIEhpbGFyeSBSLjwvYXV0aG9y

PjxhdXRob3I+Um9iZXJ0cywgUGF1bCBULjwvYXV0aG9yPjwvYXV0aG9ycz48L2NvbnRyaWJ1dG9y

cz48dGl0bGVzPjx0aXRsZT5BbmFseXNpcyBhbmQgQXBwb3J0aW9ubWVudCBvZiBPcmdhbmljIENh

cmJvbiBhbmQgRmluZSBQYXJ0aWN1bGF0ZSBNYXR0ZXIgU291cmNlcyBhdCBNdWx0aXBsZSBTaXRl

cyBpbiB0aGUgTWlkd2VzdGVybiBVbml0ZWQgU3RhdGVzPC90aXRsZT48c2Vjb25kYXJ5LXRpdGxl

PkpvdXJuYWwgb2YgdGhlIEFpciAmYW1wOyBXYXN0ZSBNYW5hZ2VtZW50IEFzc29jaWF0aW9uPC9z

ZWNvbmRhcnktdGl0bGU+PC90aXRsZXM+PHBlcmlvZGljYWw+PGZ1bGwtdGl0bGU+Sm91cm5hbCBv

ZiB0aGUgQWlyICZhbXA7IFdhc3RlIE1hbmFnZW1lbnQgQXNzb2NpYXRpb248L2Z1bGwtdGl0bGU+

PC9wZXJpb2RpY2FsPjxwYWdlcz42MDYtNjE5PC9wYWdlcz48dm9sdW1lPjU3PC92b2x1bWU+PG51

bWJlcj41PC9udW1iZXI+PGRhdGVzPjx5ZWFyPjIwMDc8L3llYXI+PC9kYXRlcz48aXNibj4xMDk2

LTIyNDc8L2lzYm4+PHVybHM+PC91cmxzPjxlbGVjdHJvbmljLXJlc291cmNlLW51bT4xMC4zMTU1

LzEwNDctMzI4OS41Ny41LjYwNjwvZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+PC9yZWNvcmQ+PC9D

aXRlPjxDaXRlPjxBdXRob3I+V2lsbGlhbXM8L0F1dGhvcj48WWVhcj4yMDA5PC9ZZWFyPjxSZWNO

dW0+NzI8L1JlY051bT48cmVjb3JkPjxyZWMtbnVtYmVyPjcyPC9yZWMtbnVtYmVyPjxmb3JlaWdu

LWtleXM+PGtleSBhcHA9IkVOIiBkYi1pZD0ieHRwMHQ1ZnJvMHp2ZDBldjJmaTV2d2Y5YTJhZHRy

MnZ6d3phIj43Mjwva2V5PjwvZm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJKb3VybmFsIEFy

dGljbGUiPjE3PC9yZWYtdHlwZT48Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+V2lsbGlh

bXMsIFIuPC9hdXRob3I+PGF1dGhvcj5SZWEsIEEuPC9hdXRob3I+PGF1dGhvcj5WZXR0ZSwgQS48

L2F1dGhvcj48YXV0aG9yPkNyb2doYW4sIEMuPC9hdXRob3I+PGF1dGhvcj5XaGl0YWtlciwgRC48

L2F1dGhvcj48YXV0aG9yPlN0ZXZlbnMsIEMuPC9hdXRob3I+PGF1dGhvcj5NY0RvdywgUy48L2F1

dGhvcj48YXV0aG9yPkZvcnRtYW5uLCBSLjwvYXV0aG9yPjxhdXRob3I+U2hlbGRvbiwgTC48L2F1

dGhvcj48YXV0aG9yPldpbHNvbiwgSC48L2F1dGhvcj48YXV0aG9yPlRob3JuYnVyZywgSi48L2F1

dGhvcj48YXV0aG9yPlBoaWxsaXBzLCBNLjwvYXV0aG9yPjxhdXRob3I+TGF3bGVzcywgUC48L2F1

dGhvcj48YXV0aG9yPlJvZGVzLCBDLjwvYXV0aG9yPjxhdXRob3I+RGF1Z2h0cmV5LCBILjwvYXV0

aG9yPjwvYXV0aG9ycz48L2NvbnRyaWJ1dG9ycz48YXV0aC1hZGRyZXNzPk5hdGlvbmFsIEV4cG9z

dXJlIFJlc2VhcmNoIExhYm9yYXRvcnksIFVTIEVudmlyb25tZW50YWwgUHJvdGVjdGlvbiBBZ2Vu

Y3ksIE1EIEUtMjA0LTA1LCBSZXNlYXJjaCBUcmlhbmdsZSBQYXJrLCBOQyAyNzcxMSwgVVNBLiB3

aWxsaWFtcy5yb25hbGRAZXBhLmdvdjwvYXV0aC1hZGRyZXNzPjx0aXRsZXM+PHRpdGxlPlRoZSBk

ZXNpZ24gYW5kIGZpZWxkIGltcGxlbWVudGF0aW9uIG9mIHRoZSBEZXRyb2l0IEV4cG9zdXJlIGFu

ZCBBZXJvc29sIFJlc2VhcmNoIFN0dWR5PC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPkogRXhwbyBT

Y2kgRW52aXJvbiBFcGlkZW1pb2w8L3NlY29uZGFyeS10aXRsZT48YWx0LXRpdGxlPkpvdXJuYWwg

b2YgZXhwb3N1cmUgc2NpZW5jZSAmYW1wOyBlbnZpcm9ubWVudGFsIGVwaWRlbWlvbG9neTwvYWx0

LXRpdGxlPjwvdGl0bGVzPjxwZXJpb2RpY2FsPjxmdWxsLXRpdGxlPkogRXhwbyBTY2kgRW52aXJv

biBFcGlkZW1pb2w8L2Z1bGwtdGl0bGU+PGFiYnItMT5Kb3VybmFsIG9mIGV4cG9zdXJlIHNjaWVu

Y2UgJmFtcDsgZW52aXJvbm1lbnRhbCBlcGlkZW1pb2xvZ3k8L2FiYnItMT48L3BlcmlvZGljYWw+

PGFsdC1wZXJpb2RpY2FsPjxmdWxsLXRpdGxlPkogRXhwbyBTY2kgRW52aXJvbiBFcGlkZW1pb2w8

L2Z1bGwtdGl0bGU+PGFiYnItMT5Kb3VybmFsIG9mIGV4cG9zdXJlIHNjaWVuY2UgJmFtcDsgZW52

aXJvbm1lbnRhbCBlcGlkZW1pb2xvZ3k8L2FiYnItMT48L2FsdC1wZXJpb2RpY2FsPjxwYWdlcz42

NDMtNTk8L3BhZ2VzPjx2b2x1bWU+MTk8L3ZvbHVtZT48bnVtYmVyPjc8L251bWJlcj48a2V5d29y

ZHM+PGtleXdvcmQ+QWVyb3NvbHMvKmFuYWx5c2lzL3RveGljaXR5PC9rZXl3b3JkPjxrZXl3b3Jk

PkFpciBQb2xsdXRhbnRzLyphbmFseXNpcy90b3hpY2l0eTwva2V5d29yZD48a2V5d29yZD5DaXRp

ZXM8L2tleXdvcmQ+PGtleXdvcmQ+RGF0YSBDb2xsZWN0aW9uPC9rZXl3b3JkPjxrZXl3b3JkPipF

bnZpcm9ubWVudGFsIE1vbml0b3Jpbmc8L2tleXdvcmQ+PGtleXdvcmQ+RmFtaWx5IENoYXJhY3Rl

cmlzdGljczwva2V5d29yZD48a2V5d29yZD5HZW9ncmFwaHk8L2tleXdvcmQ+PGtleXdvcmQ+SHVt

YW5zPC9rZXl3b3JkPjxrZXl3b3JkPk1pY2hpZ2FuPC9rZXl3b3JkPjxrZXl3b3JkPlBhcnRpY3Vs

YXRlIE1hdHRlci9hbmFseXNpcy90b3hpY2l0eTwva2V5d29yZD48a2V5d29yZD5UaW1lIEZhY3Rv

cnM8L2tleXdvcmQ+PGtleXdvcmQ+VW5pdGVkIFN0YXRlczwva2V5d29yZD48a2V5d29yZD5Vbml0

ZWQgU3RhdGVzIEVudmlyb25tZW50YWwgUHJvdGVjdGlvbiBBZ2VuY3k8L2tleXdvcmQ+PGtleXdv

cmQ+VXJiYW4gSGVhbHRoPC9rZXl3b3JkPjxrZXl3b3JkPlZvbGF0aWxpemF0aW9uPC9rZXl3b3Jk

Pjwva2V5d29yZHM+PGRhdGVzPjx5ZWFyPjIwMDk8L3llYXI+PHB1Yi1kYXRlcz48ZGF0ZT5Ob3Y8

L2RhdGU+PC9wdWItZGF0ZXM+PC9kYXRlcz48aXNibj4xNTU5LTA2NFggKEVsZWN0cm9uaWMpJiN4

RDsxNTU5LTA2MzEgKExpbmtpbmcpPC9pc2JuPjxhY2Nlc3Npb24tbnVtPjE4OTQxNDgwPC9hY2Nl

c3Npb24tbnVtPjx1cmxzPjxyZWxhdGVkLXVybHM+PHVybD5odHRwOi8vd3d3Lm5jYmkubmxtLm5p

aC5nb3YvcHVibWVkLzE4OTQxNDgwPC91cmw+PC9yZWxhdGVkLXVybHM+PC91cmxzPjxlbGVjdHJv

bmljLXJlc291cmNlLW51bT4xMC4xMDM4L2plcy4yMDA4LjYxPC9lbGVjdHJvbmljLXJlc291cmNl

LW51bT48L3JlY29yZD48L0NpdGU+PENpdGU+PEF1dGhvcj5EdXZhbGw8L0F1dGhvcj48WWVhcj4y

MDEyPC9ZZWFyPjxSZWNOdW0+MzwvUmVjTnVtPjxyZWNvcmQ+PHJlYy1udW1iZXI+MzwvcmVjLW51

bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9Inh0cDB0NWZybzB6dmQwZXYy

Zmk1dndmOWEyYWR0cjJ2end6YSI+Mzwva2V5PjwvZm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1l

PSJKb3VybmFsIEFydGljbGUiPjE3PC9yZWYtdHlwZT48Y29udHJpYnV0b3JzPjxhdXRob3JzPjxh

dXRob3I+RHV2YWxsLCBSYWNoZWxsZSBNLjwvYXV0aG9yPjxhdXRob3I+Tm9ycmlzLCBHYXJ5IEEu

PC9hdXRob3I+PGF1dGhvcj5CdXJrZSwgSmFuZXQgTS48L2F1dGhvcj48YXV0aG9yPk9sc29uLCBE

YXZpZCBBLjwvYXV0aG9yPjxhdXRob3I+VmVkYW50aGFtLCBSYW08L2F1dGhvcj48YXV0aG9yPldp

bGxpYW1zLCBSb248L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PHRpdGxlcz48dGl0

bGU+RGV0ZXJtaW5pbmcgc3BhdGlhbCB2YXJpYWJpbGl0eSBpbiBQTTIuNSBzb3VyY2UgaW1wYWN0

cyBhY3Jvc3MgRGV0cm9pdCwgTUk8L3RpdGxlPjxzZWNvbmRhcnktdGl0bGU+QXRtb3NwaGVyaWMg

RW52aXJvbm1lbnQ8L3NlY29uZGFyeS10aXRsZT48L3RpdGxlcz48cGVyaW9kaWNhbD48ZnVsbC10

aXRsZT5BdG1vc3BoZXJpYyBFbnZpcm9ubWVudDwvZnVsbC10aXRsZT48L3BlcmlvZGljYWw+PHBh

Z2VzPjQ5MS00OTg8L3BhZ2VzPjx2b2x1bWU+NDc8L3ZvbHVtZT48ZGF0ZXM+PHllYXI+MjAxMjwv

eWVhcj48L2RhdGVzPjxpc2JuPjEzNTIyMzEwPC9pc2JuPjx1cmxzPjwvdXJscz48ZWxlY3Ryb25p

Yy1yZXNvdXJjZS1udW0+MTAuMTAxNi9qLmF0bW9zZW52LjIwMTEuMDkuMDcxPC9lbGVjdHJvbmlj

LXJlc291cmNlLW51bT48L3JlY29yZD48L0NpdGU+PENpdGU+PEF1dGhvcj5HaWxkZW1laXN0ZXI8

L0F1dGhvcj48WWVhcj4yMDA3PC9ZZWFyPjxSZWNOdW0+NTwvUmVjTnVtPjxyZWNvcmQ+PHJlYy1u

dW1iZXI+NTwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9Inh0

cDB0NWZybzB6dmQwZXYyZmk1dndmOWEyYWR0cjJ2end6YSI+NTwva2V5PjwvZm9yZWlnbi1rZXlz

PjxyZWYtdHlwZSBuYW1lPSJKb3VybmFsIEFydGljbGUiPjE3PC9yZWYtdHlwZT48Y29udHJpYnV0

b3JzPjxhdXRob3JzPjxhdXRob3I+R2lsZGVtZWlzdGVyLCBBLiBFLjwvYXV0aG9yPjxhdXRob3I+

SG9wa2UsIFAuIEsuPC9hdXRob3I+PGF1dGhvcj5LaW0sIEUuPC9hdXRob3I+PC9hdXRob3JzPjwv

Y29udHJpYnV0b3JzPjxhdXRoLWFkZHJlc3M+Q2VudGVyIGZvciBBaXIgUmVzb3VyY2VzIEVuZ2lu

ZWVyaW5nIGFuZCBTY2llbmNlLCBEZXBhcnRtZW50IG9mIENoZW1pY2FsIEVuZ2luZWVyaW5nLCBD

bGFya3NvbiBVbml2ZXJzaXR5LCA4IENsYXJrc29uIEF2ZW51ZSwgQm94IDU3MDgsIFBvdHNkYW0s

IE5ZIDEzNjk5LTU3MDgsIFVTQS48L2F1dGgtYWRkcmVzcz48dGl0bGVzPjx0aXRsZT5Tb3VyY2Vz

IG9mIGZpbmUgdXJiYW4gcGFydGljdWxhdGUgbWF0dGVyIGluIERldHJvaXQsIE1JPC90aXRsZT48

c2Vjb25kYXJ5LXRpdGxlPkNoZW1vc3BoZXJlPC9zZWNvbmRhcnktdGl0bGU+PGFsdC10aXRsZT5D

aGVtb3NwaGVyZTwvYWx0LXRpdGxlPjwvdGl0bGVzPjxwZXJpb2RpY2FsPjxmdWxsLXRpdGxlPkNo

ZW1vc3BoZXJlPC9mdWxsLXRpdGxlPjxhYmJyLTE+Q2hlbW9zcGhlcmU8L2FiYnItMT48L3Blcmlv

ZGljYWw+PGFsdC1wZXJpb2RpY2FsPjxmdWxsLXRpdGxlPkNoZW1vc3BoZXJlPC9mdWxsLXRpdGxl

PjxhYmJyLTE+Q2hlbW9zcGhlcmU8L2FiYnItMT48L2FsdC1wZXJpb2RpY2FsPjxwYWdlcz4xMDY0

LTc0PC9wYWdlcz48dm9sdW1lPjY5PC92b2x1bWU+PG51bWJlcj43PC9udW1iZXI+PGtleXdvcmRz

PjxrZXl3b3JkPkFpciBQb2xsdXRpb24vKmFuYWx5c2lzPC9rZXl3b3JkPjxrZXl3b3JkPkNpdGll

czwva2V5d29yZD48a2V5d29yZD5FbnZpcm9ubWVudGFsIE1vbml0b3Jpbmc8L2tleXdvcmQ+PGtl

eXdvcmQ+TWljaGlnYW48L2tleXdvcmQ+PGtleXdvcmQ+TW9kZWxzLCBUaGVvcmV0aWNhbDwva2V5

d29yZD48a2V5d29yZD5QYXJ0aWNsZSBTaXplPC9rZXl3b3JkPjxrZXl3b3JkPlBhcnRpY3VsYXRl

IE1hdHRlci8qYW5hbHlzaXM8L2tleXdvcmQ+PGtleXdvcmQ+U2Vhc29uczwva2V5d29yZD48a2V5

d29yZD5UaW1lIEZhY3RvcnM8L2tleXdvcmQ+PGtleXdvcmQ+VmVoaWNsZSBFbWlzc2lvbnM8L2tl

eXdvcmQ+PGtleXdvcmQ+V2luZDwva2V5d29yZD48L2tleXdvcmRzPjxkYXRlcz48eWVhcj4yMDA3

PC95ZWFyPjxwdWItZGF0ZXM+PGRhdGU+T2N0PC9kYXRlPjwvcHViLWRhdGVzPjwvZGF0ZXM+PGlz

Ym4+MDA0NS02NTM1IChQcmludCkmI3hEOzAwNDUtNjUzNSAoTGlua2luZyk8L2lzYm4+PGFjY2Vz

c2lvbi1udW0+MTc1Mzc0ODA8L2FjY2Vzc2lvbi1udW0+PHVybHM+PHJlbGF0ZWQtdXJscz48dXJs

Pmh0dHA6Ly93d3cubmNiaS5ubG0ubmloLmdvdi9wdWJtZWQvMTc1Mzc0ODA8L3VybD48L3JlbGF0

ZWQtdXJscz48L3VybHM+PGVsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjEwLjEwMTYvai5jaGVtb3Nw

aGVyZS4yMDA3LjA0LjAyNzwvZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+PC9yZWNvcmQ+PC9DaXRl

PjxDaXRlPjxBdXRob3I+S3VuZHU8L0F1dGhvcj48WWVhcj4yMDE0PC9ZZWFyPjxSZWNOdW0+NzQ8

L1JlY051bT48cmVjb3JkPjxyZWMtbnVtYmVyPjc0PC9yZWMtbnVtYmVyPjxmb3JlaWduLWtleXM+

PGtleSBhcHA9IkVOIiBkYi1pZD0ieHRwMHQ1ZnJvMHp2ZDBldjJmaTV2d2Y5YTJhZHRyMnZ6d3ph

Ij43NDwva2V5PjwvZm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJKb3VybmFsIEFydGljbGUi

PjE3PC9yZWYtdHlwZT48Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+S3VuZHUsIFMuPC9h

dXRob3I+PGF1dGhvcj5TdG9uZSwgRS4gQS48L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRv

cnM+PGF1dGgtYWRkcmVzcz5EZXBhcnRtZW50IG9mIENoZW1pc3RyeSwgVW5pdmVyc2l0eSBvZiBJ

b3dhLCBJb3dhIENpdHksIElBIDUyMjQyLCBVU0EuIGJldHN5LXN0b25lQHVpb3dhLmVkdS48L2F1

dGgtYWRkcmVzcz48dGl0bGVzPjx0aXRsZT5Db21wb3NpdGlvbiBhbmQgc291cmNlcyBvZiBmaW5l

IHBhcnRpY3VsYXRlIG1hdHRlciBhY3Jvc3MgdXJiYW4gYW5kIHJ1cmFsIHNpdGVzIGluIHRoZSBN

aWR3ZXN0ZXJuIFVuaXRlZCBTdGF0ZXM8L3RpdGxlPjxzZWNvbmRhcnktdGl0bGU+RW52aXJvbiBT

Y2kgUHJvY2VzcyBJbXBhY3RzPC9zZWNvbmRhcnktdGl0bGU+PGFsdC10aXRsZT5FbnZpcm9ubWVu

dGFsIHNjaWVuY2UuIFByb2Nlc3NlcyAmYW1wOyBpbXBhY3RzPC9hbHQtdGl0bGU+PC90aXRsZXM+

PHBlcmlvZGljYWw+PGZ1bGwtdGl0bGU+RW52aXJvbiBTY2kgUHJvY2VzcyBJbXBhY3RzPC9mdWxs

LXRpdGxlPjxhYmJyLTE+RW52aXJvbm1lbnRhbCBzY2llbmNlLiBQcm9jZXNzZXMgJmFtcDsgaW1w

YWN0czwvYWJici0xPjwvcGVyaW9kaWNhbD48YWx0LXBlcmlvZGljYWw+PGZ1bGwtdGl0bGU+RW52

aXJvbiBTY2kgUHJvY2VzcyBJbXBhY3RzPC9mdWxsLXRpdGxlPjxhYmJyLTE+RW52aXJvbm1lbnRh

bCBzY2llbmNlLiBQcm9jZXNzZXMgJmFtcDsgaW1wYWN0czwvYWJici0xPjwvYWx0LXBlcmlvZGlj

YWw+PHBhZ2VzPjEzNjAtNzA8L3BhZ2VzPjx2b2x1bWU+MTY8L3ZvbHVtZT48bnVtYmVyPjY8L251

bWJlcj48a2V5d29yZHM+PGtleXdvcmQ+QWlyIFBvbGx1dGFudHMvKmFuYWx5c2lzPC9rZXl3b3Jk

PjxrZXl3b3JkPkFpciBQb2xsdXRpb24vc3RhdGlzdGljcyAmYW1wOyBudW1lcmljYWwgZGF0YTwv

a2V5d29yZD48a2V5d29yZD4qRW52aXJvbm1lbnRhbCBNb25pdG9yaW5nPC9rZXl3b3JkPjxrZXl3

b3JkPk1pZHdlc3Rlcm4gVW5pdGVkIFN0YXRlczwva2V5d29yZD48a2V5d29yZD5QYXJ0aWNsZSBT

aXplPC9rZXl3b3JkPjxrZXl3b3JkPlBhcnRpY3VsYXRlIE1hdHRlci8qYW5hbHlzaXM8L2tleXdv

cmQ+PC9rZXl3b3Jkcz48ZGF0ZXM+PHllYXI+MjAxNDwveWVhcj48cHViLWRhdGVzPjxkYXRlPk1h

eTwvZGF0ZT48L3B1Yi1kYXRlcz48L2RhdGVzPjxpc2JuPjIwNTAtNzg5NSAoRWxlY3Ryb25pYykm

I3hEOzIwNTAtNzg4NyAoTGlua2luZyk8L2lzYm4+PGFjY2Vzc2lvbi1udW0+MjQ3MzY3OTc8L2Fj

Y2Vzc2lvbi1udW0+PHVybHM+PHJlbGF0ZWQtdXJscz48dXJsPmh0dHA6Ly93d3cubmNiaS5ubG0u

bmloLmdvdi9wdWJtZWQvMjQ3MzY3OTc8L3VybD48L3JlbGF0ZWQtdXJscz48L3VybHM+PGN1c3Rv

bTI+NDE5MTkyMzwvY3VzdG9tMj48ZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+MTAuMTAzOS9jM2Vt

MDA3MTlnPC9lbGVjdHJvbmljLXJlc291cmNlLW51bT48L3JlY29yZD48L0NpdGU+PENpdGU+PEF1

dGhvcj5IYW1tb25kPC9BdXRob3I+PFllYXI+MjAwODwvWWVhcj48UmVjTnVtPjY8L1JlY051bT48

cmVjb3JkPjxyZWMtbnVtYmVyPjY8L3JlYy1udW1iZXI+PGZvcmVpZ24ta2V5cz48a2V5IGFwcD0i

RU4iIGRiLWlkPSJ4dHAwdDVmcm8wenZkMGV2MmZpNXZ3ZjlhMmFkdHIydnp3emEiPjY8L2tleT48

L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwvcmVmLXR5

cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPkhhbW1vbmQsIERhdnlkYSBNLjwvYXV0

aG9yPjxhdXRob3I+RHZvbmNoLCBKLiBUaW1vdGh5PC9hdXRob3I+PGF1dGhvcj5LZWVsZXIsIEdl

cmFsZCBKLjwvYXV0aG9yPjxhdXRob3I+UGFya2VyLCBFZGl0aCBBLjwvYXV0aG9yPjxhdXRob3I+

S2FtYWwsIEFsaSBTLjwvYXV0aG9yPjxhdXRob3I+QmFycmVzLCBKYW1lcyBBLjwvYXV0aG9yPjxh

dXRob3I+WWlwLCBGdXl1ZW4gWS48L2F1dGhvcj48YXV0aG9yPkJyYWtlZmllbGQtQ2FsZHdlbGws

IFdpbG1hPC9hdXRob3I+PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjx0aXRsZXM+PHRpdGxlPlNv

dXJjZXMgb2YgYW1iaWVudCBmaW5lIHBhcnRpY3VsYXRlIG1hdHRlciBhdCB0d28gY29tbXVuaXR5

IHNpdGVzIGluIERldHJvaXQsIE1pY2hpZ2FuPC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPkF0bW9z

cGhlcmljIEVudmlyb25tZW50PC9zZWNvbmRhcnktdGl0bGU+PC90aXRsZXM+PHBlcmlvZGljYWw+

PGZ1bGwtdGl0bGU+QXRtb3NwaGVyaWMgRW52aXJvbm1lbnQ8L2Z1bGwtdGl0bGU+PC9wZXJpb2Rp

Y2FsPjxwYWdlcz43MjAtNzMyPC9wYWdlcz48dm9sdW1lPjQyPC92b2x1bWU+PG51bWJlcj40PC9u

dW1iZXI+PGRhdGVzPjx5ZWFyPjIwMDg8L3llYXI+PC9kYXRlcz48aXNibj4xMzUyMjMxMDwvaXNi

bj48dXJscz48L3VybHM+PGVsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjEwLjEwMTYvai5hdG1vc2Vu

di4yMDA3LjA5LjA2NTwvZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+PC9yZWNvcmQ+PC9DaXRlPjwv

RW5kTm90ZT5=

ADDIN EN.CITE.DATA [6-14]. In Chicago, identified PM2.5 sources include secondary NO3-, secondary SO4=, steel operations, (seasonal) road salt, and vehicles ADDIN EN.CITE <EndNote><Cite><Author>Rizzo</Author><Year>2007</Year><RecNum>51</RecNum><DisplayText><style face="italic">[15, 16]</style></DisplayText><record><rec-number>51</rec-number><foreign-keys><key app="EN" db-id="xtp0t5fro0zvd0ev2fi5vwf9a2adtr2vzwza">51</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Rizzo, M.</author><author>Scheff, P.</author></authors></contributors><titles><title>Fine particulate source apportionment using data from the USEPA speciation trends network in Chicago, Illinois: Comparison of two source apportionment models</title><secondary-title>Atmospheric Environment</secondary-title></titles><periodical><full-title>Atmospheric Environment</full-title></periodical><pages>6276-6288</pages><volume>41</volume><number>29</number><dates><year>2007</year></dates><isbn>13522310</isbn><urls></urls><electronic-resource-num>10.1016/j.atmosenv.2007.03.055</electronic-resource-num></record></Cite><Cite><Author>Kim</Author><Year>2007</Year><RecNum>10</RecNum><record><rec-number>10</rec-number><foreign-keys><key app="EN" db-id="xtp0t5fro0zvd0ev2fi5vwf9a2adtr2vzwza">10</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Kim, Eugene</author><author>Hopke, Philip</author></authors></contributors><titles><title>Source Identifications of Airborne Fine Particles Using Positive Matrix Factorization and U.S. Environmental Protection Agency Positive Matrix Factorization</title><secondary-title>Journal of the Air &amp; Waste Management Association</secondary-title></titles><periodical><full-title>Journal of the Air &amp; Waste Management Association</full-title></periodical><pages>811-819</pages><volume>57</volume><number>7</number><dates><year>2007</year></dates><isbn>1047-3289</isbn><urls></urls><electronic-resource-num>10.3155/1047-3289.57.7.811</electronic-resource-num></record></Cite></EndNote>[15, 16]. These apportionments, like most elsewhere, are based on relatively short periods and have not examined trends. (Recent studies in the western U.S. have investigated long term PM2.5 apportionment trends PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5XYW5nPC9BdXRob3I+PFllYXI+MjAxMzwvWWVhcj48UmVj

TnVtPjY1MTwvUmVjTnVtPjxEaXNwbGF5VGV4dD48c3R5bGUgZmFjZT0iaXRhbGljIj5bMTcsIDE4

XTwvc3R5bGU+PC9EaXNwbGF5VGV4dD48cmVjb3JkPjxyZWMtbnVtYmVyPjY1MTwvcmVjLW51bWJl

cj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9Inh0cDB0NWZybzB6dmQwZXYyZmk1

dndmOWEyYWR0cjJ2end6YSI+NjUxPC9rZXk+PC9mb3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9

IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBlPjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1

dGhvcj5XYW5nLCBZdW5nYW5nPC9hdXRob3I+PGF1dGhvcj5Ib3BrZSwgUGhpbGlwIEsuPC9hdXRo

b3I+PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjx0aXRsZXM+PHRpdGxlPkEgdGVuLXllYXIgc291

cmNlIGFwcG9ydGlvbm1lbnQgc3R1ZHkgb2YgYW1iaWVudCBmaW5lIHBhcnRpY3VsYXRlIG1hdHRl

ciBpbiBTYW4gSm9zZSwgQ2FsaWZvcm5pYTwvdGl0bGU+PHNlY29uZGFyeS10aXRsZT5BdG1vc3Bo

ZXJpYyBQb2xsdXRpb24gUmVzZWFyY2g8L3NlY29uZGFyeS10aXRsZT48L3RpdGxlcz48cGVyaW9k

aWNhbD48ZnVsbC10aXRsZT5BdG1vc3BoZXJpYyBQb2xsdXRpb24gUmVzZWFyY2g8L2Z1bGwtdGl0

bGU+PC9wZXJpb2RpY2FsPjx2b2x1bWU+NDwvdm9sdW1lPjxudW1iZXI+NDwvbnVtYmVyPjxkYXRl

cz48eWVhcj4yMDEzPC95ZWFyPjwvZGF0ZXM+PGlzYm4+MTMwOTEwNDI8L2lzYm4+PHVybHM+PC91

cmxzPjxlbGVjdHJvbmljLXJlc291cmNlLW51bT4xMC41MDk0L2Fwci4yMDEzLjA0NTwvZWxlY3Ry

b25pYy1yZXNvdXJjZS1udW0+PC9yZWNvcmQ+PC9DaXRlPjxDaXRlPjxBdXRob3I+SGFzaGVtaW5h

c3NhYjwvQXV0aG9yPjxZZWFyPjIwMTQ8L1llYXI+PFJlY051bT4yNzY8L1JlY051bT48cmVjb3Jk

PjxyZWMtbnVtYmVyPjI3NjwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIg

ZGItaWQ9Inh0cDB0NWZybzB6dmQwZXYyZmk1dndmOWEyYWR0cjJ2end6YSI+Mjc2PC9rZXk+PC9m

b3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBl

Pjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5IYXNoZW1pbmFzc2FiLCBTLjwvYXV0aG9y

PjxhdXRob3I+RGFoZXIsIE4uPC9hdXRob3I+PGF1dGhvcj5Pc3RybywgQi4gRC48L2F1dGhvcj48

YXV0aG9yPlNpb3V0YXMsIEMuPC9hdXRob3I+PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjxhdXRo

LWFkZHJlc3M+VW5pdmVyc2l0eSBvZiBTb3V0aGVybiBDYWxpZm9ybmlhLCBEZXBhcnRtZW50IG9m

IENpdmlsIGFuZCBFbnZpcm9ubWVudGFsIEVuZ2luZWVyaW5nLCBMb3MgQW5nZWxlcywgQ0EsIFVT

QS4mI3hEO0FpciBQb2xsdXRpb24gRXBpZGVtaW9sb2d5IFNlY3Rpb24sIE9mZmljZSBvZiBFbnZp

cm9ubWVudGFsIEhlYWx0aCBIYXphcmQgQXNzZXNzbWVudCwgU3RhdGUgb2YgQ2FsaWZvcm5pYSwg

T2FrbGFuZCwgQ0EsIFVTQS4mI3hEO1VuaXZlcnNpdHkgb2YgU291dGhlcm4gQ2FsaWZvcm5pYSwg

RGVwYXJ0bWVudCBvZiBDaXZpbCBhbmQgRW52aXJvbm1lbnRhbCBFbmdpbmVlcmluZywgTG9zIEFu

Z2VsZXMsIENBLCBVU0EuIEVsZWN0cm9uaWMgYWRkcmVzczogc2lvdXRhc0B1c2MuZWR1LjwvYXV0

aC1hZGRyZXNzPjx0aXRsZXM+PHRpdGxlPkxvbmctdGVybSBzb3VyY2UgYXBwb3J0aW9ubWVudCBv

ZiBhbWJpZW50IGZpbmUgcGFydGljdWxhdGUgbWF0dGVyIChQTTIuNSkgaW4gdGhlIExvcyBBbmdl

bGVzIEJhc2luOiBhIGZvY3VzIG9uIGVtaXNzaW9ucyByZWR1Y3Rpb24gZnJvbSB2ZWhpY3VsYXIg

c291cmNlczwvdGl0bGU+PHNlY29uZGFyeS10aXRsZT5FbnZpcm9uIFBvbGx1dDwvc2Vjb25kYXJ5

LXRpdGxlPjxhbHQtdGl0bGU+RW52aXJvbm1lbnRhbCBwb2xsdXRpb248L2FsdC10aXRsZT48L3Rp

dGxlcz48cGVyaW9kaWNhbD48ZnVsbC10aXRsZT5FbnZpcm9uIFBvbGx1dDwvZnVsbC10aXRsZT48

YWJici0xPkVudmlyb25tZW50YWwgcG9sbHV0aW9uPC9hYmJyLTE+PC9wZXJpb2RpY2FsPjxhbHQt

cGVyaW9kaWNhbD48ZnVsbC10aXRsZT5FbnZpcm9uIFBvbGx1dDwvZnVsbC10aXRsZT48YWJici0x

PkVudmlyb25tZW50YWwgcG9sbHV0aW9uPC9hYmJyLTE+PC9hbHQtcGVyaW9kaWNhbD48cGFnZXM+

NTQtNjQ8L3BhZ2VzPjx2b2x1bWU+MTkzPC92b2x1bWU+PGtleXdvcmRzPjxrZXl3b3JkPkFlcm9z

b2xzL2FuYWx5c2lzPC9rZXl3b3JkPjxrZXl3b3JkPkFpciBQb2xsdXRhbnRzLyphbmFseXNpczwv

a2V5d29yZD48a2V5d29yZD4qRW52aXJvbm1lbnRhbCBNb25pdG9yaW5nPC9rZXl3b3JkPjxrZXl3

b3JkPkdhc29saW5lL2FuYWx5c2lzPC9rZXl3b3JkPjxrZXl3b3JkPkxvcyBBbmdlbGVzPC9rZXl3

b3JkPjxrZXl3b3JkPlBhcnRpY3VsYXRlIE1hdHRlci8qYW5hbHlzaXM8L2tleXdvcmQ+PGtleXdv

cmQ+VmVoaWNsZSBFbWlzc2lvbnMvKmFuYWx5c2lzPC9rZXl3b3JkPjwva2V5d29yZHM+PGRhdGVz

Pjx5ZWFyPjIwMTQ8L3llYXI+PHB1Yi1kYXRlcz48ZGF0ZT5PY3Q8L2RhdGU+PC9wdWItZGF0ZXM+

PC9kYXRlcz48aXNibj4xODczLTY0MjQgKEVsZWN0cm9uaWMpJiN4RDswMjY5LTc0OTEgKExpbmtp

bmcpPC9pc2JuPjxhY2Nlc3Npb24tbnVtPjI1MDA1ODg3PC9hY2Nlc3Npb24tbnVtPjx1cmxzPjxy

ZWxhdGVkLXVybHM+PHVybD5odHRwOi8vd3d3Lm5jYmkubmxtLm5paC5nb3YvcHVibWVkLzI1MDA1

ODg3PC91cmw+PC9yZWxhdGVkLXVybHM+PC91cmxzPjxlbGVjdHJvbmljLXJlc291cmNlLW51bT4x

MC4xMDE2L2ouZW52cG9sLjIwMTQuMDYuMDEyPC9lbGVjdHJvbmljLXJlc291cmNlLW51bT48L3Jl

Y29yZD48L0NpdGU+PC9FbmROb3RlPgB=

ADDIN EN.CITE PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5XYW5nPC9BdXRob3I+PFllYXI+MjAxMzwvWWVhcj48UmVj

TnVtPjY1MTwvUmVjTnVtPjxEaXNwbGF5VGV4dD48c3R5bGUgZmFjZT0iaXRhbGljIj5bMTcsIDE4

XTwvc3R5bGU+PC9EaXNwbGF5VGV4dD48cmVjb3JkPjxyZWMtbnVtYmVyPjY1MTwvcmVjLW51bWJl

cj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9Inh0cDB0NWZybzB6dmQwZXYyZmk1

dndmOWEyYWR0cjJ2end6YSI+NjUxPC9rZXk+PC9mb3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9

IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBlPjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1

dGhvcj5XYW5nLCBZdW5nYW5nPC9hdXRob3I+PGF1dGhvcj5Ib3BrZSwgUGhpbGlwIEsuPC9hdXRo

b3I+PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjx0aXRsZXM+PHRpdGxlPkEgdGVuLXllYXIgc291

cmNlIGFwcG9ydGlvbm1lbnQgc3R1ZHkgb2YgYW1iaWVudCBmaW5lIHBhcnRpY3VsYXRlIG1hdHRl

ciBpbiBTYW4gSm9zZSwgQ2FsaWZvcm5pYTwvdGl0bGU+PHNlY29uZGFyeS10aXRsZT5BdG1vc3Bo

ZXJpYyBQb2xsdXRpb24gUmVzZWFyY2g8L3NlY29uZGFyeS10aXRsZT48L3RpdGxlcz48cGVyaW9k

aWNhbD48ZnVsbC10aXRsZT5BdG1vc3BoZXJpYyBQb2xsdXRpb24gUmVzZWFyY2g8L2Z1bGwtdGl0

bGU+PC9wZXJpb2RpY2FsPjx2b2x1bWU+NDwvdm9sdW1lPjxudW1iZXI+NDwvbnVtYmVyPjxkYXRl

cz48eWVhcj4yMDEzPC95ZWFyPjwvZGF0ZXM+PGlzYm4+MTMwOTEwNDI8L2lzYm4+PHVybHM+PC91

cmxzPjxlbGVjdHJvbmljLXJlc291cmNlLW51bT4xMC41MDk0L2Fwci4yMDEzLjA0NTwvZWxlY3Ry

b25pYy1yZXNvdXJjZS1udW0+PC9yZWNvcmQ+PC9DaXRlPjxDaXRlPjxBdXRob3I+SGFzaGVtaW5h

c3NhYjwvQXV0aG9yPjxZZWFyPjIwMTQ8L1llYXI+PFJlY051bT4yNzY8L1JlY051bT48cmVjb3Jk

PjxyZWMtbnVtYmVyPjI3NjwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIg

ZGItaWQ9Inh0cDB0NWZybzB6dmQwZXYyZmk1dndmOWEyYWR0cjJ2end6YSI+Mjc2PC9rZXk+PC9m

b3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBl

Pjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5IYXNoZW1pbmFzc2FiLCBTLjwvYXV0aG9y

PjxhdXRob3I+RGFoZXIsIE4uPC9hdXRob3I+PGF1dGhvcj5Pc3RybywgQi4gRC48L2F1dGhvcj48

YXV0aG9yPlNpb3V0YXMsIEMuPC9hdXRob3I+PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjxhdXRo

LWFkZHJlc3M+VW5pdmVyc2l0eSBvZiBTb3V0aGVybiBDYWxpZm9ybmlhLCBEZXBhcnRtZW50IG9m

IENpdmlsIGFuZCBFbnZpcm9ubWVudGFsIEVuZ2luZWVyaW5nLCBMb3MgQW5nZWxlcywgQ0EsIFVT

QS4mI3hEO0FpciBQb2xsdXRpb24gRXBpZGVtaW9sb2d5IFNlY3Rpb24sIE9mZmljZSBvZiBFbnZp

cm9ubWVudGFsIEhlYWx0aCBIYXphcmQgQXNzZXNzbWVudCwgU3RhdGUgb2YgQ2FsaWZvcm5pYSwg

T2FrbGFuZCwgQ0EsIFVTQS4mI3hEO1VuaXZlcnNpdHkgb2YgU291dGhlcm4gQ2FsaWZvcm5pYSwg

RGVwYXJ0bWVudCBvZiBDaXZpbCBhbmQgRW52aXJvbm1lbnRhbCBFbmdpbmVlcmluZywgTG9zIEFu

Z2VsZXMsIENBLCBVU0EuIEVsZWN0cm9uaWMgYWRkcmVzczogc2lvdXRhc0B1c2MuZWR1LjwvYXV0

aC1hZGRyZXNzPjx0aXRsZXM+PHRpdGxlPkxvbmctdGVybSBzb3VyY2UgYXBwb3J0aW9ubWVudCBv

ZiBhbWJpZW50IGZpbmUgcGFydGljdWxhdGUgbWF0dGVyIChQTTIuNSkgaW4gdGhlIExvcyBBbmdl

bGVzIEJhc2luOiBhIGZvY3VzIG9uIGVtaXNzaW9ucyByZWR1Y3Rpb24gZnJvbSB2ZWhpY3VsYXIg

c291cmNlczwvdGl0bGU+PHNlY29uZGFyeS10aXRsZT5FbnZpcm9uIFBvbGx1dDwvc2Vjb25kYXJ5

LXRpdGxlPjxhbHQtdGl0bGU+RW52aXJvbm1lbnRhbCBwb2xsdXRpb248L2FsdC10aXRsZT48L3Rp

dGxlcz48cGVyaW9kaWNhbD48ZnVsbC10aXRsZT5FbnZpcm9uIFBvbGx1dDwvZnVsbC10aXRsZT48

YWJici0xPkVudmlyb25tZW50YWwgcG9sbHV0aW9uPC9hYmJyLTE+PC9wZXJpb2RpY2FsPjxhbHQt

cGVyaW9kaWNhbD48ZnVsbC10aXRsZT5FbnZpcm9uIFBvbGx1dDwvZnVsbC10aXRsZT48YWJici0x

PkVudmlyb25tZW50YWwgcG9sbHV0aW9uPC9hYmJyLTE+PC9hbHQtcGVyaW9kaWNhbD48cGFnZXM+

NTQtNjQ8L3BhZ2VzPjx2b2x1bWU+MTkzPC92b2x1bWU+PGtleXdvcmRzPjxrZXl3b3JkPkFlcm9z

b2xzL2FuYWx5c2lzPC9rZXl3b3JkPjxrZXl3b3JkPkFpciBQb2xsdXRhbnRzLyphbmFseXNpczwv

a2V5d29yZD48a2V5d29yZD4qRW52aXJvbm1lbnRhbCBNb25pdG9yaW5nPC9rZXl3b3JkPjxrZXl3

b3JkPkdhc29saW5lL2FuYWx5c2lzPC9rZXl3b3JkPjxrZXl3b3JkPkxvcyBBbmdlbGVzPC9rZXl3

b3JkPjxrZXl3b3JkPlBhcnRpY3VsYXRlIE1hdHRlci8qYW5hbHlzaXM8L2tleXdvcmQ+PGtleXdv

cmQ+VmVoaWNsZSBFbWlzc2lvbnMvKmFuYWx5c2lzPC9rZXl3b3JkPjwva2V5d29yZHM+PGRhdGVz

Pjx5ZWFyPjIwMTQ8L3llYXI+PHB1Yi1kYXRlcz48ZGF0ZT5PY3Q8L2RhdGU+PC9wdWItZGF0ZXM+

PC9kYXRlcz48aXNibj4xODczLTY0MjQgKEVsZWN0cm9uaWMpJiN4RDswMjY5LTc0OTEgKExpbmtp

bmcpPC9pc2JuPjxhY2Nlc3Npb24tbnVtPjI1MDA1ODg3PC9hY2Nlc3Npb24tbnVtPjx1cmxzPjxy

ZWxhdGVkLXVybHM+PHVybD5odHRwOi8vd3d3Lm5jYmkubmxtLm5paC5nb3YvcHVibWVkLzI1MDA1

ODg3PC91cmw+PC9yZWxhdGVkLXVybHM+PC91cmxzPjxlbGVjdHJvbmljLXJlc291cmNlLW51bT4x

MC4xMDE2L2ouZW52cG9sLjIwMTQuMDYuMDEyPC9lbGVjdHJvbmljLXJlc291cmNlLW51bT48L3Jl

Y29yZD48L0NpdGU+PC9FbmROb3RlPgB=

ADDIN EN.CITE.DATA [17, 18]) Updated analyses are needed to account for the many changes in emissions and industrial activity that have occurred over recent decades. This study's goal is to understand the trends in the sources contributing to PM2.5 concentrations in Detroit and Chicago. In each city, we examine emission inventories, ambient pollutant concentrations, and derive source apportionments using receptor models. Quantile regression is used to analyze trends in concentrations and receptor model apportionments, a novel application of this work. Results are compared to earlier studies, and methodological issues are discussed. The study concludes with a discussion of the changing apportionments of PM2.5 levels in the two cities and several recommendations. 2. Methods2.1 Monitoring site description Monitoring sites in the two cities were chosen based on the PM2.5 components measured, the duration and completeness of the monitoring record, and the diversity of nearby sources. The selected sites have speciation records that extend to the early to mid-2000s, and both are part of the Speciation Trends Network (STN), a subset of CSN monitoring sites at which measurements are taken every 3 days ADDIN EN.CITE <EndNote><Cite ExcludeAuth="1"><Year>2011</Year><RecNum>50</RecNum><DisplayText><style face="italic">[19]</style></DisplayText><record><rec-number>50</rec-number><foreign-keys><key app="EN" db-id="xtp0t5fro0zvd0ev2fi5vwf9a2adtr2vzwza">50</key></foreign-keys><ref-type name="Government Document">46</ref-type><contributors></contributors><titles><title>Integrated Science Assessment for Particulate Matter</title></titles><dates><year>2011</year></dates><pub-location>Research Triangle Park, NC: National Center for Environmental Assessment–RTP Office</pub-location><publisher>US Environmental Protection Agency</publisher><isbn>Report No. EPA/600/R-08/139</isbn><urls></urls><custom1>U.S. Environmental Protection Agency</custom1></record></Cite></EndNote>[19]. Figure 1 shows the location of these sites and nearby major point sources of PM2.5. The Allen Park ("Detroit") site in south Detroit (AQS ID: 26-163-0001; lat/long: 42.228611/-83.20833) is a non-source and population-oriented monitoring site that has been used to detect impacts from mobile sources ADDIN EN.CITE <EndNote><Cite><Author>Zhang</Author><Year>2010</Year><RecNum>76</RecNum><DisplayText><style face="italic">[20]</style></DisplayText><record><rec-number>76</rec-number><foreign-keys><key app="EN" db-id="xtp0t5fro0zvd0ev2fi5vwf9a2adtr2vzwza">76</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Zhang, Kai</author><author>Batterman, Stuart</author></authors></contributors><titles><title>Near-road air pollutant concentrations of CO and PM2.5: A comparison of MOBILE6.2/CALINE4 and generalized additive models</title><secondary-title>Atmospheric Environment</secondary-title></titles><periodical><full-title>Atmospheric Environment</full-title></periodical><pages>1740-1748</pages><volume>44</volume><number>14</number><dates><year>2010</year></dates><isbn>13522310</isbn><urls></urls><electronic-resource-num>10.1016/j.atmosenv.2010.02.008</electronic-resource-num></record></Cite></EndNote>[20]. It has recorded the highest PM10 levels in the area ADDIN EN.CITE <EndNote><Cite ExcludeAuth="1"><Year>2005</Year><RecNum>221</RecNum><DisplayText><style face="italic">[21]</style></DisplayText><record><rec-number>221</rec-number><foreign-keys><key app="EN" db-id="xtp0t5fro0zvd0ev2fi5vwf9a2adtr2vzwza">221</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Simon, C.</author><author>Sills, R.</author><author>Depa, M.</author><author>Sadoff, M.</author><author>Kim, A.</author><author>Heindorf, M.A</author></authors></contributors><titles><title>Detroit Air Toxics Initiative: Risk Assessment Report.</title><secondary-title>Michigan Department of Environmental Quality</secondary-title></titles><periodical><full-title>Michigan Department of environmental quality</full-title></periodical><dates><year>2005</year></dates><urls><related-urls><url> Department of Environmental Quality</custom1></record></Cite></EndNote>[21]. The site is located within 200 m of a major interstate highway (I-75). The immediate vicinity is grassy and wooded; a few covered storage tanks are within 100 m; some light industry, trucking firms, suburban areas, etc., are within 1 km; and heavy industry, including refineries, steel production, coke and coal-fired electricity generation are within 15 km. The speciation record began in 2001. Detroit comprises much of Wayne County, which has a population of 1,820,584 (2010) and an area of 1,585 km2 ADDIN EN.CITE <EndNote><Cite ExcludeAuth="1" ExcludeYear="1"><RecNum>194</RecNum><DisplayText><style face="italic">[22]</style></DisplayText><record><rec-number>194</rec-number><foreign-keys><key app="EN" db-id="xtp0t5fro0zvd0ev2fi5vwf9a2adtr2vzwza">194</key></foreign-keys><ref-type name="Web Page">12</ref-type><contributors><authors><author> </author></authors></contributors><titles><title>State &amp; County QuickFacts</title></titles><number>Accessed on 2/26/2015</number><dates><year>2015</year></dates><publisher>U.S. Department of Commerce</publisher><urls><related-urls><url>;[22]. The Com Edison ("Chicago") site is located in an urban neighborhood in south Chicago, IL (AQS ID: 17-031-0063; lat/long: 41.7514/-87.713488) on the grounds of a small facility of the local electrical utility. Nearby emissions sources include rail lines 1 km to the north, and two 6-lane arterials (Routes 50 and 12) located 2 km to the west and south, respectively. Chicago Midway International Airport is 5 km to the northwest. Heavy industry in Calumet and South Chicago, within 20 km, include coal-fired electricity generation, steel mills, and wet corn milling (which emits PM, SO2 and volatile organic compounds). The speciation record began in 2001, however, instruments were changed in 2005, and so only data after 2005 are considered. Chicago is located within Cook County, which has a population of 5,194,675 (2010) and area of 2,448 km2 ADDIN EN.CITE <EndNote><Cite ExcludeAuth="1" ExcludeYear="1"><RecNum>194</RecNum><DisplayText><style face="italic">[22]</style></DisplayText><record><rec-number>194</rec-number><foreign-keys><key app="EN" db-id="xtp0t5fro0zvd0ev2fi5vwf9a2adtr2vzwza">194</key></foreign-keys><ref-type name="Web Page">12</ref-type><contributors><authors><author> </author></authors></contributors><titles><title>State &amp; County QuickFacts</title></titles><number>Accessed on 2/26/2015</number><dates><year>2015</year></dates><publisher>U.S. Department of Commerce</publisher><urls><related-urls><url>;[22]. 2.2 Emissions inventory of local emission sources Data from the 2002, 2005, 2008 and 2011 National Emission Inventories (NEIs) ADDIN EN.CITE <EndNote><Cite><Year>2014</Year><RecNum>81</RecNum><DisplayText><style face="italic">[23]</style></DisplayText><record><rec-number>81</rec-number><foreign-keys><key app="EN" db-id="xtp0t5fro0zvd0ev2fi5vwf9a2adtr2vzwza">81</key></foreign-keys><ref-type name="Online Database">45</ref-type><contributors></contributors><titles><title>National Emission Inventories (NEI) and Technical Support Documents</title></titles><dates><year>2014</year></dates><publisher>U.S. Environmental Protection Agency</publisher><urls><related-urls><url>;[23] for Wayne and Cook Counties, which include the cities of Detroit and Chicago, respectively, were extracted to inform apportionments and to help identify emission trends. (The NEIs are revised every three years.) This analysis considers primary PM2.5 (i.e., the sum of filterable and condensable PM2.5) emissions from point, non-point, on-road mobile, and off-road mobile sources. On-road sources, which include exhaust, brake, and tire wear emissions from light and heavy duty diesel and gasoline vehicles, were separated in the analyses. The NEI technical support documents were consulted to explain methodological changes between NEIs ADDIN EN.CITE <EndNote><Cite ExcludeAuth="1"><Year>2014</Year><RecNum>81</RecNum><DisplayText><style face="italic">[23]</style></DisplayText><record><rec-number>81</rec-number><foreign-keys><key app="EN" db-id="xtp0t5fro0zvd0ev2fi5vwf9a2adtr2vzwza">81</key></foreign-keys><ref-type name="Online Database">45</ref-type><contributors></contributors><titles><title>National Emission Inventories (NEI) and Technical Support Documents</title></titles><dates><year>2014</year></dates><publisher>U.S. Environmental Protection Agency</publisher><urls><related-urls><url>;[23]. 2.3 Ambient data screening and treatmentThe pollutants monitored, as well as monitoring techniques and procedures, have changed over the years, and thus some data screening and treatment are required prior to trend analyses. Both sites measured PM2.5 using both federal reference methods (FRMs) and non-FRMs. The CSN has measured PM2.5 using MetOne SASS and URG samplers (non-FRMs), which collect PM2.5 on Teflon filters that are analyzed gravimetrically. Elements are measured by X-ray fluorescence on Teflon filters, ions by ion chromatography on nylon filters, and elemental (EC) and organic carbon (OC) by thermal optical transmittance (TOT) on quartz filters. Most pollutants are measured every third day ADDIN EN.CITE <EndNote><Cite><Author>MDEQ</Author><Year>2015</Year><RecNum>114</RecNum><DisplayText><style face="italic">[24, 25]</style></DisplayText><record><rec-number>114</rec-number><foreign-keys><key app="EN" db-id="xtp0t5fro0zvd0ev2fi5vwf9a2adtr2vzwza">114</key></foreign-keys><ref-type name="Web Page">12</ref-type><contributors><authors><author>MDEQ</author></authors></contributors><titles><title>Michigan&apos;s 2015 Ambient Air Monitoring Network Review app="EN" db-id="xtp0t5fro0zvd0ev2fi5vwf9a2adtr2vzwza">224</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors></contributors><titles><title>Illinois Ambient Air Monitoring Network Plan - 2014</title><secondary-title>Bureau of Air Monitoring Section</secondary-title></titles><periodical><full-title>Bureau of Air Monitoring Section</full-title></periodical><dates><year>2013</year></dates><urls></urls><custom1>Illinois Environmental Protection Agency</custom1></record></Cite></EndNote>[24, 25]. In 2007, to reconcile differences in OC measurements between CSN and IMPROVE samplers (positive artifacts resulted from the absorption of organic vapors to PM ADDIN EN.CITE <EndNote><Cite><Author>Dillner</Author><Year>2012</Year><RecNum>228</RecNum><DisplayText><style face="italic">[26]</style></DisplayText><record><rec-number>228</rec-number><foreign-keys><key app="EN" db-id="xtp0t5fro0zvd0ev2fi5vwf9a2adtr2vzwza">228</key></foreign-keys><ref-type name="Report">27</ref-type><contributors><authors><author>Dillner, Ann M. </author><author>Green, Mark </author><author>Schichtel, Bret </author><author>Malm, Bill </author><author>Rice, Joann </author><author>Frank, Neil</author><author>Chow, J. C.</author><author>Watson, J. G. </author><author>White, Warren </author><author>Pitchford, Marc</author></authors></contributors><titles><title>Rationale and Recommendations for Sampling Artifact Correction for PM2.5 Organic Carbon [Memorandum]</title></titles><dates><year>2012</year></dates><pub-location>Research Triangle Park, NC</pub-location><publisher>U.S. Environmental Protection Agency</publisher><isbn>PM NAAQS Review Docket EPA-HQ-OAR-2007-0492</isbn><urls></urls></record></Cite></EndNote>[26]), URG 3000N samplers were placed at CSN sites to measure EC and OC. The higher flow and face velocity of the URG 3000N decreases VOC adsorption and increases OC volatilization, thus lowering OC concentrations ADDIN EN.CITE <EndNote><Cite><Author>Kotchenruther</Author><Year>2011</Year><RecNum>232</RecNum><DisplayText><style face="italic">[27]</style></DisplayText><record><rec-number>232</rec-number><foreign-keys><key app="EN" db-id="xtp0t5fro0zvd0ev2fi5vwf9a2adtr2vzwza">232</key></foreign-keys><ref-type name="Unpublished Work">34</ref-type><contributors><authors><author>Kotchenruther, Robert</author></authors></contributors><titles><title>PM2.5 Carbon Measurements in Region 10 [PowerPoint slides].</title></titles><dates><year>2011</year></dates><publisher>NW-AIRQUEST</publisher><urls><related-urls><url>;[27]. Along with the instrument switch, the preferred analysis method also changed from TOT to thermal optical reflectance (TOR), allowing more direct comparisons between CSN measurements of EC and OC to those in the IMPROVE network (which historically used TOR). To assess long-term trends, EC and OC measured using TOT were used in the present work.Adjustments used prior to trend analyses included blank correction, censoring of values below detection limits, and artifact correction. CSN speciation data are not blank corrected, and for most CSN species, the median trip and field blank concentration is zero ADDIN EN.CITE <EndNote><Cite><Author>Solomon</Author><Year>2014</Year><RecNum>438</RecNum><DisplayText><style face="italic">[28]</style></DisplayText><record><rec-number>438</rec-number><foreign-keys><key app="EN" db-id="xtp0t5fro0zvd0ev2fi5vwf9a2adtr2vzwza">438</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Solomon, Paul</author><author>Cumpler, Dennis</author><author>Flanagan, James B.</author><author>Jayanty, R. K. M.</author><author>Rickman, Jr Edward E.</author><author>Dade, Charles</author></authors></contributors><titles><title>United States National PM2.5 Chemical Speciation Monitoring Networks - CSN and IMPROVE: Description of Networks</title><secondary-title>Journal of Air and Waste Management Association</secondary-title></titles><periodical><full-title>Journal of Air and Waste Management Association</full-title></periodical><pages>1410-38</pages><volume>64</volume><number>12</number><dates><year>2014</year></dates><urls></urls></record></Cite></EndNote>[28]. (Solomon et al. ADDIN EN.CITE <EndNote><Cite><Author>Solomon</Author><Year>2014</Year><RecNum>438</RecNum><DisplayText><style face="italic">[28]</style></DisplayText><record><rec-number>438</rec-number><foreign-keys><key app="EN" db-id="xtp0t5fro0zvd0ev2fi5vwf9a2adtr2vzwza">438</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Solomon, Paul</author><author>Cumpler, Dennis</author><author>Flanagan, James B.</author><author>Jayanty, R. K. M.</author><author>Rickman, Jr Edward E.</author><author>Dade, Charles</author></authors></contributors><titles><title>United States National PM2.5 Chemical Speciation Monitoring Networks - CSN and IMPROVE: Description of Networks</title><secondary-title>Journal of Air and Waste Management Association</secondary-title></titles><periodical><full-title>Journal of Air and Waste Management Association</full-title></periodical><pages>1410-38</pages><volume>64</volume><number>12</number><dates><year>2014</year></dates><urls></urls></record></Cite></EndNote>[28] noted that CSN trip and field blanks can be aggregated.) Each measurement was corrected by the median of blanks taken within ±1 month, as used elsewhere PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5EdXR0b248L0F1dGhvcj48WWVhcj4yMDEwPC9ZZWFyPjxS

ZWNOdW0+MTk8L1JlY051bT48RGlzcGxheVRleHQ+PHN0eWxlIGZhY2U9Iml0YWxpYyI+WzI2LCAy

OSwgMzBdPC9zdHlsZT48L0Rpc3BsYXlUZXh0PjxyZWNvcmQ+PHJlYy1udW1iZXI+MTk8L3JlYy1u

dW1iZXI+PGZvcmVpZ24ta2V5cz48a2V5IGFwcD0iRU4iIGRiLWlkPSJ4dHAwdDVmcm8wenZkMGV2

MmZpNXZ3ZjlhMmFkdHIydnp3emEiPjE5PC9rZXk+PC9mb3JlaWduLWtleXM+PHJlZi10eXBlIG5h

bWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBlPjxjb250cmlidXRvcnM+PGF1dGhvcnM+

PGF1dGhvcj5EdXR0b24sIFMuIEouPC9hdXRob3I+PGF1dGhvcj5WZWRhbCwgUy48L2F1dGhvcj48

YXV0aG9yPlBpZWRyYWhpdGEsIFIuPC9hdXRob3I+PGF1dGhvcj5NaWxmb3JkLCBKLiBCLjwvYXV0

aG9yPjxhdXRob3I+TWlsbGVyLCBTLiBMLjwvYXV0aG9yPjxhdXRob3I+SGFubmlnYW4sIE0uIFAu

PC9hdXRob3I+PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjxhdXRoLWFkZHJlc3M+TmF0aW9uYWwg

Q2VudGVyIGZvciBFbnZpcm9ubWVudGFsIEFzc2Vzc21lbnQsIFUuUy4gRW52aXJvbm1lbnRhbCBQ

cm90ZWN0aW9uIEFnZW5jeSwgUmVzZWFyY2ggVHJpYW5nbGUgUGFyaywgTkMgMjc3MTEsIFVTQS48

L2F1dGgtYWRkcmVzcz48dGl0bGVzPjx0aXRsZT5Tb3VyY2UgQXBwb3J0aW9ubWVudCBVc2luZyBQ

b3NpdGl2ZSBNYXRyaXggRmFjdG9yaXphdGlvbiBvbiBEYWlseSBNZWFzdXJlbWVudHMgb2YgSW5v

cmdhbmljIGFuZCBPcmdhbmljIFNwZWNpYXRlZCBQTSgyLjUpPC90aXRsZT48c2Vjb25kYXJ5LXRp

dGxlPkF0bW9zcGhlcmljIEVudmlyb25tZW50PC9zZWNvbmRhcnktdGl0bGU+PGFsdC10aXRsZT5B

dG1vc3BoZXJpYyBlbnZpcm9ubWVudDwvYWx0LXRpdGxlPjwvdGl0bGVzPjxwZXJpb2RpY2FsPjxm

dWxsLXRpdGxlPkF0bW9zcGhlcmljIEVudmlyb25tZW50PC9mdWxsLXRpdGxlPjwvcGVyaW9kaWNh

bD48YWx0LXBlcmlvZGljYWw+PGZ1bGwtdGl0bGU+QXRtb3NwaGVyaWMgRW52aXJvbm1lbnQ8L2Z1

bGwtdGl0bGU+PC9hbHQtcGVyaW9kaWNhbD48cGFnZXM+MjczMS0yNzQxPC9wYWdlcz48dm9sdW1l

PjQ0PC92b2x1bWU+PG51bWJlcj4yMzwvbnVtYmVyPjxkYXRlcz48eWVhcj4yMDEwPC95ZWFyPjxw

dWItZGF0ZXM+PGRhdGU+SnVsIDE8L2RhdGU+PC9wdWItZGF0ZXM+PC9kYXRlcz48aXNibj4xMzUy

LTIzMTAgKFByaW50KSYjeEQ7MTM1Mi0yMzEwIChMaW5raW5nKTwvaXNibj48YWNjZXNzaW9uLW51

bT4yMjc2ODAwNTwvYWNjZXNzaW9uLW51bT48dXJscz48cmVsYXRlZC11cmxzPjx1cmw+aHR0cDov

L3d3dy5uY2JpLm5sbS5uaWguZ292L3B1Ym1lZC8yMjc2ODAwNTwvdXJsPjwvcmVsYXRlZC11cmxz

PjwvdXJscz48Y3VzdG9tMj4zMzg4NTUzPC9jdXN0b20yPjxlbGVjdHJvbmljLXJlc291cmNlLW51

bT4xMC4xMDE2L2ouYXRtb3NlbnYuMjAxMC4wNC4wMzg8L2VsZWN0cm9uaWMtcmVzb3VyY2UtbnVt

PjwvcmVjb3JkPjwvQ2l0ZT48Q2l0ZT48QXV0aG9yPkRpbGxuZXI8L0F1dGhvcj48WWVhcj4yMDEy

PC9ZZWFyPjxSZWNOdW0+MjI4PC9SZWNOdW0+PHJlY29yZD48cmVjLW51bWJlcj4yMjg8L3JlYy1u

dW1iZXI+PGZvcmVpZ24ta2V5cz48a2V5IGFwcD0iRU4iIGRiLWlkPSJ4dHAwdDVmcm8wenZkMGV2

MmZpNXZ3ZjlhMmFkdHIydnp3emEiPjIyODwva2V5PjwvZm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBu

YW1lPSJSZXBvcnQiPjI3PC9yZWYtdHlwZT48Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+

RGlsbG5lciwgQW5uIE0uICA8L2F1dGhvcj48YXV0aG9yPkdyZWVuLCBNYXJrIDwvYXV0aG9yPjxh

dXRob3I+U2NoaWNodGVsLCBCcmV0IDwvYXV0aG9yPjxhdXRob3I+TWFsbSwgQmlsbCA8L2F1dGhv

cj48YXV0aG9yPlJpY2UsICBKb2FubiA8L2F1dGhvcj48YXV0aG9yPkZyYW5rLCBOZWlsPC9hdXRo

b3I+PGF1dGhvcj5DaG93LCBKLiBDLjwvYXV0aG9yPjxhdXRob3I+V2F0c29uLCBKLiBHLiA8L2F1

dGhvcj48YXV0aG9yPldoaXRlLCBXYXJyZW4gPC9hdXRob3I+PGF1dGhvcj5QaXRjaGZvcmQsIE1h

cmM8L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PHRpdGxlcz48dGl0bGU+UmF0aW9u

YWxlIGFuZCBSZWNvbW1lbmRhdGlvbnMgZm9yIFNhbXBsaW5nIEFydGlmYWN0IENvcnJlY3Rpb24g

Zm9yIFBNMi41IE9yZ2FuaWMgQ2FyYm9uIFtNZW1vcmFuZHVtXTwvdGl0bGU+PC90aXRsZXM+PGRh

dGVzPjx5ZWFyPjIwMTI8L3llYXI+PC9kYXRlcz48cHViLWxvY2F0aW9uPlJlc2VhcmNoIFRyaWFu

Z2xlIFBhcmssIE5DPC9wdWItbG9jYXRpb24+PHB1Ymxpc2hlcj5VLlMuIEVudmlyb25tZW50YWwg

UHJvdGVjdGlvbiBBZ2VuY3k8L3B1Ymxpc2hlcj48aXNibj5QTSBOQUFRUyBSZXZpZXcgRG9ja2V0

IEVQQS1IUS1PQVItMjAwNy0wNDkyPC9pc2JuPjx1cmxzPjwvdXJscz48L3JlY29yZD48L0NpdGU+

PENpdGU+PEF1dGhvcj5Lb3RjaGVucnV0aGVyPC9BdXRob3I+PFllYXI+MjAwOTwvWWVhcj48UmVj

TnVtPjQzNzwvUmVjTnVtPjxyZWNvcmQ+PHJlYy1udW1iZXI+NDM3PC9yZWMtbnVtYmVyPjxmb3Jl

aWduLWtleXM+PGtleSBhcHA9IkVOIiBkYi1pZD0ieHRwMHQ1ZnJvMHp2ZDBldjJmaTV2d2Y5YTJh

ZHRyMnZ6d3phIj40Mzc8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iR292ZXJu

bWVudCBEb2N1bWVudCI+NDY8L3JlZi10eXBlPjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhv

cj5Lb3RjaGVucnV0aGVyLCBSb2JlcnQ8L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+

PHRpdGxlcz48dGl0bGU+RVBBIFJlZ2lvbiAxMCBHdWlkYW5jZSBmb3IgdGhlIFVzZSBvZiBSZWNl

cHRvciBNb2RlbHMgdG8gU3VwcG9ydCBQb2xpY3kgYW5kIFJlZ3VsYXRvcnkgRGVjaXNpb25zPC90

aXRsZT48L3RpdGxlcz48ZGF0ZXM+PHllYXI+MjAwOTwveWVhcj48L2RhdGVzPjx1cmxzPjwvdXJs

cz48L3JlY29yZD48L0NpdGU+PC9FbmROb3RlPgB=

ADDIN EN.CITE PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5EdXR0b248L0F1dGhvcj48WWVhcj4yMDEwPC9ZZWFyPjxS

ZWNOdW0+MTk8L1JlY051bT48RGlzcGxheVRleHQ+PHN0eWxlIGZhY2U9Iml0YWxpYyI+WzI2LCAy

OSwgMzBdPC9zdHlsZT48L0Rpc3BsYXlUZXh0PjxyZWNvcmQ+PHJlYy1udW1iZXI+MTk8L3JlYy1u

dW1iZXI+PGZvcmVpZ24ta2V5cz48a2V5IGFwcD0iRU4iIGRiLWlkPSJ4dHAwdDVmcm8wenZkMGV2

MmZpNXZ3ZjlhMmFkdHIydnp3emEiPjE5PC9rZXk+PC9mb3JlaWduLWtleXM+PHJlZi10eXBlIG5h

bWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBlPjxjb250cmlidXRvcnM+PGF1dGhvcnM+

PGF1dGhvcj5EdXR0b24sIFMuIEouPC9hdXRob3I+PGF1dGhvcj5WZWRhbCwgUy48L2F1dGhvcj48

YXV0aG9yPlBpZWRyYWhpdGEsIFIuPC9hdXRob3I+PGF1dGhvcj5NaWxmb3JkLCBKLiBCLjwvYXV0

aG9yPjxhdXRob3I+TWlsbGVyLCBTLiBMLjwvYXV0aG9yPjxhdXRob3I+SGFubmlnYW4sIE0uIFAu

PC9hdXRob3I+PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjxhdXRoLWFkZHJlc3M+TmF0aW9uYWwg

Q2VudGVyIGZvciBFbnZpcm9ubWVudGFsIEFzc2Vzc21lbnQsIFUuUy4gRW52aXJvbm1lbnRhbCBQ

cm90ZWN0aW9uIEFnZW5jeSwgUmVzZWFyY2ggVHJpYW5nbGUgUGFyaywgTkMgMjc3MTEsIFVTQS48

L2F1dGgtYWRkcmVzcz48dGl0bGVzPjx0aXRsZT5Tb3VyY2UgQXBwb3J0aW9ubWVudCBVc2luZyBQ

b3NpdGl2ZSBNYXRyaXggRmFjdG9yaXphdGlvbiBvbiBEYWlseSBNZWFzdXJlbWVudHMgb2YgSW5v

cmdhbmljIGFuZCBPcmdhbmljIFNwZWNpYXRlZCBQTSgyLjUpPC90aXRsZT48c2Vjb25kYXJ5LXRp

dGxlPkF0bW9zcGhlcmljIEVudmlyb25tZW50PC9zZWNvbmRhcnktdGl0bGU+PGFsdC10aXRsZT5B

dG1vc3BoZXJpYyBlbnZpcm9ubWVudDwvYWx0LXRpdGxlPjwvdGl0bGVzPjxwZXJpb2RpY2FsPjxm

dWxsLXRpdGxlPkF0bW9zcGhlcmljIEVudmlyb25tZW50PC9mdWxsLXRpdGxlPjwvcGVyaW9kaWNh

bD48YWx0LXBlcmlvZGljYWw+PGZ1bGwtdGl0bGU+QXRtb3NwaGVyaWMgRW52aXJvbm1lbnQ8L2Z1

bGwtdGl0bGU+PC9hbHQtcGVyaW9kaWNhbD48cGFnZXM+MjczMS0yNzQxPC9wYWdlcz48dm9sdW1l

PjQ0PC92b2x1bWU+PG51bWJlcj4yMzwvbnVtYmVyPjxkYXRlcz48eWVhcj4yMDEwPC95ZWFyPjxw

dWItZGF0ZXM+PGRhdGU+SnVsIDE8L2RhdGU+PC9wdWItZGF0ZXM+PC9kYXRlcz48aXNibj4xMzUy

LTIzMTAgKFByaW50KSYjeEQ7MTM1Mi0yMzEwIChMaW5raW5nKTwvaXNibj48YWNjZXNzaW9uLW51

bT4yMjc2ODAwNTwvYWNjZXNzaW9uLW51bT48dXJscz48cmVsYXRlZC11cmxzPjx1cmw+aHR0cDov

L3d3dy5uY2JpLm5sbS5uaWguZ292L3B1Ym1lZC8yMjc2ODAwNTwvdXJsPjwvcmVsYXRlZC11cmxz

PjwvdXJscz48Y3VzdG9tMj4zMzg4NTUzPC9jdXN0b20yPjxlbGVjdHJvbmljLXJlc291cmNlLW51

bT4xMC4xMDE2L2ouYXRtb3NlbnYuMjAxMC4wNC4wMzg8L2VsZWN0cm9uaWMtcmVzb3VyY2UtbnVt

PjwvcmVjb3JkPjwvQ2l0ZT48Q2l0ZT48QXV0aG9yPkRpbGxuZXI8L0F1dGhvcj48WWVhcj4yMDEy

PC9ZZWFyPjxSZWNOdW0+MjI4PC9SZWNOdW0+PHJlY29yZD48cmVjLW51bWJlcj4yMjg8L3JlYy1u

dW1iZXI+PGZvcmVpZ24ta2V5cz48a2V5IGFwcD0iRU4iIGRiLWlkPSJ4dHAwdDVmcm8wenZkMGV2

MmZpNXZ3ZjlhMmFkdHIydnp3emEiPjIyODwva2V5PjwvZm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBu

YW1lPSJSZXBvcnQiPjI3PC9yZWYtdHlwZT48Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+

RGlsbG5lciwgQW5uIE0uICA8L2F1dGhvcj48YXV0aG9yPkdyZWVuLCBNYXJrIDwvYXV0aG9yPjxh

dXRob3I+U2NoaWNodGVsLCBCcmV0IDwvYXV0aG9yPjxhdXRob3I+TWFsbSwgQmlsbCA8L2F1dGhv

cj48YXV0aG9yPlJpY2UsICBKb2FubiA8L2F1dGhvcj48YXV0aG9yPkZyYW5rLCBOZWlsPC9hdXRo

b3I+PGF1dGhvcj5DaG93LCBKLiBDLjwvYXV0aG9yPjxhdXRob3I+V2F0c29uLCBKLiBHLiA8L2F1

dGhvcj48YXV0aG9yPldoaXRlLCBXYXJyZW4gPC9hdXRob3I+PGF1dGhvcj5QaXRjaGZvcmQsIE1h

cmM8L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PHRpdGxlcz48dGl0bGU+UmF0aW9u

YWxlIGFuZCBSZWNvbW1lbmRhdGlvbnMgZm9yIFNhbXBsaW5nIEFydGlmYWN0IENvcnJlY3Rpb24g

Zm9yIFBNMi41IE9yZ2FuaWMgQ2FyYm9uIFtNZW1vcmFuZHVtXTwvdGl0bGU+PC90aXRsZXM+PGRh

dGVzPjx5ZWFyPjIwMTI8L3llYXI+PC9kYXRlcz48cHViLWxvY2F0aW9uPlJlc2VhcmNoIFRyaWFu

Z2xlIFBhcmssIE5DPC9wdWItbG9jYXRpb24+PHB1Ymxpc2hlcj5VLlMuIEVudmlyb25tZW50YWwg

UHJvdGVjdGlvbiBBZ2VuY3k8L3B1Ymxpc2hlcj48aXNibj5QTSBOQUFRUyBSZXZpZXcgRG9ja2V0

IEVQQS1IUS1PQVItMjAwNy0wNDkyPC9pc2JuPjx1cmxzPjwvdXJscz48L3JlY29yZD48L0NpdGU+

PENpdGU+PEF1dGhvcj5Lb3RjaGVucnV0aGVyPC9BdXRob3I+PFllYXI+MjAwOTwvWWVhcj48UmVj

TnVtPjQzNzwvUmVjTnVtPjxyZWNvcmQ+PHJlYy1udW1iZXI+NDM3PC9yZWMtbnVtYmVyPjxmb3Jl

aWduLWtleXM+PGtleSBhcHA9IkVOIiBkYi1pZD0ieHRwMHQ1ZnJvMHp2ZDBldjJmaTV2d2Y5YTJh

ZHRyMnZ6d3phIj40Mzc8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iR292ZXJu

bWVudCBEb2N1bWVudCI+NDY8L3JlZi10eXBlPjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhv

cj5Lb3RjaGVucnV0aGVyLCBSb2JlcnQ8L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+

PHRpdGxlcz48dGl0bGU+RVBBIFJlZ2lvbiAxMCBHdWlkYW5jZSBmb3IgdGhlIFVzZSBvZiBSZWNl

cHRvciBNb2RlbHMgdG8gU3VwcG9ydCBQb2xpY3kgYW5kIFJlZ3VsYXRvcnkgRGVjaXNpb25zPC90

aXRsZT48L3RpdGxlcz48ZGF0ZXM+PHllYXI+MjAwOTwveWVhcj48L2RhdGVzPjx1cmxzPjwvdXJs

cz48L3JlY29yZD48L0NpdGU+PC9FbmROb3RlPgB=

ADDIN EN.CITE.DATA [26, 29, 30]. Any negative blanks were replaced by the median blank for the entire record. Corrected measurements that fell below method detection limits (DLs) or that became negative were replaced with 1/2 DL and its measurement uncertainty was replaced with the maximum of the reported uncertainty and { EQ \F(1,8)} 5/6 DL [9]. Brown et al. ADDIN EN.CITE <EndNote><Cite><Author>Brown</Author><Year>2015</Year><RecNum>440</RecNum><DisplayText><style face="italic">[31]</style></DisplayText><record><rec-number>440</rec-number><foreign-keys><key app="EN" db-id="xtp0t5fro0zvd0ev2fi5vwf9a2adtr2vzwza">440</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Brown, S. G.</author><author>Eberly, S.</author><author>Paatero, P.</author><author>Norris, G.</author></authors></contributors><titles><title>Methods for estimating uncertainty in PMF solutions: Examples with ambient air and water quality dta and guidance on reporting PMF results</title><secondary-title>Sci Total Environ</secondary-title></titles><periodical><full-title>Sci Total Environ</full-title><abbr-1>The Science of the total environment</abbr-1></periodical><pages>626-635</pages><volume>518-519</volume><dates><year>2015</year></dates><urls></urls></record></Cite></EndNote>[31] gives guidance and reasoning for not censoring those values. The EC/OC instruments and analytical techniques changed midway through the study period. To address the positive sampling artifact in OC measurements using TOT and the MetOne samplers ADDIN EN.CITE <EndNote><Cite><Author>Chow</Author><Year>2010</Year><RecNum>38</RecNum><DisplayText><style face="italic">[32]</style></DisplayText><record><rec-number>38</rec-number><foreign-keys><key app="EN" db-id="xtp0t5fro0zvd0ev2fi5vwf9a2adtr2vzwza">38</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Chow, J. C.</author><author>Watson, J. G.</author><author>Chen, L. W. A.</author><author>Rice, J.</author><author>Frank, N. H.</author></authors></contributors><titles><title>Quantification of PM2.5 organic carbon sampling artifacts in US networks</title><secondary-title>Atmospheric Chemistry and Physics</secondary-title></titles><periodical><full-title>Atmospheric Chemistry and Physics</full-title></periodical><pages>5223-5239</pages><volume>10</volume><number>12</number><dates><year>2010</year></dates><isbn>1680-7324</isbn><urls></urls><electronic-resource-num>10.5194/acp-10-5223-2010</electronic-resource-num></record></Cite></EndNote>[32], a 2012 EPA memo ADDIN EN.CITE <EndNote><Cite><Author>Dillner</Author><Year>2012</Year><RecNum>228</RecNum><DisplayText><style face="italic">[26]</style></DisplayText><record><rec-number>228</rec-number><foreign-keys><key app="EN" db-id="xtp0t5fro0zvd0ev2fi5vwf9a2adtr2vzwza">228</key></foreign-keys><ref-type name="Report">27</ref-type><contributors><authors><author>Dillner, Ann M. </author><author>Green, Mark </author><author>Schichtel, Bret </author><author>Malm, Bill </author><author>Rice, Joann </author><author>Frank, Neil</author><author>Chow, J. C.</author><author>Watson, J. G. </author><author>White, Warren </author><author>Pitchford, Marc</author></authors></contributors><titles><title>Rationale and Recommendations for Sampling Artifact Correction for PM2.5 Organic Carbon [Memorandum]</title></titles><dates><year>2012</year></dates><pub-location>Research Triangle Park, NC</pub-location><publisher>U.S. Environmental Protection Agency</publisher><isbn>PM NAAQS Review Docket EPA-HQ-OAR-2007-0492</isbn><urls></urls></record></Cite></EndNote>[26] suggested using monthly median passive network blanks. However, Solomon et al. ADDIN EN.CITE <EndNote><Cite><Author>Solomon</Author><Year>2014</Year><RecNum>438</RecNum><DisplayText><style face="italic">[28]</style></DisplayText><record><rec-number>438</rec-number><foreign-keys><key app="EN" db-id="xtp0t5fro0zvd0ev2fi5vwf9a2adtr2vzwza">438</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Solomon, Paul</author><author>Cumpler, Dennis</author><author>Flanagan, James B.</author><author>Jayanty, R. K. M.</author><author>Rickman, Jr Edward E.</author><author>Dade, Charles</author></authors></contributors><titles><title>United States National PM2.5 Chemical Speciation Monitoring Networks - CSN and IMPROVE: Description of Networks</title><secondary-title>Journal of Air and Waste Management Association</secondary-title></titles><periodical><full-title>Journal of Air and Waste Management Association</full-title></periodical><pages>1410-38</pages><volume>64</volume><number>12</number><dates><year>2014</year></dates><urls></urls></record></Cite></EndNote>[28] noted that passive field blanks may miss artifacts arising during active sampling. Fortunately, both Detroit and Chicago sites include one year of collocated MetOne SASS and URG 3000N measurements. These collocated data were regressed as OCMET=k OCURG+artifact, where k is an estimated regression coefficient used to correct OC MetOne measurements prior to the phase-in of URG samplers (April 2009 in both cities). At Detroit, the regression used the period from 4/1/2009 to 3/30/2010 and gave an OC artifact of 0.126 ?g/m3 and R2 = 0.77; for EC, R2 = 0.59. At Chicago, the regression used the period from 5/1/2009 to 4/29/2010 and the estimated OC artifact was 0.303 ?g/m3 and R2 = 0.85; for EC, R2 = 0.69. (The supplemental information provides additional information, including the outliers removed in this analysis.) The estimated OC artifacts are similar to those reported earlier ADDIN EN.CITE <EndNote><Cite><Author>Chow</Author><Year>2010</Year><RecNum>38</RecNum><DisplayText><style face="italic">[26, 32]</style></DisplayText><record><rec-number>38</rec-number><foreign-keys><key app="EN" db-id="xtp0t5fro0zvd0ev2fi5vwf9a2adtr2vzwza">38</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Chow, J. C.</author><author>Watson, J. G.</author><author>Chen, L. W. A.</author><author>Rice, J.</author><author>Frank, N. H.</author></authors></contributors><titles><title>Quantification of PM2.5 organic carbon sampling artifacts in US networks</title><secondary-title>Atmospheric Chemistry and Physics</secondary-title></titles><periodical><full-title>Atmospheric Chemistry and Physics</full-title></periodical><pages>5223-5239</pages><volume>10</volume><number>12</number><dates><year>2010</year></dates><isbn>1680-7324</isbn><urls></urls><electronic-resource-num>10.5194/acp-10-5223-2010</electronic-resource-num></record></Cite><Cite><Author>Dillner</Author><Year>2012</Year><RecNum>228</RecNum><record><rec-number>228</rec-number><foreign-keys><key app="EN" db-id="xtp0t5fro0zvd0ev2fi5vwf9a2adtr2vzwza">228</key></foreign-keys><ref-type name="Report">27</ref-type><contributors><authors><author>Dillner, Ann M. </author><author>Green, Mark </author><author>Schichtel, Bret </author><author>Malm, Bill </author><author>Rice, Joann </author><author>Frank, Neil</author><author>Chow, J. C.</author><author>Watson, J. G. </author><author>White, Warren </author><author>Pitchford, Marc</author></authors></contributors><titles><title>Rationale and Recommendations for Sampling Artifact Correction for PM2.5 Organic Carbon [Memorandum]</title></titles><dates><year>2012</year></dates><pub-location>Research Triangle Park, NC</pub-location><publisher>U.S. Environmental Protection Agency</publisher><isbn>PM NAAQS Review Docket EPA-HQ-OAR-2007-0492</isbn><urls></urls></record></Cite></EndNote>[26, 32]. Future EPA guidance may indicate other methods to harmonize EC and OC data measured using the TOT and TOR methods.2.4 Quantifying trendsTrends in species concentrations from 2001 to 2014 at Detroit and from 2006 to 2014 at Chicago were evaluated initially using the non-parametric Kruskal-Wallis (KW) and Mann-Whitney (MW) tests, and subsequently using quantile regression (QR). (These analyses used the quantreg ADDIN EN.CITE <EndNote><Cite><Author>Koenker</Author><Year>2012</Year><RecNum>239</RecNum><DisplayText><style face="italic">[33]</style></DisplayText><record><rec-number>239</rec-number><foreign-keys><key app="EN" db-id="xtp0t5fro0zvd0ev2fi5vwf9a2adtr2vzwza">239</key></foreign-keys><ref-type name="Unpublished Work">34</ref-type><contributors><authors><author>Koenker, R</author></authors></contributors><titles><title>Quantile Regression in R: A Vignette</title></titles><dates><year>2012</year></dates><urls><related-urls><url>;[33] and other packages in R.) Trends in the 'major' PM2.5 constituents, defined as species constituting an average of at least 1% by mass of PM2.5 (including OC, EC, S, NO3-, NH4+, and SO4= ) are of primary interest. Trends in PMF factor mass concentrations and percent contributions were evaluated by QR, as described below.Initially, the study period was broken into year-blocks (2001-2002, 2002-2005, 2006-2009, 2010-2013, 2013-2015) and seasons (Winter = Dec, Jan, Feb; Spring = Mar, Apr, May; Summer = Jun, Jul, Aug; Autumn = Sept, Oct, Nov). Winter trends were analyzed using data from consecutive months (e.g., winter 2002 data included measurements or apportionments from December 2001 through February 2002). As an initial screen, KW (for 3 or more groups) and MW (for 2 groups) tests attaining a p-value of 0.05 or less were used to identify differences in the distributions between valid groups of measurements, where a valid group was defined as having 10 or more observations with fewer than 50% of observations below DLs. (The direction or magnitude of the differences can be investigated using the Dunn and other tests ADDIN EN.CITE <EndNote><Cite><Author>Dunn</Author><Year>1964</Year><RecNum>652</RecNum><DisplayText><style face="italic">[34]</style></DisplayText><record><rec-number>652</rec-number><foreign-keys><key app="EN" db-id="xtp0t5fro0zvd0ev2fi5vwf9a2adtr2vzwza">652</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Dunn, Olive Jean</author></authors></contributors><titles><title>Multiple comparisons using rank sums</title><secondary-title>Technometrics</secondary-title></titles><periodical><full-title>Technometrics</full-title></periodical><pages>241-252</pages><volume>6</volume><number>3</number><dates><year>1964</year></dates><isbn>0040-1706</isbn><urls></urls></record></Cite></EndNote>[34]).QR analyses were used to quantify trends of annual median and 90th percentile concentrations, which are exposure measures relevant to chronic and acute health effects, respectively. Trends of peak values may be susceptible to outliers; trends at lower percentiles may be influenced by data censoring. QR also was used to assess trends in relative factor contributions (factor mass divided by total modeled PM2.5 mass) to reveal the changing sources of PM2.5. Similar to how linear regression coefficients βi are found by minimizing the sum of squared residuals calculated as yi-(β0+β1xi+…)2, quantile regression coefficients Γi are found by minimizing the sum of absolute residuals applied to the function ρτ, ρτ(τ,yi,ξ(xi,Γ)), where ρτ is the “pinball” function at the desired quantile τ, and ξxi,Γ is a linear function of the predictors with Γi as coefficients ADDIN EN.CITE <EndNote><Cite><Author>R</Author><Year>1978</Year><RecNum>90</RecNum><DisplayText><style face="italic">[35]</style></DisplayText><record><rec-number>90</rec-number><foreign-keys><key app="EN" db-id="xtp0t5fro0zvd0ev2fi5vwf9a2adtr2vzwza">90</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Koenker, R</author><author>Basset, G</author></authors></contributors><titles><title>Regression Quantiles</title><secondary-title>Econometrica</secondary-title></titles><periodical><full-title>Econometrica</full-title></periodical><pages>33-50</pages><volume>46</volume><number>1</number><dates><year>1978</year></dates><urls></urls></record></Cite></EndNote>[35]. The function ρτ is equal to τ*(yi-ξ(xi,Γ)) if yi> ξxi,Γ and (1-τ)*(yi-ξ(xi,Γ)) otherwise. Relative (percentage) changes in median and 90th percentile concentrations for calendar years and seasons were quantified by dividing the estimated QR slope by the associated median and 90th percentile concentrations, respectively. Percent per year changes were deemed significant if the QR slope exceeded twice the bootstrapped QR standard error. 2.5 PMF receptor modelingAmbient data used in the PMF apportionments required additional treatment and quality checks. Missing observations for key metal species (e.g., Ni, Cr) were replaced with the median, and the associated measurement uncertainty was set to four times the median ADDIN EN.CITE <EndNote><Cite><Author>Brown</Author><Year>2015</Year><RecNum>440</RecNum><DisplayText><style face="italic">[31]</style></DisplayText><record><rec-number>440</rec-number><foreign-keys><key app="EN" db-id="xtp0t5fro0zvd0ev2fi5vwf9a2adtr2vzwza">440</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Brown, S. G.</author><author>Eberly, S.</author><author>Paatero, P.</author><author>Norris, G.</author></authors></contributors><titles><title>Methods for estimating uncertainty in PMF solutions: Examples with ambient air and water quality dta and guidance on reporting PMF results</title><secondary-title>Sci Total Environ</secondary-title></titles><periodical><full-title>Sci Total Environ</full-title><abbr-1>The Science of the total environment</abbr-1></periodical><pages>626-635</pages><volume>518-519</volume><dates><year>2015</year></dates><urls></urls></record></Cite></EndNote>[31]. While sometimes the geometric mean is used in place of the median PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5IYXNoZW1pbmFzc2FiPC9BdXRob3I+PFllYXI+MjAxNDwv

WWVhcj48UmVjTnVtPjI3NjwvUmVjTnVtPjxEaXNwbGF5VGV4dD48c3R5bGUgZmFjZT0iaXRhbGlj

Ij5bMThdPC9zdHlsZT48L0Rpc3BsYXlUZXh0PjxyZWNvcmQ+PHJlYy1udW1iZXI+Mjc2PC9yZWMt

bnVtYmVyPjxmb3JlaWduLWtleXM+PGtleSBhcHA9IkVOIiBkYi1pZD0ieHRwMHQ1ZnJvMHp2ZDBl

djJmaTV2d2Y5YTJhZHRyMnZ6d3phIj4yNzY8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUg

bmFtZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9y

cz48YXV0aG9yPkhhc2hlbWluYXNzYWIsIFMuPC9hdXRob3I+PGF1dGhvcj5EYWhlciwgTi48L2F1

dGhvcj48YXV0aG9yPk9zdHJvLCBCLiBELjwvYXV0aG9yPjxhdXRob3I+U2lvdXRhcywgQy48L2F1

dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PGF1dGgtYWRkcmVzcz5Vbml2ZXJzaXR5IG9m

IFNvdXRoZXJuIENhbGlmb3JuaWEsIERlcGFydG1lbnQgb2YgQ2l2aWwgYW5kIEVudmlyb25tZW50

YWwgRW5naW5lZXJpbmcsIExvcyBBbmdlbGVzLCBDQSwgVVNBLiYjeEQ7QWlyIFBvbGx1dGlvbiBF

cGlkZW1pb2xvZ3kgU2VjdGlvbiwgT2ZmaWNlIG9mIEVudmlyb25tZW50YWwgSGVhbHRoIEhhemFy

ZCBBc3Nlc3NtZW50LCBTdGF0ZSBvZiBDYWxpZm9ybmlhLCBPYWtsYW5kLCBDQSwgVVNBLiYjeEQ7

VW5pdmVyc2l0eSBvZiBTb3V0aGVybiBDYWxpZm9ybmlhLCBEZXBhcnRtZW50IG9mIENpdmlsIGFu

ZCBFbnZpcm9ubWVudGFsIEVuZ2luZWVyaW5nLCBMb3MgQW5nZWxlcywgQ0EsIFVTQS4gRWxlY3Ry

b25pYyBhZGRyZXNzOiBzaW91dGFzQHVzYy5lZHUuPC9hdXRoLWFkZHJlc3M+PHRpdGxlcz48dGl0

bGU+TG9uZy10ZXJtIHNvdXJjZSBhcHBvcnRpb25tZW50IG9mIGFtYmllbnQgZmluZSBwYXJ0aWN1

bGF0ZSBtYXR0ZXIgKFBNMi41KSBpbiB0aGUgTG9zIEFuZ2VsZXMgQmFzaW46IGEgZm9jdXMgb24g

ZW1pc3Npb25zIHJlZHVjdGlvbiBmcm9tIHZlaGljdWxhciBzb3VyY2VzPC90aXRsZT48c2Vjb25k

YXJ5LXRpdGxlPkVudmlyb24gUG9sbHV0PC9zZWNvbmRhcnktdGl0bGU+PGFsdC10aXRsZT5FbnZp

cm9ubWVudGFsIHBvbGx1dGlvbjwvYWx0LXRpdGxlPjwvdGl0bGVzPjxwZXJpb2RpY2FsPjxmdWxs

LXRpdGxlPkVudmlyb24gUG9sbHV0PC9mdWxsLXRpdGxlPjxhYmJyLTE+RW52aXJvbm1lbnRhbCBw

b2xsdXRpb248L2FiYnItMT48L3BlcmlvZGljYWw+PGFsdC1wZXJpb2RpY2FsPjxmdWxsLXRpdGxl

PkVudmlyb24gUG9sbHV0PC9mdWxsLXRpdGxlPjxhYmJyLTE+RW52aXJvbm1lbnRhbCBwb2xsdXRp

b248L2FiYnItMT48L2FsdC1wZXJpb2RpY2FsPjxwYWdlcz41NC02NDwvcGFnZXM+PHZvbHVtZT4x

OTM8L3ZvbHVtZT48a2V5d29yZHM+PGtleXdvcmQ+QWVyb3NvbHMvYW5hbHlzaXM8L2tleXdvcmQ+

PGtleXdvcmQ+QWlyIFBvbGx1dGFudHMvKmFuYWx5c2lzPC9rZXl3b3JkPjxrZXl3b3JkPipFbnZp

cm9ubWVudGFsIE1vbml0b3Jpbmc8L2tleXdvcmQ+PGtleXdvcmQ+R2Fzb2xpbmUvYW5hbHlzaXM8

L2tleXdvcmQ+PGtleXdvcmQ+TG9zIEFuZ2VsZXM8L2tleXdvcmQ+PGtleXdvcmQ+UGFydGljdWxh

dGUgTWF0dGVyLyphbmFseXNpczwva2V5d29yZD48a2V5d29yZD5WZWhpY2xlIEVtaXNzaW9ucy8q

YW5hbHlzaXM8L2tleXdvcmQ+PC9rZXl3b3Jkcz48ZGF0ZXM+PHllYXI+MjAxNDwveWVhcj48cHVi

LWRhdGVzPjxkYXRlPk9jdDwvZGF0ZT48L3B1Yi1kYXRlcz48L2RhdGVzPjxpc2JuPjE4NzMtNjQy

NCAoRWxlY3Ryb25pYykmI3hEOzAyNjktNzQ5MSAoTGlua2luZyk8L2lzYm4+PGFjY2Vzc2lvbi1u

dW0+MjUwMDU4ODc8L2FjY2Vzc2lvbi1udW0+PHVybHM+PHJlbGF0ZWQtdXJscz48dXJsPmh0dHA6

Ly93d3cubmNiaS5ubG0ubmloLmdvdi9wdWJtZWQvMjUwMDU4ODc8L3VybD48L3JlbGF0ZWQtdXJs

cz48L3VybHM+PGVsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjEwLjEwMTYvai5lbnZwb2wuMjAxNC4w

Ni4wMTI8L2VsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjwvcmVjb3JkPjwvQ2l0ZT48L0VuZE5vdGU+

AG==

ADDIN EN.CITE PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5IYXNoZW1pbmFzc2FiPC9BdXRob3I+PFllYXI+MjAxNDwv

WWVhcj48UmVjTnVtPjI3NjwvUmVjTnVtPjxEaXNwbGF5VGV4dD48c3R5bGUgZmFjZT0iaXRhbGlj

Ij5bMThdPC9zdHlsZT48L0Rpc3BsYXlUZXh0PjxyZWNvcmQ+PHJlYy1udW1iZXI+Mjc2PC9yZWMt

bnVtYmVyPjxmb3JlaWduLWtleXM+PGtleSBhcHA9IkVOIiBkYi1pZD0ieHRwMHQ1ZnJvMHp2ZDBl

djJmaTV2d2Y5YTJhZHRyMnZ6d3phIj4yNzY8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUg

bmFtZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9y

cz48YXV0aG9yPkhhc2hlbWluYXNzYWIsIFMuPC9hdXRob3I+PGF1dGhvcj5EYWhlciwgTi48L2F1

dGhvcj48YXV0aG9yPk9zdHJvLCBCLiBELjwvYXV0aG9yPjxhdXRob3I+U2lvdXRhcywgQy48L2F1

dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PGF1dGgtYWRkcmVzcz5Vbml2ZXJzaXR5IG9m

IFNvdXRoZXJuIENhbGlmb3JuaWEsIERlcGFydG1lbnQgb2YgQ2l2aWwgYW5kIEVudmlyb25tZW50

YWwgRW5naW5lZXJpbmcsIExvcyBBbmdlbGVzLCBDQSwgVVNBLiYjeEQ7QWlyIFBvbGx1dGlvbiBF

cGlkZW1pb2xvZ3kgU2VjdGlvbiwgT2ZmaWNlIG9mIEVudmlyb25tZW50YWwgSGVhbHRoIEhhemFy

ZCBBc3Nlc3NtZW50LCBTdGF0ZSBvZiBDYWxpZm9ybmlhLCBPYWtsYW5kLCBDQSwgVVNBLiYjeEQ7

VW5pdmVyc2l0eSBvZiBTb3V0aGVybiBDYWxpZm9ybmlhLCBEZXBhcnRtZW50IG9mIENpdmlsIGFu

ZCBFbnZpcm9ubWVudGFsIEVuZ2luZWVyaW5nLCBMb3MgQW5nZWxlcywgQ0EsIFVTQS4gRWxlY3Ry

b25pYyBhZGRyZXNzOiBzaW91dGFzQHVzYy5lZHUuPC9hdXRoLWFkZHJlc3M+PHRpdGxlcz48dGl0

bGU+TG9uZy10ZXJtIHNvdXJjZSBhcHBvcnRpb25tZW50IG9mIGFtYmllbnQgZmluZSBwYXJ0aWN1

bGF0ZSBtYXR0ZXIgKFBNMi41KSBpbiB0aGUgTG9zIEFuZ2VsZXMgQmFzaW46IGEgZm9jdXMgb24g

ZW1pc3Npb25zIHJlZHVjdGlvbiBmcm9tIHZlaGljdWxhciBzb3VyY2VzPC90aXRsZT48c2Vjb25k

YXJ5LXRpdGxlPkVudmlyb24gUG9sbHV0PC9zZWNvbmRhcnktdGl0bGU+PGFsdC10aXRsZT5FbnZp

cm9ubWVudGFsIHBvbGx1dGlvbjwvYWx0LXRpdGxlPjwvdGl0bGVzPjxwZXJpb2RpY2FsPjxmdWxs

LXRpdGxlPkVudmlyb24gUG9sbHV0PC9mdWxsLXRpdGxlPjxhYmJyLTE+RW52aXJvbm1lbnRhbCBw

b2xsdXRpb248L2FiYnItMT48L3BlcmlvZGljYWw+PGFsdC1wZXJpb2RpY2FsPjxmdWxsLXRpdGxl

PkVudmlyb24gUG9sbHV0PC9mdWxsLXRpdGxlPjxhYmJyLTE+RW52aXJvbm1lbnRhbCBwb2xsdXRp

b248L2FiYnItMT48L2FsdC1wZXJpb2RpY2FsPjxwYWdlcz41NC02NDwvcGFnZXM+PHZvbHVtZT4x

OTM8L3ZvbHVtZT48a2V5d29yZHM+PGtleXdvcmQ+QWVyb3NvbHMvYW5hbHlzaXM8L2tleXdvcmQ+

PGtleXdvcmQ+QWlyIFBvbGx1dGFudHMvKmFuYWx5c2lzPC9rZXl3b3JkPjxrZXl3b3JkPipFbnZp

cm9ubWVudGFsIE1vbml0b3Jpbmc8L2tleXdvcmQ+PGtleXdvcmQ+R2Fzb2xpbmUvYW5hbHlzaXM8

L2tleXdvcmQ+PGtleXdvcmQ+TG9zIEFuZ2VsZXM8L2tleXdvcmQ+PGtleXdvcmQ+UGFydGljdWxh

dGUgTWF0dGVyLyphbmFseXNpczwva2V5d29yZD48a2V5d29yZD5WZWhpY2xlIEVtaXNzaW9ucy8q

YW5hbHlzaXM8L2tleXdvcmQ+PC9rZXl3b3Jkcz48ZGF0ZXM+PHllYXI+MjAxNDwveWVhcj48cHVi

LWRhdGVzPjxkYXRlPk9jdDwvZGF0ZT48L3B1Yi1kYXRlcz48L2RhdGVzPjxpc2JuPjE4NzMtNjQy

NCAoRWxlY3Ryb25pYykmI3hEOzAyNjktNzQ5MSAoTGlua2luZyk8L2lzYm4+PGFjY2Vzc2lvbi1u

dW0+MjUwMDU4ODc8L2FjY2Vzc2lvbi1udW0+PHVybHM+PHJlbGF0ZWQtdXJscz48dXJsPmh0dHA6

Ly93d3cubmNiaS5ubG0ubmloLmdvdi9wdWJtZWQvMjUwMDU4ODc8L3VybD48L3JlbGF0ZWQtdXJs

cz48L3VybHM+PGVsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjEwLjEwMTYvai5lbnZwb2wuMjAxNC4w

Ni4wMTI8L2VsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjwvcmVjb3JkPjwvQ2l0ZT48L0VuZE5vdGU+

AG==

ADDIN EN.CITE.DATA [18], Brown et al. ADDIN EN.CITE <EndNote><Cite><Author>Brown</Author><Year>2015</Year><RecNum>440</RecNum><DisplayText><style face="italic">[31]</style></DisplayText><record><rec-number>440</rec-number><foreign-keys><key app="EN" db-id="xtp0t5fro0zvd0ev2fi5vwf9a2adtr2vzwza">440</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Brown, S. G.</author><author>Eberly, S.</author><author>Paatero, P.</author><author>Norris, G.</author></authors></contributors><titles><title>Methods for estimating uncertainty in PMF solutions: Examples with ambient air and water quality dta and guidance on reporting PMF results</title><secondary-title>Sci Total Environ</secondary-title></titles><periodical><full-title>Sci Total Environ</full-title><abbr-1>The Science of the total environment</abbr-1></periodical><pages>626-635</pages><volume>518-519</volume><dates><year>2015</year></dates><urls></urls></record></Cite></EndNote>[31] recommends investigating scaled residuals when this imputation is performed. For missing uncertainties, formula 5.1 and 5.2 from the User Manual of EPA PMF 5.0 were used for observations above and below DL values, respectively, with an error fraction of 10% ADDIN EN.CITE <EndNote><Cite><Author>Norris</Author><Year>2014</Year><RecNum>233</RecNum><DisplayText><style face="italic">[36]</style></DisplayText><record><rec-number>233</rec-number><foreign-keys><key app="EN" db-id="xtp0t5fro0zvd0ev2fi5vwf9a2adtr2vzwza">233</key></foreign-keys><ref-type name="Government Document">46</ref-type><contributors><authors><author>Norris, G. A.</author><author>Duvall, Rachelle M.</author><author>Brown, S. G.</author><author>Bai, S.</author></authors></contributors><titles><title>EPA Positive Matrix Factorization (PMF) 5.0 Fundamentals and User Guide</title></titles><dates><year>2014</year></dates><pub-location>Retrieved from </pub-location><urls><related-urls><url>. Environmental Protection Agency</custom1></record></Cite></EndNote>[36]. (Only the URG 3000N sampler did not have recorded uncertainties.) CSN data for Detroit and Chicago did not have missing DLs. To increase the reliability and representativeness of PMF results, a minimum of 50 observations per species per year was required. Species selected for PMF were informed by previous studies: Na+ and K+ were used preferentially over Na and K given the higher detection frequencies and relevance for air pollution studies ADDIN EN.CITE <EndNote><Cite><Author>Kim</Author><Year>2005</Year><RecNum>1</RecNum><DisplayText><style face="italic">[37]</style></DisplayText><record><rec-number>1</rec-number><foreign-keys><key app="EN" db-id="xtp0t5fro0zvd0ev2fi5vwf9a2adtr2vzwza">1</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Kim, Eugene.</author><author>Hopke, Philip.</author></authors></contributors><titles><title>Identification of PM2.5 sources in mid-atlantic US</title><secondary-title>Waste, Air, and Soil Pollution</secondary-title></titles><periodical><full-title>Waste, Air, and Soil Pollution</full-title></periodical><pages>391 - 421</pages><volume>168</volume><dates><year>2005</year></dates><urls></urls></record></Cite></EndNote>[37], and SO4= rather than S was used as the primary tracer of secondary SO4= (both have been used) PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5LaW08L0F1dGhvcj48WWVhcj4yMDA1PC9ZZWFyPjxSZWNO

dW0+MTwvUmVjTnVtPjxEaXNwbGF5VGV4dD48c3R5bGUgZmFjZT0iaXRhbGljIj5bMTMsIDM3XTwv

c3R5bGU+PC9EaXNwbGF5VGV4dD48cmVjb3JkPjxyZWMtbnVtYmVyPjE8L3JlYy1udW1iZXI+PGZv

cmVpZ24ta2V5cz48a2V5IGFwcD0iRU4iIGRiLWlkPSJ4dHAwdDVmcm8wenZkMGV2MmZpNXZ3Zjlh

MmFkdHIydnp3emEiPjE8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iSm91cm5h

bCBBcnRpY2xlIj4xNzwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPktp

bSwgRXVnZW5lLjwvYXV0aG9yPjxhdXRob3I+SG9wa2UsIFBoaWxpcC48L2F1dGhvcj48L2F1dGhv

cnM+PC9jb250cmlidXRvcnM+PHRpdGxlcz48dGl0bGU+SWRlbnRpZmljYXRpb24gb2YgUE0yLjUg

c291cmNlcyBpbiBtaWQtYXRsYW50aWMgVVM8L3RpdGxlPjxzZWNvbmRhcnktdGl0bGU+V2FzdGUs

IEFpciwgYW5kIFNvaWwgUG9sbHV0aW9uPC9zZWNvbmRhcnktdGl0bGU+PC90aXRsZXM+PHBlcmlv

ZGljYWw+PGZ1bGwtdGl0bGU+V2FzdGUsIEFpciwgYW5kIFNvaWwgUG9sbHV0aW9uPC9mdWxsLXRp

dGxlPjwvcGVyaW9kaWNhbD48cGFnZXM+MzkxIC0gNDIxPC9wYWdlcz48dm9sdW1lPjE2ODwvdm9s

dW1lPjxkYXRlcz48eWVhcj4yMDA1PC95ZWFyPjwvZGF0ZXM+PHVybHM+PC91cmxzPjwvcmVjb3Jk

PjwvQ2l0ZT48Q2l0ZT48QXV0aG9yPkt1bmR1PC9BdXRob3I+PFllYXI+MjAxNDwvWWVhcj48UmVj

TnVtPjc0PC9SZWNOdW0+PHJlY29yZD48cmVjLW51bWJlcj43NDwvcmVjLW51bWJlcj48Zm9yZWln

bi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9Inh0cDB0NWZybzB6dmQwZXYyZmk1dndmOWEyYWR0

cjJ2end6YSI+NzQ8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iSm91cm5hbCBB

cnRpY2xlIj4xNzwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPkt1bmR1

LCBTLjwvYXV0aG9yPjxhdXRob3I+U3RvbmUsIEUuIEEuPC9hdXRob3I+PC9hdXRob3JzPjwvY29u

dHJpYnV0b3JzPjxhdXRoLWFkZHJlc3M+RGVwYXJ0bWVudCBvZiBDaGVtaXN0cnksIFVuaXZlcnNp

dHkgb2YgSW93YSwgSW93YSBDaXR5LCBJQSA1MjI0MiwgVVNBLiBiZXRzeS1zdG9uZUB1aW93YS5l

ZHUuPC9hdXRoLWFkZHJlc3M+PHRpdGxlcz48dGl0bGU+Q29tcG9zaXRpb24gYW5kIHNvdXJjZXMg

b2YgZmluZSBwYXJ0aWN1bGF0ZSBtYXR0ZXIgYWNyb3NzIHVyYmFuIGFuZCBydXJhbCBzaXRlcyBp

biB0aGUgTWlkd2VzdGVybiBVbml0ZWQgU3RhdGVzPC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPkVu

dmlyb24gU2NpIFByb2Nlc3MgSW1wYWN0czwvc2Vjb25kYXJ5LXRpdGxlPjxhbHQtdGl0bGU+RW52

aXJvbm1lbnRhbCBzY2llbmNlLiBQcm9jZXNzZXMgJmFtcDsgaW1wYWN0czwvYWx0LXRpdGxlPjwv

dGl0bGVzPjxwZXJpb2RpY2FsPjxmdWxsLXRpdGxlPkVudmlyb24gU2NpIFByb2Nlc3MgSW1wYWN0

czwvZnVsbC10aXRsZT48YWJici0xPkVudmlyb25tZW50YWwgc2NpZW5jZS4gUHJvY2Vzc2VzICZh

bXA7IGltcGFjdHM8L2FiYnItMT48L3BlcmlvZGljYWw+PGFsdC1wZXJpb2RpY2FsPjxmdWxsLXRp

dGxlPkVudmlyb24gU2NpIFByb2Nlc3MgSW1wYWN0czwvZnVsbC10aXRsZT48YWJici0xPkVudmly

b25tZW50YWwgc2NpZW5jZS4gUHJvY2Vzc2VzICZhbXA7IGltcGFjdHM8L2FiYnItMT48L2FsdC1w

ZXJpb2RpY2FsPjxwYWdlcz4xMzYwLTcwPC9wYWdlcz48dm9sdW1lPjE2PC92b2x1bWU+PG51bWJl

cj42PC9udW1iZXI+PGtleXdvcmRzPjxrZXl3b3JkPkFpciBQb2xsdXRhbnRzLyphbmFseXNpczwv

a2V5d29yZD48a2V5d29yZD5BaXIgUG9sbHV0aW9uL3N0YXRpc3RpY3MgJmFtcDsgbnVtZXJpY2Fs

IGRhdGE8L2tleXdvcmQ+PGtleXdvcmQ+KkVudmlyb25tZW50YWwgTW9uaXRvcmluZzwva2V5d29y

ZD48a2V5d29yZD5NaWR3ZXN0ZXJuIFVuaXRlZCBTdGF0ZXM8L2tleXdvcmQ+PGtleXdvcmQ+UGFy

dGljbGUgU2l6ZTwva2V5d29yZD48a2V5d29yZD5QYXJ0aWN1bGF0ZSBNYXR0ZXIvKmFuYWx5c2lz

PC9rZXl3b3JkPjwva2V5d29yZHM+PGRhdGVzPjx5ZWFyPjIwMTQ8L3llYXI+PHB1Yi1kYXRlcz48

ZGF0ZT5NYXk8L2RhdGU+PC9wdWItZGF0ZXM+PC9kYXRlcz48aXNibj4yMDUwLTc4OTUgKEVsZWN0

cm9uaWMpJiN4RDsyMDUwLTc4ODcgKExpbmtpbmcpPC9pc2JuPjxhY2Nlc3Npb24tbnVtPjI0NzM2

Nzk3PC9hY2Nlc3Npb24tbnVtPjx1cmxzPjxyZWxhdGVkLXVybHM+PHVybD5odHRwOi8vd3d3Lm5j

YmkubmxtLm5paC5nb3YvcHVibWVkLzI0NzM2Nzk3PC91cmw+PC9yZWxhdGVkLXVybHM+PC91cmxz

PjxjdXN0b20yPjQxOTE5MjM8L2N1c3RvbTI+PGVsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjEwLjEw

MzkvYzNlbTAwNzE5ZzwvZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+PC9yZWNvcmQ+PC9DaXRlPjwv

RW5kTm90ZT5=

ADDIN EN.CITE PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5LaW08L0F1dGhvcj48WWVhcj4yMDA1PC9ZZWFyPjxSZWNO

dW0+MTwvUmVjTnVtPjxEaXNwbGF5VGV4dD48c3R5bGUgZmFjZT0iaXRhbGljIj5bMTMsIDM3XTwv

c3R5bGU+PC9EaXNwbGF5VGV4dD48cmVjb3JkPjxyZWMtbnVtYmVyPjE8L3JlYy1udW1iZXI+PGZv

cmVpZ24ta2V5cz48a2V5IGFwcD0iRU4iIGRiLWlkPSJ4dHAwdDVmcm8wenZkMGV2MmZpNXZ3Zjlh

MmFkdHIydnp3emEiPjE8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iSm91cm5h

bCBBcnRpY2xlIj4xNzwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPktp

bSwgRXVnZW5lLjwvYXV0aG9yPjxhdXRob3I+SG9wa2UsIFBoaWxpcC48L2F1dGhvcj48L2F1dGhv

cnM+PC9jb250cmlidXRvcnM+PHRpdGxlcz48dGl0bGU+SWRlbnRpZmljYXRpb24gb2YgUE0yLjUg

c291cmNlcyBpbiBtaWQtYXRsYW50aWMgVVM8L3RpdGxlPjxzZWNvbmRhcnktdGl0bGU+V2FzdGUs

IEFpciwgYW5kIFNvaWwgUG9sbHV0aW9uPC9zZWNvbmRhcnktdGl0bGU+PC90aXRsZXM+PHBlcmlv

ZGljYWw+PGZ1bGwtdGl0bGU+V2FzdGUsIEFpciwgYW5kIFNvaWwgUG9sbHV0aW9uPC9mdWxsLXRp

dGxlPjwvcGVyaW9kaWNhbD48cGFnZXM+MzkxIC0gNDIxPC9wYWdlcz48dm9sdW1lPjE2ODwvdm9s

dW1lPjxkYXRlcz48eWVhcj4yMDA1PC95ZWFyPjwvZGF0ZXM+PHVybHM+PC91cmxzPjwvcmVjb3Jk

PjwvQ2l0ZT48Q2l0ZT48QXV0aG9yPkt1bmR1PC9BdXRob3I+PFllYXI+MjAxNDwvWWVhcj48UmVj

TnVtPjc0PC9SZWNOdW0+PHJlY29yZD48cmVjLW51bWJlcj43NDwvcmVjLW51bWJlcj48Zm9yZWln

bi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9Inh0cDB0NWZybzB6dmQwZXYyZmk1dndmOWEyYWR0

cjJ2end6YSI+NzQ8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iSm91cm5hbCBB

cnRpY2xlIj4xNzwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPkt1bmR1

LCBTLjwvYXV0aG9yPjxhdXRob3I+U3RvbmUsIEUuIEEuPC9hdXRob3I+PC9hdXRob3JzPjwvY29u

dHJpYnV0b3JzPjxhdXRoLWFkZHJlc3M+RGVwYXJ0bWVudCBvZiBDaGVtaXN0cnksIFVuaXZlcnNp

dHkgb2YgSW93YSwgSW93YSBDaXR5LCBJQSA1MjI0MiwgVVNBLiBiZXRzeS1zdG9uZUB1aW93YS5l

ZHUuPC9hdXRoLWFkZHJlc3M+PHRpdGxlcz48dGl0bGU+Q29tcG9zaXRpb24gYW5kIHNvdXJjZXMg

b2YgZmluZSBwYXJ0aWN1bGF0ZSBtYXR0ZXIgYWNyb3NzIHVyYmFuIGFuZCBydXJhbCBzaXRlcyBp

biB0aGUgTWlkd2VzdGVybiBVbml0ZWQgU3RhdGVzPC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPkVu

dmlyb24gU2NpIFByb2Nlc3MgSW1wYWN0czwvc2Vjb25kYXJ5LXRpdGxlPjxhbHQtdGl0bGU+RW52

aXJvbm1lbnRhbCBzY2llbmNlLiBQcm9jZXNzZXMgJmFtcDsgaW1wYWN0czwvYWx0LXRpdGxlPjwv

dGl0bGVzPjxwZXJpb2RpY2FsPjxmdWxsLXRpdGxlPkVudmlyb24gU2NpIFByb2Nlc3MgSW1wYWN0

czwvZnVsbC10aXRsZT48YWJici0xPkVudmlyb25tZW50YWwgc2NpZW5jZS4gUHJvY2Vzc2VzICZh

bXA7IGltcGFjdHM8L2FiYnItMT48L3BlcmlvZGljYWw+PGFsdC1wZXJpb2RpY2FsPjxmdWxsLXRp

dGxlPkVudmlyb24gU2NpIFByb2Nlc3MgSW1wYWN0czwvZnVsbC10aXRsZT48YWJici0xPkVudmly

b25tZW50YWwgc2NpZW5jZS4gUHJvY2Vzc2VzICZhbXA7IGltcGFjdHM8L2FiYnItMT48L2FsdC1w

ZXJpb2RpY2FsPjxwYWdlcz4xMzYwLTcwPC9wYWdlcz48dm9sdW1lPjE2PC92b2x1bWU+PG51bWJl

cj42PC9udW1iZXI+PGtleXdvcmRzPjxrZXl3b3JkPkFpciBQb2xsdXRhbnRzLyphbmFseXNpczwv

a2V5d29yZD48a2V5d29yZD5BaXIgUG9sbHV0aW9uL3N0YXRpc3RpY3MgJmFtcDsgbnVtZXJpY2Fs

IGRhdGE8L2tleXdvcmQ+PGtleXdvcmQ+KkVudmlyb25tZW50YWwgTW9uaXRvcmluZzwva2V5d29y

ZD48a2V5d29yZD5NaWR3ZXN0ZXJuIFVuaXRlZCBTdGF0ZXM8L2tleXdvcmQ+PGtleXdvcmQ+UGFy

dGljbGUgU2l6ZTwva2V5d29yZD48a2V5d29yZD5QYXJ0aWN1bGF0ZSBNYXR0ZXIvKmFuYWx5c2lz

PC9rZXl3b3JkPjwva2V5d29yZHM+PGRhdGVzPjx5ZWFyPjIwMTQ8L3llYXI+PHB1Yi1kYXRlcz48

ZGF0ZT5NYXk8L2RhdGU+PC9wdWItZGF0ZXM+PC9kYXRlcz48aXNibj4yMDUwLTc4OTUgKEVsZWN0

cm9uaWMpJiN4RDsyMDUwLTc4ODcgKExpbmtpbmcpPC9pc2JuPjxhY2Nlc3Npb24tbnVtPjI0NzM2

Nzk3PC9hY2Nlc3Npb24tbnVtPjx1cmxzPjxyZWxhdGVkLXVybHM+PHVybD5odHRwOi8vd3d3Lm5j

YmkubmxtLm5paC5nb3YvcHVibWVkLzI0NzM2Nzk3PC91cmw+PC9yZWxhdGVkLXVybHM+PC91cmxz

PjxjdXN0b20yPjQxOTE5MjM8L2N1c3RvbTI+PGVsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjEwLjEw

MzkvYzNlbTAwNzE5ZzwvZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+PC9yZWNvcmQ+PC9DaXRlPjwv

RW5kTm90ZT5=

ADDIN EN.CITE.DATA [13, 37]. To improve reliability and increase fit, PMF apportionments used observations from the cleaned datasets for which 'reconstructed' and observed PM2.5 concentrations agreed within ±4 ?g/m3. Reconstructed mass was calculated using a simplified stoichiometry and the dominant oxidized forms of measured species (shown in square brackets below) ADDIN EN.CITE <EndNote><Cite><Author>Frank</Author><Year>2014</Year><RecNum>230</RecNum><DisplayText><style face="italic">[38]</style></DisplayText><record><rec-number>230</rec-number><foreign-keys><key app="EN" db-id="xtp0t5fro0zvd0ev2fi5vwf9a2adtr2vzwza">230</key></foreign-keys><ref-type name="Government Document">46</ref-type><contributors><authors><author>Frank, N. H.</author></authors></contributors><titles><title>Calculation of Urban Increments to Support the Air Quality Designations for the 2012 PM2.5 Standards National Ambient Air Quality Standards (NAAQS) (SAN 5706) [Memorandum]. Docket No. EPA-HQ-OAR-2012-0918</title></titles><dates><year>2014</year></dates><urls><related-urls><url>. Environmental Protection Agency</custom1></record></Cite></EndNote>[38]: PM2.5, CM=1.375SO4=+1.29 NO3-+3.73 Si+1.63 Ca+2.42 Fe+1.6 OC+[EC] (1)While agreement might be determined using a multiplicative factor, e.g., within 25%, a concentration band may be more appropriate if errors are primarily additive (rather than multiplicative). The ±4 ?g/m3 band is reasonably narrow, and fewer than 10% of samples exceeded this criterion. In addition, the holiday periods of 31 December through 2 January and the weekends closest to 4 July were excluded due to the use of fireworks that contain large amounts of potassium nitrate and that can cause deviations from the stoichiometric relationship in eq. (1) PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5CdXpjdS1HdXZlbjwvQXV0aG9yPjxZZWFyPjIwMDc8L1ll

YXI+PFJlY051bT44OTwvUmVjTnVtPjxEaXNwbGF5VGV4dD48c3R5bGUgZmFjZT0iaXRhbGljIj5b

OSwgMTUsIDMxXTwvc3R5bGU+PC9EaXNwbGF5VGV4dD48cmVjb3JkPjxyZWMtbnVtYmVyPjg5PC9y

ZWMtbnVtYmVyPjxmb3JlaWduLWtleXM+PGtleSBhcHA9IkVOIiBkYi1pZD0ieHRwMHQ1ZnJvMHp2

ZDBldjJmaTV2d2Y5YTJhZHRyMnZ6d3phIj44OTwva2V5PjwvZm9yZWlnbi1rZXlzPjxyZWYtdHlw

ZSBuYW1lPSJKb3VybmFsIEFydGljbGUiPjE3PC9yZWYtdHlwZT48Y29udHJpYnV0b3JzPjxhdXRo

b3JzPjxhdXRob3I+QnV6Y3UtR3V2ZW4sIEJpcm51cjwvYXV0aG9yPjxhdXRob3I+QnJvd24sIFN0

ZXZlbiBHLjwvYXV0aG9yPjxhdXRob3I+RnJhbmtlbCwgQW5uYTwvYXV0aG9yPjxhdXRob3I+SGFm

bmVyLCBIaWxhcnkgUi48L2F1dGhvcj48YXV0aG9yPlJvYmVydHMsIFBhdWwgVC48L2F1dGhvcj48

L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PHRpdGxlcz48dGl0bGU+QW5hbHlzaXMgYW5kIEFwcG9y

dGlvbm1lbnQgb2YgT3JnYW5pYyBDYXJib24gYW5kIEZpbmUgUGFydGljdWxhdGUgTWF0dGVyIFNv

dXJjZXMgYXQgTXVsdGlwbGUgU2l0ZXMgaW4gdGhlIE1pZHdlc3Rlcm4gVW5pdGVkIFN0YXRlczwv

dGl0bGU+PHNlY29uZGFyeS10aXRsZT5Kb3VybmFsIG9mIHRoZSBBaXIgJmFtcDsgV2FzdGUgTWFu

YWdlbWVudCBBc3NvY2lhdGlvbjwvc2Vjb25kYXJ5LXRpdGxlPjwvdGl0bGVzPjxwZXJpb2RpY2Fs

PjxmdWxsLXRpdGxlPkpvdXJuYWwgb2YgdGhlIEFpciAmYW1wOyBXYXN0ZSBNYW5hZ2VtZW50IEFz

c29jaWF0aW9uPC9mdWxsLXRpdGxlPjwvcGVyaW9kaWNhbD48cGFnZXM+NjA2LTYxOTwvcGFnZXM+

PHZvbHVtZT41Nzwvdm9sdW1lPjxudW1iZXI+NTwvbnVtYmVyPjxkYXRlcz48eWVhcj4yMDA3PC95

ZWFyPjwvZGF0ZXM+PGlzYm4+MTA5Ni0yMjQ3PC9pc2JuPjx1cmxzPjwvdXJscz48ZWxlY3Ryb25p

Yy1yZXNvdXJjZS1udW0+MTAuMzE1NS8xMDQ3LTMyODkuNTcuNS42MDY8L2VsZWN0cm9uaWMtcmVz

b3VyY2UtbnVtPjwvcmVjb3JkPjwvQ2l0ZT48Q2l0ZT48QXV0aG9yPlJpenpvPC9BdXRob3I+PFll

YXI+MjAwNzwvWWVhcj48UmVjTnVtPjUxPC9SZWNOdW0+PHJlY29yZD48cmVjLW51bWJlcj41MTwv

cmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9Inh0cDB0NWZybzB6

dmQwZXYyZmk1dndmOWEyYWR0cjJ2end6YSI+NTE8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5

cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0

aG9ycz48YXV0aG9yPlJpenpvLCBNLjwvYXV0aG9yPjxhdXRob3I+U2NoZWZmLCBQLjwvYXV0aG9y

PjwvYXV0aG9ycz48L2NvbnRyaWJ1dG9ycz48dGl0bGVzPjx0aXRsZT5GaW5lIHBhcnRpY3VsYXRl

IHNvdXJjZSBhcHBvcnRpb25tZW50IHVzaW5nIGRhdGEgZnJvbSB0aGUgVVNFUEEgc3BlY2lhdGlv

biB0cmVuZHMgbmV0d29yayBpbiBDaGljYWdvLCBJbGxpbm9pczogQ29tcGFyaXNvbiBvZiB0d28g

c291cmNlIGFwcG9ydGlvbm1lbnQgbW9kZWxzPC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPkF0bW9z

cGhlcmljIEVudmlyb25tZW50PC9zZWNvbmRhcnktdGl0bGU+PC90aXRsZXM+PHBlcmlvZGljYWw+

PGZ1bGwtdGl0bGU+QXRtb3NwaGVyaWMgRW52aXJvbm1lbnQ8L2Z1bGwtdGl0bGU+PC9wZXJpb2Rp

Y2FsPjxwYWdlcz42Mjc2LTYyODg8L3BhZ2VzPjx2b2x1bWU+NDE8L3ZvbHVtZT48bnVtYmVyPjI5

PC9udW1iZXI+PGRhdGVzPjx5ZWFyPjIwMDc8L3llYXI+PC9kYXRlcz48aXNibj4xMzUyMjMxMDwv

aXNibj48dXJscz48L3VybHM+PGVsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjEwLjEwMTYvai5hdG1v

c2Vudi4yMDA3LjAzLjA1NTwvZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+PC9yZWNvcmQ+PC9DaXRl

PjxDaXRlPjxBdXRob3I+QnJvd248L0F1dGhvcj48WWVhcj4yMDE1PC9ZZWFyPjxSZWNOdW0+NDQw

PC9SZWNOdW0+PHJlY29yZD48cmVjLW51bWJlcj40NDA8L3JlYy1udW1iZXI+PGZvcmVpZ24ta2V5

cz48a2V5IGFwcD0iRU4iIGRiLWlkPSJ4dHAwdDVmcm8wenZkMGV2MmZpNXZ3ZjlhMmFkdHIydnp3

emEiPjQ0MDwva2V5PjwvZm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJKb3VybmFsIEFydGlj

bGUiPjE3PC9yZWYtdHlwZT48Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+QnJvd24sIFMu

IEcuPC9hdXRob3I+PGF1dGhvcj5FYmVybHksIFMuPC9hdXRob3I+PGF1dGhvcj5QYWF0ZXJvLCBQ

LjwvYXV0aG9yPjxhdXRob3I+Tm9ycmlzLCBHLjwvYXV0aG9yPjwvYXV0aG9ycz48L2NvbnRyaWJ1

dG9ycz48dGl0bGVzPjx0aXRsZT5NZXRob2RzIGZvciBlc3RpbWF0aW5nIHVuY2VydGFpbnR5IGlu

IFBNRiBzb2x1dGlvbnM6IEV4YW1wbGVzIHdpdGggYW1iaWVudCBhaXIgYW5kIHdhdGVyIHF1YWxp

dHkgZHRhIGFuZCBndWlkYW5jZSBvbiByZXBvcnRpbmcgUE1GIHJlc3VsdHM8L3RpdGxlPjxzZWNv

bmRhcnktdGl0bGU+U2NpIFRvdGFsIEVudmlyb248L3NlY29uZGFyeS10aXRsZT48L3RpdGxlcz48

cGVyaW9kaWNhbD48ZnVsbC10aXRsZT5TY2kgVG90YWwgRW52aXJvbjwvZnVsbC10aXRsZT48YWJi

ci0xPlRoZSBTY2llbmNlIG9mIHRoZSB0b3RhbCBlbnZpcm9ubWVudDwvYWJici0xPjwvcGVyaW9k

aWNhbD48cGFnZXM+NjI2LTYzNTwvcGFnZXM+PHZvbHVtZT41MTgtNTE5PC92b2x1bWU+PGRhdGVz

Pjx5ZWFyPjIwMTU8L3llYXI+PC9kYXRlcz48dXJscz48L3VybHM+PC9yZWNvcmQ+PC9DaXRlPjwv

RW5kTm90ZT5=

ADDIN EN.CITE PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5CdXpjdS1HdXZlbjwvQXV0aG9yPjxZZWFyPjIwMDc8L1ll

YXI+PFJlY051bT44OTwvUmVjTnVtPjxEaXNwbGF5VGV4dD48c3R5bGUgZmFjZT0iaXRhbGljIj5b

OSwgMTUsIDMxXTwvc3R5bGU+PC9EaXNwbGF5VGV4dD48cmVjb3JkPjxyZWMtbnVtYmVyPjg5PC9y

ZWMtbnVtYmVyPjxmb3JlaWduLWtleXM+PGtleSBhcHA9IkVOIiBkYi1pZD0ieHRwMHQ1ZnJvMHp2

ZDBldjJmaTV2d2Y5YTJhZHRyMnZ6d3phIj44OTwva2V5PjwvZm9yZWlnbi1rZXlzPjxyZWYtdHlw

ZSBuYW1lPSJKb3VybmFsIEFydGljbGUiPjE3PC9yZWYtdHlwZT48Y29udHJpYnV0b3JzPjxhdXRo

b3JzPjxhdXRob3I+QnV6Y3UtR3V2ZW4sIEJpcm51cjwvYXV0aG9yPjxhdXRob3I+QnJvd24sIFN0

ZXZlbiBHLjwvYXV0aG9yPjxhdXRob3I+RnJhbmtlbCwgQW5uYTwvYXV0aG9yPjxhdXRob3I+SGFm

bmVyLCBIaWxhcnkgUi48L2F1dGhvcj48YXV0aG9yPlJvYmVydHMsIFBhdWwgVC48L2F1dGhvcj48

L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PHRpdGxlcz48dGl0bGU+QW5hbHlzaXMgYW5kIEFwcG9y

dGlvbm1lbnQgb2YgT3JnYW5pYyBDYXJib24gYW5kIEZpbmUgUGFydGljdWxhdGUgTWF0dGVyIFNv

dXJjZXMgYXQgTXVsdGlwbGUgU2l0ZXMgaW4gdGhlIE1pZHdlc3Rlcm4gVW5pdGVkIFN0YXRlczwv

dGl0bGU+PHNlY29uZGFyeS10aXRsZT5Kb3VybmFsIG9mIHRoZSBBaXIgJmFtcDsgV2FzdGUgTWFu

YWdlbWVudCBBc3NvY2lhdGlvbjwvc2Vjb25kYXJ5LXRpdGxlPjwvdGl0bGVzPjxwZXJpb2RpY2Fs

PjxmdWxsLXRpdGxlPkpvdXJuYWwgb2YgdGhlIEFpciAmYW1wOyBXYXN0ZSBNYW5hZ2VtZW50IEFz

c29jaWF0aW9uPC9mdWxsLXRpdGxlPjwvcGVyaW9kaWNhbD48cGFnZXM+NjA2LTYxOTwvcGFnZXM+

PHZvbHVtZT41Nzwvdm9sdW1lPjxudW1iZXI+NTwvbnVtYmVyPjxkYXRlcz48eWVhcj4yMDA3PC95

ZWFyPjwvZGF0ZXM+PGlzYm4+MTA5Ni0yMjQ3PC9pc2JuPjx1cmxzPjwvdXJscz48ZWxlY3Ryb25p

Yy1yZXNvdXJjZS1udW0+MTAuMzE1NS8xMDQ3LTMyODkuNTcuNS42MDY8L2VsZWN0cm9uaWMtcmVz

b3VyY2UtbnVtPjwvcmVjb3JkPjwvQ2l0ZT48Q2l0ZT48QXV0aG9yPlJpenpvPC9BdXRob3I+PFll

YXI+MjAwNzwvWWVhcj48UmVjTnVtPjUxPC9SZWNOdW0+PHJlY29yZD48cmVjLW51bWJlcj41MTwv

cmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9Inh0cDB0NWZybzB6

dmQwZXYyZmk1dndmOWEyYWR0cjJ2end6YSI+NTE8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5

cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0

aG9ycz48YXV0aG9yPlJpenpvLCBNLjwvYXV0aG9yPjxhdXRob3I+U2NoZWZmLCBQLjwvYXV0aG9y

PjwvYXV0aG9ycz48L2NvbnRyaWJ1dG9ycz48dGl0bGVzPjx0aXRsZT5GaW5lIHBhcnRpY3VsYXRl

IHNvdXJjZSBhcHBvcnRpb25tZW50IHVzaW5nIGRhdGEgZnJvbSB0aGUgVVNFUEEgc3BlY2lhdGlv

biB0cmVuZHMgbmV0d29yayBpbiBDaGljYWdvLCBJbGxpbm9pczogQ29tcGFyaXNvbiBvZiB0d28g

c291cmNlIGFwcG9ydGlvbm1lbnQgbW9kZWxzPC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPkF0bW9z

cGhlcmljIEVudmlyb25tZW50PC9zZWNvbmRhcnktdGl0bGU+PC90aXRsZXM+PHBlcmlvZGljYWw+

PGZ1bGwtdGl0bGU+QXRtb3NwaGVyaWMgRW52aXJvbm1lbnQ8L2Z1bGwtdGl0bGU+PC9wZXJpb2Rp

Y2FsPjxwYWdlcz42Mjc2LTYyODg8L3BhZ2VzPjx2b2x1bWU+NDE8L3ZvbHVtZT48bnVtYmVyPjI5

PC9udW1iZXI+PGRhdGVzPjx5ZWFyPjIwMDc8L3llYXI+PC9kYXRlcz48aXNibj4xMzUyMjMxMDwv

aXNibj48dXJscz48L3VybHM+PGVsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjEwLjEwMTYvai5hdG1v

c2Vudi4yMDA3LjAzLjA1NTwvZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+PC9yZWNvcmQ+PC9DaXRl

PjxDaXRlPjxBdXRob3I+QnJvd248L0F1dGhvcj48WWVhcj4yMDE1PC9ZZWFyPjxSZWNOdW0+NDQw

PC9SZWNOdW0+PHJlY29yZD48cmVjLW51bWJlcj40NDA8L3JlYy1udW1iZXI+PGZvcmVpZ24ta2V5

cz48a2V5IGFwcD0iRU4iIGRiLWlkPSJ4dHAwdDVmcm8wenZkMGV2MmZpNXZ3ZjlhMmFkdHIydnp3

emEiPjQ0MDwva2V5PjwvZm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJKb3VybmFsIEFydGlj

bGUiPjE3PC9yZWYtdHlwZT48Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+QnJvd24sIFMu

IEcuPC9hdXRob3I+PGF1dGhvcj5FYmVybHksIFMuPC9hdXRob3I+PGF1dGhvcj5QYWF0ZXJvLCBQ

LjwvYXV0aG9yPjxhdXRob3I+Tm9ycmlzLCBHLjwvYXV0aG9yPjwvYXV0aG9ycz48L2NvbnRyaWJ1

dG9ycz48dGl0bGVzPjx0aXRsZT5NZXRob2RzIGZvciBlc3RpbWF0aW5nIHVuY2VydGFpbnR5IGlu

IFBNRiBzb2x1dGlvbnM6IEV4YW1wbGVzIHdpdGggYW1iaWVudCBhaXIgYW5kIHdhdGVyIHF1YWxp

dHkgZHRhIGFuZCBndWlkYW5jZSBvbiByZXBvcnRpbmcgUE1GIHJlc3VsdHM8L3RpdGxlPjxzZWNv

bmRhcnktdGl0bGU+U2NpIFRvdGFsIEVudmlyb248L3NlY29uZGFyeS10aXRsZT48L3RpdGxlcz48

cGVyaW9kaWNhbD48ZnVsbC10aXRsZT5TY2kgVG90YWwgRW52aXJvbjwvZnVsbC10aXRsZT48YWJi

ci0xPlRoZSBTY2llbmNlIG9mIHRoZSB0b3RhbCBlbnZpcm9ubWVudDwvYWJici0xPjwvcGVyaW9k

aWNhbD48cGFnZXM+NjI2LTYzNTwvcGFnZXM+PHZvbHVtZT41MTgtNTE5PC92b2x1bWU+PGRhdGVz

Pjx5ZWFyPjIwMTU8L3llYXI+PC9kYXRlcz48dXJscz48L3VybHM+PC9yZWNvcmQ+PC9DaXRlPjwv

RW5kTm90ZT5=

ADDIN EN.CITE.DATA [9, 15, 31]. PMF 5.0 calculates a signal-to-noise (S/N) ratio for each species, and S/N < 0.5 is considered ‘bad’, 0.5 ≤ S/N < 1 ‘weak’, and S/N ≥ 1 ‘strong’. Weak species are down-weighted in factorization, and bad species are omitted. Additional quality checks included comparisons of elemental and ion concentrations (e.g., S to SO4=, K to K+), and comparison of FRM and non-FRM PM2.5 concentrations. After treatment, the final Detroit dataset had 1422 observations spanning 14 years (2001 to 2014), and the Chicago dataset had 763 observations spanning 9 years (2006 to 2014).Sources were apportioned using Positive Matrix Factorization (US EPA PMF5.0) ADDIN EN.CITE <EndNote><Cite><Author>Norris</Author><Year>2014</Year><RecNum>233</RecNum><DisplayText><style face="italic">[36]</style></DisplayText><record><rec-number>233</rec-number><foreign-keys><key app="EN" db-id="xtp0t5fro0zvd0ev2fi5vwf9a2adtr2vzwza">233</key></foreign-keys><ref-type name="Government Document">46</ref-type><contributors><authors><author>Norris, G. A.</author><author>Duvall, Rachelle M.</author><author>Brown, S. G.</author><author>Bai, S.</author></authors></contributors><titles><title>EPA Positive Matrix Factorization (PMF) 5.0 Fundamentals and User Guide</title></titles><dates><year>2014</year></dates><pub-location>Retrieved from </pub-location><urls><related-urls><url>. Environmental Protection Agency</custom1></record></Cite></EndNote>[36] with PM2.5 as the ‘total' variable (with a designation as 'weak'). Introduced in 1995 ADDIN EN.CITE <EndNote><Cite><Author>Paatero</Author><Year>1994</Year><RecNum>34</RecNum><DisplayText><style face="italic">[39]</style></DisplayText><record><rec-number>34</rec-number><foreign-keys><key app="EN" db-id="xtp0t5fro0zvd0ev2fi5vwf9a2adtr2vzwza">34</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Paatero, P.</author><author>Tapper, U.</author></authors></contributors><titles><title>Positive Matrix Factorization: A Non-Negative Factor Model with Optimal Utilization of Error Estimates of Data Values</title><secondary-title>Environmetrics</secondary-title></titles><periodical><full-title>Environmetrics</full-title><abbr-1>Environmetrics</abbr-1></periodical><pages>111-126</pages><volume>5</volume><dates><year>1994</year></dates><urls></urls></record></Cite></EndNote>[39], PMF apportions sources using the following equation: X=Z C+E, where X = n x m matrix of observed concentrations (?g/m3) values; n = number of observations; m = number of chemical species), Z = n x p matrix of apparent source strengths; p = user-assigned number of factors or source categories; C = p x m matrix of derived source compositions; and E = n x m matrix of random errors ADDIN EN.CITE <EndNote><Cite><Author>Paatero</Author><Year>1994</Year><RecNum>34</RecNum><DisplayText><style face="italic">[39, 40]</style></DisplayText><record><rec-number>34</rec-number><foreign-keys><key app="EN" db-id="xtp0t5fro0zvd0ev2fi5vwf9a2adtr2vzwza">34</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Paatero, P.</author><author>Tapper, U.</author></authors></contributors><titles><title>Positive Matrix Factorization: A Non-Negative Factor Model with Optimal Utilization of Error Estimates of Data Values</title><secondary-title>Environmetrics</secondary-title></titles><periodical><full-title>Environmetrics</full-title><abbr-1>Environmetrics</abbr-1></periodical><pages>111-126</pages><volume>5</volume><dates><year>1994</year></dates><urls></urls></record></Cite><Cite><Author>Antilla</Author><Year>1995</Year><RecNum>8</RecNum><record><rec-number>8</rec-number><foreign-keys><key app="EN" db-id="xtp0t5fro0zvd0ev2fi5vwf9a2adtr2vzwza">8</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Antilla, P.</author><author>Paatero, P.</author><author>Tapper, U.</author><author>Jarvinen, O.</author></authors></contributors><titles><title>Source Identification of Bulk Wet Deposition in Finland by Positive Matrix Factorization</title><secondary-title>Atmospheric Environment</secondary-title></titles><periodical><full-title>Atmospheric Environment</full-title></periodical><pages>1705-1718</pages><volume>29</volume><number>14</number><dates><year>1995</year></dates><urls></urls></record></Cite></EndNote>[39, 40]. Error terms are scaled by estimates of observation-level uncertainty, and Z and C are constrained to be non-negative. X is solved to minimize the sum of squares of weighted residuals, Q= i=1nj=1m Eij2/σij2, where σij = standard deviation of the random errors, which are assumed known. From the solution, the strength and composition of each of p factors can be viewed. Some PMF factor mass values are allowed to go slightly negative ADDIN EN.CITE <EndNote><Cite><Author>Norris</Author><Year>2014</Year><RecNum>233</RecNum><DisplayText><style face="italic">[36]</style></DisplayText><record><rec-number>233</rec-number><foreign-keys><key app="EN" db-id="xtp0t5fro0zvd0ev2fi5vwf9a2adtr2vzwza">233</key></foreign-keys><ref-type name="Government Document">46</ref-type><contributors><authors><author>Norris, G. A.</author><author>Duvall, Rachelle M.</author><author>Brown, S. G.</author><author>Bai, S.</author></authors></contributors><titles><title>EPA Positive Matrix Factorization (PMF) 5.0 Fundamentals and User Guide</title></titles><dates><year>2014</year></dates><pub-location>Retrieved from </pub-location><urls><related-urls><url>. Environmental Protection Agency</custom1></record></Cite></EndNote>[36], so to maintain the property of each row-normalized PMF sample summing to 1 (critical for assessing factor fractional contribution trends); these slightly negative values were not censored in trend analyses. (At both cities, fewer than 15% of final factors were negative.)A range of “additional modeling uncertainties” (e.g., 0, 5, and 10%) were tested using features in PMF5.0. Selection of the number of factors and uncertainty additions depends on prior knowledge of potential sources, source-receptor relationships, and the stability of results ADDIN EN.CITE <EndNote><Cite><Author>Antilla</Author><Year>1995</Year><RecNum>8</RecNum><DisplayText><style face="italic">[40]</style></DisplayText><record><rec-number>8</rec-number><foreign-keys><key app="EN" db-id="xtp0t5fro0zvd0ev2fi5vwf9a2adtr2vzwza">8</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Antilla, P.</author><author>Paatero, P.</author><author>Tapper, U.</author><author>Jarvinen, O.</author></authors></contributors><titles><title>Source Identification of Bulk Wet Deposition in Finland by Positive Matrix Factorization</title><secondary-title>Atmospheric Environment</secondary-title></titles><periodical><full-title>Atmospheric Environment</full-title></periodical><pages>1705-1718</pages><volume>29</volume><number>14</number><dates><year>1995</year></dates><urls></urls></record></Cite></EndNote>[40]. The initial models included 6 to 10 factors. A framework for choosing the ‘final’ model used a series of checks examining the distribution of species within each factor: separation of K+ and OC; the vehicle factor should contain large fractions of total OC and EC mass and minimal amounts of other species; a crustal factor (Si, Ti, Ca, Al) should emerge; and metals (Ni, Cr, Fe, Mn) should be grouped together. Finally, using PMF 5.0's bootstrapping capability to estimate uncertainties, realized factors should be robust and handle additional model uncertainty.3 Results3.1 Emission inventory trendsTable 1 summarizes PM2.5 emissions reported in the 2002 through 2011 NEI data. The NEI source categories, data and emission factors have shifted over the years, resulting in large changes and some difficulty in evaluating trends. The methodological changes can greatly affect results and limit its usefulness for trend analyses, at least for certain source types. For example, fugitive emissions of PM2.5 from paved roads, unpaved roads, and construction sources are calculated by applying a factor to modeled PM10 emissions ADDIN EN.CITE <EndNote><Cite ExcludeYear="1"><Author>Pace</Author><RecNum>260</RecNum><DisplayText><style face="italic">[41]</style></DisplayText><record><rec-number>260</rec-number><foreign-keys><key app="EN" db-id="xtp0t5fro0zvd0ev2fi5vwf9a2adtr2vzwza">260</key></foreign-keys><ref-type name="Conference Proceedings">10</ref-type><contributors><authors><author>Pace, Thompson</author></authors></contributors><titles><title>Examination of the Multiplier Used to Estimate PM2.5 Fugitive Dust Emissions from PM10</title><secondary-title>14th International Emission Inventory Conference &quot;Transforming Emission Inventories - Meeting Future Challenges Today&quot;</secondary-title></titles><dates><year>2005</year></dates><pub-location>Las Vegas, Nevada, USA</pub-location><urls><related-urls><url>;[41], which itself is estimated using emission factors, activity estimates, and other data. These factors have been updated several times since 2002 ADDIN EN.CITE <EndNote><Cite ExcludeAuth="1"><Year>2014</Year><RecNum>264</RecNum><DisplayText><style face="italic">[23, 42]</style></DisplayText><record><rec-number>264</rec-number><foreign-keys><key app="EN" db-id="xtp0t5fro0zvd0ev2fi5vwf9a2adtr2vzwza">264</key></foreign-keys><ref-type name="Government Document">46</ref-type><contributors></contributors><titles><title>AP 42 Update 2001 to Present - Summary of Changes to Sections</title></titles><dates><year>2014</year></dates><urls><related-urls><url>. Environmental Protection Agency</custom1></record></Cite><Cite ExcludeAuth="1"><Year>2014</Year><RecNum>81</RecNum><record><rec-number>81</rec-number><foreign-keys><key app="EN" db-id="xtp0t5fro0zvd0ev2fi5vwf9a2adtr2vzwza">81</key></foreign-keys><ref-type name="Online Database">45</ref-type><contributors></contributors><titles><title>National Emission Inventories (NEI) and Technical Support Documents</title></titles><dates><year>2014</year></dates><publisher>U.S. Environmental Protection Agency</publisher><urls><related-urls><url>;[23, 42], which partially explains the large changes in construction dust emissions. Uncertainties in the multiplicative factor used to generate PM2.5 emissions from PM10 emissions have been discussed at length by Pace ADDIN EN.CITE <EndNote><Cite ExcludeAuth="1" ExcludeYear="1"><RecNum>260</RecNum><DisplayText><style face="italic">[41]</style></DisplayText><record><rec-number>260</rec-number><foreign-keys><key app="EN" db-id="xtp0t5fro0zvd0ev2fi5vwf9a2adtr2vzwza">260</key></foreign-keys><ref-type name="Conference Proceedings">10</ref-type><contributors><authors><author>Pace, Thompson</author></authors></contributors><titles><title>Examination of the Multiplier Used to Estimate PM2.5 Fugitive Dust Emissions from PM10</title><secondary-title>14th International Emission Inventory Conference &quot;Transforming Emission Inventories - Meeting Future Challenges Today&quot;</secondary-title></titles><dates><year>2005</year></dates><pub-location>Las Vegas, Nevada, USA</pub-location><urls><related-urls><url>;[41]. As a second example, on-road emissions were calculated over the study period using several models, i.e., the National Mobile Inventory Model (NMIM) running MOBILE6 in 2002, 2005, and version 1 of the 2008 NEI; and then the Motor Vehicle Emission Simulator (MOVES) in versions 2 and 3 of NEI 2008 and 2011. (For non-road mobile emissions, NMIM is still used ADDIN EN.CITE <EndNote><Cite ExcludeAuth="1"><Year>2014</Year><RecNum>81</RecNum><DisplayText><style face="italic">[23]</style></DisplayText><record><rec-number>81</rec-number><foreign-keys><key app="EN" db-id="xtp0t5fro0zvd0ev2fi5vwf9a2adtr2vzwza">81</key></foreign-keys><ref-type name="Online Database">45</ref-type><contributors></contributors><titles><title>National Emission Inventories (NEI) and Technical Support Documents</title></titles><dates><year>2014</year></dates><publisher>U.S. Environmental Protection Agency</publisher><urls><related-urls><url>;[23].) For mobile sources, important uncertainties include the availability and accuracy of the data providing on-road and off-road gasoline and diesel fuel consumption, the age and composition of the fleet, and the emission factors ADDIN EN.CITE <EndNote><Cite><Author>Dallmann</Author><Year>2010</Year><RecNum>243</RecNum><DisplayText><style face="italic">[43]</style></DisplayText><record><rec-number>243</rec-number><foreign-keys><key app="EN" db-id="xtp0t5fro0zvd0ev2fi5vwf9a2adtr2vzwza">243</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Dallmann, Timothy R.</author><author>Harley, Robert A.</author></authors></contributors><titles><title>Evaluation of mobile source emission trends in the United States</title><secondary-title>Journal of Geophysical Research</secondary-title></titles><periodical><full-title>Journal of Geophysical Research</full-title></periodical><volume>115</volume><number>D14</number><dates><year>2010</year></dates><isbn>0148-0227</isbn><urls></urls><electronic-resource-num>10.1029/2010jd013862</electronic-resource-num></record></Cite></EndNote>[43]. In addition, not all data in the inventory is updated each period, e.g., the 2005 non-point emissions mostly used the 2002 NEI estimates ADDIN EN.CITE <EndNote><Cite ExcludeYear="1"><RecNum>253</RecNum><DisplayText><style face="italic">[44]</style></DisplayText><record><rec-number>253</rec-number><foreign-keys><key app="EN" db-id="xtp0t5fro0zvd0ev2fi5vwf9a2adtr2vzwza">253</key></foreign-keys><ref-type name="Web Page">12</ref-type><contributors></contributors><titles><title>2005 National Emission Inventory</title></titles><number>Accessed on 3/22/2015</number><dates></dates><publisher>U.S. Environmental Protection Agency</publisher><urls><related-urls><url>;[44]. Uncertainties in the NEI data also limit many comparisons. With these caveats, we discuss emission trends in the two cities.Over the study period in Wayne County (encompassing Detroit), NEI point source emissions decreased from 5,364 to 1,610 tons/year, non-road mobile sources decreased from 855 to 493 tons/year, and on-road mobile emissions (mostly diesel exhaust) fluctuated from a low of 916 (2005) to a high of 2,110 tons/year (2008). On-road mobile PM2.5 exhaust emissions increased slightly over the study period: both gasoline and diesel vehicle exhaust emissions dropped in 2005, but then nearly doubled in 2008. Non-point source emissions (excluding mobile sources) also fluctuated, from 1,682 tons/year (2002) to 5,782 tons/year (2008), and of the sources in this category, construction dust had the greatest changes, increasing 25-fold from 2005 to 2008 (to 350 tons/year), then decreasing by the same amount in 2011. Other non-point sources, primarily residential wood combustion, commercial cooking and various industrial processes (550, 450 and 586 tons/year in 2011, respectively), collectively represent the largest fraction of PM2.5 emissions in the inventory (45% in 2011). These non-point emissions had large changes from 2005 to 2011, e.g., residential wood combustion increased from 69 (2005) to 1,649 tons/year (2008). The large (over 3-fold) increase in non-point source emissions between 2005 and 2008 was due mostly to updated estimates of fugitive dust. Emission trends for Cook County (including Chicago) reflect those in Wayne County with several exceptions. First, point source emissions stayed fairly constant (2,390 to 2,510 tons/year, excluding much higher emissions in 2005), compared to the large decreases in Wayne County. Second, Cook County had very high emissions of construction dust (up to 6,351 tons/year, 31% of total PM2.5 in 2011), possibly resulting from construction activities (including a number of high-rise buildings), high wind speeds that increase entrainment ADDIN EN.CITE <EndNote><Cite><Author>Schmeling</Author><Year>2003</Year><RecNum>271</RecNum><DisplayText><style face="italic">[45]</style></DisplayText><record><rec-number>271</rec-number><foreign-keys><key app="EN" db-id="xtp0t5fro0zvd0ev2fi5vwf9a2adtr2vzwza">271</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Schmeling, Martina</author></authors></contributors><titles><title>Seasonal variations in diurnal concentrations of trace elements in atmospheric aerosols in Chicago</title><secondary-title>Analytica Chimica Acta</secondary-title></titles><periodical><full-title>Analytica Chimica Acta</full-title></periodical><pages>315-323</pages><volume>496</volume><number>1-2</number><dates><year>2003</year></dates><isbn>00032670</isbn><urls></urls><electronic-resource-num>10.1016/j.aca.2002.11.001</electronic-resource-num></record></Cite></EndNote>[45], and changes in the calculation methods (noted above). As in Wayne County, non-point sources exhibited an over 3-fold increase from 2005 to 2008, and on-road mobile gasoline and diesel exhaust emissions dropped in 2005 but then approximately doubled in 2008. Non-road mobile sources steadily decreased to 7% of total PM2.5 emissions in paring the two cities, mobile on-road PM2.5 emissions were constant in Detroit (1,126 to 1,188 tons/year) and increased in Chicago (1,782 to 2,163 tons/year in Cook County) over the study period. On-road mobile sources represented 10 to 17% of total PM2.5 emissions (depending on year and city). On an area basis, however, mobile emissions in the two cities were similar, i.e., 0.75 and 0.88 tons/year/km2 in Wayne and Cook Counties, respectively (2011 data). On-road emissions were dominated by heavy-duty diesel vehicle exhaust (comprising 61% of emissions in this category in 2011), followed by light-duty gasoline vehicle exhaust (28%). Non-road mobile source emission rates were also 1.5 to 2 times higher in Cook County, but similar on an areal basis, and the largest source in both cities was exhaust from off-road diesel construction vehicles. Diesel railroad emissions in Wayne Country were small (29 tons/year in 2002-5, dropping to 0.5 tons/year in 2008-11), compared to initially much higher levels in Cook County (555 tons/year in 2002-5, but these emissions also plummeted to only 2.8 tons/year in 2008-11). These differences may reflect the higher rail activity in Chicago, effects of controls imposed by the 2004 rules for heavy duty diesel vehicles ADDIN EN.CITE <EndNote><Cite ExcludeAuth="1" ExcludeYear="1"><RecNum>226</RecNum><DisplayText><style face="italic">[46]</style></DisplayText><record><rec-number>226</rec-number><foreign-keys><key app="EN" db-id="xtp0t5fro0zvd0ev2fi5vwf9a2adtr2vzwza">226</key></foreign-keys><ref-type name="Government Document">46</ref-type><contributors></contributors><titles><title>Clean Air Nonroad Diesel Rule</title></titles><dates><year>2004</year></dates><urls><related-urls><url>. Environmental Protection Agency</custom1></record></Cite></EndNote>[46], the 2008 rules for locomotives ADDIN EN.CITE <EndNote><Cite ExcludeAuth="1"><Year>2014</Year><RecNum>265</RecNum><DisplayText><style face="italic">[47]</style></DisplayText><record><rec-number>265</rec-number><foreign-keys><key app="EN" db-id="xtp0t5fro0zvd0ev2fi5vwf9a2adtr2vzwza">265</key></foreign-keys><ref-type name="Government Document">46</ref-type><contributors></contributors><titles><title>Locomotives</title></titles><dates><year>2014</year></dates><publisher>US Environmental Protection Agency</publisher><urls><related-urls><url>. Environmental Protection Agency</custom1><access-date>Accessed on 3/25/2015</access-date></record></Cite></EndNote>[47], and other fleet and emission factor changes. The large uncertainties in nonpoint emissions, the changing methodology in mobile source emissions, and potentially other issues in the emissions inventory data can severely limit trend analyses of the emissions data. Still, several broad trends are apparent. In 2011, on-road emissions exceeded non-road mobile emissions in both cities, and the total mobile emissions matched (Detroit) or exceeded (Chicago) point source emissions. These data suggest several factors that may have affected emissions. In Detroit, the steady decline in point source emissions can be attributed to cleaner fuels (natural gas has replaced considerable coal), updated emission controls on some facilities, and reduced activity in automobile manufacturing and other industries, witnessed by the shuttering of businesses and the continued exodus of a large fraction of the population ADDIN EN.CITE <EndNote><Cite ExcludeAuth="1"><Year>2015</Year><RecNum>194</RecNum><DisplayText><style face="italic">[22]</style></DisplayText><record><rec-number>194</rec-number><foreign-keys><key app="EN" db-id="xtp0t5fro0zvd0ev2fi5vwf9a2adtr2vzwza">194</key></foreign-keys><ref-type name="Web Page">12</ref-type><contributors><authors><author> </author></authors></contributors><titles><title>State &amp; County QuickFacts</title></titles><number>Accessed on 2/26/2015</number><dates><year>2015</year></dates><publisher>U.S. Department of Commerce</publisher><urls><related-urls><url>;[22], particularly during the 2008-9 recession. In Chicago, industrial and commercial activity is more diversified (e.g., manufacturing, publishing, finance/insurance, food processing, transport/distribution), the population has been more stable, and the recession’s impact on local emitters was likely smaller (e.g., the largest local PM2.5 source, a wet corn mill at Corn Products International, likely responds less to economic fluctuations than vehicle manufacturing). Estimates of traffic activity in both cities showed only small changes, e.g., vehicle miles traveled (VMT) in Detroit decreased by 2% since 2004 ADDIN EN.CITE <EndNote><Cite ExcludeAuth="1"><Year>2013</Year><RecNum>278</RecNum><DisplayText><style face="italic">[48]</style></DisplayText><record><rec-number>278</rec-number><foreign-keys><key app="EN" db-id="xtp0t5fro0zvd0ev2fi5vwf9a2adtr2vzwza">278</key></foreign-keys><ref-type name="Report">27</ref-type><contributors></contributors><titles><title>Michigan Highway Performance Monitoring System (HPMS)-NFC</title></titles><dates><year>2013</year></dates><publisher>Michigan Department of Transportation</publisher><urls><related-urls><url>;[48], and Chicago did not have a consistent trend ADDIN EN.CITE <EndNote><Cite><Author>Rodriguez</Author><Year>2011</Year><RecNum>277</RecNum><DisplayText><style face="italic">[49]</style></DisplayText><record><rec-number>277</rec-number><foreign-keys><key app="EN" db-id="xtp0t5fro0zvd0ev2fi5vwf9a2adtr2vzwza">277</key></foreign-keys><ref-type name="Report">27</ref-type><contributors><authors><author>Rodriguez, Jose</author></authors></contributors><titles><title>Vehicle Miles Traveled on Expressways in the Chicago Region Recent Trends - 2011 Update</title></titles><dates><year>2011</year></dates><publisher>Chicago Metropolitan Agency for Planning</publisher><urls><related-urls><url>;[49]. In both cities, the switch to low-sulfur diesel fuel in combination with introduction of particle traps have reduced diesel exhaust emissions, although this may be offset by the growth in the number of trucks, based on state-level data. For comparison, we investigated recent regional or national apportionment studies that analyzed NEI data. Using NEI data from 2002 through 2011 and predefined source profiles in a chemical mass balance (CMB) model in the southeast US, point source emissions showed large decreases, while mobile source emissions showed comparable or smaller decreases ADDIN EN.CITE <EndNote><Cite><Author>Blanchard</Author><Year>2013</Year><RecNum>313</RecNum><DisplayText><style face="italic">[50]</style></DisplayText><record><rec-number>313</rec-number><foreign-keys><key app="EN" db-id="xtp0t5fro0zvd0ev2fi5vwf9a2adtr2vzwza">313</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Blanchard, C. L.</author><author>Tanenbaum, S.</author><author>Hidy, G. M.</author></authors></contributors><auth-address>Envair, 526 Cornell Avenue, Albany, California 94706, United States.</auth-address><titles><title>Source attribution of air pollutant concentrations and trends in the southeastern aerosol research and characterization (SEARCH) network</title><secondary-title>Environ Sci Technol</secondary-title><alt-title>Environmental science &amp; technology</alt-title></titles><periodical><full-title>Environ Sci Technol</full-title><abbr-1>Environmental science &amp; technology</abbr-1></periodical><alt-periodical><full-title>Environ Sci Technol</full-title><abbr-1>Environmental science &amp; technology</abbr-1></alt-periodical><pages>13536-45</pages><volume>47</volume><number>23</number><dates><year>2013</year><pub-dates><date>Dec 3</date></pub-dates></dates><isbn>1520-5851 (Electronic)&#xD;0013-936X (Linking)</isbn><accession-num>24180677</accession-num><urls><related-urls><url>;[50]. The largest sources identified by a Bayesian source apportionment model, which used CSN data in Boston and Phoenix from 2000 onwards, NEI 2002 data, and profiles from the SPECIATE database, were coal and oil combustion, vegetative burning, road dust, and vehicles ADDIN EN.CITE <EndNote><Cite><Author>Hackstadt</Author><Year>2014</Year><RecNum>314</RecNum><DisplayText><style face="italic">[51]</style></DisplayText><record><rec-number>314</rec-number><foreign-keys><key app="EN" db-id="xtp0t5fro0zvd0ev2fi5vwf9a2adtr2vzwza">314</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Hackstadt, A. J.</author><author>Peng, R. D.</author></authors></contributors><auth-address>Biostatistics Department, Johns Hopkins University, Baltimore, USA.</auth-address><titles><title>A Bayesian Multivariate Receptor Model for Estimating Source Contributions to Particulate Matter Pollution using National Databases</title><secondary-title>Environmetrics</secondary-title><alt-title>Environmetrics</alt-title></titles><periodical><full-title>Environmetrics</full-title><abbr-1>Environmetrics</abbr-1></periodical><alt-periodical><full-title>Environmetrics</full-title><abbr-1>Environmetrics</abbr-1></alt-periodical><pages>513-527</pages><volume>25</volume><number>7</number><dates><year>2014</year><pub-dates><date>Nov 1</date></pub-dates></dates><isbn>1180-4009 (Print)&#xD;1099-095X (Linking)</isbn><accession-num>25309119</accession-num><urls><related-urls><url>;[51]. A hybrid receptor-chemical transport model (CTM) using projected NEI 2002 data in six major US cities indicated that coal combustion and on-road gasoline emissions were the largest sources of primary and secondary PM2.5 ADDIN EN.CITE <EndNote><Cite><Author>Hu</Author><Year>2014</Year><RecNum>312</RecNum><DisplayText><style face="italic">[52]</style></DisplayText><record><rec-number>312</rec-number><foreign-keys><key app="EN" db-id="xtp0t5fro0zvd0ev2fi5vwf9a2adtr2vzwza">312</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Hu, Y.</author><author>Balachandran, S.</author><author>Pachon, J. E.</author><author>Baek, J.</author><author>Ivey, C.</author><author>Holmes, H.</author><author>Odman, M. T.</author><author>Mulholland, J. A.</author><author>Russell, A. G.</author></authors></contributors><titles><title>Fine particulate matter source apportionment using a hybrid chemical transport and receptor model approach</title><secondary-title>Atmospheric Chemistry and Physics</secondary-title></titles><periodical><full-title>Atmospheric Chemistry and Physics</full-title></periodical><pages>5415-5431</pages><volume>14</volume><number>11</number><dates><year>2014</year></dates><isbn>1680-7324</isbn><urls></urls><electronic-resource-num>10.5194/acp-14-5415-2014</electronic-resource-num></record></Cite></EndNote>[52]. Using fuel-based estimates from on- and non-road mobile sources in California, a range of vehicle types showed decreases in emissions and the growing contribution of non-road mobile sources relative to on-road sources ADDIN EN.CITE <EndNote><Cite><Author>McDonald</Author><Year>2015</Year><RecNum>311</RecNum><DisplayText><style face="italic">[53]</style></DisplayText><record><rec-number>311</rec-number><foreign-keys><key app="EN" db-id="xtp0t5fro0zvd0ev2fi5vwf9a2adtr2vzwza">311</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>McDonald, B. C.</author><author>Goldstein, A. H.</author><author>Harley, R. A.</author></authors></contributors><titles><title>Long-term trends in california mobile source emissions and ambient concentrations of black carbon and organic aerosol</title><secondary-title>Environ Sci Technol</secondary-title><alt-title>Environmental science &amp; technology</alt-title></titles><periodical><full-title>Environ Sci Technol</full-title><abbr-1>Environmental science &amp; technology</abbr-1></periodical><alt-periodical><full-title>Environ Sci Technol</full-title><abbr-1>Environmental science &amp; technology</abbr-1></alt-periodical><pages>5178-88</pages><volume>49</volume><number>8</number><dates><year>2015</year><pub-dates><date>Apr 21</date></pub-dates></dates><isbn>1520-5851 (Electronic)&#xD;0013-936X (Linking)</isbn><accession-num>25793355</accession-num><urls><related-urls><url>;[53]. Although these earlier studies have some similarities to the present study, they neither compared NEI data with CSN data and PMF results over the same period nor investigated long-term trends from mobile sources in the Midwest, the focus of this work. Lastly, we note that year-to-year emissions of other criteria pollutants (SO2, CO, NOx) tend to be more stable than PM2.5, probably because the underlying data (e.g., emission and activity factors) are more robust and less subject to large methodological changes. 3.2 Concentration trendsTable 2 summarizes annual and seasonal ambient concentrations in the two cities, including test results showing differences between year-blocks. (The supplemental information contains expanded versions of this table.) Several PM2.5 constituents show considerable seasonal variation, e.g., NO3- levels tended to be highest in winter and fall, and S and SO4= were highest in summer, thus, seasonal analyses are needed to understand trends. In Detroit, concentrations of PM2.5, NH4, NO3-, SO4= and many other species changed significantly between year-blocks (p <0.05 for KW and MW tests); in contrast, changes in EC and usually OC concentrations were not statistically significant. Comparing the 2006-2009 and 2013-2015 periods, for example, median SO4= concentrations fell 33% (from 2.36 to 1.57 ?g/m3), while median EC (URG sampler) levels were unchanged (0.32 and 0.33 ?g/m3). Most species decreased less rapidly than SO4=, e.g., median PM2.5 concentrations decreased only slightly (10.9 to 10.6 ?g/m3), although 90th percentile PM2.5 levels fell from 23.4 to 17.5 ?g/m3. Seasonal statistics are similar. In Chicago, concentrations were more stable, e.g., only NH+ and SO4= changed annually and in each season, and PM2.5, NO3- and S concentrations varied annually and in winter and fall seasons. Concentrations tended to decrease from 2006-2009 to 2010-2013, however, levels after 2013 sometimes increased. Again, EC and OC showed smaller and fewer significant differences compared to the other species. The instrument switch in spring 2010 likely dampened EC and OC trends.Across the two cities, QR results showed that 50th and 90th percentile concentrations of PM2.5 and many of the major species significantly decreased over the study period (Figures 2 and 3). In Detroit, median concentrations of PM2.5 fell by 3.6 %/yr, and seasonal decreases from 2.7 (winter) to 4.9 (spring) %/yr. At the 90th percentile, PM2.5 concentrations declined slightly faster with annual levels falling by 4.9 %/yr and seasonal decreases from 3.5 (winter) to 5.6 (summer) %/yr. Annual and seasonal trends of NH4+ and NO3- (at both percentiles) were nearly identical, e.g., median levels decreased by 7.0 and 5.5 %/yr overall, and declines were fastest in spring (8.6 and 8.2 %/yr) and slowest in winter (5.4 and 3.6 %/yr); 90th percentile concentrations decreased fastest in summer (9.5 and 8.8 %/yr) and slowest in winter (3.4 and 2.1 %/yr). Unsurprisingly, SO4= and S trends were nearly identical, e.g., median concentrations decreased by 5.8 and 4.9 %/yr overall, and changes were the smallest in winter (4.0 and 2.9 %/yr) and similar in other seasons (4.8 to 5.9 %/yr); 90th percentile levels fell fastest in fall (9.2 and 8.9 %/yr) and slowest in winter (3.6 and 2.8 %/yr). QR results for the two types of EC measurements differed, e.g., ECMET levels did not change at annual and seasonal levels other than a 2.7 %/yr decrease seen in the median summer levels, while ECURG decreased by 5.0 and 5.8 %/yr at median and 90th percentile levels, respectively, largely due to decreases in fall and spring, respectively. OCMET and OCURG also showed differences, e.g., median OCMET levels decreased by 6.5 %/yr on an annual level and from 4.6 (summer) to 8.5 (fall) %/yr on a seasonal basis; OCURG did not show significant changes in any season or percentile. Overall, the seasonal patterns of PM2.5, NH4+ and NO3- were similar. The shorter time series of EC and OC available for each instrument may have obscured trends. In the following PMF application, a complete record of adjusted EC and OC concentrations is used to derive long-term trends. Chicago showed fewer trends that were statistically significant, as well as less consistency across related species (Figure 3). Median and 90th percentile levels of PM2.5 dropped by 3.2 and 4.1 %/yr, respectively, and summer and fall changes at the 90th percentile were significant (7.6 and 5.3 %/yr). Decreases in median levels of NH4+ (8.6 %/yr) were slightly larger than changes in Detroit, and decreases in summer and fall were particularly rapid (13.5 and 14.2 %/yr). For NO3-, statistically significant decreases were only seen in fall (median and 90th percentile) and winter (90th percentile), and NO3- and NH4+ changes were not correlated, unlike in Detroit. SO4= and S trends in Chicago also differed from those in Detroit: the largest decreases occur in summer (10.0 and 7.3 %/yr for medians), and the smallest in both winter and spring. (Detroit's largest changes for SO4= and S were in fall and the smallest in winter.) EC and OC trends in Chicago were less pronounced and few attained statistical significance, however, there were some similarities in EC trends with patterns observed in Detroit. Median levels of ECMET decreased greatly in summer (15.2 %/yr); and both median and 90th percentile levels of ECURG fell significantly (3.6 and 5.1 %/yr). Seasonal concentrations of OCMET fluctuated (both increased and decreased) across the study period, but changes were not statistically significant. Since only three years of data (2006 to early 2010) were available for the Chicago ECMET and OCMET measurements, trends for these variables are not reliable. Median and 90th percentile concentrations of OCURG decreased (1.9 and 3.9 %/yr). Overall, PM2.5 concentrations in Chicago and Detroit decreased at similar rates, but few of the major constituents in Chicago showed seasonal trends that were significant or consistent with Detroit's. Many of the major species (e.g., NH4+, NO3-, SO4= and S) had greater changes across the study period in summer and fall when concentrations were higher, as compared to winter when concentrations were often lower. In Detroit, trends in annual median NO3- and NH4+ concentrations were driven more by changes in spring and less by changes in winter; peak concentrations were driven more by changes in summer peaks and less (again) by changes in winter peaks. Similarly, changes in annual median SO4= and S concentrations were driven less by changes in winter; changes in peak SO4= and S were also highest in summer and fall. Trends in median and peak PM2.5 concentrations most resembled patterns for the nitrogen components, which suggests that in Detroit changes in NO3- exerted a greater influence on PM2.5 levels than SO4=. This result is unexpected since NO3- and NH4+ comprise a smaller PM2.5 fraction than OC and SO4=, however, this analysis does not consider a mass balance (e.g., reconstructed mass) or account for correlated species and source contributions (as described in the PMF modeling following). Trends in Chicago have some similarities, but also notable differences: trends in peak PM2.5 concentrations resembled patterns for SO4= rather than NO3-; reductions in SO4= and S in summer and fall were the highest among seasons, and only peak PM2.5 trends in summer and fall were statistically significant. This pattern also conforms to the KW and MW test results, and suggests that PM2.5 levels in Chicago aligned more with changes in SO4= than NO3-.Both regional and local sources influence concentration trends. Secondary regional pollutants are important constituents of PM2.5 in the Midwest, and much of the SO4= in the region results from long range transport from large coal-fired boilers and power plants. Many of these facilities have reduced emissions of precursor SO2 in recent decades by the addition of scrubbers and fuel switching. In cases, such changes have not occurred for the generally smaller and often older coal-fired facilities located in cities, a result of space constraints, costs and other issues. NO3-, another secondary pollutant from precursor NO and NO2 emissions (largely from mobile sources and power plants), often has the highest levels in winter and spring when O3 concentrations are low ADDIN EN.CITE <EndNote><Cite><Author>Parrish</Author><Year>1991</Year><RecNum>124</RecNum><DisplayText><style face="italic">[54]</style></DisplayText><record><rec-number>124</rec-number><foreign-keys><key app="EN" db-id="xtp0t5fro0zvd0ev2fi5vwf9a2adtr2vzwza">124</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Parrish, DD</author><author>Trainer, M</author><author>Buhr, MP</author><author>Watkins, BA</author><author>Fehsenfeld, FC</author></authors></contributors><titles><title>Carbon Monoxide Concentrations and their relation to concentrations of Total Reactive Oxidized Nitrogen at Two Rural US Sites</title><secondary-title>Journal of Geophysical Research</secondary-title></titles><periodical><full-title>Journal of Geophysical Research</full-title></periodical><pages>9309 - 9320</pages><volume>96</volume><dates><year>1991</year></dates><urls></urls></record></Cite></EndNote>[54]. Both SO4= and NO3- are present in the Midwest atmosphere as ammonium sulfate and ammonium nitrate due to ammonia emissions from fertilizers and animal feed ADDIN EN.CITE <EndNote><Cite><Year>2008</Year><RecNum>213</RecNum><DisplayText><style face="italic">[55]</style></DisplayText><record><rec-number>213</rec-number><foreign-keys><key app="EN" db-id="xtp0t5fro0zvd0ev2fi5vwf9a2adtr2vzwza">213</key></foreign-keys><ref-type name="Government Document">46</ref-type><contributors></contributors><titles><title>National Air Quality: Status and Trends Through 2007</title></titles><dates><year>2008</year></dates><urls></urls><custom1>U.S. Environmental Protection Agency</custom1></record></Cite></EndNote>[55]. OC is derived from primarily vehicle emissions and biomass burning ADDIN EN.CITE <EndNote><Cite><Author>Kundu</Author><Year>2014</Year><RecNum>74</RecNum><DisplayText><style face="italic">[13]</style></DisplayText><record><rec-number>74</rec-number><foreign-keys><key app="EN" db-id="xtp0t5fro0zvd0ev2fi5vwf9a2adtr2vzwza">74</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Kundu, S.</author><author>Stone, E. A.</author></authors></contributors><auth-address>Department of Chemistry, University of Iowa, Iowa City, IA 52242, USA. betsy-stone@uiowa.edu.</auth-address><titles><title>Composition and sources of fine particulate matter across urban and rural sites in the Midwestern United States</title><secondary-title>Environ Sci Process Impacts</secondary-title><alt-title>Environmental science. Processes &amp; impacts</alt-title></titles><periodical><full-title>Environ Sci Process Impacts</full-title><abbr-1>Environmental science. Processes &amp; impacts</abbr-1></periodical><alt-periodical><full-title>Environ Sci Process Impacts</full-title><abbr-1>Environmental science. Processes &amp; impacts</abbr-1></alt-periodical><pages>1360-70</pages><volume>16</volume><number>6</number><keywords><keyword>Air Pollutants/*analysis</keyword><keyword>Air Pollution/statistics &amp; numerical data</keyword><keyword>*Environmental Monitoring</keyword><keyword>Midwestern United States</keyword><keyword>Particle Size</keyword><keyword>Particulate Matter/*analysis</keyword></keywords><dates><year>2014</year><pub-dates><date>May</date></pub-dates></dates><isbn>2050-7895 (Electronic)&#xD;2050-7887 (Linking)</isbn><accession-num>24736797</accession-num><urls><related-urls><url>;[13]. The largest contributor to EC is diesel exhaust emissions ADDIN EN.CITE <EndNote><Cite><Author>Reff</Author><Year>2009</Year><RecNum>244</RecNum><DisplayText><style face="italic">[56]</style></DisplayText><record><rec-number>244</rec-number><foreign-keys><key app="EN" db-id="xtp0t5fro0zvd0ev2fi5vwf9a2adtr2vzwza">244</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Reff, Adam</author><author>Bhave, Prakash V. </author><author>Simon, Heather </author><author>Pace, Thompson</author><author>Pouliot, George A. </author><author>Mobley, J. David</author><author>Houyoux, Marc</author></authors></contributors><titles><title>Emissions Inventory of PM2.5 Trace Elements across the United States</title><secondary-title>Environmental Science and Technology</secondary-title></titles><periodical><full-title>Environmental Science and Technology</full-title></periodical><pages>5790-5796</pages><volume>43</volume><number>15</number><dates><year>2009</year></dates><urls></urls></record></Cite></EndNote>[56]. Road dust contributions (i.e., Si, Ti, Ca, Al) are normally low in winter due to lower siltation levels ADDIN EN.CITE <EndNote><Cite><Author>Fraser</Author><Year>2003</Year><RecNum>119</RecNum><DisplayText><style face="italic">[57]</style></DisplayText><record><rec-number>119</rec-number><foreign-keys><key app="EN" db-id="xtp0t5fro0zvd0ev2fi5vwf9a2adtr2vzwza">119</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Fraser, M. P.</author><author>Yue, Z. W.</author><author>Buzcu, B.</author></authors></contributors><titles><title>Source apportionment of fine particulate matter in Houston, TX, using organic molecular markers</title><secondary-title>Atmospheric Environment</secondary-title></titles><periodical><full-title>Atmospheric Environment</full-title></periodical><pages>2117-2123</pages><volume>37</volume><number>15</number><dates><year>2003</year></dates><isbn>13522310</isbn><urls></urls><electronic-resource-num>10.1016/s1352-2310(03)00075-x</electronic-resource-num></record></Cite></EndNote>[57]. Concentrations of major species in both cities followed expected seasonal trends ADDIN EN.CITE <EndNote><Cite><Author>Bell</Author><Year>2007</Year><RecNum>208</RecNum><DisplayText><style face="italic">[58]</style></DisplayText><record><rec-number>208</rec-number><foreign-keys><key app="EN" db-id="xtp0t5fro0zvd0ev2fi5vwf9a2adtr2vzwza">208</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Bell, M. L.</author><author>Dominici, F.</author><author>Ebisu, K.</author><author>Zeger, S. L.</author><author>Samet, J. M.</author></authors></contributors><auth-address>School of Forestry and Environmental Studies, Yale University, New Haven, Connecticut, USA. michelle.bell@yale.edu</auth-address><titles><title>Spatial and temporal variation in PM(2.5) chemical composition in the United States for health effects studies</title><secondary-title>Environ Health Perspect</secondary-title><alt-title>Environmental health perspectives</alt-title></titles><periodical><full-title>Environ Health Perspect</full-title><abbr-1>Environmental health perspectives</abbr-1></periodical><alt-periodical><full-title>Environ Health Perspect</full-title><abbr-1>Environmental health perspectives</abbr-1></alt-periodical><pages>989-95</pages><volume>115</volume><number>7</number><keywords><keyword>Air Pollutants/*toxicity</keyword><keyword>Humans</keyword><keyword>Particle Size</keyword><keyword>Seasons</keyword><keyword>United States</keyword></keywords><dates><year>2007</year><pub-dates><date>Jul</date></pub-dates></dates><isbn>0091-6765 (Print)&#xD;0091-6765 (Linking)</isbn><accession-num>17637911</accession-num><urls><related-urls><url>;[58], e.g., NH4+ and NO3- were highest in the winter, SO4= was highest in the summer, and EC and OC were higher in summer than winter. Overall, median PM2.5 concentrations in the two cities declined by 4.3 to 4.5 %/yr: comparable rates have been shown in several national and regional assessments. Nationally, a 27% drop in average PM2.5 from 2000 to 2010 (2.7 %/yr) has been reported ADDIN EN.CITE <EndNote><Cite><Year>2014</Year><RecNum>95</RecNum><DisplayText><style face="italic">[59, 60]</style></DisplayText><record><rec-number>95</rec-number><foreign-keys><key app="EN" db-id="xtp0t5fro0zvd0ev2fi5vwf9a2adtr2vzwza">95</key></foreign-keys><ref-type name="Web Page">12</ref-type><contributors></contributors><titles><title>National Trends in Particulate Matter Levels</title></titles><dates><year>2014</year></dates><publisher>U.S. Environmental Protection Agency</publisher><urls><related-urls><url> app="EN" db-id="xtp0t5fro0zvd0ev2fi5vwf9a2adtr2vzwza">234</key></foreign-keys><ref-type name="Report">27</ref-type><contributors><authors><author>Rao, Venkatesh</author><author>Frank, N. H.</author><author>Rice, J.</author></authors></contributors><titles><title>Speciation Measurements to Track Changes in PM2.5 Composition and Health Outcomes [Draft White Paper]</title></titles><dates><year>2012</year></dates><publisher>U.S. Environmental Protection Agency</publisher><urls></urls></record></Cite></EndNote>[59, 60]. The Lake Michigan Air Directors Consortium (LADCO) estimate a 0.51 ?g/m3 per year decrease in 90th percentile PM2.5 concentrations from 1999 to 2007 across the region PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5BZGFtc2tpPC9BdXRob3I+PFllYXI+MjAwOTwvWWVhcj48

UmVjTnVtPjIyMzwvUmVjTnVtPjxEaXNwbGF5VGV4dD48c3R5bGUgZmFjZT0iaXRhbGljIj5bNjFd

PC9zdHlsZT48L0Rpc3BsYXlUZXh0PjxyZWNvcmQ+PHJlYy1udW1iZXI+MjIzPC9yZWMtbnVtYmVy

Pjxmb3JlaWduLWtleXM+PGtleSBhcHA9IkVOIiBkYi1pZD0ieHRwMHQ1ZnJvMHp2ZDBldjJmaTV2

d2Y5YTJhZHRyMnZ6d3phIj4yMjM8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0i

UmVwb3J0Ij4yNzwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPkFkYW1z

a2ksIEJpbGwgPC9hdXRob3I+PGF1dGhvcj48c3R5bGUgZmFjZT0ibm9ybWFsIiBmb250PSJkZWZh

dWx0IiBjaGFyc2V0PSIxNjEiIHNpemU9IjEwMCUiPkJvbmVyPC9zdHlsZT48c3R5bGUgZmFjZT0i

bm9ybWFsIiBmb250PSJkZWZhdWx0IiBzaXplPSIxMDAlIj4sIDwvc3R5bGU+PHN0eWxlIGZhY2U9

Im5vcm1hbCIgZm9udD0iZGVmYXVsdCIgY2hhcnNldD0iMTYxIiBzaXplPSIxMDAlIj5NaWNoZWxl

IDwvc3R5bGU+PC9hdXRob3I+PGF1dGhvcj48c3R5bGUgZmFjZT0ibm9ybWFsIiBmb250PSJkZWZh

dWx0IiBjaGFyc2V0PSIxNjEiIHNpemU9IjEwMCUiPkNhbGxhaGFuPC9zdHlsZT48c3R5bGUgZmFj

ZT0ibm9ybWFsIiBmb250PSJkZWZhdWx0IiBzaXplPSIxMDAlIj4sIDwvc3R5bGU+PHN0eWxlIGZh

Y2U9Im5vcm1hbCIgZm9udD0iZGVmYXVsdCIgY2hhcnNldD0iMTYxIiBzaXplPSIxMDAlIj5Ccmlh

biA8L3N0eWxlPjwvYXV0aG9yPjxhdXRob3I+PHN0eWxlIGZhY2U9Im5vcm1hbCIgZm9udD0iZGVm

YXVsdCIgY2hhcnNldD0iMTYxIiBzaXplPSIxMDAlIj5Db21waGVyLDwvc3R5bGU+PHN0eWxlIGZh

Y2U9Im5vcm1hbCIgZm9udD0iZGVmYXVsdCIgc2l6ZT0iMTAwJSI+IDwvc3R5bGU+PHN0eWxlIGZh

Y2U9Im5vcm1hbCIgZm9udD0iZGVmYXVsdCIgY2hhcnNldD0iMTYxIiBzaXplPSIxMDAlIj5NaWNo

YWVsIDwvc3R5bGU+PC9hdXRob3I+PGF1dGhvcj48c3R5bGUgZmFjZT0ibm9ybWFsIiBmb250PSJk

ZWZhdWx0IiBjaGFyc2V0PSIxNjEiIHNpemU9IjEwMCUiPkhheXdvb2Q8L3N0eWxlPjxzdHlsZSBm

YWNlPSJub3JtYWwiIGZvbnQ9ImRlZmF1bHQiIHNpemU9IjEwMCUiPiwgPC9zdHlsZT48c3R5bGUg

ZmFjZT0ibm9ybWFsIiBmb250PSJkZWZhdWx0IiBjaGFyc2V0PSIxNjEiIHNpemU9IjEwMCUiPkpp

bSA8L3N0eWxlPjwvYXV0aG9yPjxhdXRob3I+PHN0eWxlIGZhY2U9Im5vcm1hbCIgZm9udD0iZGVm

YXVsdCIgY2hhcnNldD0iMTYxIiBzaXplPSIxMDAlIj5Ib2RnZXM8L3N0eWxlPjxzdHlsZSBmYWNl

PSJub3JtYWwiIGZvbnQ9ImRlZmF1bHQiIHNpemU9IjEwMCUiPiwgPC9zdHlsZT48c3R5bGUgZmFj

ZT0ibm9ybWFsIiBmb250PSJkZWZhdWx0IiBjaGFyc2V0PSIxNjEiIHNpemU9IjEwMCUiPkN5bnRo

aWEgPC9zdHlsZT48L2F1dGhvcj48YXV0aG9yPjxzdHlsZSBmYWNlPSJub3JtYWwiIGZvbnQ9ImRl

ZmF1bHQiIGNoYXJzZXQ9IjE2MSIgc2l6ZT0iMTAwJSI+S2Vuc2tpPC9zdHlsZT48c3R5bGUgZmFj

ZT0ibm9ybWFsIiBmb250PSJkZWZhdWx0IiBzaXplPSIxMDAlIj4sIDwvc3R5bGU+PHN0eWxlIGZh

Y2U9Im5vcm1hbCIgZm9udD0iZGVmYXVsdCIgY2hhcnNldD0iMTYxIiBzaXplPSIxMDAlIj5Eb25u

YSA8L3N0eWxlPjwvYXV0aG9yPjxhdXRob3I+PHN0eWxlIGZhY2U9Im5vcm1hbCIgZm9udD0iZGVm

YXVsdCIgY2hhcnNldD0iMTYxIiBzaXplPSIxMDAlIj5SdWJlbnMsPC9zdHlsZT48c3R5bGUgZmFj

ZT0ibm9ybWFsIiBmb250PSJkZWZhdWx0IiBzaXplPSIxMDAlIj4gPC9zdHlsZT48c3R5bGUgZmFj

ZT0ibm9ybWFsIiBmb250PSJkZWZhdWx0IiBjaGFyc2V0PSIxNjEiIHNpemU9IjEwMCUiPlNhbSA8

L3N0eWxlPjwvYXV0aG9yPjxhdXRob3I+PHN0eWxlIGZhY2U9Im5vcm1hbCIgZm9udD0iZGVmYXVs

dCIgY2hhcnNldD0iMTYxIiBzaXplPSIxMDAlIj5Ba3Jvbjwvc3R5bGU+PC9hdXRob3I+PGF1dGhv

cj48c3R5bGUgZmFjZT0ibm9ybWFsIiBmb250PSJkZWZhdWx0IiBjaGFyc2V0PSIxNjEiIHNpemU9

IjEwMCUiPlNwb25zZWxsZXIsIEJhcnQgPC9zdHlsZT48L2F1dGhvcj48L2F1dGhvcnM+PC9jb250

cmlidXRvcnM+PHRpdGxlcz48dGl0bGU+Q29uY2VwdHVhbCBNb2RlbCBvZiBQTTIuNSBFcGlzb2Rl

cyBpbiB0aGUgTWlkd2VzdDwvdGl0bGU+PC90aXRsZXM+PGRhdGVzPjx5ZWFyPjIwMDk8L3llYXI+

PC9kYXRlcz48cHVibGlzaGVyPkxha2UgTWljaGlnYW4gQWlyIERpcmVjdG9ycyBDb25zb3J0aXVt

PC9wdWJsaXNoZXI+PHVybHM+PC91cmxzPjwvcmVjb3JkPjwvQ2l0ZT48L0VuZE5vdGU+

ADDIN EN.CITE PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5BZGFtc2tpPC9BdXRob3I+PFllYXI+MjAwOTwvWWVhcj48

UmVjTnVtPjIyMzwvUmVjTnVtPjxEaXNwbGF5VGV4dD48c3R5bGUgZmFjZT0iaXRhbGljIj5bNjFd

PC9zdHlsZT48L0Rpc3BsYXlUZXh0PjxyZWNvcmQ+PHJlYy1udW1iZXI+MjIzPC9yZWMtbnVtYmVy

Pjxmb3JlaWduLWtleXM+PGtleSBhcHA9IkVOIiBkYi1pZD0ieHRwMHQ1ZnJvMHp2ZDBldjJmaTV2

d2Y5YTJhZHRyMnZ6d3phIj4yMjM8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0i

UmVwb3J0Ij4yNzwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPkFkYW1z

a2ksIEJpbGwgPC9hdXRob3I+PGF1dGhvcj48c3R5bGUgZmFjZT0ibm9ybWFsIiBmb250PSJkZWZh

dWx0IiBjaGFyc2V0PSIxNjEiIHNpemU9IjEwMCUiPkJvbmVyPC9zdHlsZT48c3R5bGUgZmFjZT0i

bm9ybWFsIiBmb250PSJkZWZhdWx0IiBzaXplPSIxMDAlIj4sIDwvc3R5bGU+PHN0eWxlIGZhY2U9

Im5vcm1hbCIgZm9udD0iZGVmYXVsdCIgY2hhcnNldD0iMTYxIiBzaXplPSIxMDAlIj5NaWNoZWxl

IDwvc3R5bGU+PC9hdXRob3I+PGF1dGhvcj48c3R5bGUgZmFjZT0ibm9ybWFsIiBmb250PSJkZWZh

dWx0IiBjaGFyc2V0PSIxNjEiIHNpemU9IjEwMCUiPkNhbGxhaGFuPC9zdHlsZT48c3R5bGUgZmFj

ZT0ibm9ybWFsIiBmb250PSJkZWZhdWx0IiBzaXplPSIxMDAlIj4sIDwvc3R5bGU+PHN0eWxlIGZh

Y2U9Im5vcm1hbCIgZm9udD0iZGVmYXVsdCIgY2hhcnNldD0iMTYxIiBzaXplPSIxMDAlIj5Ccmlh

biA8L3N0eWxlPjwvYXV0aG9yPjxhdXRob3I+PHN0eWxlIGZhY2U9Im5vcm1hbCIgZm9udD0iZGVm

YXVsdCIgY2hhcnNldD0iMTYxIiBzaXplPSIxMDAlIj5Db21waGVyLDwvc3R5bGU+PHN0eWxlIGZh

Y2U9Im5vcm1hbCIgZm9udD0iZGVmYXVsdCIgc2l6ZT0iMTAwJSI+IDwvc3R5bGU+PHN0eWxlIGZh

Y2U9Im5vcm1hbCIgZm9udD0iZGVmYXVsdCIgY2hhcnNldD0iMTYxIiBzaXplPSIxMDAlIj5NaWNo

YWVsIDwvc3R5bGU+PC9hdXRob3I+PGF1dGhvcj48c3R5bGUgZmFjZT0ibm9ybWFsIiBmb250PSJk

ZWZhdWx0IiBjaGFyc2V0PSIxNjEiIHNpemU9IjEwMCUiPkhheXdvb2Q8L3N0eWxlPjxzdHlsZSBm

YWNlPSJub3JtYWwiIGZvbnQ9ImRlZmF1bHQiIHNpemU9IjEwMCUiPiwgPC9zdHlsZT48c3R5bGUg

ZmFjZT0ibm9ybWFsIiBmb250PSJkZWZhdWx0IiBjaGFyc2V0PSIxNjEiIHNpemU9IjEwMCUiPkpp

bSA8L3N0eWxlPjwvYXV0aG9yPjxhdXRob3I+PHN0eWxlIGZhY2U9Im5vcm1hbCIgZm9udD0iZGVm

YXVsdCIgY2hhcnNldD0iMTYxIiBzaXplPSIxMDAlIj5Ib2RnZXM8L3N0eWxlPjxzdHlsZSBmYWNl

PSJub3JtYWwiIGZvbnQ9ImRlZmF1bHQiIHNpemU9IjEwMCUiPiwgPC9zdHlsZT48c3R5bGUgZmFj

ZT0ibm9ybWFsIiBmb250PSJkZWZhdWx0IiBjaGFyc2V0PSIxNjEiIHNpemU9IjEwMCUiPkN5bnRo

aWEgPC9zdHlsZT48L2F1dGhvcj48YXV0aG9yPjxzdHlsZSBmYWNlPSJub3JtYWwiIGZvbnQ9ImRl

ZmF1bHQiIGNoYXJzZXQ9IjE2MSIgc2l6ZT0iMTAwJSI+S2Vuc2tpPC9zdHlsZT48c3R5bGUgZmFj

ZT0ibm9ybWFsIiBmb250PSJkZWZhdWx0IiBzaXplPSIxMDAlIj4sIDwvc3R5bGU+PHN0eWxlIGZh

Y2U9Im5vcm1hbCIgZm9udD0iZGVmYXVsdCIgY2hhcnNldD0iMTYxIiBzaXplPSIxMDAlIj5Eb25u

YSA8L3N0eWxlPjwvYXV0aG9yPjxhdXRob3I+PHN0eWxlIGZhY2U9Im5vcm1hbCIgZm9udD0iZGVm

YXVsdCIgY2hhcnNldD0iMTYxIiBzaXplPSIxMDAlIj5SdWJlbnMsPC9zdHlsZT48c3R5bGUgZmFj

ZT0ibm9ybWFsIiBmb250PSJkZWZhdWx0IiBzaXplPSIxMDAlIj4gPC9zdHlsZT48c3R5bGUgZmFj

ZT0ibm9ybWFsIiBmb250PSJkZWZhdWx0IiBjaGFyc2V0PSIxNjEiIHNpemU9IjEwMCUiPlNhbSA8

L3N0eWxlPjwvYXV0aG9yPjxhdXRob3I+PHN0eWxlIGZhY2U9Im5vcm1hbCIgZm9udD0iZGVmYXVs

dCIgY2hhcnNldD0iMTYxIiBzaXplPSIxMDAlIj5Ba3Jvbjwvc3R5bGU+PC9hdXRob3I+PGF1dGhv

cj48c3R5bGUgZmFjZT0ibm9ybWFsIiBmb250PSJkZWZhdWx0IiBjaGFyc2V0PSIxNjEiIHNpemU9

IjEwMCUiPlNwb25zZWxsZXIsIEJhcnQgPC9zdHlsZT48L2F1dGhvcj48L2F1dGhvcnM+PC9jb250

cmlidXRvcnM+PHRpdGxlcz48dGl0bGU+Q29uY2VwdHVhbCBNb2RlbCBvZiBQTTIuNSBFcGlzb2Rl

cyBpbiB0aGUgTWlkd2VzdDwvdGl0bGU+PC90aXRsZXM+PGRhdGVzPjx5ZWFyPjIwMDk8L3llYXI+

PC9kYXRlcz48cHVibGlzaGVyPkxha2UgTWljaGlnYW4gQWlyIERpcmVjdG9ycyBDb25zb3J0aXVt

PC9wdWJsaXNoZXI+PHVybHM+PC91cmxzPjwvcmVjb3JkPjwvQ2l0ZT48L0VuZE5vdGU+

ADDIN EN.CITE.DATA [61], which (when converted) is in the range of %/yr decreases in the present work. The monitoring data also reveal the changing composition of PM2.5: the share is growing for EC and OC, but declining for SO4= and NO3-. While many sources emit EC and OC, local vehicle emissions are one of the larger contributors PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5GcmFzZXI8L0F1dGhvcj48WWVhcj4yMDAzPC9ZZWFyPjxS

ZWNOdW0+MTE5PC9SZWNOdW0+PERpc3BsYXlUZXh0PjxzdHlsZSBmYWNlPSJpdGFsaWMiPls1Nywg

NjIsIDYzXTwvc3R5bGU+PC9EaXNwbGF5VGV4dD48cmVjb3JkPjxyZWMtbnVtYmVyPjExOTwvcmVj

LW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9Inh0cDB0NWZybzB6dmQw

ZXYyZmk1dndmOWEyYWR0cjJ2end6YSI+MTE5PC9rZXk+PC9mb3JlaWduLWtleXM+PHJlZi10eXBl

IG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBlPjxjb250cmlidXRvcnM+PGF1dGhv

cnM+PGF1dGhvcj5GcmFzZXIsIE0uIFAuPC9hdXRob3I+PGF1dGhvcj5ZdWUsIFouIFcuPC9hdXRo

b3I+PGF1dGhvcj5CdXpjdSwgQi48L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PHRp

dGxlcz48dGl0bGU+U291cmNlIGFwcG9ydGlvbm1lbnQgb2YgZmluZSBwYXJ0aWN1bGF0ZSBtYXR0

ZXIgaW4gSG91c3RvbiwgVFgsIHVzaW5nIG9yZ2FuaWMgbW9sZWN1bGFyIG1hcmtlcnM8L3RpdGxl

PjxzZWNvbmRhcnktdGl0bGU+QXRtb3NwaGVyaWMgRW52aXJvbm1lbnQ8L3NlY29uZGFyeS10aXRs

ZT48L3RpdGxlcz48cGVyaW9kaWNhbD48ZnVsbC10aXRsZT5BdG1vc3BoZXJpYyBFbnZpcm9ubWVu

dDwvZnVsbC10aXRsZT48L3BlcmlvZGljYWw+PHBhZ2VzPjIxMTctMjEyMzwvcGFnZXM+PHZvbHVt

ZT4zNzwvdm9sdW1lPjxudW1iZXI+MTU8L251bWJlcj48ZGF0ZXM+PHllYXI+MjAwMzwveWVhcj48

L2RhdGVzPjxpc2JuPjEzNTIyMzEwPC9pc2JuPjx1cmxzPjwvdXJscz48ZWxlY3Ryb25pYy1yZXNv

dXJjZS1udW0+MTAuMTAxNi9zMTM1Mi0yMzEwKDAzKTAwMDc1LXg8L2VsZWN0cm9uaWMtcmVzb3Vy

Y2UtbnVtPjwvcmVjb3JkPjwvQ2l0ZT48Q2l0ZT48QXV0aG9yPkouSi4gU2NoYXVlcjwvQXV0aG9y

PjxZZWFyPjE5OTY8L1llYXI+PFJlY051bT4xMjA8L1JlY051bT48cmVjb3JkPjxyZWMtbnVtYmVy

PjEyMDwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9Inh0cDB0

NWZybzB6dmQwZXYyZmk1dndmOWEyYWR0cjJ2end6YSI+MTIwPC9rZXk+PC9mb3JlaWduLWtleXM+

PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBlPjxjb250cmlidXRv

cnM+PGF1dGhvcnM+PGF1dGhvcj5KLkouIFNjaGF1ZXIsIFcuRi4gUm9nZ2UsIEwuTS4gSGlsZGVt

YW5uLCBNLkEuIE1henVyZWssIEcuUi4gQ2FzczwvYXV0aG9yPjwvYXV0aG9ycz48L2NvbnRyaWJ1

dG9ycz48dGl0bGVzPjx0aXRsZT5Tb3VyY2UgYXBwb3J0aW9ubWVudCBvZiBhaXJib3JuZSBwYXJ0

aWN1bGF0ZSBtYXR0ZXIgdXNpbmcgb3JnYW5pYyBjb21wb3VuZHMgYXMgdHJhY2VyczwvdGl0bGU+

PHNlY29uZGFyeS10aXRsZT5BdG1vc3BoZXJpYyBFbnZpcm9ubWVudDwvc2Vjb25kYXJ5LXRpdGxl

PjwvdGl0bGVzPjxwZXJpb2RpY2FsPjxmdWxsLXRpdGxlPkF0bW9zcGhlcmljIEVudmlyb25tZW50

PC9mdWxsLXRpdGxlPjwvcGVyaW9kaWNhbD48cGFnZXM+MzgzNyAtIDM4NTY8L3BhZ2VzPjx2b2x1

bWU+MjI8L3ZvbHVtZT48ZGF0ZXM+PHllYXI+MTk5NjwveWVhcj48L2RhdGVzPjx1cmxzPjwvdXJs

cz48L3JlY29yZD48L0NpdGU+PENpdGU+PEF1dGhvcj5TdWJyYW1hbmlhbjwvQXV0aG9yPjxZZWFy

PjIwMDY8L1llYXI+PFJlY051bT4xMjE8L1JlY051bT48cmVjb3JkPjxyZWMtbnVtYmVyPjEyMTwv

cmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9Inh0cDB0NWZybzB6

dmQwZXYyZmk1dndmOWEyYWR0cjJ2end6YSI+MTIxPC9rZXk+PC9mb3JlaWduLWtleXM+PHJlZi10

eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBlPjxjb250cmlidXRvcnM+PGF1

dGhvcnM+PGF1dGhvcj5TdWJyYW1hbmlhbiwgUi48L2F1dGhvcj48YXV0aG9yPkRvbmFodWUsIE5l

aWwgTS48L2F1dGhvcj48YXV0aG9yPkJlcm5hcmRvLUJyaWNrZXIsIEFubmE8L2F1dGhvcj48YXV0

aG9yPlJvZ2dlLCBXb2xmZ2FuZyBGLjwvYXV0aG9yPjxhdXRob3I+Um9iaW5zb24sIEFsbGVuIEwu

PC9hdXRob3I+PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjx0aXRsZXM+PHRpdGxlPkNvbnRyaWJ1

dGlvbiBvZiBtb3RvciB2ZWhpY2xlIGVtaXNzaW9ucyB0byBvcmdhbmljIGNhcmJvbiBhbmQgZmlu

ZSBwYXJ0aWNsZSBtYXNzIGluIFBpdHRzYnVyZ2gsIFBlbm5zeWx2YW5pYTogRWZmZWN0cyBvZiB2

YXJ5aW5nIHNvdXJjZSBwcm9maWxlcyBhbmQgc2Vhc29uYWwgdHJlbmRzIGluIGFtYmllbnQgbWFy

a2VyIGNvbmNlbnRyYXRpb25zPC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPkF0bW9zcGhlcmljIEVu

dmlyb25tZW50PC9zZWNvbmRhcnktdGl0bGU+PC90aXRsZXM+PHBlcmlvZGljYWw+PGZ1bGwtdGl0

bGU+QXRtb3NwaGVyaWMgRW52aXJvbm1lbnQ8L2Z1bGwtdGl0bGU+PC9wZXJpb2RpY2FsPjxwYWdl

cz44MDAyLTgwMTk8L3BhZ2VzPjx2b2x1bWU+NDA8L3ZvbHVtZT48bnVtYmVyPjQwPC9udW1iZXI+

PGRhdGVzPjx5ZWFyPjIwMDY8L3llYXI+PC9kYXRlcz48aXNibj4xMzUyMjMxMDwvaXNibj48dXJs

cz48L3VybHM+PGVsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjEwLjEwMTYvai5hdG1vc2Vudi4yMDA2

LjA2LjA1NTwvZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+PC9yZWNvcmQ+PC9DaXRlPjwvRW5kTm90

ZT5=

ADDIN EN.CITE PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5GcmFzZXI8L0F1dGhvcj48WWVhcj4yMDAzPC9ZZWFyPjxS

ZWNOdW0+MTE5PC9SZWNOdW0+PERpc3BsYXlUZXh0PjxzdHlsZSBmYWNlPSJpdGFsaWMiPls1Nywg

NjIsIDYzXTwvc3R5bGU+PC9EaXNwbGF5VGV4dD48cmVjb3JkPjxyZWMtbnVtYmVyPjExOTwvcmVj

LW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9Inh0cDB0NWZybzB6dmQw

ZXYyZmk1dndmOWEyYWR0cjJ2end6YSI+MTE5PC9rZXk+PC9mb3JlaWduLWtleXM+PHJlZi10eXBl

IG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBlPjxjb250cmlidXRvcnM+PGF1dGhv

cnM+PGF1dGhvcj5GcmFzZXIsIE0uIFAuPC9hdXRob3I+PGF1dGhvcj5ZdWUsIFouIFcuPC9hdXRo

b3I+PGF1dGhvcj5CdXpjdSwgQi48L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PHRp

dGxlcz48dGl0bGU+U291cmNlIGFwcG9ydGlvbm1lbnQgb2YgZmluZSBwYXJ0aWN1bGF0ZSBtYXR0

ZXIgaW4gSG91c3RvbiwgVFgsIHVzaW5nIG9yZ2FuaWMgbW9sZWN1bGFyIG1hcmtlcnM8L3RpdGxl

PjxzZWNvbmRhcnktdGl0bGU+QXRtb3NwaGVyaWMgRW52aXJvbm1lbnQ8L3NlY29uZGFyeS10aXRs

ZT48L3RpdGxlcz48cGVyaW9kaWNhbD48ZnVsbC10aXRsZT5BdG1vc3BoZXJpYyBFbnZpcm9ubWVu

dDwvZnVsbC10aXRsZT48L3BlcmlvZGljYWw+PHBhZ2VzPjIxMTctMjEyMzwvcGFnZXM+PHZvbHVt

ZT4zNzwvdm9sdW1lPjxudW1iZXI+MTU8L251bWJlcj48ZGF0ZXM+PHllYXI+MjAwMzwveWVhcj48

L2RhdGVzPjxpc2JuPjEzNTIyMzEwPC9pc2JuPjx1cmxzPjwvdXJscz48ZWxlY3Ryb25pYy1yZXNv

dXJjZS1udW0+MTAuMTAxNi9zMTM1Mi0yMzEwKDAzKTAwMDc1LXg8L2VsZWN0cm9uaWMtcmVzb3Vy

Y2UtbnVtPjwvcmVjb3JkPjwvQ2l0ZT48Q2l0ZT48QXV0aG9yPkouSi4gU2NoYXVlcjwvQXV0aG9y

PjxZZWFyPjE5OTY8L1llYXI+PFJlY051bT4xMjA8L1JlY051bT48cmVjb3JkPjxyZWMtbnVtYmVy

PjEyMDwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9Inh0cDB0

NWZybzB6dmQwZXYyZmk1dndmOWEyYWR0cjJ2end6YSI+MTIwPC9rZXk+PC9mb3JlaWduLWtleXM+

PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBlPjxjb250cmlidXRv

cnM+PGF1dGhvcnM+PGF1dGhvcj5KLkouIFNjaGF1ZXIsIFcuRi4gUm9nZ2UsIEwuTS4gSGlsZGVt

YW5uLCBNLkEuIE1henVyZWssIEcuUi4gQ2FzczwvYXV0aG9yPjwvYXV0aG9ycz48L2NvbnRyaWJ1

dG9ycz48dGl0bGVzPjx0aXRsZT5Tb3VyY2UgYXBwb3J0aW9ubWVudCBvZiBhaXJib3JuZSBwYXJ0

aWN1bGF0ZSBtYXR0ZXIgdXNpbmcgb3JnYW5pYyBjb21wb3VuZHMgYXMgdHJhY2VyczwvdGl0bGU+

PHNlY29uZGFyeS10aXRsZT5BdG1vc3BoZXJpYyBFbnZpcm9ubWVudDwvc2Vjb25kYXJ5LXRpdGxl

PjwvdGl0bGVzPjxwZXJpb2RpY2FsPjxmdWxsLXRpdGxlPkF0bW9zcGhlcmljIEVudmlyb25tZW50

PC9mdWxsLXRpdGxlPjwvcGVyaW9kaWNhbD48cGFnZXM+MzgzNyAtIDM4NTY8L3BhZ2VzPjx2b2x1

bWU+MjI8L3ZvbHVtZT48ZGF0ZXM+PHllYXI+MTk5NjwveWVhcj48L2RhdGVzPjx1cmxzPjwvdXJs

cz48L3JlY29yZD48L0NpdGU+PENpdGU+PEF1dGhvcj5TdWJyYW1hbmlhbjwvQXV0aG9yPjxZZWFy

PjIwMDY8L1llYXI+PFJlY051bT4xMjE8L1JlY051bT48cmVjb3JkPjxyZWMtbnVtYmVyPjEyMTwv

cmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9Inh0cDB0NWZybzB6

dmQwZXYyZmk1dndmOWEyYWR0cjJ2end6YSI+MTIxPC9rZXk+PC9mb3JlaWduLWtleXM+PHJlZi10

eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBlPjxjb250cmlidXRvcnM+PGF1

dGhvcnM+PGF1dGhvcj5TdWJyYW1hbmlhbiwgUi48L2F1dGhvcj48YXV0aG9yPkRvbmFodWUsIE5l

aWwgTS48L2F1dGhvcj48YXV0aG9yPkJlcm5hcmRvLUJyaWNrZXIsIEFubmE8L2F1dGhvcj48YXV0

aG9yPlJvZ2dlLCBXb2xmZ2FuZyBGLjwvYXV0aG9yPjxhdXRob3I+Um9iaW5zb24sIEFsbGVuIEwu

PC9hdXRob3I+PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjx0aXRsZXM+PHRpdGxlPkNvbnRyaWJ1

dGlvbiBvZiBtb3RvciB2ZWhpY2xlIGVtaXNzaW9ucyB0byBvcmdhbmljIGNhcmJvbiBhbmQgZmlu

ZSBwYXJ0aWNsZSBtYXNzIGluIFBpdHRzYnVyZ2gsIFBlbm5zeWx2YW5pYTogRWZmZWN0cyBvZiB2

YXJ5aW5nIHNvdXJjZSBwcm9maWxlcyBhbmQgc2Vhc29uYWwgdHJlbmRzIGluIGFtYmllbnQgbWFy

a2VyIGNvbmNlbnRyYXRpb25zPC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPkF0bW9zcGhlcmljIEVu

dmlyb25tZW50PC9zZWNvbmRhcnktdGl0bGU+PC90aXRsZXM+PHBlcmlvZGljYWw+PGZ1bGwtdGl0

bGU+QXRtb3NwaGVyaWMgRW52aXJvbm1lbnQ8L2Z1bGwtdGl0bGU+PC9wZXJpb2RpY2FsPjxwYWdl

cz44MDAyLTgwMTk8L3BhZ2VzPjx2b2x1bWU+NDA8L3ZvbHVtZT48bnVtYmVyPjQwPC9udW1iZXI+

PGRhdGVzPjx5ZWFyPjIwMDY8L3llYXI+PC9kYXRlcz48aXNibj4xMzUyMjMxMDwvaXNibj48dXJs

cz48L3VybHM+PGVsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjEwLjEwMTYvai5hdG1vc2Vudi4yMDA2

LjA2LjA1NTwvZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+PC9yZWNvcmQ+PC9DaXRlPjwvRW5kTm90

ZT5=

ADDIN EN.CITE.DATA [57, 62, 63]. In contrast, SO4= largely arises from local and regional point sources ADDIN EN.CITE <EndNote><Cite><Author>Wolff</Author><Year>1985</Year><RecNum>73</RecNum><DisplayText><style face="italic">[6]</style></DisplayText><record><rec-number>73</rec-number><foreign-keys><key app="EN" db-id="xtp0t5fro0zvd0ev2fi5vwf9a2adtr2vzwza">73</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Wolff, G.T.</author><author>Korsog, P.E.</author><author>Kelly, N.A.</author><author>Ferman, M.A.</author></authors></contributors><titles><title>Relationships between fine particulate species, gaseous pollutants, and meteorological parameters in Detroit</title><secondary-title>Atmospheric Environment</secondary-title></titles><periodical><full-title>Atmospheric Environment</full-title></periodical><pages>1341-1349</pages><volume>19</volume><number>8</number><dates><year>1985</year></dates><urls></urls></record></Cite></EndNote>[6]. The less pronounced trends at Chicago may reflect the shorter study period, as well as smaller changes in the local and regional sources. Trends in the ambient monitoring data have some consistencies with the emissions inventory data discussed earlier, particularly for the combustion sources (point and mobile exhaust; Table 1). For example, ambient levels of SO4=, NO3-, and NH4+ in Detroit fell by 5 to 10 %/yr over the 2002 and 2011 study period, while point source emissions decreased by roughly 11 %/yr. In contrast, ambient levels of EC showed few significant changes, consistent with fluctuating trends of on-road diesel exhaust emissions. In Chicago, SO4= and NH4+ also decreased significantly from 2006 to 2014, and the emissions inventory showed a concurrent drop in point source emissions. As noted earlier, a number of issues in the emissions inventories limits the comparability of trends.Concentration trends also can be framed in the context of species abundance (i.e., species concentration / PM2.5 concentration on a per-sample basis). However, given issues with EC and OC measurements (key tracers for vehicle emissions), uncertainties in the stoichiometric balance, and the correlation among both major and minor species, trend analyses of PMF factor contributions should be more meaningful; in addition, PMF contributions (by definition) sum to unity on a per-sample basis. We next extend the trend analyses to examine source contributions apportioned using receptor modeling.3.3 Long term source apportionmentsThe final PMF model for Detroit had nine factors with 5% additional model uncertainty, and the final model for Chicago had eight factors with 0% additional model uncertainty (Figure 4). This number of factors and the (small) uncertainty additions (in Detroit) yielded factors that were interpretable and comparable to those in the literature, and both models closely matched PM2.5 observations (Detroit: R2 = 0.96; Chicago: R2 = 0.90). Sources associated with each factor, which have been identified in previous apportionments PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5HaWxkZW1laXN0ZXI8L0F1dGhvcj48WWVhcj4yMDA3PC9Z

ZWFyPjxSZWNOdW0+NTwvUmVjTnVtPjxEaXNwbGF5VGV4dD48c3R5bGUgZmFjZT0iaXRhbGljIj5b

MTIsIDE1XTwvc3R5bGU+PC9EaXNwbGF5VGV4dD48cmVjb3JkPjxyZWMtbnVtYmVyPjU8L3JlYy1u

dW1iZXI+PGZvcmVpZ24ta2V5cz48a2V5IGFwcD0iRU4iIGRiLWlkPSJ4dHAwdDVmcm8wenZkMGV2

MmZpNXZ3ZjlhMmFkdHIydnp3emEiPjU8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFt

ZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48

YXV0aG9yPkdpbGRlbWVpc3RlciwgQS4gRS48L2F1dGhvcj48YXV0aG9yPkhvcGtlLCBQLiBLLjwv

YXV0aG9yPjxhdXRob3I+S2ltLCBFLjwvYXV0aG9yPjwvYXV0aG9ycz48L2NvbnRyaWJ1dG9ycz48

YXV0aC1hZGRyZXNzPkNlbnRlciBmb3IgQWlyIFJlc291cmNlcyBFbmdpbmVlcmluZyBhbmQgU2Np

ZW5jZSwgRGVwYXJ0bWVudCBvZiBDaGVtaWNhbCBFbmdpbmVlcmluZywgQ2xhcmtzb24gVW5pdmVy

c2l0eSwgOCBDbGFya3NvbiBBdmVudWUsIEJveCA1NzA4LCBQb3RzZGFtLCBOWSAxMzY5OS01NzA4

LCBVU0EuPC9hdXRoLWFkZHJlc3M+PHRpdGxlcz48dGl0bGU+U291cmNlcyBvZiBmaW5lIHVyYmFu

IHBhcnRpY3VsYXRlIG1hdHRlciBpbiBEZXRyb2l0LCBNSTwvdGl0bGU+PHNlY29uZGFyeS10aXRs

ZT5DaGVtb3NwaGVyZTwvc2Vjb25kYXJ5LXRpdGxlPjxhbHQtdGl0bGU+Q2hlbW9zcGhlcmU8L2Fs

dC10aXRsZT48L3RpdGxlcz48cGVyaW9kaWNhbD48ZnVsbC10aXRsZT5DaGVtb3NwaGVyZTwvZnVs

bC10aXRsZT48YWJici0xPkNoZW1vc3BoZXJlPC9hYmJyLTE+PC9wZXJpb2RpY2FsPjxhbHQtcGVy

aW9kaWNhbD48ZnVsbC10aXRsZT5DaGVtb3NwaGVyZTwvZnVsbC10aXRsZT48YWJici0xPkNoZW1v

c3BoZXJlPC9hYmJyLTE+PC9hbHQtcGVyaW9kaWNhbD48cGFnZXM+MTA2NC03NDwvcGFnZXM+PHZv

bHVtZT42OTwvdm9sdW1lPjxudW1iZXI+NzwvbnVtYmVyPjxrZXl3b3Jkcz48a2V5d29yZD5BaXIg

UG9sbHV0aW9uLyphbmFseXNpczwva2V5d29yZD48a2V5d29yZD5DaXRpZXM8L2tleXdvcmQ+PGtl

eXdvcmQ+RW52aXJvbm1lbnRhbCBNb25pdG9yaW5nPC9rZXl3b3JkPjxrZXl3b3JkPk1pY2hpZ2Fu

PC9rZXl3b3JkPjxrZXl3b3JkPk1vZGVscywgVGhlb3JldGljYWw8L2tleXdvcmQ+PGtleXdvcmQ+

UGFydGljbGUgU2l6ZTwva2V5d29yZD48a2V5d29yZD5QYXJ0aWN1bGF0ZSBNYXR0ZXIvKmFuYWx5

c2lzPC9rZXl3b3JkPjxrZXl3b3JkPlNlYXNvbnM8L2tleXdvcmQ+PGtleXdvcmQ+VGltZSBGYWN0

b3JzPC9rZXl3b3JkPjxrZXl3b3JkPlZlaGljbGUgRW1pc3Npb25zPC9rZXl3b3JkPjxrZXl3b3Jk

PldpbmQ8L2tleXdvcmQ+PC9rZXl3b3Jkcz48ZGF0ZXM+PHllYXI+MjAwNzwveWVhcj48cHViLWRh

dGVzPjxkYXRlPk9jdDwvZGF0ZT48L3B1Yi1kYXRlcz48L2RhdGVzPjxpc2JuPjAwNDUtNjUzNSAo

UHJpbnQpJiN4RDswMDQ1LTY1MzUgKExpbmtpbmcpPC9pc2JuPjxhY2Nlc3Npb24tbnVtPjE3NTM3

NDgwPC9hY2Nlc3Npb24tbnVtPjx1cmxzPjxyZWxhdGVkLXVybHM+PHVybD5odHRwOi8vd3d3Lm5j

YmkubmxtLm5paC5nb3YvcHVibWVkLzE3NTM3NDgwPC91cmw+PC9yZWxhdGVkLXVybHM+PC91cmxz

PjxlbGVjdHJvbmljLXJlc291cmNlLW51bT4xMC4xMDE2L2ouY2hlbW9zcGhlcmUuMjAwNy4wNC4w

Mjc8L2VsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjwvcmVjb3JkPjwvQ2l0ZT48Q2l0ZT48QXV0aG9y

PlJpenpvPC9BdXRob3I+PFllYXI+MjAwNzwvWWVhcj48UmVjTnVtPjUxPC9SZWNOdW0+PHJlY29y

ZD48cmVjLW51bWJlcj41MTwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIg

ZGItaWQ9Inh0cDB0NWZybzB6dmQwZXYyZmk1dndmOWEyYWR0cjJ2end6YSI+NTE8L2tleT48L2Zv

cmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwvcmVmLXR5cGU+

PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPlJpenpvLCBNLjwvYXV0aG9yPjxhdXRob3I+

U2NoZWZmLCBQLjwvYXV0aG9yPjwvYXV0aG9ycz48L2NvbnRyaWJ1dG9ycz48dGl0bGVzPjx0aXRs

ZT5GaW5lIHBhcnRpY3VsYXRlIHNvdXJjZSBhcHBvcnRpb25tZW50IHVzaW5nIGRhdGEgZnJvbSB0

aGUgVVNFUEEgc3BlY2lhdGlvbiB0cmVuZHMgbmV0d29yayBpbiBDaGljYWdvLCBJbGxpbm9pczog

Q29tcGFyaXNvbiBvZiB0d28gc291cmNlIGFwcG9ydGlvbm1lbnQgbW9kZWxzPC90aXRsZT48c2Vj

b25kYXJ5LXRpdGxlPkF0bW9zcGhlcmljIEVudmlyb25tZW50PC9zZWNvbmRhcnktdGl0bGU+PC90

aXRsZXM+PHBlcmlvZGljYWw+PGZ1bGwtdGl0bGU+QXRtb3NwaGVyaWMgRW52aXJvbm1lbnQ8L2Z1

bGwtdGl0bGU+PC9wZXJpb2RpY2FsPjxwYWdlcz42Mjc2LTYyODg8L3BhZ2VzPjx2b2x1bWU+NDE8

L3ZvbHVtZT48bnVtYmVyPjI5PC9udW1iZXI+PGRhdGVzPjx5ZWFyPjIwMDc8L3llYXI+PC9kYXRl

cz48aXNibj4xMzUyMjMxMDwvaXNibj48dXJscz48L3VybHM+PGVsZWN0cm9uaWMtcmVzb3VyY2Ut

bnVtPjEwLjEwMTYvai5hdG1vc2Vudi4yMDA3LjAzLjA1NTwvZWxlY3Ryb25pYy1yZXNvdXJjZS1u

dW0+PC9yZWNvcmQ+PC9DaXRlPjwvRW5kTm90ZT5=

ADDIN EN.CITE PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5HaWxkZW1laXN0ZXI8L0F1dGhvcj48WWVhcj4yMDA3PC9Z

ZWFyPjxSZWNOdW0+NTwvUmVjTnVtPjxEaXNwbGF5VGV4dD48c3R5bGUgZmFjZT0iaXRhbGljIj5b

MTIsIDE1XTwvc3R5bGU+PC9EaXNwbGF5VGV4dD48cmVjb3JkPjxyZWMtbnVtYmVyPjU8L3JlYy1u

dW1iZXI+PGZvcmVpZ24ta2V5cz48a2V5IGFwcD0iRU4iIGRiLWlkPSJ4dHAwdDVmcm8wenZkMGV2

MmZpNXZ3ZjlhMmFkdHIydnp3emEiPjU8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFt

ZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48

YXV0aG9yPkdpbGRlbWVpc3RlciwgQS4gRS48L2F1dGhvcj48YXV0aG9yPkhvcGtlLCBQLiBLLjwv

YXV0aG9yPjxhdXRob3I+S2ltLCBFLjwvYXV0aG9yPjwvYXV0aG9ycz48L2NvbnRyaWJ1dG9ycz48

YXV0aC1hZGRyZXNzPkNlbnRlciBmb3IgQWlyIFJlc291cmNlcyBFbmdpbmVlcmluZyBhbmQgU2Np

ZW5jZSwgRGVwYXJ0bWVudCBvZiBDaGVtaWNhbCBFbmdpbmVlcmluZywgQ2xhcmtzb24gVW5pdmVy

c2l0eSwgOCBDbGFya3NvbiBBdmVudWUsIEJveCA1NzA4LCBQb3RzZGFtLCBOWSAxMzY5OS01NzA4

LCBVU0EuPC9hdXRoLWFkZHJlc3M+PHRpdGxlcz48dGl0bGU+U291cmNlcyBvZiBmaW5lIHVyYmFu

IHBhcnRpY3VsYXRlIG1hdHRlciBpbiBEZXRyb2l0LCBNSTwvdGl0bGU+PHNlY29uZGFyeS10aXRs

ZT5DaGVtb3NwaGVyZTwvc2Vjb25kYXJ5LXRpdGxlPjxhbHQtdGl0bGU+Q2hlbW9zcGhlcmU8L2Fs

dC10aXRsZT48L3RpdGxlcz48cGVyaW9kaWNhbD48ZnVsbC10aXRsZT5DaGVtb3NwaGVyZTwvZnVs

bC10aXRsZT48YWJici0xPkNoZW1vc3BoZXJlPC9hYmJyLTE+PC9wZXJpb2RpY2FsPjxhbHQtcGVy

aW9kaWNhbD48ZnVsbC10aXRsZT5DaGVtb3NwaGVyZTwvZnVsbC10aXRsZT48YWJici0xPkNoZW1v

c3BoZXJlPC9hYmJyLTE+PC9hbHQtcGVyaW9kaWNhbD48cGFnZXM+MTA2NC03NDwvcGFnZXM+PHZv

bHVtZT42OTwvdm9sdW1lPjxudW1iZXI+NzwvbnVtYmVyPjxrZXl3b3Jkcz48a2V5d29yZD5BaXIg

UG9sbHV0aW9uLyphbmFseXNpczwva2V5d29yZD48a2V5d29yZD5DaXRpZXM8L2tleXdvcmQ+PGtl

eXdvcmQ+RW52aXJvbm1lbnRhbCBNb25pdG9yaW5nPC9rZXl3b3JkPjxrZXl3b3JkPk1pY2hpZ2Fu

PC9rZXl3b3JkPjxrZXl3b3JkPk1vZGVscywgVGhlb3JldGljYWw8L2tleXdvcmQ+PGtleXdvcmQ+

UGFydGljbGUgU2l6ZTwva2V5d29yZD48a2V5d29yZD5QYXJ0aWN1bGF0ZSBNYXR0ZXIvKmFuYWx5

c2lzPC9rZXl3b3JkPjxrZXl3b3JkPlNlYXNvbnM8L2tleXdvcmQ+PGtleXdvcmQ+VGltZSBGYWN0

b3JzPC9rZXl3b3JkPjxrZXl3b3JkPlZlaGljbGUgRW1pc3Npb25zPC9rZXl3b3JkPjxrZXl3b3Jk

PldpbmQ8L2tleXdvcmQ+PC9rZXl3b3Jkcz48ZGF0ZXM+PHllYXI+MjAwNzwveWVhcj48cHViLWRh

dGVzPjxkYXRlPk9jdDwvZGF0ZT48L3B1Yi1kYXRlcz48L2RhdGVzPjxpc2JuPjAwNDUtNjUzNSAo

UHJpbnQpJiN4RDswMDQ1LTY1MzUgKExpbmtpbmcpPC9pc2JuPjxhY2Nlc3Npb24tbnVtPjE3NTM3

NDgwPC9hY2Nlc3Npb24tbnVtPjx1cmxzPjxyZWxhdGVkLXVybHM+PHVybD5odHRwOi8vd3d3Lm5j

YmkubmxtLm5paC5nb3YvcHVibWVkLzE3NTM3NDgwPC91cmw+PC9yZWxhdGVkLXVybHM+PC91cmxz

PjxlbGVjdHJvbmljLXJlc291cmNlLW51bT4xMC4xMDE2L2ouY2hlbW9zcGhlcmUuMjAwNy4wNC4w

Mjc8L2VsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjwvcmVjb3JkPjwvQ2l0ZT48Q2l0ZT48QXV0aG9y

PlJpenpvPC9BdXRob3I+PFllYXI+MjAwNzwvWWVhcj48UmVjTnVtPjUxPC9SZWNOdW0+PHJlY29y

ZD48cmVjLW51bWJlcj41MTwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIg

ZGItaWQ9Inh0cDB0NWZybzB6dmQwZXYyZmk1dndmOWEyYWR0cjJ2end6YSI+NTE8L2tleT48L2Zv

cmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwvcmVmLXR5cGU+

PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPlJpenpvLCBNLjwvYXV0aG9yPjxhdXRob3I+

U2NoZWZmLCBQLjwvYXV0aG9yPjwvYXV0aG9ycz48L2NvbnRyaWJ1dG9ycz48dGl0bGVzPjx0aXRs

ZT5GaW5lIHBhcnRpY3VsYXRlIHNvdXJjZSBhcHBvcnRpb25tZW50IHVzaW5nIGRhdGEgZnJvbSB0

aGUgVVNFUEEgc3BlY2lhdGlvbiB0cmVuZHMgbmV0d29yayBpbiBDaGljYWdvLCBJbGxpbm9pczog

Q29tcGFyaXNvbiBvZiB0d28gc291cmNlIGFwcG9ydGlvbm1lbnQgbW9kZWxzPC90aXRsZT48c2Vj

b25kYXJ5LXRpdGxlPkF0bW9zcGhlcmljIEVudmlyb25tZW50PC9zZWNvbmRhcnktdGl0bGU+PC90

aXRsZXM+PHBlcmlvZGljYWw+PGZ1bGwtdGl0bGU+QXRtb3NwaGVyaWMgRW52aXJvbm1lbnQ8L2Z1

bGwtdGl0bGU+PC9wZXJpb2RpY2FsPjxwYWdlcz42Mjc2LTYyODg8L3BhZ2VzPjx2b2x1bWU+NDE8

L3ZvbHVtZT48bnVtYmVyPjI5PC9udW1iZXI+PGRhdGVzPjx5ZWFyPjIwMDc8L3llYXI+PC9kYXRl

cz48aXNibj4xMzUyMjMxMDwvaXNibj48dXJscz48L3VybHM+PGVsZWN0cm9uaWMtcmVzb3VyY2Ut

bnVtPjEwLjEwMTYvai5hdG1vc2Vudi4yMDA3LjAzLjA1NTwvZWxlY3Ryb25pYy1yZXNvdXJjZS1u

dW0+PC9yZWNvcmQ+PC9DaXRlPjwvRW5kTm90ZT5=

ADDIN EN.CITE.DATA [12, 15], included secondary SO4= (characterized by SO4= and NH4+), secondary NO3- (NO3- and NH4+), vehicle emissions (EC for diesel vehicles and OC for gasoline vehicles), biomass burning (K+), industrial metal working (Ni, Cr, Mn, Fe), crustal sources (e.g., entrained soil as noted by Al, Si, Ca, Ti), and a zinc factor (which also can represent industrial emissions) ADDIN EN.CITE <EndNote><Cite><Author>Gildemeister</Author><Year>2007</Year><RecNum>5</RecNum><DisplayText><style face="italic">[12]</style></DisplayText><record><rec-number>5</rec-number><foreign-keys><key app="EN" db-id="xtp0t5fro0zvd0ev2fi5vwf9a2adtr2vzwza">5</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Gildemeister, A. E.</author><author>Hopke, P. K.</author><author>Kim, E.</author></authors></contributors><auth-address>Center for Air Resources Engineering and Science, Department of Chemical Engineering, Clarkson University, 8 Clarkson Avenue, Box 5708, Potsdam, NY 13699-5708, USA.</auth-address><titles><title>Sources of fine urban particulate matter in Detroit, MI</title><secondary-title>Chemosphere</secondary-title><alt-title>Chemosphere</alt-title></titles><periodical><full-title>Chemosphere</full-title><abbr-1>Chemosphere</abbr-1></periodical><alt-periodical><full-title>Chemosphere</full-title><abbr-1>Chemosphere</abbr-1></alt-periodical><pages>1064-74</pages><volume>69</volume><number>7</number><keywords><keyword>Air Pollution/*analysis</keyword><keyword>Cities</keyword><keyword>Environmental Monitoring</keyword><keyword>Michigan</keyword><keyword>Models, Theoretical</keyword><keyword>Particle Size</keyword><keyword>Particulate Matter/*analysis</keyword><keyword>Seasons</keyword><keyword>Time Factors</keyword><keyword>Vehicle Emissions</keyword><keyword>Wind</keyword></keywords><dates><year>2007</year><pub-dates><date>Oct</date></pub-dates></dates><isbn>0045-6535 (Print)&#xD;0045-6535 (Linking)</isbn><accession-num>17537480</accession-num><urls><related-urls><url>;[12]. While not unique tracers, OC and EC have been used to separate vehicle emissions into gasoline and diesel categories, respectively ADDIN EN.CITE <EndNote><Cite><Author>Kundu</Author><Year>2014</Year><RecNum>74</RecNum><DisplayText><style face="italic">[13]</style></DisplayText><record><rec-number>74</rec-number><foreign-keys><key app="EN" db-id="xtp0t5fro0zvd0ev2fi5vwf9a2adtr2vzwza">74</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Kundu, S.</author><author>Stone, E. A.</author></authors></contributors><auth-address>Department of Chemistry, University of Iowa, Iowa City, IA 52242, USA. betsy-stone@uiowa.edu.</auth-address><titles><title>Composition and sources of fine particulate matter across urban and rural sites in the Midwestern United States</title><secondary-title>Environ Sci Process Impacts</secondary-title><alt-title>Environmental science. Processes &amp; impacts</alt-title></titles><periodical><full-title>Environ Sci Process Impacts</full-title><abbr-1>Environmental science. Processes &amp; impacts</abbr-1></periodical><alt-periodical><full-title>Environ Sci Process Impacts</full-title><abbr-1>Environmental science. Processes &amp; impacts</abbr-1></alt-periodical><pages>1360-70</pages><volume>16</volume><number>6</number><keywords><keyword>Air Pollutants/*analysis</keyword><keyword>Air Pollution/statistics &amp; numerical data</keyword><keyword>*Environmental Monitoring</keyword><keyword>Midwestern United States</keyword><keyword>Particle Size</keyword><keyword>Particulate Matter/*analysis</keyword></keywords><dates><year>2014</year><pub-dates><date>May</date></pub-dates></dates><isbn>2050-7895 (Electronic)&#xD;2050-7887 (Linking)</isbn><accession-num>24736797</accession-num><urls><related-urls><url>;[13]; a factor containing both OC and EC can represent emissions from a mixed fleet. In the final models, a single factor contained moderate to high levels of both EC and OC, and thus the vehicle factor represents contributions from a mixed fleet. The final PMF models using the full dataset gave nearly identical apportionments in Detroit and Chicago for the largest sources: sulfate formed 32 - 33% of PM2.5; vehicles contributed 21 - 22%; nitrate constituted 21%; and biomass was 7 - 9%. These four sources represent over 80% of PM2.5. Minor sources, e.g., crustal (4 - 8% of PM2.5), several metals (4 - 11%) and Cl/NaCl (2 - 5%) showed greater variation, but accounted for relatively little PM2.5 mass. The similarity of the apportionments for the major local sources (e.g., vehicles and biomass) is supported by the emissions inventory, e.g., the similarity of traffic emissions when expressed on an area basis; and the similarity of the secondary contributions (e.g., sulfate and nitrate) may reflect the same regional sources in these nearby cities (e.g., a large number of coal-fired power plants).3.4 Source apportionment trendsThe QR analysis of trends for the PM2.5 PMF factors in Detroit is displayed in Figure 5. These trends only roughly followed results seen for the major species in each factor (shown earlier in Figure 2). Median concentrations of the secondary sulfate factor declined by 8.3 %/yr, and seasonal changes were largest in fall and smallest in winter and summer. At the 90th percentile, sulfate factor concentrations declined slightly faster, 9.2 %/yr overall, and declines were greatest in summer and smallest in winter. Changes in SO4= or NH4+ concentrations (dominant contributions to this factor) did not match the secondary sulfate pattern with the exception of the 90th percentile concentration change of NH4+. For the secondary nitrate factor, overall concentrations declined 7.0 %/yr, and statistically significant decreases of 9.2 to 11.7 %/yr occurred in spring, summer and fall (but not winter). This pattern (as well as the 90th percentile pattern) was not matched by NO3- and NH4+, this factor's major contributors. For the vehicle factor, decreases in median and 90th percentile factor concentrations were fairly consistent (2.8 to 5.2 %/yr, depending on season) but dissimilar to trends in measured EC and OC. The biomass factor did significantly change over the study period. Trends of factors representing the smaller PM2.5 fractions may be less reliable for several reasons, e.g., PMF uncertainties (smaller factors are dominated by species with higher %BDL and thus higher associated uncertainties) and factor splitting (where changing the number of factors causes minor species to group in ways that may affect trends in minor factors). Still, several of the smaller components had statistically significant changes: the metals factor increased by 3.9 and 2.4 %/yr for the median and 90th percentile, respectively; and the crustal factor declined by 5.8 % and 3.3 %/yr for the median and 90th percentile, respectively (the large decrease in winter was particularly notable).The QR trend analysis for the Chicago PMF factors is depicted in Figure 6. Median concentrations of the secondary sulfate factor decreased by 9.3 and 9.2 %/yr for the median and 90th percentile, respectively; decreases were largest in summer. As in Detroit, these patterns differed from the trends of SO4= and NH4+ concentrations (Figure 3). For the secondary nitrate factor, the only significant trends were decreases in the median concentrations in overall and in fall. Concentrations attributed to the vehicle factor did not change significantly. Few of the smaller factors at Chicago had statistically significant trends other than the median biomass contribution, which grew by 8.9%/yr due to large increases in spring and fall seasons. A key result of this analysis is to show that PM2.5 contributions from different sources have been evolving at different rates. In both cities, secondary sulfate has decreased faster than both the total PM2.5 concentration as well as contributions of other factors identified by PMF, thus the relative significance of non-sulfate source factors increased over time. In particular, emissions from coal-fired facilities producing secondary sulfate and nitrate have been decreasing, while contributions from vehicle, biomass and metal (Chicago only) sources have been constant or just slightly declining. Given the trend of declining PM2.5 levels, the vehicle, biomass and metal sources are becoming an increasing fraction of PM2.5. Expressed as a percentage of the PM2.5 concentration, the median contributions from secondary sulfate sources have decreased by 4.2 to 5.5% per year in Detroit and Chicago, while the contributions from metals sources, biomass sources, and vehicles have increased from 1.3 to 9.2% per year. (The Supplemental Information provides a discussion of seasonal factors and shows long term trends as Figures S1 and S2 in the two cities.) 3.5 Vehicle apportionments and comparison to previous workMany of the apportionment results described previously follow trends suggested by the emissions inventory and concentration data, and they also resemble previous apportionments in both cities conducted over the past 35 years. Here we examine those previous studies, focusing on vehicle apportionments given their significance as local emission sources in both cities.In Detroit, using data from June through August of 1981 and a six source principal components model, vehicles accounted for 20% of the variability of PM2.5 ADDIN EN.CITE <EndNote><Cite><Author>Wolff</Author><Year>1985</Year><RecNum>73</RecNum><DisplayText><style face="italic">[6]</style></DisplayText><record><rec-number>73</rec-number><foreign-keys><key app="EN" db-id="xtp0t5fro0zvd0ev2fi5vwf9a2adtr2vzwza">73</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Wolff, G.T.</author><author>Korsog, P.E.</author><author>Kelly, N.A.</author><author>Ferman, M.A.</author></authors></contributors><titles><title>Relationships between fine particulate species, gaseous pollutants, and meteorological parameters in Detroit</title><secondary-title>Atmospheric Environment</secondary-title></titles><periodical><full-title>Atmospheric Environment</full-title></periodical><pages>1341-1349</pages><volume>19</volume><number>8</number><dates><year>1985</year></dates><urls></urls></record></Cite></EndNote>[6]. Vehicles accounted for 10 to 25% of PM2.5 in a six factor PMF model using summer and early autumn data from 2000 to 2003 ADDIN EN.CITE <EndNote><Cite><Author>Morishita</Author><Year>2006</Year><RecNum>52</RecNum><DisplayText><style face="italic">[7]</style></DisplayText><record><rec-number>52</rec-number><foreign-keys><key app="EN" db-id="xtp0t5fro0zvd0ev2fi5vwf9a2adtr2vzwza">52</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Morishita, Masako</author><author>Keeler, Gerald J.</author><author>Wagner, James G.</author><author>Harkema, Jack R.</author></authors></contributors><titles><title>Source identification of ambient PM2.5 during summer inhalation exposure studies in Detroit, MI</title><secondary-title>Atmospheric Environment</secondary-title></titles><periodical><full-title>Atmospheric Environment</full-title></periodical><pages>3823-3834</pages><volume>40</volume><number>21</number><dates><year>2006</year></dates><isbn>13522310</isbn><urls></urls><electronic-resource-num>10.1016/j.atmosenv.2006.03.005</electronic-resource-num></record></Cite></EndNote>[7]. Using 2000 to 2005 data and a nine factor model, 21% of PM2.5 in Detroit was attributed to vehicles ADDIN EN.CITE <EndNote><Cite><Author>Rubin</Author><Year>2006</Year><RecNum>237</RecNum><DisplayText><style face="italic">[64]</style></DisplayText><record><rec-number>237</rec-number><foreign-keys><key app="EN" db-id="xtp0t5fro0zvd0ev2fi5vwf9a2adtr2vzwza">237</key></foreign-keys><ref-type name="Report">27</ref-type><contributors><authors><author>Rubin, J. I.</author><author>Brown, S. G.</author><author>Wade, K. S.</author><author>Hafner, H. R.</author></authors></contributors><titles><title>Apportionment of PM2.5 and Air Toxics in Detroit, Michigan</title></titles><dates><year>2006</year></dates><pub-location>Research Triangle Park. Retrieved from , U.S. Environmental Protection Agency</publisher><urls></urls></record></Cite></EndNote>[64]. Using the same data in an eight factor PMF model, gasoline and diesel vehicle contributions were separated with 15% and 4% apportioned, respectively ADDIN EN.CITE <EndNote><Cite><Author>Gildemeister</Author><Year>2007</Year><RecNum>5</RecNum><DisplayText><style face="italic">[12]</style></DisplayText><record><rec-number>5</rec-number><foreign-keys><key app="EN" db-id="xtp0t5fro0zvd0ev2fi5vwf9a2adtr2vzwza">5</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Gildemeister, A. E.</author><author>Hopke, P. K.</author><author>Kim, E.</author></authors></contributors><auth-address>Center for Air Resources Engineering and Science, Department of Chemical Engineering, Clarkson University, 8 Clarkson Avenue, Box 5708, Potsdam, NY 13699-5708, USA.</auth-address><titles><title>Sources of fine urban particulate matter in Detroit, MI</title><secondary-title>Chemosphere</secondary-title><alt-title>Chemosphere</alt-title></titles><periodical><full-title>Chemosphere</full-title><abbr-1>Chemosphere</abbr-1></periodical><alt-periodical><full-title>Chemosphere</full-title><abbr-1>Chemosphere</abbr-1></alt-periodical><pages>1064-74</pages><volume>69</volume><number>7</number><keywords><keyword>Air Pollution/*analysis</keyword><keyword>Cities</keyword><keyword>Environmental Monitoring</keyword><keyword>Michigan</keyword><keyword>Models, Theoretical</keyword><keyword>Particle Size</keyword><keyword>Particulate Matter/*analysis</keyword><keyword>Seasons</keyword><keyword>Time Factors</keyword><keyword>Vehicle Emissions</keyword><keyword>Wind</keyword></keywords><dates><year>2007</year><pub-dates><date>Oct</date></pub-dates></dates><isbn>0045-6535 (Print)&#xD;0045-6535 (Linking)</isbn><accession-num>17537480</accession-num><urls><related-urls><url>;[12]. That analysis did not include Ni or Cr, which may have affected the EC distribution between factors and changed results for diesel, and a lack of seasonality in the gasoline and vehicle factors was noted, contrary to the present findings (which used some of the same data). A recent analysis of 1999 to 2002 data attributed 22% of PM2.5 to OC combustion sources and 15% to EC combustion sources in southwest Detroit, however, NO3- was not measured, potentially increasing the mass assigned to these factors ADDIN EN.CITE <EndNote><Cite><Author>Hammond</Author><Year>2008</Year><RecNum>6</RecNum><DisplayText><style face="italic">[14]</style></DisplayText><record><rec-number>6</rec-number><foreign-keys><key app="EN" db-id="xtp0t5fro0zvd0ev2fi5vwf9a2adtr2vzwza">6</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Hammond, Davyda M.</author><author>Dvonch, J. Timothy</author><author>Keeler, Gerald J.</author><author>Parker, Edith A.</author><author>Kamal, Ali S.</author><author>Barres, James A.</author><author>Yip, Fuyuen Y.</author><author>Brakefield-Caldwell, Wilma</author></authors></contributors><titles><title>Sources of ambient fine particulate matter at two community sites in Detroit, Michigan</title><secondary-title>Atmospheric Environment</secondary-title></titles><periodical><full-title>Atmospheric Environment</full-title></periodical><pages>720-732</pages><volume>42</volume><number>4</number><dates><year>2008</year></dates><isbn>13522310</isbn><urls></urls><electronic-resource-num>10.1016/j.atmosenv.2007.09.065</electronic-resource-num></record></Cite></EndNote>[14]. Using August 2004 and July and August 2005 data, 29% and 8% of PM2.5 was assigned to gasoline and diesel sources, and 31% to a combined gasoline and diesel fleet ADDIN EN.CITE <EndNote><Cite><Author>Morishita</Author><Year>2011</Year><RecNum>69</RecNum><DisplayText><style face="italic">[8]</style></DisplayText><record><rec-number>69</rec-number><foreign-keys><key app="EN" db-id="xtp0t5fro0zvd0ev2fi5vwf9a2adtr2vzwza">69</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Morishita, Masako</author><author>Keeler, Gerald J.</author><author>Kamal, Ali S.</author><author>Wagner, James G.</author><author>Harkema, Jack R.</author><author>Rohr, Annette C.</author></authors></contributors><titles><title>Identification of ambient PM2.5 sources and analysis of pollution episodes in?Detroit, Michigan using highly time-resolved measurements</title><secondary-title>Atmospheric Environment</secondary-title></titles><periodical><full-title>Atmospheric Environment</full-title></periodical><pages>1627-1637</pages><volume>45</volume><number>8</number><dates><year>2011</year></dates><isbn>13522310</isbn><urls></urls><electronic-resource-num>10.1016/j.atmosenv.2010.09.062</electronic-resource-num></record></Cite></EndNote>[8]. A recent Detroit area study, using 2004 to 2006 Allen Park data in a seven factor PMF model, attributed 22% of PM2.5 to gasoline and diesel sources ADDIN EN.CITE <EndNote><Cite><Author>Duvall</Author><Year>2012</Year><RecNum>3</RecNum><DisplayText><style face="italic">[11]</style></DisplayText><record><rec-number>3</rec-number><foreign-keys><key app="EN" db-id="xtp0t5fro0zvd0ev2fi5vwf9a2adtr2vzwza">3</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Duvall, Rachelle M.</author><author>Norris, Gary A.</author><author>Burke, Janet M.</author><author>Olson, David A.</author><author>Vedantham, Ram</author><author>Williams, Ron</author></authors></contributors><titles><title>Determining spatial variability in PM2.5 source impacts across Detroit, MI</title><secondary-title>Atmospheric Environment</secondary-title></titles><periodical><full-title>Atmospheric Environment</full-title></periodical><pages>491-498</pages><volume>47</volume><dates><year>2012</year></dates><isbn>13522310</isbn><urls></urls><electronic-resource-num>10.1016/j.atmosenv.2011.09.071</electronic-resource-num></record></Cite></EndNote>[11]. Using 2007 data from nearby Dearborn, Michigan, in an analysis incorporating wind direction, approximately 10% of PM2.5 was apportioned to vehicles (diesel plus gasoline) ADDIN EN.CITE <EndNote><Cite><Author>Pancras</Author><Year>2013</Year><RecNum>108</RecNum><DisplayText><style face="italic">[65]</style></DisplayText><record><rec-number>108</rec-number><foreign-keys><key app="EN" db-id="xtp0t5fro0zvd0ev2fi5vwf9a2adtr2vzwza">108</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Pancras, J. P.</author><author>Landis, M. S.</author><author>Norris, G. A.</author><author>Vedantham, R.</author><author>Dvonch, J. T.</author></authors></contributors><auth-address>Alion Science and Technology, P.O. Box 12313, Research Triangle Park, NC 27709, USA.</auth-address><titles><title>Source apportionment of ambient fine particulate matter in Dearborn, Michigan, using hourly resolved PM chemical composition data</title><secondary-title>Sci Total Environ</secondary-title><alt-title>The Science of the total environment</alt-title></titles><periodical><full-title>Sci Total Environ</full-title><abbr-1>The Science of the total environment</abbr-1></periodical><alt-periodical><full-title>Sci Total Environ</full-title><abbr-1>The Science of the total environment</abbr-1></alt-periodical><pages>2-13</pages><volume>448</volume><keywords><keyword>Aerosols/analysis/chemistry</keyword><keyword>Air Pollution</keyword><keyword>*Environmental Monitoring</keyword><keyword>Incineration</keyword><keyword>Michigan</keyword><keyword>Models, Theoretical</keyword><keyword>Particle Size</keyword><keyword>Particulate Matter/*analysis/chemistry</keyword><keyword>Vehicle Emissions/analysis</keyword><keyword>Wind</keyword></keywords><dates><year>2013</year><pub-dates><date>Mar 15</date></pub-dates></dates><isbn>1879-1026 (Electronic)&#xD;0048-9697 (Linking)</isbn><accession-num>23302684</accession-num><urls><related-urls><url>;[65]. Other apportionments cited in Michigan’s PM2.5 2008 State Implementation Plan ADDIN EN.CITE <EndNote><Cite ExcludeAuth="1"><Year>2008</Year><RecNum>272</RecNum><DisplayText><style face="italic">[66]</style></DisplayText><record><rec-number>272</rec-number><foreign-keys><key app="EN" db-id="xtp0t5fro0zvd0ev2fi5vwf9a2adtr2vzwza">272</key></foreign-keys><ref-type name="Government Document">46</ref-type><contributors></contributors><titles><title>State Implementation Plan Submittal for Fine Particulate Matter (PM2.5) - Appendix G: Overview of Recent Detroit PM Source Apportionment Studies</title></titles><dates><year>2008</year></dates><urls><related-urls><url> Department of Environmental Quality, Air Quality Division</custom1></record></Cite></EndNote>[66] showed vehicle apportionments comparable to the present study. Differences in samplers, species selected, length and seasons of the monitoring data used, and choices made in PMF modeling can diminish the comparability of these studies. Still, vehicle contributions in these earlier studies mostly ranged from 15 to 30% of PM2.5, commensurate with the apportionments in the present analysis. Several source apportionments have been performed in Chicago. Again, we focus on the vehicle component. In Northbrook IL (close to Chicago), using data from January, 2003 to March, 2005, 14% of PM2.5 was apportioned to gasoline sources and 13% to diesel ADDIN EN.CITE <EndNote><Cite><Author>Buzcu-Guven</Author><Year>2007</Year><RecNum>89</RecNum><DisplayText><style face="italic">[9]</style></DisplayText><record><rec-number>89</rec-number><foreign-keys><key app="EN" db-id="xtp0t5fro0zvd0ev2fi5vwf9a2adtr2vzwza">89</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Buzcu-Guven, Birnur</author><author>Brown, Steven G.</author><author>Frankel, Anna</author><author>Hafner, Hilary R.</author><author>Roberts, Paul T.</author></authors></contributors><titles><title>Analysis and Apportionment of Organic Carbon and Fine Particulate Matter Sources at Multiple Sites in the Midwestern United States</title><secondary-title>Journal of the Air &amp; Waste Management Association</secondary-title></titles><periodical><full-title>Journal of the Air &amp; Waste Management Association</full-title></periodical><pages>606-619</pages><volume>57</volume><number>5</number><dates><year>2007</year></dates><isbn>1096-2247</isbn><urls></urls><electronic-resource-num>10.3155/1047-3289.57.5.606</electronic-resource-num></record></Cite></EndNote>[9]. The diesel profile included Al and Pb, elements assigned to other factors in the present study. Using 2001 to 2003 data at two CSN sites (Lawndale and Springfield, IL), 23% of PM2.5 was apportioned to a combined vehicle profile ADDIN EN.CITE <EndNote><Cite><Author>Rizzo</Author><Year>2007</Year><RecNum>51</RecNum><DisplayText><style face="italic">[15]</style></DisplayText><record><rec-number>51</rec-number><foreign-keys><key app="EN" db-id="xtp0t5fro0zvd0ev2fi5vwf9a2adtr2vzwza">51</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Rizzo, M.</author><author>Scheff, P.</author></authors></contributors><titles><title>Fine particulate source apportionment using data from the USEPA speciation trends network in Chicago, Illinois: Comparison of two source apportionment models</title><secondary-title>Atmospheric Environment</secondary-title></titles><periodical><full-title>Atmospheric Environment</full-title></periodical><pages>6276-6288</pages><volume>41</volume><number>29</number><dates><year>2007</year></dates><isbn>13522310</isbn><urls></urls><electronic-resource-num>10.1016/j.atmosenv.2007.03.055</electronic-resource-num></record></Cite></EndNote>[15]. That apportionment included both SO4= and SO2 (26), as well as both ionic and molecular forms of Na, Na+, K and K+. Despite these and other differences, the fraction of PM2.5 attributed to gasoline and diesel vehicles in Chicago studies compare favorably to our estimates.Vehicle apportionment trends have been studied elsewhere in the U.S. In Los Angles and Rubidoux, CA, a recent analysis using 2002 to 2013 STN data apportioned 20% of PM2.5 to vehicles, and median PM2.5 concentrations attributed to vehicles fell 21 to 24% between the first and last 4 year blocks of the study PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5IYXNoZW1pbmFzc2FiPC9BdXRob3I+PFllYXI+MjAxNDwv

WWVhcj48UmVjTnVtPjI3NjwvUmVjTnVtPjxEaXNwbGF5VGV4dD48c3R5bGUgZmFjZT0iaXRhbGlj

Ij5bMThdPC9zdHlsZT48L0Rpc3BsYXlUZXh0PjxyZWNvcmQ+PHJlYy1udW1iZXI+Mjc2PC9yZWMt

bnVtYmVyPjxmb3JlaWduLWtleXM+PGtleSBhcHA9IkVOIiBkYi1pZD0ieHRwMHQ1ZnJvMHp2ZDBl

djJmaTV2d2Y5YTJhZHRyMnZ6d3phIj4yNzY8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUg

bmFtZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9y

cz48YXV0aG9yPkhhc2hlbWluYXNzYWIsIFMuPC9hdXRob3I+PGF1dGhvcj5EYWhlciwgTi48L2F1

dGhvcj48YXV0aG9yPk9zdHJvLCBCLiBELjwvYXV0aG9yPjxhdXRob3I+U2lvdXRhcywgQy48L2F1

dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PGF1dGgtYWRkcmVzcz5Vbml2ZXJzaXR5IG9m

IFNvdXRoZXJuIENhbGlmb3JuaWEsIERlcGFydG1lbnQgb2YgQ2l2aWwgYW5kIEVudmlyb25tZW50

YWwgRW5naW5lZXJpbmcsIExvcyBBbmdlbGVzLCBDQSwgVVNBLiYjeEQ7QWlyIFBvbGx1dGlvbiBF

cGlkZW1pb2xvZ3kgU2VjdGlvbiwgT2ZmaWNlIG9mIEVudmlyb25tZW50YWwgSGVhbHRoIEhhemFy

ZCBBc3Nlc3NtZW50LCBTdGF0ZSBvZiBDYWxpZm9ybmlhLCBPYWtsYW5kLCBDQSwgVVNBLiYjeEQ7

VW5pdmVyc2l0eSBvZiBTb3V0aGVybiBDYWxpZm9ybmlhLCBEZXBhcnRtZW50IG9mIENpdmlsIGFu

ZCBFbnZpcm9ubWVudGFsIEVuZ2luZWVyaW5nLCBMb3MgQW5nZWxlcywgQ0EsIFVTQS4gRWxlY3Ry

b25pYyBhZGRyZXNzOiBzaW91dGFzQHVzYy5lZHUuPC9hdXRoLWFkZHJlc3M+PHRpdGxlcz48dGl0

bGU+TG9uZy10ZXJtIHNvdXJjZSBhcHBvcnRpb25tZW50IG9mIGFtYmllbnQgZmluZSBwYXJ0aWN1

bGF0ZSBtYXR0ZXIgKFBNMi41KSBpbiB0aGUgTG9zIEFuZ2VsZXMgQmFzaW46IGEgZm9jdXMgb24g

ZW1pc3Npb25zIHJlZHVjdGlvbiBmcm9tIHZlaGljdWxhciBzb3VyY2VzPC90aXRsZT48c2Vjb25k

YXJ5LXRpdGxlPkVudmlyb24gUG9sbHV0PC9zZWNvbmRhcnktdGl0bGU+PGFsdC10aXRsZT5FbnZp

cm9ubWVudGFsIHBvbGx1dGlvbjwvYWx0LXRpdGxlPjwvdGl0bGVzPjxwZXJpb2RpY2FsPjxmdWxs

LXRpdGxlPkVudmlyb24gUG9sbHV0PC9mdWxsLXRpdGxlPjxhYmJyLTE+RW52aXJvbm1lbnRhbCBw

b2xsdXRpb248L2FiYnItMT48L3BlcmlvZGljYWw+PGFsdC1wZXJpb2RpY2FsPjxmdWxsLXRpdGxl

PkVudmlyb24gUG9sbHV0PC9mdWxsLXRpdGxlPjxhYmJyLTE+RW52aXJvbm1lbnRhbCBwb2xsdXRp

b248L2FiYnItMT48L2FsdC1wZXJpb2RpY2FsPjxwYWdlcz41NC02NDwvcGFnZXM+PHZvbHVtZT4x

OTM8L3ZvbHVtZT48a2V5d29yZHM+PGtleXdvcmQ+QWVyb3NvbHMvYW5hbHlzaXM8L2tleXdvcmQ+

PGtleXdvcmQ+QWlyIFBvbGx1dGFudHMvKmFuYWx5c2lzPC9rZXl3b3JkPjxrZXl3b3JkPipFbnZp

cm9ubWVudGFsIE1vbml0b3Jpbmc8L2tleXdvcmQ+PGtleXdvcmQ+R2Fzb2xpbmUvYW5hbHlzaXM8

L2tleXdvcmQ+PGtleXdvcmQ+TG9zIEFuZ2VsZXM8L2tleXdvcmQ+PGtleXdvcmQ+UGFydGljdWxh

dGUgTWF0dGVyLyphbmFseXNpczwva2V5d29yZD48a2V5d29yZD5WZWhpY2xlIEVtaXNzaW9ucy8q

YW5hbHlzaXM8L2tleXdvcmQ+PC9rZXl3b3Jkcz48ZGF0ZXM+PHllYXI+MjAxNDwveWVhcj48cHVi

LWRhdGVzPjxkYXRlPk9jdDwvZGF0ZT48L3B1Yi1kYXRlcz48L2RhdGVzPjxpc2JuPjE4NzMtNjQy

NCAoRWxlY3Ryb25pYykmI3hEOzAyNjktNzQ5MSAoTGlua2luZyk8L2lzYm4+PGFjY2Vzc2lvbi1u

dW0+MjUwMDU4ODc8L2FjY2Vzc2lvbi1udW0+PHVybHM+PHJlbGF0ZWQtdXJscz48dXJsPmh0dHA6

Ly93d3cubmNiaS5ubG0ubmloLmdvdi9wdWJtZWQvMjUwMDU4ODc8L3VybD48L3JlbGF0ZWQtdXJs

cz48L3VybHM+PGVsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjEwLjEwMTYvai5lbnZwb2wuMjAxNC4w

Ni4wMTI8L2VsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjwvcmVjb3JkPjwvQ2l0ZT48L0VuZE5vdGU+

AG==

ADDIN EN.CITE PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5IYXNoZW1pbmFzc2FiPC9BdXRob3I+PFllYXI+MjAxNDwv

WWVhcj48UmVjTnVtPjI3NjwvUmVjTnVtPjxEaXNwbGF5VGV4dD48c3R5bGUgZmFjZT0iaXRhbGlj

Ij5bMThdPC9zdHlsZT48L0Rpc3BsYXlUZXh0PjxyZWNvcmQ+PHJlYy1udW1iZXI+Mjc2PC9yZWMt

bnVtYmVyPjxmb3JlaWduLWtleXM+PGtleSBhcHA9IkVOIiBkYi1pZD0ieHRwMHQ1ZnJvMHp2ZDBl

djJmaTV2d2Y5YTJhZHRyMnZ6d3phIj4yNzY8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUg

bmFtZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9y

cz48YXV0aG9yPkhhc2hlbWluYXNzYWIsIFMuPC9hdXRob3I+PGF1dGhvcj5EYWhlciwgTi48L2F1

dGhvcj48YXV0aG9yPk9zdHJvLCBCLiBELjwvYXV0aG9yPjxhdXRob3I+U2lvdXRhcywgQy48L2F1

dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PGF1dGgtYWRkcmVzcz5Vbml2ZXJzaXR5IG9m

IFNvdXRoZXJuIENhbGlmb3JuaWEsIERlcGFydG1lbnQgb2YgQ2l2aWwgYW5kIEVudmlyb25tZW50

YWwgRW5naW5lZXJpbmcsIExvcyBBbmdlbGVzLCBDQSwgVVNBLiYjeEQ7QWlyIFBvbGx1dGlvbiBF

cGlkZW1pb2xvZ3kgU2VjdGlvbiwgT2ZmaWNlIG9mIEVudmlyb25tZW50YWwgSGVhbHRoIEhhemFy

ZCBBc3Nlc3NtZW50LCBTdGF0ZSBvZiBDYWxpZm9ybmlhLCBPYWtsYW5kLCBDQSwgVVNBLiYjeEQ7

VW5pdmVyc2l0eSBvZiBTb3V0aGVybiBDYWxpZm9ybmlhLCBEZXBhcnRtZW50IG9mIENpdmlsIGFu

ZCBFbnZpcm9ubWVudGFsIEVuZ2luZWVyaW5nLCBMb3MgQW5nZWxlcywgQ0EsIFVTQS4gRWxlY3Ry

b25pYyBhZGRyZXNzOiBzaW91dGFzQHVzYy5lZHUuPC9hdXRoLWFkZHJlc3M+PHRpdGxlcz48dGl0

bGU+TG9uZy10ZXJtIHNvdXJjZSBhcHBvcnRpb25tZW50IG9mIGFtYmllbnQgZmluZSBwYXJ0aWN1

bGF0ZSBtYXR0ZXIgKFBNMi41KSBpbiB0aGUgTG9zIEFuZ2VsZXMgQmFzaW46IGEgZm9jdXMgb24g

ZW1pc3Npb25zIHJlZHVjdGlvbiBmcm9tIHZlaGljdWxhciBzb3VyY2VzPC90aXRsZT48c2Vjb25k

YXJ5LXRpdGxlPkVudmlyb24gUG9sbHV0PC9zZWNvbmRhcnktdGl0bGU+PGFsdC10aXRsZT5FbnZp

cm9ubWVudGFsIHBvbGx1dGlvbjwvYWx0LXRpdGxlPjwvdGl0bGVzPjxwZXJpb2RpY2FsPjxmdWxs

LXRpdGxlPkVudmlyb24gUG9sbHV0PC9mdWxsLXRpdGxlPjxhYmJyLTE+RW52aXJvbm1lbnRhbCBw

b2xsdXRpb248L2FiYnItMT48L3BlcmlvZGljYWw+PGFsdC1wZXJpb2RpY2FsPjxmdWxsLXRpdGxl

PkVudmlyb24gUG9sbHV0PC9mdWxsLXRpdGxlPjxhYmJyLTE+RW52aXJvbm1lbnRhbCBwb2xsdXRp

b248L2FiYnItMT48L2FsdC1wZXJpb2RpY2FsPjxwYWdlcz41NC02NDwvcGFnZXM+PHZvbHVtZT4x

OTM8L3ZvbHVtZT48a2V5d29yZHM+PGtleXdvcmQ+QWVyb3NvbHMvYW5hbHlzaXM8L2tleXdvcmQ+

PGtleXdvcmQ+QWlyIFBvbGx1dGFudHMvKmFuYWx5c2lzPC9rZXl3b3JkPjxrZXl3b3JkPipFbnZp

cm9ubWVudGFsIE1vbml0b3Jpbmc8L2tleXdvcmQ+PGtleXdvcmQ+R2Fzb2xpbmUvYW5hbHlzaXM8

L2tleXdvcmQ+PGtleXdvcmQ+TG9zIEFuZ2VsZXM8L2tleXdvcmQ+PGtleXdvcmQ+UGFydGljdWxh

dGUgTWF0dGVyLyphbmFseXNpczwva2V5d29yZD48a2V5d29yZD5WZWhpY2xlIEVtaXNzaW9ucy8q

YW5hbHlzaXM8L2tleXdvcmQ+PC9rZXl3b3Jkcz48ZGF0ZXM+PHllYXI+MjAxNDwveWVhcj48cHVi

LWRhdGVzPjxkYXRlPk9jdDwvZGF0ZT48L3B1Yi1kYXRlcz48L2RhdGVzPjxpc2JuPjE4NzMtNjQy

NCAoRWxlY3Ryb25pYykmI3hEOzAyNjktNzQ5MSAoTGlua2luZyk8L2lzYm4+PGFjY2Vzc2lvbi1u

dW0+MjUwMDU4ODc8L2FjY2Vzc2lvbi1udW0+PHVybHM+PHJlbGF0ZWQtdXJscz48dXJsPmh0dHA6

Ly93d3cubmNiaS5ubG0ubmloLmdvdi9wdWJtZWQvMjUwMDU4ODc8L3VybD48L3JlbGF0ZWQtdXJs

cz48L3VybHM+PGVsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjEwLjEwMTYvai5lbnZwb2wuMjAxNC4w

Ni4wMTI8L2VsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjwvcmVjb3JkPjwvQ2l0ZT48L0VuZE5vdGU+

AG==

ADDIN EN.CITE.DATA [18]. Vehicle-related PM2.5 decreased while traffic volume was stable, suggesting the success of recent vehicle emissions controls. Like the present work, that study shows the relevance of receptor modeling apportionments for air quality management, as well as the evolution of source contributions to total PM2.5. In contrast, we show that the share of PM2.5 due to vehicle-, biomass- and other local emissions is stable or growing, and that trends depend on the city, percentile, and sometimes season (Figures S1 and S2). 3.5 Limitations Limitations of the analysis are recognized. Emission inventory data at the county level may not reflect the impact at monitoring sites, which can be affected by small but nearby sources, as well as large but distant sources (including sources outside county and country borders). A number of issues with the accuracy and consistency of the emissions inventory data were highlighted, e.g., fugitive dust emissions estimates are highly uncertain. The monitoring record is limited in both the duration and the number of sites available. Only two cities, and a single site in each, were examined. (Previous work has shown spatial trends in several PM2.5 species ADDIN EN.CITE <EndNote><Cite ExcludeAuth="1"><Year>2005</Year><RecNum>221</RecNum><DisplayText><style face="italic">[21]</style></DisplayText><record><rec-number>221</rec-number><foreign-keys><key app="EN" db-id="xtp0t5fro0zvd0ev2fi5vwf9a2adtr2vzwza">221</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Simon, C.</author><author>Sills, R.</author><author>Depa, M.</author><author>Sadoff, M.</author><author>Kim, A.</author><author>Heindorf, M.A</author></authors></contributors><titles><title>Detroit Air Toxics Initiative: Risk Assessment Report.</title><secondary-title>Michigan Department of Environmental Quality</secondary-title></titles><periodical><full-title>Michigan Department of environmental quality</full-title></periodical><dates><year>2005</year></dates><urls><related-urls><url> Department of Environmental Quality</custom1></record></Cite></EndNote>[21]). However, the selected non-source and population-oriented monitoring sites should be reasonably representative. As noted, monitoring data near strong sources would be expected to show different trends for some PM2.5 constituents as well as different apportionments, however, secondary sulfate, secondary nitrate, and potentially the vehicle contribution might not change greatly since these pollutants are widely distributed. The EC and OC instrument switch complicated the investigation of trends, particularly for mobile sources given the importance of these tracers. Still, most results follow national trends, and thus results appear broadly applicable to many U.S. cities. The PMF analyses have additional limitations. First, results can be sensitive to the number of factors, species selected, and the data subset used. In sensitivity analyses, separate PMF models for individual four year blocks obtained average apportionments that were similar to those using the final model (across all years), but some trends were difficult to compare because factors varied across models. (Still, separate PMF models used for periods before and after the EC/OC instrument switch returned similar vehicle apportionments in models using different number of factors.) For these reasons, the current analysis used a single dataset that encompassing the entire study period. Second, trend analyses of PMF results can be sensitive to the model selected. The stability of PMF results was investigated using 200 bootstrapped runs for each factor. In over 180 of 200 bootstrap runs at each city, the same factors emerged that are presented in these results. (Additional bootstrap results are presented in supplemental tables.) Third, PMF apportionments may not uniquely identify or completely characterize source classes, e.g., many factors might contribute to secondary sulfate trends. Similarly, unspecified minor sources and secondary pollutants can contribute to factors. Fourth, data screening can affect results, particularly for species near the DL. Fifth, PMF trend analyses may incorporate some biases because observations were removed by the reconstructed mass criterion. However, only 7% of sampling days at Detroit, and 6% at Chicago, were removed. Sixth, we did not apply conditional probability functions (CPF), which might provide additional qualitative information regarding the strength of local sources that complements the PMF results ADDIN EN.CITE <EndNote><Cite><Author>Ashbaugh</Author><Year>1985</Year><RecNum>653</RecNum><DisplayText><style face="italic">[67]</style></DisplayText><record><rec-number>653</rec-number><foreign-keys><key app="EN" db-id="xtp0t5fro0zvd0ev2fi5vwf9a2adtr2vzwza">653</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Ashbaugh, Lowell</author><author>Malm, William C.</author><author>Sadeh, Willy Z.</author></authors></contributors><titles><title>A residence time probability anlaysis of sulfur concentrations at Grand Canyon National Park</title><secondary-title>Atmospheric Environment</secondary-title></titles><periodical><full-title>Atmospheric Environment</full-title></periodical><pages>1263-1270</pages><volume>19</volume><number>8</number><dates><year>1985</year></dates><urls></urls></record></Cite></EndNote>[67]. Finally, the QR results do not account for the uncertainty of the PMF results, and thus determinations of statistical significance are approximate.3.6 RecommendationsThis study reports on trends and apportionments using a long record of emissions and ambient monitoring data from two cities. Analyses were constructed to provide consistent results, to combine emissions and ambient data, and to focus on contributions from both regional and local sources. While several differences between the two cities were noted, most trends were consistent and supported by both emissions and ambient data, as well as the PMF source apportionments. Such trends can inform air quality regulation and policy, including the formulation and implementation of emission and ambient standards, which in turn can lead to emission controls, new technologies, and promotion of cleaner fuels, among other options. These responses are most effective when emission sources can be clearly defined and apportioned. However, this approach may not adequately protect vulnerable populations given recent trends, including decreasing concentrations of regional and national pollutants ADDIN EN.CITE <EndNote><Cite ExcludeYear="1"><Year>2014</Year><RecNum>95</RecNum><DisplayText><style face="italic">[59]</style></DisplayText><record><rec-number>95</rec-number><foreign-keys><key app="EN" db-id="xtp0t5fro0zvd0ev2fi5vwf9a2adtr2vzwza">95</key></foreign-keys><ref-type name="Web Page">12</ref-type><contributors></contributors><titles><title>National Trends in Particulate Matter Levels</title></titles><dates><year>2014</year></dates><publisher>U.S. Environmental Protection Agency</publisher><urls><related-urls><url>;[59], increasingly indistinct profiles and identifications of local emission sources, the significance of secondary pollutants, and the still nascent understanding of health impacts associated with low concentration exposures and pollutant mixtures. A better understanding of emissions, ambient concentrations and source apportionments is required to reduce pollutant exposure and health impacts. The integration of source- and receptor-oriented apportionments, utilized in the present analysis, can enhance the ability to tease out contributions of sources for targeted interventions. Future analyses may be strengthened in several ways. First, analyses might be stratified by climatic or meteorological variables to better account for seasonal factors than calendar-based periods, and to better separate trends in primary and secondary components ADDIN EN.CITE <EndNote><Cite><Author>Ashbaugh</Author><Year>1985</Year><RecNum>653</RecNum><DisplayText><style face="italic">[67]</style></DisplayText><record><rec-number>653</rec-number><foreign-keys><key app="EN" db-id="xtp0t5fro0zvd0ev2fi5vwf9a2adtr2vzwza">653</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Ashbaugh, Lowell</author><author>Malm, William C.</author><author>Sadeh, Willy Z.</author></authors></contributors><titles><title>A residence time probability anlaysis of sulfur concentrations at Grand Canyon National Park</title><secondary-title>Atmospheric Environment</secondary-title></titles><periodical><full-title>Atmospheric Environment</full-title></periodical><pages>1263-1270</pages><volume>19</volume><number>8</number><dates><year>1985</year></dates><urls></urls></record></Cite></EndNote>[67]. Second, weekday/weekend groupings may reveal additional trends and better discriminate sources, particularly since truck traffic decreases significantly on Sundays ADDIN EN.CITE <EndNote><Cite><Author>Batterman</Author><Year>2015</Year><RecNum>266</RecNum><DisplayText><style face="italic">[68]</style></DisplayText><record><rec-number>266</rec-number><foreign-keys><key app="EN" db-id="xtp0t5fro0zvd0ev2fi5vwf9a2adtr2vzwza">266</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Batterman, Stuart</author><author>Cook, R</author><author>Justin, T</author></authors></contributors><titles><title>Temporal Variation of Traffic on Highways and the Development of Accurate Time Allocation Factors for Air Pollution Analyses</title><secondary-title>Atmospheric Environment</secondary-title></titles><periodical><full-title>Atmospheric Environment</full-title></periodical><pages>351-363</pages><volume>107</volume><dates><year>2015</year></dates><urls></urls></record></Cite></EndNote>[68]. Similarly, there may be opportunities to stratify by wind direction and other meteorological factors, although the duration (24 hr) and frequency (every third day) of the CSN measurements may prove limiting. Third, hourly speciation measurements and stratification of PMF results by wind direction may improve the ability to identify sources ADDIN EN.CITE <EndNote><Cite><Author>Rubin</Author><Year>2006</Year><RecNum>237</RecNum><DisplayText><style face="italic">[64]</style></DisplayText><record><rec-number>237</rec-number><foreign-keys><key app="EN" db-id="xtp0t5fro0zvd0ev2fi5vwf9a2adtr2vzwza">237</key></foreign-keys><ref-type name="Report">27</ref-type><contributors><authors><author>Rubin, J. I.</author><author>Brown, S. G.</author><author>Wade, K. S.</author><author>Hafner, H. R.</author></authors></contributors><titles><title>Apportionment of PM2.5 and Air Toxics in Detroit, Michigan</title></titles><dates><year>2006</year></dates><pub-location>Research Triangle Park. Retrieved from , U.S. Environmental Protection Agency</publisher><urls></urls></record></Cite></EndNote>[64]. Fourth, comparisons of factor contribution on high and low pollution days might help distinguish contributions of local sources, e.g., traffic-related air pollutants PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5BZGFtc2tpPC9BdXRob3I+PFllYXI+MjAwOTwvWWVhcj48

UmVjTnVtPjIyMzwvUmVjTnVtPjxEaXNwbGF5VGV4dD48c3R5bGUgZmFjZT0iaXRhbGljIj5bNjFd

PC9zdHlsZT48L0Rpc3BsYXlUZXh0PjxyZWNvcmQ+PHJlYy1udW1iZXI+MjIzPC9yZWMtbnVtYmVy

Pjxmb3JlaWduLWtleXM+PGtleSBhcHA9IkVOIiBkYi1pZD0ieHRwMHQ1ZnJvMHp2ZDBldjJmaTV2

d2Y5YTJhZHRyMnZ6d3phIj4yMjM8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0i

UmVwb3J0Ij4yNzwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPkFkYW1z

a2ksIEJpbGwgPC9hdXRob3I+PGF1dGhvcj48c3R5bGUgZmFjZT0ibm9ybWFsIiBmb250PSJkZWZh

dWx0IiBjaGFyc2V0PSIxNjEiIHNpemU9IjEwMCUiPkJvbmVyPC9zdHlsZT48c3R5bGUgZmFjZT0i

bm9ybWFsIiBmb250PSJkZWZhdWx0IiBzaXplPSIxMDAlIj4sIDwvc3R5bGU+PHN0eWxlIGZhY2U9

Im5vcm1hbCIgZm9udD0iZGVmYXVsdCIgY2hhcnNldD0iMTYxIiBzaXplPSIxMDAlIj5NaWNoZWxl

IDwvc3R5bGU+PC9hdXRob3I+PGF1dGhvcj48c3R5bGUgZmFjZT0ibm9ybWFsIiBmb250PSJkZWZh

dWx0IiBjaGFyc2V0PSIxNjEiIHNpemU9IjEwMCUiPkNhbGxhaGFuPC9zdHlsZT48c3R5bGUgZmFj

ZT0ibm9ybWFsIiBmb250PSJkZWZhdWx0IiBzaXplPSIxMDAlIj4sIDwvc3R5bGU+PHN0eWxlIGZh

Y2U9Im5vcm1hbCIgZm9udD0iZGVmYXVsdCIgY2hhcnNldD0iMTYxIiBzaXplPSIxMDAlIj5Ccmlh

biA8L3N0eWxlPjwvYXV0aG9yPjxhdXRob3I+PHN0eWxlIGZhY2U9Im5vcm1hbCIgZm9udD0iZGVm

YXVsdCIgY2hhcnNldD0iMTYxIiBzaXplPSIxMDAlIj5Db21waGVyLDwvc3R5bGU+PHN0eWxlIGZh

Y2U9Im5vcm1hbCIgZm9udD0iZGVmYXVsdCIgc2l6ZT0iMTAwJSI+IDwvc3R5bGU+PHN0eWxlIGZh

Y2U9Im5vcm1hbCIgZm9udD0iZGVmYXVsdCIgY2hhcnNldD0iMTYxIiBzaXplPSIxMDAlIj5NaWNo

YWVsIDwvc3R5bGU+PC9hdXRob3I+PGF1dGhvcj48c3R5bGUgZmFjZT0ibm9ybWFsIiBmb250PSJk

ZWZhdWx0IiBjaGFyc2V0PSIxNjEiIHNpemU9IjEwMCUiPkhheXdvb2Q8L3N0eWxlPjxzdHlsZSBm

YWNlPSJub3JtYWwiIGZvbnQ9ImRlZmF1bHQiIHNpemU9IjEwMCUiPiwgPC9zdHlsZT48c3R5bGUg

ZmFjZT0ibm9ybWFsIiBmb250PSJkZWZhdWx0IiBjaGFyc2V0PSIxNjEiIHNpemU9IjEwMCUiPkpp

bSA8L3N0eWxlPjwvYXV0aG9yPjxhdXRob3I+PHN0eWxlIGZhY2U9Im5vcm1hbCIgZm9udD0iZGVm

YXVsdCIgY2hhcnNldD0iMTYxIiBzaXplPSIxMDAlIj5Ib2RnZXM8L3N0eWxlPjxzdHlsZSBmYWNl

PSJub3JtYWwiIGZvbnQ9ImRlZmF1bHQiIHNpemU9IjEwMCUiPiwgPC9zdHlsZT48c3R5bGUgZmFj

ZT0ibm9ybWFsIiBmb250PSJkZWZhdWx0IiBjaGFyc2V0PSIxNjEiIHNpemU9IjEwMCUiPkN5bnRo

aWEgPC9zdHlsZT48L2F1dGhvcj48YXV0aG9yPjxzdHlsZSBmYWNlPSJub3JtYWwiIGZvbnQ9ImRl

ZmF1bHQiIGNoYXJzZXQ9IjE2MSIgc2l6ZT0iMTAwJSI+S2Vuc2tpPC9zdHlsZT48c3R5bGUgZmFj

ZT0ibm9ybWFsIiBmb250PSJkZWZhdWx0IiBzaXplPSIxMDAlIj4sIDwvc3R5bGU+PHN0eWxlIGZh

Y2U9Im5vcm1hbCIgZm9udD0iZGVmYXVsdCIgY2hhcnNldD0iMTYxIiBzaXplPSIxMDAlIj5Eb25u

YSA8L3N0eWxlPjwvYXV0aG9yPjxhdXRob3I+PHN0eWxlIGZhY2U9Im5vcm1hbCIgZm9udD0iZGVm

YXVsdCIgY2hhcnNldD0iMTYxIiBzaXplPSIxMDAlIj5SdWJlbnMsPC9zdHlsZT48c3R5bGUgZmFj

ZT0ibm9ybWFsIiBmb250PSJkZWZhdWx0IiBzaXplPSIxMDAlIj4gPC9zdHlsZT48c3R5bGUgZmFj

ZT0ibm9ybWFsIiBmb250PSJkZWZhdWx0IiBjaGFyc2V0PSIxNjEiIHNpemU9IjEwMCUiPlNhbSA8

L3N0eWxlPjwvYXV0aG9yPjxhdXRob3I+PHN0eWxlIGZhY2U9Im5vcm1hbCIgZm9udD0iZGVmYXVs

dCIgY2hhcnNldD0iMTYxIiBzaXplPSIxMDAlIj5Ba3Jvbjwvc3R5bGU+PC9hdXRob3I+PGF1dGhv

cj48c3R5bGUgZmFjZT0ibm9ybWFsIiBmb250PSJkZWZhdWx0IiBjaGFyc2V0PSIxNjEiIHNpemU9

IjEwMCUiPlNwb25zZWxsZXIsIEJhcnQgPC9zdHlsZT48L2F1dGhvcj48L2F1dGhvcnM+PC9jb250

cmlidXRvcnM+PHRpdGxlcz48dGl0bGU+Q29uY2VwdHVhbCBNb2RlbCBvZiBQTTIuNSBFcGlzb2Rl

cyBpbiB0aGUgTWlkd2VzdDwvdGl0bGU+PC90aXRsZXM+PGRhdGVzPjx5ZWFyPjIwMDk8L3llYXI+

PC9kYXRlcz48cHVibGlzaGVyPkxha2UgTWljaGlnYW4gQWlyIERpcmVjdG9ycyBDb25zb3J0aXVt

PC9wdWJsaXNoZXI+PHVybHM+PC91cmxzPjwvcmVjb3JkPjwvQ2l0ZT48L0VuZE5vdGU+

ADDIN EN.CITE PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5BZGFtc2tpPC9BdXRob3I+PFllYXI+MjAwOTwvWWVhcj48

UmVjTnVtPjIyMzwvUmVjTnVtPjxEaXNwbGF5VGV4dD48c3R5bGUgZmFjZT0iaXRhbGljIj5bNjFd

PC9zdHlsZT48L0Rpc3BsYXlUZXh0PjxyZWNvcmQ+PHJlYy1udW1iZXI+MjIzPC9yZWMtbnVtYmVy

Pjxmb3JlaWduLWtleXM+PGtleSBhcHA9IkVOIiBkYi1pZD0ieHRwMHQ1ZnJvMHp2ZDBldjJmaTV2

d2Y5YTJhZHRyMnZ6d3phIj4yMjM8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0i

UmVwb3J0Ij4yNzwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPkFkYW1z

a2ksIEJpbGwgPC9hdXRob3I+PGF1dGhvcj48c3R5bGUgZmFjZT0ibm9ybWFsIiBmb250PSJkZWZh

dWx0IiBjaGFyc2V0PSIxNjEiIHNpemU9IjEwMCUiPkJvbmVyPC9zdHlsZT48c3R5bGUgZmFjZT0i

bm9ybWFsIiBmb250PSJkZWZhdWx0IiBzaXplPSIxMDAlIj4sIDwvc3R5bGU+PHN0eWxlIGZhY2U9

Im5vcm1hbCIgZm9udD0iZGVmYXVsdCIgY2hhcnNldD0iMTYxIiBzaXplPSIxMDAlIj5NaWNoZWxl

IDwvc3R5bGU+PC9hdXRob3I+PGF1dGhvcj48c3R5bGUgZmFjZT0ibm9ybWFsIiBmb250PSJkZWZh

dWx0IiBjaGFyc2V0PSIxNjEiIHNpemU9IjEwMCUiPkNhbGxhaGFuPC9zdHlsZT48c3R5bGUgZmFj

ZT0ibm9ybWFsIiBmb250PSJkZWZhdWx0IiBzaXplPSIxMDAlIj4sIDwvc3R5bGU+PHN0eWxlIGZh

Y2U9Im5vcm1hbCIgZm9udD0iZGVmYXVsdCIgY2hhcnNldD0iMTYxIiBzaXplPSIxMDAlIj5Ccmlh

biA8L3N0eWxlPjwvYXV0aG9yPjxhdXRob3I+PHN0eWxlIGZhY2U9Im5vcm1hbCIgZm9udD0iZGVm

YXVsdCIgY2hhcnNldD0iMTYxIiBzaXplPSIxMDAlIj5Db21waGVyLDwvc3R5bGU+PHN0eWxlIGZh

Y2U9Im5vcm1hbCIgZm9udD0iZGVmYXVsdCIgc2l6ZT0iMTAwJSI+IDwvc3R5bGU+PHN0eWxlIGZh

Y2U9Im5vcm1hbCIgZm9udD0iZGVmYXVsdCIgY2hhcnNldD0iMTYxIiBzaXplPSIxMDAlIj5NaWNo

YWVsIDwvc3R5bGU+PC9hdXRob3I+PGF1dGhvcj48c3R5bGUgZmFjZT0ibm9ybWFsIiBmb250PSJk

ZWZhdWx0IiBjaGFyc2V0PSIxNjEiIHNpemU9IjEwMCUiPkhheXdvb2Q8L3N0eWxlPjxzdHlsZSBm

YWNlPSJub3JtYWwiIGZvbnQ9ImRlZmF1bHQiIHNpemU9IjEwMCUiPiwgPC9zdHlsZT48c3R5bGUg

ZmFjZT0ibm9ybWFsIiBmb250PSJkZWZhdWx0IiBjaGFyc2V0PSIxNjEiIHNpemU9IjEwMCUiPkpp

bSA8L3N0eWxlPjwvYXV0aG9yPjxhdXRob3I+PHN0eWxlIGZhY2U9Im5vcm1hbCIgZm9udD0iZGVm

YXVsdCIgY2hhcnNldD0iMTYxIiBzaXplPSIxMDAlIj5Ib2RnZXM8L3N0eWxlPjxzdHlsZSBmYWNl

PSJub3JtYWwiIGZvbnQ9ImRlZmF1bHQiIHNpemU9IjEwMCUiPiwgPC9zdHlsZT48c3R5bGUgZmFj

ZT0ibm9ybWFsIiBmb250PSJkZWZhdWx0IiBjaGFyc2V0PSIxNjEiIHNpemU9IjEwMCUiPkN5bnRo

aWEgPC9zdHlsZT48L2F1dGhvcj48YXV0aG9yPjxzdHlsZSBmYWNlPSJub3JtYWwiIGZvbnQ9ImRl

ZmF1bHQiIGNoYXJzZXQ9IjE2MSIgc2l6ZT0iMTAwJSI+S2Vuc2tpPC9zdHlsZT48c3R5bGUgZmFj

ZT0ibm9ybWFsIiBmb250PSJkZWZhdWx0IiBzaXplPSIxMDAlIj4sIDwvc3R5bGU+PHN0eWxlIGZh

Y2U9Im5vcm1hbCIgZm9udD0iZGVmYXVsdCIgY2hhcnNldD0iMTYxIiBzaXplPSIxMDAlIj5Eb25u

YSA8L3N0eWxlPjwvYXV0aG9yPjxhdXRob3I+PHN0eWxlIGZhY2U9Im5vcm1hbCIgZm9udD0iZGVm

YXVsdCIgY2hhcnNldD0iMTYxIiBzaXplPSIxMDAlIj5SdWJlbnMsPC9zdHlsZT48c3R5bGUgZmFj

ZT0ibm9ybWFsIiBmb250PSJkZWZhdWx0IiBzaXplPSIxMDAlIj4gPC9zdHlsZT48c3R5bGUgZmFj

ZT0ibm9ybWFsIiBmb250PSJkZWZhdWx0IiBjaGFyc2V0PSIxNjEiIHNpemU9IjEwMCUiPlNhbSA8

L3N0eWxlPjwvYXV0aG9yPjxhdXRob3I+PHN0eWxlIGZhY2U9Im5vcm1hbCIgZm9udD0iZGVmYXVs

dCIgY2hhcnNldD0iMTYxIiBzaXplPSIxMDAlIj5Ba3Jvbjwvc3R5bGU+PC9hdXRob3I+PGF1dGhv

cj48c3R5bGUgZmFjZT0ibm9ybWFsIiBmb250PSJkZWZhdWx0IiBjaGFyc2V0PSIxNjEiIHNpemU9

IjEwMCUiPlNwb25zZWxsZXIsIEJhcnQgPC9zdHlsZT48L2F1dGhvcj48L2F1dGhvcnM+PC9jb250

cmlidXRvcnM+PHRpdGxlcz48dGl0bGU+Q29uY2VwdHVhbCBNb2RlbCBvZiBQTTIuNSBFcGlzb2Rl

cyBpbiB0aGUgTWlkd2VzdDwvdGl0bGU+PC90aXRsZXM+PGRhdGVzPjx5ZWFyPjIwMDk8L3llYXI+

PC9kYXRlcz48cHVibGlzaGVyPkxha2UgTWljaGlnYW4gQWlyIERpcmVjdG9ycyBDb25zb3J0aXVt

PC9wdWJsaXNoZXI+PHVybHM+PC91cmxzPjwvcmVjb3JkPjwvQ2l0ZT48L0VuZE5vdGU+

ADDIN EN.CITE.DATA [61]. Fifth, while emissions trends can be tracked for some sources, greater consistency in methods and source grouping across years would improve long-term studies. In particular, emissions data for crustal, fugitive, metals and biomass sources is highly uncertain. Sixth, regional emission inventories might be examined to help confirm changes in regional contributors of secondary sulfate and nitrate. Finally, applications of long term trend analyses to other cities would be help confirm trends. 4 Conclusions The changing contribution of PM2.5 sources is shown by long term trends in PM2.5 emissions, concentrations and PMF source apportionments in Detroit and Chicago. In both cities, PM2.5 levels have been declining, primarily due to reductions in secondary sulfate and, to a more limited extent, in nitrate sources, while the importance of emissions due to vehicles, biomass, and metals sources is increasing. This is supported by examining three data sources: county emission data, which show constant or declining emissions from point sources and slightly increasing or constant emissions from on-road mobile sources; ambient monitoring data, which show rapid declines in SO4= and NO3- concentrations, but steady or increasing abundances of OC and EC, tracers for gasoline and diesel vehicle exhaust; and receptor model results, which show increasing relative (percentage) contributions from these sources. Quantile regression estimates of PMF results, expressed as the %/yr change in the annual median relative contribution to total PM2.5 over the study period, show that the contribution from secondary sulfate decreased by 4.3 to 5.5 %/yr, while vehicle, biomass and metals source contributions increased by 1.3 to 9.2%. In most cases, the rate of change depends on the season and concentration percentile. The study has several unique aspects. Trends in emissions and ambient data, which provide complementary information, are compared and critiqued. The PMF application covered an extended period (up to 14 years), which allowed for analyses of annual and seasonal apportionment trends. Also novel is the determination of concentration and apportionment trends using quantile regression, a method that provides robust results. The study's key finding that, in both cities, the mobile source, biomass, and metal source contributions to PM2.5 have increased even as overall PM2.5 concentrations have declined, has significant implications for air quality management. It emphasizes the need to investigate these sources in policies and regulations aimed at maintaining or decreasing PM2.5 concentrations.5 AcknowledgementsThe authors thank Dr. Steven Brown at Sonoma Technology Inc. (STI) for guidance on EPA PMF 5.0 and handling of measurement uncertainty, and staff at the Michigan Department of Environmental Quality for assistance with the air quality data. We also acknowledge the helpful comments from the reviewers. Support for this research was provided by grants from the Health Effects Institute, grant P30ES017885 from the National Institute of Environmental Health Sciences, National Institutes of Health, and grant T42 OH008455-10 from the National Institute of Occupational Health and Safety.6 References ADDIN EN.REFLIST 1.Hand, J. Spatial and Seasonal Patterns and Temporal Variability of Haze and its Constituents in the United States: Report V. 2011; Available from: Speciation Network Database, 2014, U.S. Environmental Protection Agency.3.Jones, A.M., R.M. Harrison, B. Barratt, and G. Fuller, A large reduction in airborne particle number concentrations at the time of the introduction of “sulphur free” diesel and the London Low Emission Zone. Atmospheric Environment, 2012. 50: p. 129-138.4.Haupt, S.E., A demonstration of coupled receptor/dispersion modeling with a genetic algorithm. Atmospheric Environment, 2005. 39(37): p. 7181-7189.5.Park, S.K., A.H. Auchincloss, M.S. O'Neill, R. Prineas, J.C. Correa, J. Keeler, R.G. Barr, J.D. Kaufman, and A.V. Diez Roux, Particulate air pollution, metabolic syndrome, and heart rate variability: the multi-ethnic study of atherosclerosis (MESA). Environ Health Perspect, 2010. 118(10): p. 1406-11.6.Wolff, G.T., P.E. Korsog, N.A. Kelly, and M.A. Ferman, Relationships between fine particulate species, gaseous pollutants, and meteorological parameters in Detroit. Atmospheric Environment, 1985. 19(8): p. 1341-1349.7.Morishita, M., G.J. Keeler, J.G. Wagner, and J.R. Harkema, Source identification of ambient PM2.5 during summer inhalation exposure studies in Detroit, MI. Atmospheric Environment, 2006. 40(21): p. 3823-3834.8.Morishita, M., G.J. Keeler, A.S. Kamal, J.G. Wagner, J.R. Harkema, and A.C. Rohr, Identification of ambient PM2.5 sources and analysis of pollution episodes in?Detroit, Michigan using highly time-resolved measurements. Atmospheric Environment, 2011. 45(8): p. 1627-1637.9.Buzcu-Guven, B., S.G. Brown, A. Frankel, H.R. Hafner, and P.T. Roberts, Analysis and Apportionment of Organic Carbon and Fine Particulate Matter Sources at Multiple Sites in the Midwestern United States. Journal of the Air & Waste Management Association, 2007. 57(5): p. 606-619.10.Williams, R., A. Rea, A. Vette, C. Croghan, D. Whitaker, C. Stevens, S. McDow, R. Fortmann, L. Sheldon, H. Wilson, J. Thornburg, M. Phillips, P. Lawless, C. Rodes, and H. Daughtrey, The design and field implementation of the Detroit Exposure and Aerosol Research Study. J Expo Sci Environ Epidemiol, 2009. 19(7): p. 643-59.11.Duvall, R.M., G.A. Norris, J.M. Burke, D.A. Olson, R. Vedantham, and R. Williams, Determining spatial variability in PM2.5 source impacts across Detroit, MI. Atmospheric Environment, 2012. 47: p. 491-498.12.Gildemeister, A.E., P.K. Hopke, and E. Kim, Sources of fine urban particulate matter in Detroit, MI. Chemosphere, 2007. 69(7): p. 1064-74.13.Kundu, S. and E.A. Stone, Composition and sources of fine particulate matter across urban and rural sites in the Midwestern United States. Environ Sci Process Impacts, 2014. 16(6): p. 1360-70.14.Hammond, D.M., J.T. Dvonch, G.J. Keeler, E.A. Parker, A.S. Kamal, J.A. Barres, F.Y. Yip, and W. Brakefield-Caldwell, Sources of ambient fine particulate matter at two community sites in Detroit, Michigan. Atmospheric Environment, 2008. 42(4): p. 720-732.15.Rizzo, M. and P. Scheff, Fine particulate source apportionment using data from the USEPA speciation trends network in Chicago, Illinois: Comparison of two source apportionment models. Atmospheric Environment, 2007. 41(29): p. 6276-6288.16.Kim, E. and P. Hopke, Source Identifications of Airborne Fine Particles Using Positive Matrix Factorization and U.S. Environmental Protection Agency Positive Matrix Factorization. Journal of the Air & Waste Management Association, 2007. 57(7): p. 811-819.17.Wang, Y. and P.K. Hopke, A ten-year source apportionment study of ambient fine particulate matter in San Jose, California. Atmospheric Pollution Research, 2013. 4(4).18.Hasheminassab, S., N. Daher, B.D. Ostro, and C. Sioutas, Long-term source apportionment of ambient fine particulate matter (PM2.5) in the Los Angeles Basin: a focus on emissions reduction from vehicular sources. Environ Pollut, 2014. 193: p. 54-64.19.US Environmental Protection Agency. Integrated Science Assessment for Particulate Matter. Research Triangle Park, NC: National Center for Environmental Assessment–RTP Office, 2011. Report No. EPA/600/R-08/139. 20.Zhang, K. and S. Batterman, Near-road air pollutant concentrations of CO and PM2.5: A comparison of MOBILE6.2/CALINE4 and generalized additive models. Atmospheric Environment, 2010. 44(14): p. 1740-1748.21.Simon, C., R. Sills, M. Depa, M. Sadoff, A. Kim, and M.A. Heindorf, Detroit Air Toxics Initiative: Risk Assessment Report. Michigan Department of Environmental Quality, 2005.22.State & County QuickFacts. 2015 Accessed on 2/26/2015]; Available from: Emission Inventories (NEI) and Technical Support Documents, 2014, U.S. Environmental Protection Agency.24.MDEQ. Michigan's 2015 Ambient Air Monitoring Network Review . 2015 1/28/2015].25.Illinois Ambient Air Monitoring Network Plan - 2014. Bureau of Air Monitoring Section, 2013.26.Dillner, A.M., M. Green, B. Schichtel, B. Malm, J. Rice, N. Frank, J.C. Chow, J.G. Watson, W. White, and M. Pitchford, Rationale and Recommendations for Sampling Artifact Correction for PM2.5 Organic Carbon [Memorandum], 2012, U.S. Environmental Protection Agency: Research Triangle Park, NC.27.Kotchenruther, R., PM2.5 Carbon Measurements in Region 10 [PowerPoint slides]. 2011, NW-AIRQUEST.28.Solomon, P., D. Cumpler, J.B. Flanagan, R.K.M. Jayanty, J.E.E. Rickman, and C. Dade, United States National PM2.5 Chemical Speciation Monitoring Networks - CSN and IMPROVE: Description of Networks. Journal of Air and Waste Management Association, 2014. 64(12): p. 1410-38.29.Dutton, S.J., S. Vedal, R. Piedrahita, J.B. Milford, S.L. Miller, and M.P. Hannigan, Source Apportionment Using Positive Matrix Factorization on Daily Measurements of Inorganic and Organic Speciated PM(2.5). Atmospheric Environment, 2010. 44(23): p. 2731-2741.30.EPA Region 10 Guidance for the Use of Receptor Models to Support Policy and Regulatory Decisions. 2009. 31.Brown, S.G., S. Eberly, P. Paatero, and G. Norris, Methods for estimating uncertainty in PMF solutions: Examples with ambient air and water quality dta and guidance on reporting PMF results. Sci Total Environ, 2015. 518-519: p. 626-635.32.Chow, J.C., J.G. Watson, L.W.A. Chen, J. Rice, and N.H. Frank, Quantification of PM2.5 organic carbon sampling artifacts in US networks. Atmospheric Chemistry and Physics, 2010. 10(12): p. 5223-5239.33.Koenker, R., Quantile Regression in R: A Vignette, 2012.34.Dunn, O.J., Multiple comparisons using rank sums. Technometrics, 1964. 6(3): p. 241-252.35.Koenker, R. and G. Basset, Regression Quantiles. Econometrica, 1978. 46(1): p. 33-50.36.EPA Positive Matrix Factorization (PMF) 5.0 Fundamentals and User Guide. Retrieved from 2014. . 37.Kim, E. and P. Hopke, Identification of PM2.5 sources in mid-atlantic US. Waste, Air, and Soil Pollution, 2005. 168: p. 391 - 421.38.Calculation of Urban Increments to Support the Air Quality Designations for the 2012 PM2.5 Standards National Ambient Air Quality Standards (NAAQS) (SAN 5706) [Memorandum]. Docket No. EPA-HQ-OAR-2012-0918. 2014. . 39.Paatero, P. and U. Tapper, Positive Matrix Factorization: A Non-Negative Factor Model with Optimal Utilization of Error Estimates of Data Values. Environmetrics, 1994. 5: p. 111-126.40.Antilla, P., P. Paatero, U. Tapper, and O. Jarvinen, Source Identification of Bulk Wet Deposition in Finland by Positive Matrix Factorization. Atmospheric Environment, 1995. 29(14): p. 1705-1718.41.Pace, T. Examination of the Multiplier Used to Estimate PM2.5 Fugitive Dust Emissions from PM10. in 14th International Emission Inventory Conference "Transforming Emission Inventories - Meeting Future Challenges Today". 2005. Las Vegas, Nevada, USA.42.AP 42 Update 2001 to Present - Summary of Changes to Sections. 2014. . 43.Dallmann, T.R. and R.A. Harley, Evaluation of mobile source emission trends in the United States. Journal of Geophysical Research, 2010. 115(D14).44.2005 National Emission Inventory. Accessed on 3/22/2015]; Available from: , M., Seasonal variations in diurnal concentrations of trace elements in atmospheric aerosols in Chicago. Analytica Chimica Acta, 2003. 496(1-2): p. 315-323.46.Clean Air Nonroad Diesel Rule. 2004. . 47.US Environmental Protection Agency. Locomotives. 2014. . Accessed on 3/25/201548.Michigan Highway Performance Monitoring System (HPMS)-NFC, 2013, Michigan Department of Transportation.49.Rodriguez, J., Vehicle Miles Traveled on Expressways in the Chicago Region Recent Trends - 2011 Update, 2011, Chicago Metropolitan Agency for Planning.50.Blanchard, C.L., S. Tanenbaum, and G.M. Hidy, Source attribution of air pollutant concentrations and trends in the southeastern aerosol research and characterization (SEARCH) network. Environ Sci Technol, 2013. 47(23): p. 13536-45.51.Hackstadt, A.J. and R.D. Peng, A Bayesian Multivariate Receptor Model for Estimating Source Contributions to Particulate Matter Pollution using National Databases. Environmetrics, 2014. 25(7): p. 513-527.52.Hu, Y., S. Balachandran, J.E. Pachon, J. Baek, C. Ivey, H. Holmes, M.T. Odman, J.A. Mulholland, and A.G. Russell, Fine particulate matter source apportionment using a hybrid chemical transport and receptor model approach. Atmospheric Chemistry and Physics, 2014. 14(11): p. 5415-5431.53.McDonald, B.C., A.H. Goldstein, and R.A. Harley, Long-term trends in california mobile source emissions and ambient concentrations of black carbon and organic aerosol. Environ Sci Technol, 2015. 49(8): p. 5178-88.54.Parrish, D., M. Trainer, M. Buhr, B. Watkins, and F. Fehsenfeld, Carbon Monoxide Concentrations and their relation to concentrations of Total Reactive Oxidized Nitrogen at Two Rural US Sites. Journal of Geophysical Research, 1991. 96: p. 9309 - 9320.55.National Air Quality: Status and Trends Through 2007. 2008. 56.Reff, A., P.V. Bhave, H. Simon, T. Pace, G.A. Pouliot, J.D. Mobley, and M. Houyoux, Emissions Inventory of PM2.5 Trace Elements across the United States. Environmental Science and Technology, 2009. 43(15): p. 5790-5796.57.Fraser, M.P., Z.W. Yue, and B. Buzcu, Source apportionment of fine particulate matter in Houston, TX, using organic molecular markers. Atmospheric Environment, 2003. 37(15): p. 2117-2123.58.Bell, M.L., F. Dominici, K. Ebisu, S.L. Zeger, and J.M. Samet, Spatial and temporal variation in PM(2.5) chemical composition in the United States for health effects studies. Environ Health Perspect, 2007. 115(7): p. 989-95.59.National Trends in Particulate Matter Levels. 2014; Available from: , V., N.H. Frank, and J. Rice, Speciation Measurements to Track Changes in PM2.5 Composition and Health Outcomes [Draft White Paper], 2012, U.S. Environmental Protection Agency.61.Adamski, B., M. Boner, B. Callahan, M. Compher, J. Haywood, C. Hodges, D. Kenski, S. Rubens, Akron, and B. Sponseller, Conceptual Model of PM2.5 Episodes in the Midwest, 2009, Lake Michigan Air Directors Consortium.62.J.J. Schauer, W.F.R., L.M. Hildemann, M.A. Mazurek, G.R. Cass, Source apportionment of airborne particulate matter using organic compounds as tracers. Atmospheric Environment, 1996. 22: p. 3837 - 3856.63.Subramanian, R., N.M. Donahue, A. Bernardo-Bricker, W.F. Rogge, and A.L. Robinson, Contribution of motor vehicle emissions to organic carbon and fine particle mass in Pittsburgh, Pennsylvania: Effects of varying source profiles and seasonal trends in ambient marker concentrations. Atmospheric Environment, 2006. 40(40): p. 8002-8019.64.Rubin, J.I., S.G. Brown, K.S. Wade, and H.R. Hafner, Apportionment of PM2.5 and Air Toxics in Detroit, Michigan, 2006, STI, U.S. Environmental Protection Agency: Research Triangle Park. Retrieved from , J.P., M.S. Landis, G.A. Norris, R. Vedantham, and J.T. Dvonch, Source apportionment of ambient fine particulate matter in Dearborn, Michigan, using hourly resolved PM chemical composition data. Sci Total Environ, 2013. 448: p. 2-13.66.State Implementation Plan Submittal for Fine Particulate Matter (PM2.5) - Appendix G: Overview of Recent Detroit PM Source Apportionment Studies. 2008. . 67.Ashbaugh, L., W.C. Malm, and W.Z. Sadeh, A residence time probability anlaysis of sulfur concentrations at Grand Canyon National Park. Atmospheric Environment, 1985. 19(8): p. 1263-1270.68.Batterman, S., R. Cook, and T. Justin, Temporal Variation of Traffic on Highways and the Development of Accurate Time Allocation Factors for Air Pollution Analyses. Atmospheric Environment, 2015. 107: p. 351-363.7 Tables and FiguresTable 1. Summary of emissions inventory data in Detroit and Chicago. Expressed as short tons/yr of PM2.5 primary (filterable + condensable) and % of total PM2.5. Derived from NEI.PointOn-Road MobileNon-Road MobileNon-Point SourcesYearSourcesDiesel Ex.1Gas Ex.2OtherDiesel Ex.1OtherConstruction3Paved Road4Other5TotalDetroit20025,364(59%)724 (8%)245 (3%)156 (2%)567(6%)288(3%)14(0%)136(2%)1,532(17%)9,026 20054,402(57%)589 (8%)164 (2%)163 (2%)547(7%)155(2%)14(0%)136(2%)1,550(20%)7,720 20082,345(22%)1,380 (13%)521 (5%)209 (2%)378(4%)140(1%)350(3%)627(6%)4,805(45%)10,754 20111,610(23%)725 (10%)335 (5%)128 (2%)350(5%)143(2%)18(0%)573(8%)3,194(45%)7,076 Chicago20022,394(21%)1,191 (10%)305 (3%)285 (3%)2,277(20%)503(4%)72(1%)176(2%)4,154(37%)11,357 20053,591(30%)965 (8%)254 (2%)299 (2%)2,125(17%)497(4%)72(1%)176(1%)4,169(34%)12,147 20082,510(11%)2,025 (9%)795 (4%)383 (2%)1,085(5%)494(2%)5,743(26%)917(4%)8,496(38%)22,448 20112,451(12%)1,297 (6%)565 (3%)301 (1%)1,006(5%)492(2%)6,351(31%)1,181(6%)6,595(33%)20,239 1 Diesel Ex. = diesel exhaust; 2 Gas Ex. = gasoline exhaust; 3 Construction = construction dust for the county; 4 Paved Road = paved road dust for the county5 In NEI 2002 and 2005, mobile emissions are not included in non-point emissions, while in NEI 2008 and 2011, mobile emissions are included in non-point emissions. In this table, “Other” non-point sources do not include mobile emissions.Table 2. Median and 90th percentile concentrations by year-block and statistical differences between year-block concentrations. Differences based on Kruskal-Wallis (comparing 3+ groups) or Mann-Whitney (comparing 2 groups) tests, and α = 0.05, with at least 10 valid observations per group.AllWinterSpringSummerFall2001200220062010201320012002200620102013200120022006201020132001200220062010201320012002200620102013Species?20022005200920132015?20022005200920132015?20022005200920132015?20022005200920132015?20022005200920132015?DetroitPM2.550th13.012.710.98.910.6?20.812.913.29.813.1?14.211.98.57.88.3?13.214.711.211.210.9?10.511.19.87.811.4?90th32.426.823.418.217.538.026.824.719.921.627.024.221.115.713.635.430.222.719.315.525.128.223.816.817.4NH4+50th1.421.661.290.760.94?2.221.782.051.151.05?1.561.761.130.760.98?1.431.531.080.670.65?0.741.361.090.540.49?90th5.164.353.702.312.575.844.143.933.123.023.944.333.491.882.195.984.263.061.791.783.814.793.801.771.86NO3-50th1.592.011.441.071.69?4.403.573.652.593.08?2.292.711.491.091.98?1.310.910.650.550.59?1.151.861.270.970.95?90th8.176.675.984.126.3513.79.328.086.697.178.406.865.653.324.363.973.191.961.481.534.485.754.493.203.73SO4=50th3.022.732.361.561.57?3.092.162.551.471.52?2.682.942.191.641.53?3.334.132.842.222.40?2.282.431.931.281.42?90th9.828.275.594.023.138.104.444.063.283.077.496.225.243.273.0215.611.07.465.524.367.949.875.893.373.02S50th0.990.910.780.560.56?1.040.710.810.500.56?0.850.950.730.560.54?1.031.390.960.850.83?0.850.780.680.450.49?90th3.202.641.831.421.162.491.521.341.191.062.272.111.681.121.144.833.672.472.011.612.693.252.051.241.16ECMetOne50th0.590.660.650.63―?0.540.580.560.62―?0.430.540.480.91―?0.760.800.72――?0.670.770.790.40―?90th1.051.251.261.49―1.021.020.901.43―0.820.960.991.70―1.061.371.24――1.031.461.590.40―ECURG3k50th――0.320.380.33?―――0.300.32?――0.250.330.29?――0.370.450.43?――0.420.450.38?90th――0.840.730.67―――0.550.58――0.560.630.51――0.680.810.73――0.940.850.94OCMetOne50th2.872.812.111.19―?3.632.481.841.17―?2.622.551.822.24―?3.693.763.13――?2.632.581.771.17―?90th5.935.634.863.18―7.635.194.822.82―4.764.303.984.61―6.136.715.15――5.734.984.771.17―OCURG3k50th――1.761.851.83?―――1.621.73?――1.411.491.62?――1.952.342.23?――1.991.791.87?90th――3.763.423.53―――3.063.48――2.342.892.98――3.214.043.50――4.583.404.52ChicagoPM2.550th――10.99.49.7?――12.79.810.7?――10.29.58.55?――10.710.69.85?――107.79.45?90th――22.31819.3――21.919.923.3――21.318.218.9――24.416.716――21.917.214.4NH4+50th――1.400.790.95?――2.021.111.36?――1.270.941.04?――1.110.620.57?――1.190.550.66?90th――3.702.392.79――4.153.283.15――3.442.482.86――3.081.591.69――3.531.921.74NO3-50th――1.621.142.00?――4.192.753.60?――1.821.582.47?――0.690.600.68?――1.430.811.18?90th――6.465.147.14――8.608.118.47――5.684.157.33――2.351.373.24――6.183.503.94SO4=50th――2.121.601.48?――2.381.441.38?――2.021.691.56?――2.511.771.76?――1.921.251.25?90th――5.513.723.30――3.853.422.75――4.563.783.30――7.734.823.73――5.973.223.02S50th――0.720.570.51?――0.800.500.51?――0.670.580.57?――0.860.720.67?――0.660.470.45?90th――1.831.351.16――1.331.120.97――1.551.251.16――2.621.641.37――1.961.191.04ECMetOne50th――0.620.82―?――0.540.71―?――0.610.88―?――0.66――――0.66――90th――1.251.36―――0.951.15―――1.301.44―――1.40――――1.16――ECURG3k50th――0.420.360.34?――0.330.290.33?――0.350.360.31?――0.450.430.46?――0.460.380.36?90th――0.840.760.66――0.610.550.53――0.700.770.61――0.880.830.69――1.020.760.80OCMetOne50th――2.652.21―?――1.941.70―?――2.592.31―?――3.60――――2.40――90th――4.714.21―――3.744.10―――4.064.40―――6.09――――3.98――OCURG3k50th――2.151.931.94?――2.171.691.70?――1.701.821.73?――2.332.402.33?――2.191.872.04?90th――3.893.593.17――3.262.872.98――3.643.442.89――4.023.943.89――4.413.643.23???????????????????????????????? Reject the null hypothesis? Do not reject the null hypothesisa The Met One SASS sampler was used until 3/30/10 at Detroit and 4/29/10 at Chicagob The URG 3000N sampler was used starting 4/1/09 at Detroit and 5/3/07 at ChicagoFigure 1. Maps showing Allen Park, Detroit (A) and Com Edison, Chicago (B) monitoring sites and nearby point sources emitting more than 25 tons of PM2.5 in 2011.Figure 2. Annual and seasonal concentration trends in Detroit from 2001 to 2015. Shows annual changes in median concentrations as blue circles (●, o) and in 90th percentile concentrations as red triangles (▲, Δ) for selected major species, expressed as %/yr for all seasons (A), winter (W), spring (Sp), summer (Su) and fall (F). Based on quantile regressions of ambient measurements. Filled symbols (e.g., ●) are statistically significant, i.e., trend exceeded 2-times its bootstrapped standard error.Figure 3. Annual and seasonal concentration trends in Chicago for median and 90th percentile concentrations from 2006 to 2014. Otherwise as Figure 2.Figure 4. Distribution of species by factor in PMF models for Detroit (A) and Chicago (B). Overall percentage contribution to modeled PM2.5 is listed for each factor.Figure 5. Annual and seasonal trends of PMF apportionments by source category in Detroit from 2001 to 2014. Shows changes in median concentrations as blue circles (●, o) and 90th percentile concentrations as red triangles (▲, Δ), expressed as %/yr for all seasons (A), winter (W), spring (Sp), summer (Su), and fall (F). Based on quantile regressions of estimated concentration apportionments from nine factor PMF model. Filled symbols (e.g., ●) are statistically significant, i.e., trend exceeded 2-times its bootstrapped standard error. Values below 0 not censored. Figure 6. Annual and seasonal trends of PMF apportionments by source category in Chicago from 2006 to 2014 using an 8-factor model. Otherwise as Figure 5.Trends in PM2.5 emissions, concentrations and apportionments in Detroit and ChicagoSupplemental MaterialsChad Milando, Lei Huang, Stuart Batterman*Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA*Corresponding author Email: Stuartb@umich.edu Tel: 734 763-2417 Fax: 734 763-8095December 27, 2015Table S1. Summary statistics for all Detroit speciesCoverageBlank & Detection Limit Correction?Summary StatisticsSpecies?StartEnd?# ADL# BDL% BDLBlankMeanBlankSDDLMeanDLSD?10th50thMean90thPM2.5,FRM11/1/003/31/15445568813%3.281.232.000.001.007.809.6220.20PM2.5212/20/009/29/14158060%0.870.580.750.064.5310.8012.5623.68Ag312/20/004/6/15?38161298%0.00100.00240.01360.0076?0.00420.00650.00700.0101Al312/20/004/6/15643100761%0.00140.00430.01700.00580.00650.01150.02330.0517As312/20/004/6/15?470118072%0.00020.00040.00180.0008?0.00050.00130.00160.0031Au312/20/002/18/094188296%0.00060.00090.00520.00290.00090.00280.00270.0041Ba312/20/004/6/15?134152292%0.00520.01260.02240.0234?0.00390.00550.01360.0295Br312/20/004/6/15112652432%0.00020.00030.00170.00060.00070.00270.00310.0062Ca312/20/004/6/15?1597533%0.00090.00200.00600.0015?0.01450.03960.05040.0952Cd312/20/004/6/1552159897%0.00150.00310.01440.00420.00500.00800.00750.0110Ce312/20/004/6/15?41160998%0.00170.00560.02930.0394?0.00280.00410.01500.0500Cl312/20/004/6/1576089054%0.00080.00330.00810.00250.00390.00610.02680.0540Co312/20/004/6/15?73157796%0.00020.00030.00140.0003?0.00060.00070.00080.0010Cr312/20/004/6/15412124475%0.00060.00120.00220.00030.00100.00120.00270.0050Cs312/20/004/6/15?34162298%0.00100.00320.02200.0162?0.00410.00550.01130.0230Cu312/20/004/6/15120245427%0.00060.00130.00190.00040.00100.00420.00740.0184ECMETSASS512/20/003/30/10?976797%0.01390.03810.24020.0036?0.28000.64850.71071.2500ECURG3k64/1/094/9/15?71210%0.00020.00120.00200.0000?0.17400.36600.41870.7326Eu312/20/002/18/098483991%0.00020.00050.00670.00390.00190.00250.00410.0085Fe312/20/004/6/15?164191%0.00280.00520.00200.0006?0.03710.08660.10330.1848Ga312/20/002/18/091291199%0.00020.00070.00320.00170.00050.00140.00160.0027Hf312/20/002/18/09?2290198%0.00140.00350.01480.0112?0.00200.00420.00770.0135Hg312/20/002/18/096186293%0.00050.00100.00520.00230.00170.00230.00280.0047In312/20/004/6/15?63158796%0.00110.00290.01700.0057?0.00700.00800.00900.0165Ir312/20/002/18/093488996%0.00060.00140.00600.00330.00120.00360.00310.0044K312/20/004/6/15?1628221%0.00050.00170.00690.0029?0.02090.04720.06910.0960K+41/7/014/6/1597168841%0.00190.00800.01600.00590.00700.03100.05860.1040La312/20/002/18/09?4587895%0.00250.00650.03340.0344?0.00390.00430.01740.0410Mg312/20/004/6/15?187146389%0.00090.00450.01770.0112?0.00550.00900.01290.0250Mn312/20/004/6/1584580549%0.00030.00060.00200.00050.00080.00190.00260.0057Mo312/20/002/18/091391099%0.00030.00070.00670.00220.00150.00360.00340.0045Na312/20/004/6/15?462118872%0.00730.02320.05310.0400?0.01550.02700.04860.1100Na+41/7/014/6/15142522714%--0.02430.00930.01500.06000.10220.2000Nb312/20/002/18/09?1890598%0.00030.00070.00430.0013?0.00140.00240.00220.0031NH4+41/7/014/6/151636231%0.00410.02880.01750.00680.25881.14001.58723.5920Ni312/20/004/6/15?349130779%0.00040.00070.00150.0003?0.00060.00090.00130.0024NO3-41/7/014/6/151645141%0.03400.03760.01200.00650.29651.44682.38745.8763OCMETSASS512/20/003/30/10?1003525%1.26641.16700.24020.0036?0.74382.49002.83705.2600OCURG3k64/1/094/9/15?70700%0.15680.06650.00200.0000?0.88781.82302.05603.5092P312/20/004/6/1546161097%0.00320.01920.01040.00350.00290.00500.00550.0080Pb312/20/004/6/15?551109967%0.00040.00070.00410.0018?0.00130.00290.00380.0076Rb312/20/004/6/1543161397%0.00020.00030.00200.00050.00070.00100.00100.0013S312/20/004/6/15?164191%0.00190.00570.00800.0030?0.27660.72280.98651.9400Sb312/20/004/6/1562159496%0.00250.00510.03180.01050.00950.01400.01700.0260Sc312/20/002/18/09?2921100%0.00010.00030.01130.0106?0.00150.00500.00570.0185Se312/20/004/6/15269138184%0.00020.00030.00220.00060.00070.00130.00150.0030Si312/20/004/6/15?146218811%0.00260.00570.01230.0039?0.00900.04590.06250.1261Sm312/20/002/18/094288195%0.00020.00040.00610.00220.00220.00250.00330.0050Sn312/20/004/6/15?64158696%0.00290.00550.02220.0067?0.00800.01000.01180.0180SO4=41/7/014/6/15164670%0.04110.05750.00990.00400.79092.14882.93215.8293Sr312/20/004/6/15?176147489%0.00030.00060.00240.0007?0.00090.00120.00170.0019Ta312/20/002/18/095986494%0.00380.00780.01020.00730.00190.00410.00600.0145Tb312/20/002/18/09?8783691%0.00010.00030.00600.00270.00180.00220.00370.0055Ti312/20/004/6/15404124676%0.00050.00120.00440.00080.00190.00250.00370.0068V312/20/004/6/15?185147189%0.00020.00030.00290.0007?0.00100.00160.00190.0025W312/20/002/18/092889597%0.00140.00300.00790.00530.00120.00340.00420.0105Y312/20/002/18/09?2989497%0.00030.00050.00290.0008?0.00110.00140.00150.0023Zn312/20/004/6/151566845%0.00020.00040.00230.00060.00390.01260.01750.0340Zr312/20/004/6/15?106155094%0.00040.00100.00520.0053?0.00140.00210.00290.00721 R & P Model 2025 PM2.5 Sequential w/WINS-GRAVIMETRIC (Detroit), Andersen RAAS2.5-300 PM2.5 SEQ w/WINS-GRAVIMETRIC (Chicago); 2 Met One SASS Teflon-Gravimetric; 3 Met One SASS Teflon-Energy Dispersive XRF; 4 Met One SASS Nylon-Ion Chromatography; 5 Met One SASS Quartz-STN TOT; 6 URG 3000N w/Pall Quartz filter and Cyclone InletTable S2. Summary statistics for major Detroit speciesAllWinterSpringSummerAutumn2001200220062010201020012002200620102010200120022006201020102001200220062010201020012002200620102010Species??2002200520092013201320022005200920132013200220052009201320132002200520092013201320022005200920132013?Count904574674749891061151182929119116123302812111911428241111171191110th5.05.44.73.94.79.05.46.84.04.87.15.44.33.94.66.96.65.25.05.64.44.44.02.97.4PM2.5Median13.012.710.98.910.6?20.812.913.29.813.1?14.211.98.57.88.3?13.214.711.211.210.9?10.511.19.87.811.4?0Mean16.514.812.510.110.823.114.814.610.812.215.913.511.18.98.918.116.712.611.611.112.713.911.89.111.890th32.426.823.418.217.538.026.824.719.921.627.024.221.115.713.635.430.222.719.315.525.128.223.816.817.4Count8745846948216371061151185929119118123432712111912130241121171203110th0.170.490.320.160.230.850.660.830.300.380.680.630.370.380.390.200.330.250.100.210.030.380.230.060.16NH4+Median1.421.661.290.760.94?2.221.782.051.151.05?1.561.761.130.760.98?1.431.531.080.670.65?0.741.361.090.540.49?1Mean2.042.111.701.041.203.262.192.211.471.542.102.141.690.991.232.312.061.350.900.791.322.041.550.810.8990th5.164.353.702.312.575.844.143.933.123.023.944.333.491.882.195.984.263.061.791.783.814.793.801.771.86Count8745846948216371061151185929119118123432712111912130241121171203110th0.280.480.270.260.382.031.021.070.840.750.950.790.290.450.580.260.290.180.200.210.290.380.210.190.20NO3-Median1.592.011.441.071.69?4.403.573.652.593.08?2.292.711.491.091.98?1.310.910.650.550.59?1.151.861.270.970.95?8Mean2.772.952.371.762.526.994.684.413.273.783.403.392.221.642.571.591.410.880.710.772.112.522.011.451.7690th8.176.675.984.126.3513.79.328.086.697.178.406.865.653.324.363.973.191.961.481.534.485.754.493.203.73Count8745846947616371061151185929119118123432712111911530241121171203110th0.961.090.840.630.771.191.151.240.640.771.871.380.920.890.860.931.200.840.650.970.860.920.640.480.59SO4=Median3.022.732.361.561.57?3.092.162.551.471.52?2.682.942.191.641.53?3.334.132.842.222.40?2.282.431.931.281.42?6Mean4.493.902.962.041.904.032.642.581.791.733.913.452.961.971.836.175.363.452.742.533.424.012.831.701.6890th9.828.275.594.023.138.104.444.063.283.077.496.225.243.273.0215.611.07.465.524.367.949.95.893.373.02Count9045846747416191061151185929119116123432812111911428241121171193110th0.350.370.280.240.300.500.370.380.240.300.590.440.310.310.310.310.390.290.240.350.330.320.220.180.14SMedian0.990.910.780.560.56?1.040.710.810.500.56?0.850.950.730.560.54?1.031.390.960.850.83?0.850.780.680.450.49?7Mean1.441.270.980.730.681.350.860.850.610.631.191.120.960.680.661.961.751.171.040.921.161.300.950.630.5990th3.202.641.831.421.162.491.521.341.191.062.272.111.681.121.144.833.672.472.011.612.693.22.051.241.16Count894574684108106114300291181181002812111900241121171010th0.310.310.250.29―0.250.280.120.27―0.250.300.120.50―0.410.390.35――0.340.390.330.40―ECMETSASSMedian0.590.660.650.63―?0.540.580.560.62―?0.430.540.480.91―?0.760.800.72――?0.670.770.790.40―?2Mean0.640.730.700.78―0.630.650.590.73―0.520.580.550.97―0.750.840.76――0.680.850.880.40―90th1.051.251.261.49―1.021.020.901.43―0.820.960.991.70―1.061.371.24――1.031.51.590.40―Count00784751600001185500201184400281203000301193110th――0.170.180.18―――0.180.17――0.110.140.18――0.220.260.19――0.170.200.17ECURG3kMedian――0.320.380.33?―――0.300.32?――0.250.330.29?――0.370.450.43?――0.420.450.38?3Mean――0.420.430.39―――0.350.35――0.300.370.33――0.410.490.44――0.520.510.4990th――0.840.730.67―――0.550.58――0.560.630.51――0.680.810.73――0.940.850.94Count894574684108106114300291181181002812111900241121171010th1.211.210.450.56―2.031.270.860.56―1.441.100.570.60―1.862.041.25――0.851.100.121.17―OCMETSASSMedian2.872.812.111.19―?3.632.481.841.17―?2.622.551.822.24―?3.693.763.13――?2.632.581.771.17―?4Mean3.353.182.501.69―4.393.012.441.48―2.952.672.172.37―3.754.043.30――3.022.962.081.17―90th5.935.634.863.18―7.635.194.822.82―4.764.303.984.61―6.136.715.15――5.735.04.771.17―Count00784691600001185500201184400281143000301193110th――0.920.870.95―――0.870.92――0.920.700.96――1.101.511.43――0.830.780.71OCURG3kMedian――1.761.851.83?―――1.621.73?――1.411.491.62?――1.952.342.23?――1.991.791.87?5Mean――2.082.052.05―――1.811.88――1.501.741.84――2.132.632.45――2.432.062.2590th――3.763.423.53―――3.063.48――2.342.892.98――3.214.043.50――4.583.404.52? Reject the null hypothesis that measured concentrations for this species in these year-season-groups have the same underlying distribution, by the Kruskal-Wallis (3+ groups) or Mann-Whitney (2 groups) tests for α = 0.05? Do not reject the null hypothesis that measured concentrations for this species in these year-season-groups have the same underlying distribution, by the Kruskal-Wallis (3+ groups) or Mann-Whitney (2 groups) tests for α = 0.05NOTE: only groups with greater than 10 observations with less than 50% BDL were considered in statistical tests Table S3. Summary statistics for all Chicago speciesCoverageBlank & Detection Limit Correction?Summary StatisticsSpecies?StartEnd?# ADL# BDL% BDLBlankMeanBlankSDDLMeanDLSD?10th50thMean90thPM2.5,FRM11/4/065/27/1519943769%14.076.012.000.001.001.003.4410.10PM2.521/2/069/29/1483451%0.630.570.750.074.4010.0011.5220.30Ag31/2/064/6/15?1488398%0.00060.00220.01480.0083?0.00420.00650.00750.0185Al31/2/064/6/1541948354%0.00100.00290.01700.00550.00650.01250.02550.0550As31/2/064/6/15?18571779%0.00010.00040.00160.0006?0.00050.00090.00110.0020Au31/2/062/18/09728798%0.00010.00020.00410.00220.00090.00190.00210.0040Ba31/2/064/6/15?1788598%0.00040.00130.01530.0152?0.00390.00500.00840.0295Br31/2/064/6/1570220022%0.00020.00030.00160.00050.00070.00310.00380.0070Ca31/2/064/6/15?873243%0.00010.00050.00620.0014?0.01460.04010.04800.0912Cd31/2/064/6/152187698%0.00090.00280.01550.00420.00500.00850.00800.0110Ce31/2/064/6/15?1901100%0.00000.00010.01670.0249?0.00280.00410.00840.0430Cl31/2/064/6/1546143649%0.00030.00090.00740.00200.00390.00690.03420.0716Co31/2/064/6/15?4585795%0.00010.00020.00140.0002?0.00060.00070.00070.0010Cr31/2/064/6/1516373982%0.00030.00080.00230.00020.00100.00120.00270.0040Cs31/2/064/6/15?4893100%0.00050.00150.01880.0133?0.00410.00550.00950.0205Cu31/2/064/6/1545744549%0.00010.00030.00190.00040.00080.00150.00300.0053ECMETSASS51/2/064/29/10?229198%0.00930.02630.24000.0000?0.29110.65000.72021.2549ECURG3k65/3/074/6/15?75251%0.00040.00160.00200.0000?0.17700.37200.43290.7732Eu31/2/062/18/09828697%0.00000.00030.00540.00210.00190.00250.00280.0055Fe31/2/064/6/15?90020%0.00120.00350.00190.0005?0.02370.06110.08000.1569Ga31/2/062/18/091293100%0.00020.00030.00240.00130.00050.00130.00120.0024Hf31/2/062/18/09?1293100%0.00010.00040.01030.0088?0.00200.00300.00520.0135Hg31/2/062/18/091128396%0.00010.00030.00560.00270.00170.00180.00290.0047In31/2/064/6/15?2886997%0.00130.00360.01830.0060?0.00700.00800.00960.0165Ir31/2/062/18/09828697%0.00000.00000.00490.00220.00120.00210.00250.0039K31/2/064/6/15?885172%0.00010.00020.00690.0029?0.01800.04460.07290.0949K+41/2/064/6/1556434038%0.00030.00250.01490.00580.00700.03400.06260.1030La31/2/062/18/09?329199%0.00010.00020.01760.0223?0.00390.00420.00890.0350Mg31/2/064/6/15?16074282%0.00050.00140.01440.0063?0.00550.00900.01220.0235Mn31/2/064/6/1538951357%0.00010.00020.00190.00040.00080.00110.00220.0046Mo31/2/062/18/09628898%0.00010.00040.00640.00270.00150.00420.00330.0045Na31/2/064/6/15?33956362%0.00330.01580.04150.0214?0.01550.02700.04660.1061Na+41/2/064/6/1578911513%--0.02150.01020.01500.05450.07680.1500Nb31/2/062/18/09?528998%0.00010.00040.00390.0010?0.00140.00170.00200.0028NH4+41/2/064/6/1589361%0.00430.01730.01620.00710.27101.02001.40493.1100Ni31/2/064/6/15?16074282%0.00020.00050.00140.0003?0.00060.00090.00120.0020NO3-41/2/064/6/1589720%0.01860.02870.01070.00600.40151.47002.42606.2220OCMETSASS51/2/064/29/10?24800%1.00830.20140.24000.0000?1.19282.58502.83474.6621OCURG3k65/3/074/6/15?75430%0.22040.10750.00200.0000?0.99592.02552.19233.6627P31/2/064/6/153894100%0.00010.00040.01140.00330.00450.00500.00580.0080Pb31/2/064/6/15?27263070%0.00020.00050.00370.0013?0.00130.00240.00360.0073Rb31/2/064/6/151788598%0.00010.00020.00190.00040.00070.00100.00100.0013S31/2/064/6/15?89251%0.00020.00050.00800.0018?0.26400.61800.79851.5538Sb31/2/064/6/154286095%0.00140.00370.03580.00940.00950.01950.01920.0260Sc31/2/062/18/09?1293100%0.00020.00040.01790.0124?0.00150.00600.00900.0185Se31/2/064/6/156084293%0.00010.00030.00210.00050.00070.00130.00120.0013Si31/2/064/6/15?819839%0.00040.00130.01240.0036?0.01130.04700.06010.1180Sm31/2/062/18/09329199%0.00010.00060.00540.00170.00220.00250.00270.0050Sn31/2/064/6/15?3087297%0.00110.00390.02380.0068?0.00800.01000.01250.0180SO4=41/2/064/6/1589630%0.01850.01830.00910.00450.71901.73002.29874.4941Sr31/2/064/6/15?7082792%0.00010.00030.00240.0006?0.00090.00120.00180.0018Ta31/2/062/18/09528998%0.00010.00060.00730.00330.00190.00390.00380.0049Tb31/2/062/18/09?828697%0.00000.00010.00490.00190.00180.00220.00260.0050Ti31/2/064/6/158881490%0.00020.00050.00470.00050.00210.00250.00290.0027V31/2/064/6/15?4685695%0.00010.00040.00320.0005?0.00120.00160.00180.0019W31/2/062/18/09628898%0.00010.00020.00560.00260.00120.00310.00290.0041Y31/2/062/18/09?528998%0.00010.00030.00260.0005?0.00110.00110.00130.0019Zn31/2/064/6/15827758%0.00010.00030.00240.00060.00300.01080.01700.0340Zr31/2/064/6/15?4086296%0.00050.00150.00580.0062?0.00140.00170.00320.01151 R & P Model 2025 PM2.5 Sequential w/WINS-GRAVIMETRIC (Detroit), Andersen RAAS2.5-300 PM2.5 SEQ w/WINS-GRAVIMETRIC (Chicago); 2 Met One SASS Teflon-Gravimetric; 3 Met One SASS Teflon-Energy Dispersive XRF; 4 Met One SASS Nylon-Ion Chromatography; 5 Met One SASS Quartz-STN TOT; 6 URG 3000N w/Pall Quartz filter and Cyclone Inlet Table S4. Summary statistics for major Chicago speciesAllWinterSpringSummerAutumn2001200220062010201020012002200620102010200120022006201020102001200220062010201020012002200620102010Species??2002200520092013201320022005200920132013200220052009201320132002200520092013201320022005200920132013?Count00374377880086882200959128009499280099991010th――4.94.14.8――7.24.95.5――4.23.83.4――4.94.55.7――5.04.26.2PM2.5Median――10.99.49.7?――12.79.810.7?――10.29.58.6?――10.710.69.9?――10.07.79.5?0Mean――12.710.411.1――14.211.413.5――11.110.49.8――13.110.610.6――12.69.410.390th――22.318.019.3――21.919.923.3――21.318.218.9――24.416.716.0――21.917.214.4Count003743731520087885300969141009495280097993010th――0.430.150.27――0.880.410.48――0.570.270.29――0.310.120.12――0.420.120.24NH4+Median――1.400.790.95?――2.021.111.36?――1.270.941.04?――1.110.620.57?――1.190.550.66?1Mean――1.791.091.23――2.421.661.56――1.631.171.32――1.450.760.79――1.700.830.9190th――3.702.392.79――4.153.283.15――3.442.482.86――3.081.591.69――3.531.921.74Count003743731520087885300969141009495280097993010th――0.420.340.50――1.641.151.29――0.640.430.63――0.270.240.37――0.510.340.49NO3-Median――1.621.142.00?――4.192.753.60?――1.821.582.47?――0.690.600.68?――1.430.811.18?8Mean――2.642.052.84――4.953.884.08――2.522.113.11――1.020.801.26――2.241.561.7590th――6.465.147.14――8.608.118.47――5.684.157.33――2.351.373.24――6.183.503.94Count003743731520087885300969141009495280097993010th――0.930.630.75――1.190.690.76――1.050.720.81――0.800.600.63――0.870.580.76SO4=Median――2.121.601.48?――2.381.441.38?――2.021.691.56?――2.511.771.76?――1.921.251.25?6Mean――2.861.951.77――2.541.801.60――2.532.061.84――3.432.312.15――2.921.651.6290th――5.513.723.30――3.853.422.75――4.563.783.30――7.734.823.73――5.973.223.02Count003743731500086885200959141009495280099992910th――0.310.230.26――0.370.240.28――0.330.260.26――0.300.230.24――0.300.220.28SMedian――0.720.570.51?――0.800.500.51?――0.670.580.57?――0.860.720.67?――0.660.470.45?7Mean――0.960.700.63――0.820.620.58――0.830.710.62――1.200.880.78――0.980.600.5990th――1.831.351.16――1.331.120.97――1.551.251.16――2.621.641.37――1.961.191.04Count002093900040230005916000620000480010th――0.300.26―――0.280.16―――0.120.36―――0.38――――0.32――ECMETSASSMedian――0.620.82―?――0.540.71―?――0.610.88―?――0.66――――0.66――2Mean――0.700.83―――0.580.75―――0.690.94―――0.77――――0.72――90th――1.251.36―――0.951.15―――1.301.44―――1.40――――1.16――Count0023337115300488356004989370066101300070983010th――0.180.170.18――0.150.160.18――0.170.180.18――0.210.260.26――0.240.170.20ECURG3kMedian――0.420.360.34?――0.330.290.33?――0.350.360.31?――0.450.430.46?――0.460.380.36?3Mean――0.470.430.39――0.370.340.33――0.390.420.36――0.520.480.48――0.560.440.4590th――0.840.760.66――0.610.550.53――0.700.770.61――0.880.830.69――1.020.760.80Count002093900040230005916000620000480010th――1.300.77―――1.170.79―――1.511.12―――1.81――――1.12――OCMETSASSMedian――2.652.21―?――1.941.70―?――2.592.31―?――3.60――――2.40――4Mean――2.942.26―――2.182.06―――2.812.55―――3.87――――2.53――90th――4.714.21―――3.744.10―――4.064.40―――6.09――――3.98――Count0023337115300488356004989370066101300070983010th――1.030.980.99――1.040.960.83――0.730.850.84――1.371.471.73――1.260.871.16OCURG3kMedian――2.151.931.94?――2.171.691.70?――1.701.821.73?――2.332.402.33?――2.191.872.04?5Mean――2.362.142.05――2.191.851.80――2.042.001.89――2.672.572.67――2.422.082.0990th――3.893.593.17――3.262.872.98――3.643.442.89――4.023.943.89――4.413.643.23?????????????????????????????????? Reject the null hypothesis that measured concentrations for this species in these year-season-groups have the same underlying distribution, by the Kruskal-Wallis (3+ groups) or Mann-Whitney (2 groups) tests for α = 0.05? Do not reject the null hypothesis that measured concentrations for this species in these year-season-groups have the same underlying distribution, by the Kruskal-Wallis (3+ groups) or Mann-Whitney (2 groups) tests for α = 0.05NOTE: only groups with greater than 10 observations with less than 50% BDL were considered in statistical tests Table S5. Parameters for EC and OC artifact correction regressionDetroitChicago?ECOCECOCOutliersDeletednone2009/7/24: OCMET = 8.230, OCURG = 2.146 2009/11/9: OCMET = 1.369, OCURG = 6.1072009/05/1, 7, 10, 13, 25 and 2009/6/6: ECMET = 0.11115 (after blank correction) and ECURG varied by ±0.1. 2010/2/1,19: ECMET > 1.7 and ECURG < 0.92009/7/24: OCMET = 10.311, OCURG = 2.04Y0.771.03330.86680.8645artifact0.137370.126250.23388770.303R20.5780.7729?0.69490.8518Table S6. Bootstrapped % of species mass at Detroit (200 bootstrapped runs, block size = 220, total samples = 1433)Bootstrap RangeFactorSpeciesBase%5th25th50th75th95thSulfatePM2.533.429.932.334.136.836.8NH4+50.446.449.550.854.854.8SO4=76.569.673.676.180.980.9ClPM2.52.11.31.61.93.63.6Cl86.765.882.185.192.292.2CuPM2.53.52.12.73.35.65.6Cu81.678.481.383.093.393.3VehiclesPM2.520.88.313.216.624.724.7EC79.318.059.068.086.486.4OC53.218.631.941.172.672.6NitratePM2.520.819.120.421.223.723.7NH4+37.935.737.238.543.843.8NO3-84.277.880.582.185.385.3BiomassPM2.57.13.86.510.516.116.1K+79.359.879.686.996.396.3Na+59.50.00.034.665.365.3MetalsPM2.55.43.54.55.611.111.1Cr86.960.879.987.3100.0100.0Fe36.925.533.339.052.752.7Mn24.616.020.425.542.542.5Ni67.044.658.866.776.776.7CrustalPM2.53.92.83.64.27.27.2Al53.947.353.456.461.661.6Ca61.036.853.263.270.170.1Si71.963.967.170.578.478.4Ti34.327.431.233.444.244.2ZnPM2.52.90.71.32.85.05.0?Zn72.466.069.972.476.676.6Table S7. Bootstrapped % of species mass at Chicago (200 bootstrapped runs, block size = 50, total samples = 763)Bootstrap RangeFactorSpeciesBase%5th25th50th75th95thSulfatePM2.531.928.730.532.135.235.2NH4+47.341.544.746.851.451.4SO4=77.368.572.775.683.083.0NaClPM2.55.02.33.25.19.69.6Cl65.136.265.686.1100.0100.0Na+76.10.06.617.889.089.0VehiclesPM2.522.216.719.021.226.026.0EC75.760.268.171.376.376.3OC61.247.455.758.062.362.3NitratePM2.521.016.218.620.224.324.3NH4+45.835.941.644.052.352.3NO3-77.573.776.178.184.384.3BiomassPM2.58.95.47.18.612.112.1K+95.361.471.178.499.699.6MetalsPM2.52.81.42.53.26.26.2Cr29.710.218.525.250.850.8Fe63.850.754.658.469.969.9Mn48.837.742.645.155.155.1Ni26.95.014.322.550.150.1CrustalPM2.57.54.25.76.89.49.4Al62.518.654.960.471.871.8Ca83.618.472.079.286.486.4Si74.418.065.971.479.979.9ZnPM2.50.70.20.91.63.93.9?Zn76.565.272.375.582.482.4Fractional apportionments In both cities, secondary sulfate decreased faster than both the total PM2.5 concentration as well as contributions of other factors identified by PMF, thus the relative significance of non-sulfate source factors increased over time. This is shown for Detroit in Figure S1, which ranks the PMF source factors from left to right by the magnitude of their annual and seasonal trends measured as the annual change (%/yr) over the study period in the fraction (%) of total PM2.5 contributed by the factor, i.e., the relative contribution of that factor. (This differs from Figure 5, which shows trends measured as the annual change (%/yr) over the study period in the concentration (?g/m3) contributed by the source factor, i.e., the absolute contribution.) Figure S1 reveals the changing nature of apportionments in Detroit over the 2001 to 2014 period: secondary sulfate contributions decreased in all seasons and at most percentiles (except winter 90th percentile); secondary nitrate decreased except in winter (the 90th percentile summer change was not significant); crustal sources were largely unchanged; vehicle contributions increased significantly in spring and fall; and both biomass and metals factors increased, by over 10 %/yr in several cases. In summary, over the 2001 to 2014 period, the major PM2.5 contributors in Detroit have been shifting away from coal-fired facilities producing secondary sulfate and nitrate, while contributions from biomass sources have been increasing in both relative (fraction of PM2.5) and absolute (concentration) terms. In addition, given that vehicle and biomass sources have been constant or just slightly declining while PM2.5 levels have been declining faster, these sources also are becoming an increasing fraction of PM2.5. Detroit contains two large steel mills and numerous metals processing facilities, and an examination of PM2.5 emissions from the steel facilities shows large decreases over the study period. Trends in biomass sources are difficult to assess given changes in classification (SCC codes are used in 2002 and 2005, while EI sectors are used in 2008 and 2011) and underlying methodology (e.g., residential wood combustion dropped from 1649 tons in 2008 to 551 tons in 2011, while PM2.5 from industrial biomass combustion is not listed in 2008 but is 191 tons in 2011). Changes in the relative contributions of the ranked PMF source factors to the total PM2.5 in Chicago are shown in Figure S2. As was the general trend in Detroit, secondary sulfate declined in every season and both percentiles. Few other factors in the PMF model had significant changes: the secondary nitrate factor declined in fall at the median; the vehicle factor slightly increased (median and 90th percentile overall, and 90th percentile in winter and summer); and upward trends for metals and biomass sources occurred overall or in a few seasons (as in Detroit). In summary, over the period from 2006 to 2014, Chicago experienced large decreases in secondary sulfate, while contributions from vehicles, biomass and metal sources increased their share of PM2.5. Biomass-related PM2.5 increased in both absolute (?g/m3) and relative (fraction of PM2.5) terms. (In Detroit, biomass increased in only relative terms.) This key result of the present study, that impacts of some sources decrease -- and in some cases, increase -- faster than other sources, is important in targeting sources for further investigation and regulation. Figure S1. Annual and seasonal trends of fractional PMF apportionments by source category in Detroit from 2001 to 2014. Shows changes in median fractional apportionments as blue circles (●, o) and 90th percentile fractional apportionments as red triangles (▲, Δ), expressed as %/yr for all seasons (A), winter (W), spring (Sp), summer (Su), and fall (F). Based quantile regressions of fractional apportionments (% of total PM2.5 mass) from a nine factor PMF model. Filled symbols (e.g., ●) are statistically significant, i.e., trend exceeded 2-times its bootstrapped standard error. Values below 0 not censored. Figure S2. Annual and seasonal trends of fractional PMF apportionments by source category in Chicago from 2006 to 2014 using an 8-factor model. Otherwise as Figure S2. ................
................

In order to avoid copyright disputes, this page is only a partial summary.

Google Online Preview   Download