Sample Problems - aceh.b-cdn.net
[Pages:8]Lecture Notes
Trigonometric Integrals 1
page 1
Sample Problems
Compute each of the following integrals. Assume that a and b are positive numbers.
Z 1. sin x dx
Z 8. csc x dx
Z 15.
p
secp(
x) dx
x
Z 2. cos 5x dx
Z 3. cos x sin4 x dx
Z 9. sin2 x dx
Z 10. sin3 x dx
Z=3 p
16.
1 + cos 2x dx
0
Z 4. csc2 x dx
Z 11. sin4 x dx
Z=2 p
17.
1
0
cos x dx
Z 5. tan x dx
Z 12. sin5 x dx
Z 18. tan3 x dx
Z 6. cot x dx
Z 1
13. a2 + b2x2 dx
Z 19. sin 7x cos 3x dx
Z 7. sec x dx
Z 14. p 1 dx
a2 x2
Z 20. sin 10x sin 4x dx
Z 1. cos 3x dx
Z
2. sin 4x
dx
5
Z
3. sec tan d
Z 4. sec2 d
Z 5. x tan x2 dx
Z 6. cot (2x ) dx
Z 7. cos2 x dx
Practice Problems
Z 8. cos2 (2x) dx
Z 9. cos3 x dx
Z 10. cos4 x dx
Z 11. cos5 x dx
Z 12. sin x cos5 x dx
Z 13. sin3 x cos5 x dx
Z 14. tan2 x dx
c copyright Hidegkuti, Powell, 2012
Z=6 p
15.
1
0
cos 6x dx
Z 16. sin 2a cos 8a da
Z 17. cos b cos 11b db
Z 18. sin 6 sin 14 d
Z 19. cos 11m sin 3m dm
Last revised: December 8, 2013
Lecture Notes
Trigonometric Integrals 1
page 2
Sample Problems - Answers
1 1.) cos x + C 2.) 5 sin 5x + C
3.) 1 sin5 x + C 4.) cot x + C 5.) ln jcos xj + C = ln jsec xj + C 5
6.) ln jsin xj + C
7.) ln jsec x + tan xj + C
8.) ln jcsc x + cot xj + C
11 9.) 2 x 4 sin 2x + C
10.) 1 cos3 x cos x + C 3
13.)
1 tan 1
b x
+C
ab
a
11.) 1 sin 2x + 1 sin 4x + 3 x + C
4
32
8
12.) cos x + 2 cos3 x 1 cos5 x + C
3
5
14.) sin 1 x + C a
p
p
15.) 2 ln jsec ( x) + tan ( x)j + C
p 6
16.) 2
p 17.) 2 2 2
18.) 1 sec2 x + ln jcos xj + C
2
1
1
1
1
19.) cos 10x cos 4x + C 20.) sin 6x sin 14x + C
20
8
12
28
Practice Problems - Answers
1
1
1.) sin 3x + C 2.) cos 4x
+C
3
4
5
3.) sec + C
4.) tan + C
5.)
1 ln
sec
x2
+C
2
1 6.) ln jsin (2x )j + C
2
11 7.) x + sin 2x + C
24
11 8.) x + sin 4x + C
28
9.) sin x 1 sin3 x + C 3
31
1
10.) x + sin 2x + sin 4x + C
11.) 1 sin5 x 2 sin3 x + sin x + C
84
32
5
3
12.) 1 cos6 x + C 6
13.) 1 cos6 x + 1 cos8 x + C 14.) x + tan x + C
6
8
p 2
15.) 3
1
1
16.) cos 6a
cos 10a + C
12
20
1
1
17.) 20 sin 10b + 24 sin 12b + C
1
1
18.) 16 sin 8 40 sin 20 + C
1
1
19.) 16 cos 8m 28 cos 14m + C
c copyright Hidegkuti, Powell, 2012
Last revised: December 8, 2013
Lecture Notes
Trigonometric Integrals 1
page 3
Sample Problems - Solutions
Z 1. sin x dx
Solution: This is a basic integral we know from di?ereZntiating basic trigonometric functions. Since
d
d
dx cos x = sin x, clearly dx ( cos x) = sin x and so sin x dx = cos x + C .
Z
2. cos 5x dx
d
Solution: We know that dx cos x = sin x + C. We will use substitution. Let u = 5x and then du = 5dx
du
and so 5 = dx.
Z
Z
du
1Z
1
cos 5x dx = cos u
= cos u du = sin 5x + C
55
5
Note: Once wZ e have enough practice, there is no need to perform this substitution in writing. simply write cos 5x dx = 1 sin 5x + C.
5 Z
3. cos x sin4 x dx
We can just
Solution: Let u = sin x. Then du = cos xdx.
Z
Z
Z
cos x sin4 x dx = sin4 x (cos xdx) = u4 u = 1 u5 + C = 1 sin5 x + C
5
5
Z 4. csc2 x dx
Solution: We need to remember that d cot x = dx
Z
Z
csc2 x dx =
csc2 x. csc2 x dx =
cot x + C
Z 5. tan x dx
Solution: Let u = cos x. Then du = sin x dx.
Z
Z
Z
Z
tan x dx = sin x dx = 1 (sin xdu) = 1 ( du) =
cos x
u
u
= ln (cos x) 1 + C = ln jsec xj + C
Z 1 du = u
ln juj + C =
ln jcos xj + C
Z 6. cot x dx
Solution: Let u = sin x. Then du = cos x dx.
Z
Z
Z
Z
cot x dx =
cos x dx = sin x
1 (cos xdu) = u
1 u
du = ln juj + C =
ln jsin xj + C
c copyright Hidegkuti, Powell, 2012
Last revised: December 8, 2013
Lecture Notes
Trigonometric Integrals 1
page 4
Z 7. sec x dx
Z
Z
sec x + tan x
Z sec2 x + sec x tan x
Solution: sec x dx = sec x
dx =
dx
sec x + tan x
sec x + tan x
From here we will use substitution.
Recall that
d sec x = sec x tan x and
d tan x = sec2 x.
dx
dx
sec x + tan x. Then du = sec x tan x + sec2 x dx.
Let u =
Z sec2 x + sec x tan x
Z 1
dx =
Z
sec2 x + sec x tan x dx =
1 du = ln juj + C = ln jsec x + tan xj + C
sec x + tan x
u
u
Z 8. csc x dx
Z
Z
csc x + cot x
Z csc2 x + csc x cot x
Solution: csc x dx = csc x
dx =
dx
csc x + cot x
csc x + cot x
From here we will use substitution.
d Recall that csc x =
d csc x cot x and cot x =
csc2 x.
Let
dx
dx
u = csc x + cot x. Then du = csc2 x csc x cot x dx.
Z csc2 x + csc x cot x
Z 1
dx =
Z
csc2 x + csc x cot x dx =
1 ( du) =
Z 1 du =
ln juj + C
csc x + cot x
u
u
u
= ln jcsc x + cot xj + C
Z 9. sin2 x dx
Solution: Recall the double angle formula for cosine, cos 2x = 1 2 sin2 x. We solve this for sin2 x sin2 x = 1 (1 cos 2x) 2
Z
Z
Z
sin2 x dx =
1
1
(1 cos 2x) dx =
1 dx
2
2
11 = x sin 2x + C
24
Z 10. sin3 x dx
Z
1
cos 2x dx
= 2
x + C1
1 2 sin 2x + C2
Solution:
Z
Z
Z
sin3 x dx = sin x sin2 x dx = sin x 1 cos2 x dx
Let u = cos x: Then du = sin xdx
Z
Z
Z
Z
Z
sin3 x dx = sin x 1 cos2 x dx = 1 cos2 x (sin xdx) = 1 u2 ( du) = u2 1 du
= 1 u3 u + C = 1 cos3 x cos x + C
3
3
c copyright Hidegkuti, Powell, 2012
Last revised: December 8, 2013
Lecture Notes
Trigonometric Integrals 1
page 5
Z 11. sin4 x dx
Solution: We use the double angle formula for cosine to express sin2 x.
cos 2x = 1 2 sin2 x =) sin2 x = 1 (1 cos 2x) 2
Z
Z
Z
sin4 x dx = sin2 x 2 dx =
1 (1
2
Z 1
cos 2x) dx = (1
Z cos 2x)2 dx = 1
1
2 cos 2x + cos2 2x dx
2
4
4
We use the double angle formula for cosine again to express cos2 2x.
cos 4x = 2 cos2 2x 1
=)
cos2 2x = 1 (cos 4x + 1) 2
Z
Z
Z
sin4 x dx = 1
1
2 cos 2x + cos2 2x
1 dx =
1
Z4
4Z
11
1
1
=
cos 2x + cos 4x + dx =
42
8
8
1 2 cos 2x + (cos 4x + 1) dx
2
1 cos 2x + 1 cos 4x + 3 dx
2
8
8
= 1 1 sin 2x + 1 1 sin 4x + 3 x + C = 1 sin 2x + 1 sin 4x + 3 x + C
22
84
8
4
32
8
Z 12. sin5 x dx
Solution: This method works with odd powers of sin x or cos x. We will separate one factor of sin x from the
rest which will be expressed in terms of cos x.
Z
Z
Z
Z
Z
sin5 x dx = sin x sin4 x dx = sin x sin4 x dx = sin x sin2 x 2 dx = sin x 1 cos2 x 2 dx
Z
= sin x 1 2 cos2 x + cos4 x dx
We proceed with substitution. Let u = cos x: Then du = sin xdx.
Z
Z
Z
sin5 x dx = sin x 1 2 cos2 x + cos4 x dx = 1 2 cos2 x + cos4 x (sin xdx)
Z
Z
=
1 2u2 + u4 ( du) =
1 + 2u2 u4 du = u + 2 u3 1 u5 + C 35
=
cos x + 2 cos3 x 1 cos5 x + C
3
5
Z 1
13. a2 + b2x2 dx
Z
Solution: The basic integral here is
1 x2 + 1
dx
=
tan
1 x + C.
a2x2 = b2u2. This would be convenient because then
We need a substitution under which
1
1
11
a2x2 + b2 = b2u2 + b2 = b2 u2 + 1
c copyright Hidegkuti, Powell, 2012
Last revised: December 8, 2013
Lecture Notes
Trigonometric Integrals 1
page 6
So we will pursue this substitution.
We
solve
a2x2
=
b2u2
for
a
possible
value
of
u
and
obtain
u
=
a x.
Then
b
a
b
du = dx and so du = dx.
b
a
Z
Z
1
1
a2x2 + b2 dx =
b2u2 + b2
Z
Z
b du =
a
1 1b
b
b2 u2 + 1 a du = ab2
1 u2 + 1
1 du = tan
ab
1u+C
= 1 tan 1 b x + C
ab
a
Z 14. p 1 dx
a2 x2 Z
Solution: The basic integral here is p 1 dx = sin 1 x + C. 1 x2
x2 = a2u2. This would be useful because then
We need a substitution under which
p 1 =p 1
=p 1
= p1
a2 x2
a2 a2u2
a2 (1 u2) a 1 u2
So we will pursue this substitution. We solve x2 = a2u2 for a possible value of u and obtain x = au and
dx = adu.
Z
Z
Z
Z
p 1 dx = p 1
(adu) = p a du = p 1 du = sin 1 u+C = sin 1 x + C
a2 x2
a2 a2u2
a 1 u2
1 u2
a
Z
p
15. secp( x) dx
x
p Let u = x.
Then du =
p1 dx.
2x
Z
p
secp( x) dx
=
Z 2
p
Z
secp( x) dx = 2
sec
p x
x
2x
p
p
= 2 ln jsec ( x) + tan ( x)j + C
Z
p1 dx = 2 2x
sec u du = 2 ln jsec u + tan uj + C
Z=3 p
16.
1 + cos 2x dx
0
Solution: We will yet again use the double angle formula for cosine, this time to eliminate the square root.
cos 2x = 2 cos2 x 1 =) 2 cos2 x = cos 2x + 1
Z=3 p
Z=3 p
p Z=3 p
p Z=3
1 + cos 2x dx =
2 cos2 x dx = 2
cos2 x dx = 2 jcos xj dx
0
0
hi
0
0
Since f (x) = cos x is positive on 0; 3 ; we can simplify jcos xj = cos x
p Z=3
p Z=3
p
2 jcos xj dx = 2 cos x dx = 2
0
0
!
=3
p
sin x
= 2 sin
0
3
p
p 3
sin 0 = 2 2
!p 6
0=2
c copyright Hidegkuti, Powell, 2012
Last revised: December 8, 2013
Lecture Notes
Trigonometric Integrals 1
page 7
Z=2 p
17.
1 cos x dx
0
Solution:
We substitute
cos 2 = 1 2 sin2 =) = x into this and obtain
2
2 sin2 x = 1 2
2 sin2 = 1 cos x
cos 2
Z=2 p 1
cos x
dx =
Z=2 r 2 sin2
x
p Z=2 dx = 2
x sin
dx
2
2
0
x
h i0
0
x
x
Since f (x) = sin is non-negative on 0; ; we can simplify sin = sin
2
2
2
2
p Z=2 x
p
!
x =2
p
!
x =2
p
2 sin dx = 2 2 cos
= 2 2 cos
= 2 2 cos
2
20
20
4
0
p
p 2
!
p
p
= 22
1 = 2+2 2= 2 2 2
2
Z 18. tan3 x dx
cos 0
Solution: Let u = cos x. Then du = sin xdx
Z tan3 x dx
= =
Z Z
sin3 x
Z
sin2 x
Z 1
cos2 x
Z 1
u2
cos3 u2 u3
x dx = 1 u3 du =
sin Z
x
cos3
1
u
u
x
3
dx =
cos3 x
u2
du = ln juj
2
sin xdx = + C = ln juj
+
u3 1 2u2 +
( C
Z u2 1
du) =
u3 du
= ln jcos xj + 1 sec2 x + C 2
Z
19. sin 7x cos 3x dx
Solution: We wil use the product-to-sum identities to trasform this product into a sum. We write the sine formula for the sum and the di?erence of these two angles.
sin 10x = sin (7x + 3x) = sin 7x cos 3x + cos 7x sin 3x sin 4x = sin (7x 3x) = sin 7x cos 3x cos 7x sin 3x
We will add the two equations
sin 10x + sin 4x = 2 sin 7x cos 3x 1 2 (sin 10x + sin 4x) = sin 7x cos 3x
1
We can very easily integrate (sin 10x + sin 4x)
Z
Z2 1
1Z
sin 7x cos 3x dx =
(sin 10x + sin 4x) dx = sin 10x + sin 4x dx
2
2
= 1 1 ( cos 10x) + 1 1 ( cos 4x) + C = 1 cos 10x
2 10
24
20
1 cos 4x + C 8
c copyright Hidegkuti, Powell, 2012
Last revised: December 8, 2013
Lecture Notes
Trigonometric Integrals 1
page 8
Z 20. sin 10x sin 4x dx
Solution: We wil use the product-to-sum identities to trasform this product into a sum. We write the cosine formula for the sum and the di?erence of these two angles.
cos 14x = cos (10x + 4x) = cos 10x cos 4x sin 10x sin 4x cos 6x = cos (10x 4x) = cos 10x cos 4x + sin 10x sin 4x
We will subtract the ...rst equation from the ...rst one
cos 6x cos 14x = 2 sin 10x sin 4x 1
(cos 6x cos 14x) = sin 10x sin 4x 2
We can very easily integrate 1 (cos 6x cos 14x) 2
Z
Z
Z
sin 10x sin 4x dx = 1 (cos 6x cos 14x) dx = 1 cos 6x
2
2
cos 14x dx
= 1 1 (sin 6x) 1 1 (sin 14x) + C = 1 sin 6x 1 sin 14x + C
26
2 14
12
28
For more documents like this, visit our page at and click on Lecture Notes. E-mail questions or comments to mhidegkuti@ccc.edu.
c copyright Hidegkuti, Powell, 2012
Last revised: December 8, 2013
................
................
In order to avoid copyright disputes, this page is only a partial summary.
To fulfill the demand for quickly locating and searching documents.
It is intelligent file search solution for home and business.