Project 1.3.4 Renewable Insulation R-Value



Project 1.3.4 Renewable InsulationProcedureYour team will design a renewable composite insulation material. Design Constraints:Composite insulation material must produce minimum heat loss, representing good insulating posite insulation material must have overall uniform thickness less than or equal to one posite insulation material must have consistent internal composition. Individual insulation material(s) must be environmentally friendly.Individual insulation material(s) must be recyclable.Individual insulation material(s) must be posite insulation material dimensions must not exceed the overall dimensions of heat box apparatus top.The change in temperature inside the box is directly related to the heat absorbed or released by the air in the box.Design Evaluation Data Collection:Pretest Data: Use a metric measurement device to calculate pretest data. The volume of air being heated is obtained by measuring the inside dimensions of the box.Inner dimensions (m)l = .155 m w= .155 mh= .155 mVolume of air (m3)V = 3.723 mmDescription of insulation materialStyrofoam cotton balls aluminum foil and foil Test Data:Attach a temperature sensor with acquisition capabilities to the center of the inside surface of the acrylic top cover of the heat transfer apparatus. Place or attach your fabricated composite insulation material to the outside top surface of the heat transfer apparatus cover. Place or attach a second temperature sensor with acquisition capabilities to the center of the outside surface of your composite insulation material top panel. It is essential for accurate test data that both temperature sensors are in direct contact with the test material. Determine proper data acquisition procedures recommended by data acquisition manufacturer. Activate both temperature sensor devices.Activate heat source and leave on for 20 minutes.After 20 minutes, turn the heat source off and collect temperature data for an additional 20 minutes.After the test period, remove the heat transfer apparatus cover.Retrieve temperature sensors and data acquisition devices.Retrieve temperature test data and charts from data acquisition devices.Heat source light bulb wattageP = 25 WInside top acrylic panel initial surface temperature (°C)T Initial 1 = 25.3 * CInside top acrylic panel maximum temperature (°C)T Max 1 = 44.9Inside top acrylic panel final surface temperature (°C)T Final 1 = 39.8 * CTop panel insulation material initial surface temperature (°C)T Initial 2 = 24.8 * CTop panel insulation material maximum surface temperature (°C)T Max 2 = 25 * CTop panel insulation material final surface temperature (°C)T Final 2 = 24.5 * CHeating time (s)t1 = 1,200 sCooling time (s)t2 = 1,200 sDesign Evaluation Calculations: Constants: ρ:1.20 kg/m3(density of air, Greek letter rho)Cp:1000. J/kg°C(specific heat capacity of air)All calculations are based on the combination of both your composite insulation material and the acrylic heat transfer apparatus material.Mass of air being heatedSelect equation(s). V * D = M List all known and unknown values.V= 3.723 mm D= 1.2 kg/m Substitute known values into equation(s).3.723 mm x 1.2 kg/mSimplify and solve for mass (m, in kg).M= 4.4676 kgEnergy gained by the air in the box during heating – Q (heat) in J (joules)Select equation(s).Q = m * c * tList all known and unknown values.M = 4.4676 kgC = 1,000 J/kg*CT = 20.1 CSubstitute known values into equation(s).4.4676 kg * 1,000 J/kg * 20.1C Simplify and solve for energy gained – Q (heat).Q = 89,798.76Energy lost by the air in the box during cooling – Q (cool) in J (joules)Select equation(s).Q = m * c * tList all known and unknown values.M = 4.4676 kgC = 1,000 J/kg*CT = 5.1 CSubstitute known values into equation(s).4.4676 kg * 1,000 J/kg * 5.1 Simplify and solve for energy lost – Q (cool).Q = 22,784.76Net energy retained within the box – Q (net) in J (joules)Select equation(s). Q(net) = Q(Heat)- Q(Cool)List all known and unknown values.Q = 18,763.92T = Substitute known values into equation(s).Simplify and solve for net energy retained – Q (net).A qualitative measure of your insulating ability is the difference between the maximum inside temperature and the maximum outside temperature (larger is better). Tin(max) = Tout(max) = ΔT (max) = Compare your results with those of some other teams. Q (net): ΔT (max) = (team 1)Q (net): ΔT (max) = (team 2)Q (net): ΔT (max) = (team 3)ConclusionExplain how your house might lose energy through radiation, convection, and conduction.What modifications could be made to your team’s insulation design that allow for more energy efficiency?Which beverage would be more beneficial for cooling you on a hot summer day – a cup of ice cold water or a cup of hot cocoa? WHY?A cup of ice cold water, because of conduction.Suppose that you are sitting close to a campfire. You decide to clean your glasses and notice that your eyes feel warmer without your glasses. Explain this phenomenon.The radiation transfer of heat is no longer being blocked by the glasses and is now directly in path to your eyes. ................
................

In order to avoid copyright disputes, this page is only a partial summary.

Google Online Preview   Download