Test Data using Simulink model of 5
Test Data using Simulink model of 5.2 GHz WLAN
[pic]
[pic][pic]
[pic]
Figure 1. Receiver Baseband Analog Frequency Response
Receiver IQ Digital Baseband: Input Signal –82 dBm
[pic]
[pic]
[pic]
Receiver IQ Digital Baseband: Input Signal –65 dBm
[pic]
[pic]
[pic]
Receiver IQ Digital Baseband: Input Signal –30 dBm
[pic]
[pic]
[pic]
A/D Discrete Step Performance
[pic]
[pic]
[pic]
[pic]
Figure 2. Receiver IQ Digital Baseband, Input signal –65dBm
[pic]
Figure 3. Receiver IQ Digital Baseband, Two Tone test, Input power= –30dBm
Transmitter Test: Analog Baseband after D/A, OFDM Symbols
[pic]
[pic]
[pic]
Figure 4. Transmitter RF signal with OFDM symbols
[pic]
Figure 5. Transmitter two tones test for linearity
Transmitter IQ Analog Baseband after Filter, WLAN BPSK packets, 64 OFDM symbols
[pic]
[pic]
[pic]
[pic]
[pic]
[pic]
Appendix: Scripts used to initialize the models and generate inputs
Receiver constants Board 1:
N1=7*10^(-10); % Noise before sampling filter
N2=7*10^(-20); % Noise added after sampling filter
IQIG=0.44; % IQ imbalance gain in dB
IQIP=1; % IQ imbalance phase in deg
IDCO=(10^(-5.7))^1/2; % In phase DC offset
QDCO=0; % Quadrature DC offset
QI=2e-006*10e-10; % Quantizer interval
Vin=(10^(-6.5)/1000)^0.5; % Input voltage
Ts=1/640e6; % Sampling time (continuous time)
IF=2*pi*8.01e6; % Input freq. in rad/sec
NLG1=-55; % Log nonlinearity gain 1
NLG2=-6; % Log nonlinearity gain 2
NLG3=-16; % Log nonlinearity gain 3
NLC2=3/4; % Log nonlinearity factor 1
NLC4=2; % Log nonlinearity factor 2
NLC6=2; % Log nonlinearity factor 3
Transmitter constants Board 1:
Ts=1/(16*40e6);
fs=1/Ts;
upsample=16;
Noise=10^(-3); % Noise power added after non-linearities
GAIN2=-20; % Non linearities gain factor 2
GAIN3=40; % Non linearities gain factor 3
IQIG=0.44; % IQ imbalance gain in dB
IQIP=1; % IQ imbalance phase in deg
IDCO=(10^(-3.3))^1/2; % In phase DC offset
QDCO=(10^(-3.3))^1/2; % Quadrature DC offset
Vin=10^(-1.5); % Input signal amplitude
IF1=2*pi*1.257e6; % Input freq. in rad/sec
IF2=2*pi*(1.257e6-238e3); % Input freq. in rad/sec
sim_time=2*64*150*16*4*Ts;
A/D impairment modeling
clear all;
fs=16e6;
fc=4.5e3;
nsamples=10*fs/fc;
t=(1:nsamples)/fs;
data=sin(2*pi*fc*t);
AD_precision=7; %number of bits in A/D
quantization_levels=-1:2^(-AD_precision):1-2^(-AD_precision);
d_var=0.5*2^(-AD_precision); % in dB
distorsion=d_var*(2*rand(1,2*2^(AD_precision))-1)/2;
non_unif=quantization_levels+distorsion;
for i=1:nsamples
[temp,level]=min(abs(data(i)-non_unif));
data_q(i)=non_unif(level); % Non-uniformly quantized data
end
OFDM signal generation
fs=40e6;
kk=2;
Ts=1/fs;
I=[];
Q=[];
time=[];
temp=0;
sim_time=2*64*150*Ts;
for t=1:sim_time/64/Ts
data=[sign(rand(1,32)-0.5) zeros(1, (kk-1)*64) sign(rand(1,32)-0.5)];
temp=[(t-1)*64*kk+1:t*64*kk]*Ts;
ofdm_data=sqrt(64*kk)*ifft(data,64*kk);
I=[I real(ofdm_data)];
Q=[Q imag(ofdm_data)];
time=[time; temp'];
end
I_data=[time'; I]';
Q_data=[time'; Q]';
-----------------------
40 OFDM symbols Avg. SNR= 9.6 dB
40 OFDM symbols Avg. SNR= 23.8 dB
40 OFDM symbols Avg. SNR= 24.9 dB
................
................
In order to avoid copyright disputes, this page is only a partial summary.
To fulfill the demand for quickly locating and searching documents.
It is intelligent file search solution for home and business.
Related searches
- aristotelian model of argument
- ancient rome model of city
- test statistic using statcrunch
- 5 forces model of apple
- test hypothesis using p value calculator
- aggregating data using queries
- test data management tools
- informatica test data management pdf
- analyzing data using excel
- test data management plan
- test data management strategy document
- based on the model of primary leadership skills figure 5 1 how would you de