Template for Electronic Submission to ACS Journals



Depleting Depletion: Maintaining Single-Walled Carbon Nanotube Dispersions after Graft-to Polymer FunctionalizationAdam J. Clancy,a,b,c Hannah S. Leese,d Noelia Rubio,c David J. Buckley,c,e Jake L. Greenfield,c Milo S. P. Shafferc,* a) Department of Chemistry, University College London, London WC1E 7JE, U.Kb) Institute for Materials Discovery, University College London, London WC1E 7JE, U.Kc) Department of Chemistry, Imperial College London, London, SW7 2AZ, U.K.d) Department of Chemical Engineering, University of Bath, Bath BA2 7AY, U.K.e) National Physical Laboratory, Teddington, TW11 0LW, U.K.Email: m.shaffer@imperial.ac.ukABSTRACTGrafting polymers onto single-walled carbon nanotubes (SWCNTs) usefully alters properties but does not typically yield stable, solvated species directly. Despite the expectation of steric stabilization, a damaging (re)dispersion step is usually necessary. Here, poly(vinyl acetate)s (PVAc) of varying molecular weights are grafted to individualized, reduced SWCNTs at different concentrations to examine the extent of reaction and degree of solvation. The use of higher polymer concentrations leads to an increase in grafting ratio (weight fraction of grafted polymer relative to the SWCNT framework), approaching the limit of random sequentially adsorbed Flory ‘mushrooms’ on the surface. However, at higher polymer concentrations, a larger percentage of SWCNTs precipitate during the reaction; an effect which is more significant for larger weight polymers. The precipitation is attributed to depletion interactions generated by ungrafted homopolymer overcoming Coulombic repulsion of adjacent like-charged SWCNTs; a simple model is proposed. Larger polymers and greater degrees of functionalization favor stable solvation, but larger and more concentrated homopolymers increase depletion aggregation. By using low concentrations (25 μM) of larger molecular weight PVAc (10 kDa), up to 65% of grafted SWCNTs were retained in solution (at 65 μg mL-1) directly after the reaction.INTRODUCTIONSingle-walled carbon nanotubes (SWCNTs) have superlative mechanical, optical, and electronic properties ADDIN EN.CITE <EndNote><Cite><Author>Hodge</Author><Year>2012</Year><RecNum>1</RecNum><DisplayText><style face="superscript">1</style></DisplayText><record><rec-number>1</rec-number><foreign-keys><key app="EN" db-id="9tefffvp39a5aleftvyv0wps5de9tfzxezax" timestamp="1534257277">1</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Hodge, Stephen A. </author><author>Bayazit, Mustafa K. </author><author>Coleman, Karl S. </author><author>Shaffer, Milo S. P. </author></authors></contributors><titles><title>Unweaving the Rainbow: A Review of the Relationship Between Single-Walled Carbon Nanotube Molecular Structures and Their Chemical Reactivity</title><secondary-title>Chem. Soc. Rev.</secondary-title></titles><periodical><full-title>Chem. Soc. Rev.</full-title></periodical><pages>4409-4429</pages><volume>41</volume><number>12</number><dates><year>2012</year></dates><isbn>0306-0012</isbn><urls><related-urls><url>:\Dropbox\reffs\Shaffer M\2012 Unweaving the rainbow a review of the relationship between swnt molecular structures and their chemical reactivity.pdf</url></pdf-urls></urls><electronic-resource-num>10.1039/c2cs15334c</electronic-resource-num><remote-database-name>Readcube</remote-database-name></record></Cite></EndNote>1 and have been proposed for a diverse array of applications including (but far from limited to) multifunctional composites, ADDIN EN.CITE <EndNote><Cite><Author>Coleman</Author><Year>2006</Year><RecNum>2</RecNum><DisplayText><style face="superscript">2</style></DisplayText><record><rec-number>2</rec-number><foreign-keys><key app="EN" db-id="9tefffvp39a5aleftvyv0wps5de9tfzxezax" timestamp="1534257277">2</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Coleman, Jonathan N. </author><author>Khan, U.</author><author>Blau, Werner J. </author><author>Gun’ko, Yurii K. </author></authors></contributors><titles><title>Small but Strong: A Review of the Mechanical Properties of Carbon Nanotube–Polymer Composites</title><secondary-title>Carbon</secondary-title></titles><periodical><full-title>Carbon</full-title></periodical><pages>1624–1652</pages><volume>44</volume><number>9</number><dates><year>2006</year></dates><publisher>sciencedirect</publisher><isbn>0008-6223</isbn><urls><related-urls><url>;\\ic.ac.uk\homes\arc111\ReadCube Media\Carbon 2006 Coleman JN.pdf</url></pdf-urls></urls><electronic-resource-num>10.1016/j.carbon.2006.02.038</electronic-resource-num><remote-database-name>Readcube</remote-database-name></record></Cite></EndNote>2 transistors, ADDIN EN.CITE <EndNote><Cite><Author>Sgobba</Author><Year>2008</Year><RecNum>3</RecNum><DisplayText><style face="superscript">3</style></DisplayText><record><rec-number>3</rec-number><foreign-keys><key app="EN" db-id="9tefffvp39a5aleftvyv0wps5de9tfzxezax" timestamp="1534257277">3</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Sgobba, Vito</author><author>Guldi, Dirk M.</author></authors></contributors><titles><title>Carbon Nanotubes —Electronic/Electrochemical Properties and Application for Nanoelectronics and Photonics</title><secondary-title>Chem. Soc. Rev.</secondary-title></titles><periodical><full-title>Chem. Soc. Rev.</full-title></periodical><pages>165-184</pages><volume>38</volume><number>1</number><dates><year>2008</year></dates><publisher>rsc</publisher><isbn>0306-0012</isbn><urls><related-urls><url>:\Dropbox\Readcube Saved PDFs\Sgobba et al-2008-Chem Soc Rev.pdf</url></pdf-urls></urls><electronic-resource-num>10.1039/b802652c</electronic-resource-num><remote-database-name>Readcube</remote-database-name></record></Cite></EndNote>3 and drug delivery. ADDIN EN.CITE <EndNote><Cite><Author>Zhang</Author><Year>2011</Year><RecNum>4</RecNum><DisplayText><style face="superscript">4</style></DisplayText><record><rec-number>4</rec-number><foreign-keys><key app="EN" db-id="9tefffvp39a5aleftvyv0wps5de9tfzxezax" timestamp="1534257277">4</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Zhang, Wuxu</author><author>Zhang, Zhenzhong</author><author>Zhang, Yingge</author></authors></contributors><titles><title>The Application of Carbon Nanotubes in Target Drug Delivery Systems for Cancer Therapies</title><secondary-title>Nanoscale Res. Lett.</secondary-title></titles><periodical><full-title>Nanoscale Res. Lett.</full-title></periodical><pages>1-22</pages><volume>6</volume><number>1</number><dates><year>2011</year></dates><publisher>springer</publisher><isbn>1556-276X</isbn><urls><related-urls><url>:\Dropbox\Readcube Saved PDFs\Zhang et al-2011-Nanoscale Res Lett 2.pdf</url></pdf-urls></urls><electronic-resource-num>10.1186/1556-276x-6-555</electronic-resource-num><remote-database-name>Readcube</remote-database-name></record></Cite></EndNote>4 However, their poor solubility and tendency to agglomerate are significant hurdles to practical implementation. The functionalization of SWCNT sidewalls is well established as a route to facilitate processing and assembly; in particular, polymers are often used to increase dispersibility, biocompatibility, ADDIN EN.CITE <EndNote><Cite><Author>Wang</Author><Year>2007</Year><RecNum>5</RecNum><DisplayText><style face="superscript">5</style></DisplayText><record><rec-number>5</rec-number><foreign-keys><key app="EN" db-id="9tefffvp39a5aleftvyv0wps5de9tfzxezax" timestamp="1534257277">5</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Wang, Runtang</author><author>Cherukuri, Paul</author><author>Duque, Juan G.</author><author>Leeuw, Tonya K.</author><author>Lackey, Melinda K.</author><author>Moran, Christine H.</author><author>Moore, Valerie C.</author><author>Conyers, Jodie L.</author><author>Smalley, Richard E.</author><author>Schmidt, Howard K.</author><author>Weisman, Bruce R.</author><author>Engel, Paul S.</author></authors></contributors><titles><title>SWCNT PEG-Eggs: Single-Walled Carbon Nanotubes in Biocompatible Shell-Crosslinked Micelles</title><secondary-title>Carbon</secondary-title></titles><periodical><full-title>Carbon</full-title></periodical><pages>2388-2393</pages><volume>45</volume><number>12</number><dates><year>2007</year></dates><publisher>sciencedirect</publisher><isbn>0008-6223</isbn><urls><related-urls><url>:\Dropbox\Readcube Saved PDFs\Wang et al-2007-Carbon.pdf</url></pdf-urls></urls><electronic-resource-num>10.1016/j.carbon.2007.07.006</electronic-resource-num><remote-database-name>Readcube</remote-database-name></record></Cite></EndNote>5 and composite interfacial properties. ADDIN EN.CITE <EndNote><Cite><Author>Coleman</Author><Year>2006</Year><RecNum>2</RecNum><DisplayText><style face="superscript">2</style></DisplayText><record><rec-number>2</rec-number><foreign-keys><key app="EN" db-id="9tefffvp39a5aleftvyv0wps5de9tfzxezax" timestamp="1534257277">2</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Coleman, Jonathan N. </author><author>Khan, U.</author><author>Blau, Werner J. </author><author>Gun’ko, Yurii K. </author></authors></contributors><titles><title>Small but Strong: A Review of the Mechanical Properties of Carbon Nanotube–Polymer Composites</title><secondary-title>Carbon</secondary-title></titles><periodical><full-title>Carbon</full-title></periodical><pages>1624–1652</pages><volume>44</volume><number>9</number><dates><year>2006</year></dates><publisher>sciencedirect</publisher><isbn>0008-6223</isbn><urls><related-urls><url>;\\ic.ac.uk\homes\arc111\ReadCube Media\Carbon 2006 Coleman JN.pdf</url></pdf-urls></urls><electronic-resource-num>10.1016/j.carbon.2006.02.038</electronic-resource-num><remote-database-name>Readcube</remote-database-name></record></Cite></EndNote>2 Polymers may be synthesized in situ directly from an initiating species pre-attached to the SWCNT surface (“graft-from” reaction), ADDIN EN.CITE <EndNote><Cite><Author>Yao</Author><Year>2003</Year><RecNum>49</RecNum><DisplayText><style face="superscript">6</style></DisplayText><record><rec-number>49</rec-number><foreign-keys><key app="EN" db-id="9tefffvp39a5aleftvyv0wps5de9tfzxezax" timestamp="1541764098">49</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Yao, Zhaoling</author><author>Braidy, Nadi</author><author>Botton, Gianluigi A</author><author>Adronov, Alex</author></authors></contributors><titles><title>Polymerization from the surface of single-walled carbon nanotubes? preparation and characterization of nanocomposites</title><secondary-title>Journal of the American Chemical Society</secondary-title></titles><periodical><full-title>Journal of the American Chemical Society</full-title></periodical><pages>16015-16024</pages><volume>125</volume><number>51</number><dates><year>2003</year></dates><isbn>0002-7863</isbn><urls></urls></record></Cite></EndNote>6 typically providing dense coverage but an uncertain molecular weight. ADDIN EN.CITE <EndNote><Cite><Author>Qin</Author><Year>2004</Year><RecNum>6</RecNum><DisplayText><style face="superscript">7</style></DisplayText><record><rec-number>6</rec-number><foreign-keys><key app="EN" db-id="9tefffvp39a5aleftvyv0wps5de9tfzxezax" timestamp="1534257277">6</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Qin, Shuhui</author><author>Qin, Dongqi</author><author>Ford, Warren T.</author><author>Resasco, Daniel E.</author><author>Herrera, Jose E.</author></authors></contributors><titles><title>Functionalization of Single-Walled Carbon Nanotubes with Polystyrene via Grafting to and Grafting from Methods</title><secondary-title>Macromolecules</secondary-title></titles><periodical><full-title>Macromolecules</full-title></periodical><pages>752-757</pages><volume>37</volume><number>3</number><dates><year>2004</year></dates><publisher>acs</publisher><isbn>0024-9297</isbn><urls><related-urls><url>:\Dropbox\Readcube Saved PDFs\Qin et al-2004-Macromolecules.pdf</url></pdf-urls></urls><electronic-resource-num>10.1021/ma035214q</electronic-resource-num><remote-database-name>Readcube</remote-database-name></record></Cite></EndNote>7 Alternatively, pre-synthesized (and well characterized) polymers can be grafted-to SWCNTs. ADDIN EN.CITE <EndNote><Cite><Author>Li</Author><Year>2005</Year><RecNum>47</RecNum><DisplayText><style face="superscript">8, 9</style></DisplayText><record><rec-number>47</rec-number><foreign-keys><key app="EN" db-id="9tefffvp39a5aleftvyv0wps5de9tfzxezax" timestamp="1541763982">47</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Li, Huaming</author><author>Cheng, Fuyong</author><author>Duft, Andy M</author><author>Adronov, Alex</author></authors></contributors><titles><title>Functionalization of single-walled carbon nanotubes with well-defined polystyrene by “click” coupling</title><secondary-title>Journal of the American Chemical Society</secondary-title></titles><periodical><full-title>Journal of the American Chemical Society</full-title></periodical><pages>14518-14524</pages><volume>127</volume><number>41</number><dates><year>2005</year></dates><isbn>0002-7863</isbn><urls></urls></record></Cite><Cite><Author>Liu</Author><Year>2005</Year><RecNum>48</RecNum><record><rec-number>48</rec-number><foreign-keys><key app="EN" db-id="9tefffvp39a5aleftvyv0wps5de9tfzxezax" timestamp="1541764064">48</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Liu, Yuanqin</author><author>Yao, Zhaoling</author><author>Adronov, Alex</author></authors></contributors><titles><title>Functionalization of single-walled carbon nanotubes with well-defined polymers by radical coupling</title><secondary-title>Macromolecules</secondary-title></titles><periodical><full-title>Macromolecules</full-title></periodical><pages>1172-1179</pages><volume>38</volume><number>4</number><dates><year>2005</year></dates><isbn>0024-9297</isbn><urls></urls></record></Cite></EndNote>8, 9 In either case, the SWCNTs should be individualized to ensure that the reaction is not limited only to the outer surface of bundles. ADDIN EN.CITE <EndNote><Cite><Author>Stephenson</Author><Year>2007</Year><RecNum>7</RecNum><DisplayText><style face="superscript">10</style></DisplayText><record><rec-number>7</rec-number><foreign-keys><key app="EN" db-id="9tefffvp39a5aleftvyv0wps5de9tfzxezax" timestamp="1534257277">7</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Stephenson, Jason J.</author><author>Hudson, Jared L.</author><author>Leonard, Ashley D.</author><author>Price, Katherine B.</author><author>Tour, James M.</author></authors></contributors><titles><title>Repetitive Functionalization of Water-Soluble Single-Walled Carbon Nanotubes. Addition of Acid-Sensitive Addends</title><secondary-title>Chem. Mater.</secondary-title></titles><periodical><full-title>Chem. Mater.</full-title></periodical><pages>3491-3498</pages><volume>19</volume><number>14</number><dates><year>2007</year></dates><publisher>acs</publisher><isbn>0897-4756</isbn><urls><related-urls><url>:\Dropbox\Readcube Saved PDFs\Stephenson et al-2007-Chem Mater.pdf</url></pdf-urls></urls><electronic-resource-num>10.1021/cm070076v</electronic-resource-num><remote-database-name>Readcube</remote-database-name></record></Cite></EndNote>10 Prolonged ultrasonication and/or oxidation is typically performed to disperse SWCNTs; however, these processes significantly damage and shorten the SWCNTs and predominantly lead to smaller bundles of SWCNTs, rather than individualized species. ADDIN EN.CITE <EndNote><Cite><Author>Doorn</Author><Year>2003</Year><RecNum>8</RecNum><DisplayText><style face="superscript">11</style></DisplayText><record><rec-number>8</rec-number><foreign-keys><key app="EN" db-id="9tefffvp39a5aleftvyv0wps5de9tfzxezax" timestamp="1534257277">8</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Doorn, Stephen K.</author><author>Strano, Michael S.</author><author>O&apos;Connell, Michael J.</author><author>Haroz, Erik H.</author><author>Rialon, Kristy L.</author><author>Hauge, Robert H.</author><author>Smalley, Richard E.</author></authors></contributors><titles><title>Capillary Electrophoresis Separations of Bundled and Individual Carbon Nanotubes</title><secondary-title>J. Phys. Chem. B</secondary-title></titles><periodical><full-title>J. Phys. Chem. B</full-title></periodical><pages>6063-6069</pages><volume>107</volume><number>25</number><dates><year>2003</year><pub-dates><date>2003/06/01</date></pub-dates></dates><publisher>American Chemical Society</publisher><isbn>1520-6106</isbn><urls><related-urls><url> An alternative processing route reduces SWCNTs to form ‘nanotubide’ anions ADDIN EN.CITE <EndNote><Cite><Author>Clancy</Author><Year>2018</Year><RecNum>42</RecNum><DisplayText><style face="superscript">12</style></DisplayText><record><rec-number>42</rec-number><foreign-keys><key app="EN" db-id="9tefffvp39a5aleftvyv0wps5de9tfzxezax" timestamp="1534329558">42</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>A. J. Clancy</author><author>M. K. Bayazit</author><author>S. A. Hodge,</author><author>N. T. Skipper</author><author>C. A. Howard</author><author>M. S. P. Shaffer</author></authors></contributors><titles><title>Charged Carbon Nanomaterials: Redox Chemistries of Fullerenes, Carbon Nanotubes, and Graphenes</title><secondary-title>Chem. Rev.</secondary-title></titles><periodical><full-title>Chem. Rev.</full-title></periodical><pages>7363-7408</pages><volume>118</volume><number>16</number><dates><year>2018</year></dates><urls></urls></record></Cite></EndNote>12 which spontaneously dissolve in certain polar, aprotic solvents ADDIN EN.CITE <EndNote><Cite><Author>Penicaud</Author><Year>2007</Year><RecNum>9</RecNum><DisplayText><style face="superscript">13</style></DisplayText><record><rec-number>9</rec-number><foreign-keys><key app="EN" db-id="9tefffvp39a5aleftvyv0wps5de9tfzxezax" timestamp="1534257277">9</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>A. Penicaud</author><author>L. Valat</author><author>A. Derre</author><author>P. Poulin</author><author>C. Zakri</author><author>O. Roubeau</author><author>M. Maugey</author><author>P. Miaudet </author><author>E. Anglaret</author><author>P. Petit</author><author>A. Loiseau</author><author>S. Enouz</author></authors></contributors><titles><title>Mild Dissolution of Carbon Nanotubes: Composite Carbon Nanotube Fibres From Polyelectrolyte Solutions</title><secondary-title>Compos. Sci. Technol.</secondary-title></titles><periodical><full-title>Compos. Sci. Technol.</full-title></periodical><pages>795–797</pages><volume>67</volume><dates><year>2007</year></dates><urls></urls></record></Cite></EndNote>13 to give purely individualized species, in principle, without damage. ADDIN EN.CITE <EndNote><Cite><Author>Fogden</Author><Year>2012</Year><RecNum>10</RecNum><DisplayText><style face="superscript">14</style></DisplayText><record><rec-number>10</rec-number><foreign-keys><key app="EN" db-id="9tefffvp39a5aleftvyv0wps5de9tfzxezax" timestamp="1534257277">10</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Fogden, Si?n </author><author>Howard, Christopher A </author><author>Heenan, Richard K </author><author>Skipper, Neal T </author><author>Shaffer, M. S. P.</author></authors></contributors><titles><title>Scalable Method for the Reductive Dissolution, Purification, and Separation of Single-Walled Carbon Nanotubes</title><secondary-title>ACS Nano</secondary-title></titles><periodical><full-title>ACS Nano</full-title></periodical><pages>54-62</pages><volume>6</volume><number>1</number><dates><year>2012</year></dates><isbn>1936-0851</isbn><urls><related-urls><url>:\Dropbox\reffs\Shaffer M\2012 Scalable method for the reductive dissolution purification and separation of single walled nanotubes.pdf</url></pdf-urls></urls><electronic-resource-num>10.1021/nn2041494</electronic-resource-num><remote-database-name>Readcube</remote-database-name></record></Cite></EndNote>14 While the thermodynamic driving force of nanotubide solvation is the subject of ongoing debate,PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5Wb2lyeTwvQXV0aG9yPjxZZWFyPjIwMTE8L1llYXI+PFJl

Y051bT4xMTwvUmVjTnVtPjxEaXNwbGF5VGV4dD48c3R5bGUgZmFjZT0ic3VwZXJzY3JpcHQiPjE1

LCAxNiwgMTc8L3N0eWxlPjwvRGlzcGxheVRleHQ+PHJlY29yZD48cmVjLW51bWJlcj4xMTwvcmVj

LW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9Ijl0ZWZmZnZwMzlhNWFs

ZWZ0dnl2MHdwczVkZTl0Znp4ZXpheCIgdGltZXN0YW1wPSIxNTM0MjU3Mjc3Ij4xMTwva2V5Pjwv

Zm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJKb3VybmFsIEFydGljbGUiPjE3PC9yZWYtdHlw

ZT48Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+Vm9pcnksIERhbWllbjwvYXV0aG9yPjxh

dXRob3I+RHJ1bW1vbmQsIENhcmxvcyA8L2F1dGhvcj48YXV0aG9yPlDDqW5pY2F1ZCwgQWxhaW48

L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PHRpdGxlcz48dGl0bGU+UG9ydHJhaXQg

b2YgQ2FyYm9uIE5hbm90dWJlIFNhbHRzIEFzIFNvbHVibGUgUG9seWVsZWN0cm9seXRlczwvdGl0

bGU+PHNlY29uZGFyeS10aXRsZT5Tb2Z0IE1hdHRlcjwvc2Vjb25kYXJ5LXRpdGxlPjwvdGl0bGVz

PjxwZXJpb2RpY2FsPjxmdWxsLXRpdGxlPlNvZnQgTWF0dGVyPC9mdWxsLXRpdGxlPjwvcGVyaW9k

aWNhbD48cGFnZXM+Nzk5OC04MDAxPC9wYWdlcz48dm9sdW1lPjc8L3ZvbHVtZT48ZGF0ZXM+PHll

YXI+MjAxMTwveWVhcj48L2RhdGVzPjxpc2JuPjE3NDQtNjgzWDwvaXNibj48dXJscz48cmVsYXRl

ZC11cmxzPjx1cmw+aHR0cDovL2R4LmRvaS5vcmcvMTAuMTAzOS9jMXNtMDU5NTlhPC91cmw+PC9y

ZWxhdGVkLXVybHM+PHBkZi11cmxzPjx1cmw+XFxpYy5hYy51a1xob21lc1xhcmMxMTFcUmVhZEN1

YmUgTWVkaWFcU29mdCBNYXR0ZXIgMjAxMSBEYW1pZW4gVm9pcnkucGRmPC91cmw+PC9wZGYtdXJs

cz48L3VybHM+PGVsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjEwLjEwMzkvYzFzbTA1OTU5YTwvZWxl

Y3Ryb25pYy1yZXNvdXJjZS1udW0+PHJlbW90ZS1kYXRhYmFzZS1uYW1lPlJlYWRjdWJlPC9yZW1v

dGUtZGF0YWJhc2UtbmFtZT48L3JlY29yZD48L0NpdGU+PENpdGU+PEF1dGhvcj5CdWNrbGV5PC9B

dXRob3I+PFllYXI+MjAxNzwvWWVhcj48UmVjTnVtPjEyPC9SZWNOdW0+PHJlY29yZD48cmVjLW51

bWJlcj4xMjwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9Ijl0

ZWZmZnZwMzlhNWFsZWZ0dnl2MHdwczVkZTl0Znp4ZXpheCIgdGltZXN0YW1wPSIxNTM0MjU3Mjc3

Ij4xMjwva2V5PjwvZm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJKb3VybmFsIEFydGljbGUi

PjE3PC9yZWYtdHlwZT48Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+QnVja2xleSwgRGF2

aWQgSjwvYXV0aG9yPjxhdXRob3I+SG9kZ2UsIFN0ZXBoZW4gQTwvYXV0aG9yPjxhdXRob3I+RGUg

TWFyY28sIE1hcnRpbmE8L2F1dGhvcj48YXV0aG9yPkh1LCBTaGVuZzwvYXV0aG9yPjxhdXRob3I+

QW50aG9ueSwgRGF2aWQgQmVuYm93PC9hdXRob3I+PGF1dGhvcj5DdWxsZW4sIFBhdHJpY2sgTGlu

ZGVuPC9hdXRob3I+PGF1dGhvcj5Ta2lwcGVyLCBOZWFsIFQ8L2F1dGhvcj48YXV0aG9yPlNoYWZm

ZXIsIE1pbG8gU2ViYXN0aWFuIFBldGVyPC9hdXRob3I+PGF1dGhvcj5Ib3dhcmQsIENocmlzdG9w

aGVyIEE8L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PHRpdGxlcz48dGl0bGU+VHJh

amVjdG9yeSBvZiB0aGUgU2VsZWN0aXZlIERpc3NvbHV0aW9uIG9mIENoYXJnZWQgU2luZ2xlLVdh

bGxlZCBDYXJib24gTmFub3R1YmVzPC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPkouIFBoeXMuIENo

ZW0uIEM8L3NlY29uZGFyeS10aXRsZT48L3RpdGxlcz48cGVyaW9kaWNhbD48ZnVsbC10aXRsZT5K

LiBQaHlzLiBDaGVtLiBDPC9mdWxsLXRpdGxlPjwvcGVyaW9kaWNhbD48cGFnZXM+MjE3MDPigJMy

MTcxMjwvcGFnZXM+PHZvbHVtZT4xMjE8L3ZvbHVtZT48bnVtYmVyPjM5PC9udW1iZXI+PGRhdGVz

Pjx5ZWFyPjIwMTc8L3llYXI+PC9kYXRlcz48aXNibj4xOTMyLTc0NDc8L2lzYm4+PHVybHM+PC91

cmxzPjwvcmVjb3JkPjwvQ2l0ZT48Q2l0ZT48QXV0aG9yPkJhdGlzdGE8L0F1dGhvcj48WWVhcj4y

MDE1PC9ZZWFyPjxSZWNOdW0+MTM8L1JlY051bT48cmVjb3JkPjxyZWMtbnVtYmVyPjEzPC9yZWMt

bnVtYmVyPjxmb3JlaWduLWtleXM+PGtleSBhcHA9IkVOIiBkYi1pZD0iOXRlZmZmdnAzOWE1YWxl

ZnR2eXYwd3BzNWRlOXRmenhlemF4IiB0aW1lc3RhbXA9IjE1MzQyNTcyNzciPjEzPC9rZXk+PC9m

b3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBl

Pjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5CYXRpc3RhLCBDYXJsb3MgQS48L2F1dGhv

cj48YXV0aG9yPkxhcnNvbiwgUm9uYWxkIEcuPC9hdXRob3I+PGF1dGhvcj5Lb3RvdiwgTmljaG9s

YXMgQS48L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PHRpdGxlcz48dGl0bGU+Tm9u

YWRkaXRpdml0eSBvZiBOYW5vcGFydGljbGUgSW50ZXJhY3Rpb25zPC90aXRsZT48c2Vjb25kYXJ5

LXRpdGxlPlNjaWVuY2U8L3NlY29uZGFyeS10aXRsZT48L3RpdGxlcz48cGVyaW9kaWNhbD48ZnVs

bC10aXRsZT5TY2llbmNlPC9mdWxsLXRpdGxlPjwvcGVyaW9kaWNhbD48cGFnZXM+MTI0MjQ3Nzwv

cGFnZXM+PHZvbHVtZT4zNTA8L3ZvbHVtZT48bnVtYmVyPjYyNTc8L251bWJlcj48ZGF0ZXM+PHll

YXI+MjAxNTwveWVhcj48L2RhdGVzPjxwdWJsaXNoZXI+aGlnaHdpcmU8L3B1Ymxpc2hlcj48aXNi

bj4wMDM2LTgwNzU8L2lzYm4+PHVybHM+PHJlbGF0ZWQtdXJscz48dXJsPmh0dHA6Ly9keC5kb2ku

b3JnLzEwLjExMjYvc2NpZW5jZS4xMjQyNDc3PC91cmw+PC9yZWxhdGVkLXVybHM+PHBkZi11cmxz

Pjx1cmw+QzpcVXNlcnNcQWRhbSBDTGFuY3lcRG9jdW1lbnRzXFJlYWRDdWJlIE1lZGlhXEJhdGlz

dGEgZXQgYWwtMjAxNS1TY2llbmNlLnBkZjwvdXJsPjwvcGRmLXVybHM+PC91cmxzPjxlbGVjdHJv

bmljLXJlc291cmNlLW51bT4xMC4xMTI2L3NjaWVuY2UuMTI0MjQ3NzwvZWxlY3Ryb25pYy1yZXNv

dXJjZS1udW0+PHJlbW90ZS1kYXRhYmFzZS1uYW1lPlJFQURDVUJFPC9yZW1vdGUtZGF0YWJhc2Ut

bmFtZT48L3JlY29yZD48L0NpdGU+PC9FbmROb3RlPgB=

ADDIN EN.CITE PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5Wb2lyeTwvQXV0aG9yPjxZZWFyPjIwMTE8L1llYXI+PFJl

Y051bT4xMTwvUmVjTnVtPjxEaXNwbGF5VGV4dD48c3R5bGUgZmFjZT0ic3VwZXJzY3JpcHQiPjE1

LCAxNiwgMTc8L3N0eWxlPjwvRGlzcGxheVRleHQ+PHJlY29yZD48cmVjLW51bWJlcj4xMTwvcmVj

LW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9Ijl0ZWZmZnZwMzlhNWFs

ZWZ0dnl2MHdwczVkZTl0Znp4ZXpheCIgdGltZXN0YW1wPSIxNTM0MjU3Mjc3Ij4xMTwva2V5Pjwv

Zm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJKb3VybmFsIEFydGljbGUiPjE3PC9yZWYtdHlw

ZT48Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+Vm9pcnksIERhbWllbjwvYXV0aG9yPjxh

dXRob3I+RHJ1bW1vbmQsIENhcmxvcyA8L2F1dGhvcj48YXV0aG9yPlDDqW5pY2F1ZCwgQWxhaW48

L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PHRpdGxlcz48dGl0bGU+UG9ydHJhaXQg

b2YgQ2FyYm9uIE5hbm90dWJlIFNhbHRzIEFzIFNvbHVibGUgUG9seWVsZWN0cm9seXRlczwvdGl0

bGU+PHNlY29uZGFyeS10aXRsZT5Tb2Z0IE1hdHRlcjwvc2Vjb25kYXJ5LXRpdGxlPjwvdGl0bGVz

PjxwZXJpb2RpY2FsPjxmdWxsLXRpdGxlPlNvZnQgTWF0dGVyPC9mdWxsLXRpdGxlPjwvcGVyaW9k

aWNhbD48cGFnZXM+Nzk5OC04MDAxPC9wYWdlcz48dm9sdW1lPjc8L3ZvbHVtZT48ZGF0ZXM+PHll

YXI+MjAxMTwveWVhcj48L2RhdGVzPjxpc2JuPjE3NDQtNjgzWDwvaXNibj48dXJscz48cmVsYXRl

ZC11cmxzPjx1cmw+aHR0cDovL2R4LmRvaS5vcmcvMTAuMTAzOS9jMXNtMDU5NTlhPC91cmw+PC9y

ZWxhdGVkLXVybHM+PHBkZi11cmxzPjx1cmw+XFxpYy5hYy51a1xob21lc1xhcmMxMTFcUmVhZEN1

YmUgTWVkaWFcU29mdCBNYXR0ZXIgMjAxMSBEYW1pZW4gVm9pcnkucGRmPC91cmw+PC9wZGYtdXJs

cz48L3VybHM+PGVsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjEwLjEwMzkvYzFzbTA1OTU5YTwvZWxl

Y3Ryb25pYy1yZXNvdXJjZS1udW0+PHJlbW90ZS1kYXRhYmFzZS1uYW1lPlJlYWRjdWJlPC9yZW1v

dGUtZGF0YWJhc2UtbmFtZT48L3JlY29yZD48L0NpdGU+PENpdGU+PEF1dGhvcj5CdWNrbGV5PC9B

dXRob3I+PFllYXI+MjAxNzwvWWVhcj48UmVjTnVtPjEyPC9SZWNOdW0+PHJlY29yZD48cmVjLW51

bWJlcj4xMjwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9Ijl0

ZWZmZnZwMzlhNWFsZWZ0dnl2MHdwczVkZTl0Znp4ZXpheCIgdGltZXN0YW1wPSIxNTM0MjU3Mjc3

Ij4xMjwva2V5PjwvZm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJKb3VybmFsIEFydGljbGUi

PjE3PC9yZWYtdHlwZT48Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+QnVja2xleSwgRGF2

aWQgSjwvYXV0aG9yPjxhdXRob3I+SG9kZ2UsIFN0ZXBoZW4gQTwvYXV0aG9yPjxhdXRob3I+RGUg

TWFyY28sIE1hcnRpbmE8L2F1dGhvcj48YXV0aG9yPkh1LCBTaGVuZzwvYXV0aG9yPjxhdXRob3I+

QW50aG9ueSwgRGF2aWQgQmVuYm93PC9hdXRob3I+PGF1dGhvcj5DdWxsZW4sIFBhdHJpY2sgTGlu

ZGVuPC9hdXRob3I+PGF1dGhvcj5Ta2lwcGVyLCBOZWFsIFQ8L2F1dGhvcj48YXV0aG9yPlNoYWZm

ZXIsIE1pbG8gU2ViYXN0aWFuIFBldGVyPC9hdXRob3I+PGF1dGhvcj5Ib3dhcmQsIENocmlzdG9w

aGVyIEE8L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PHRpdGxlcz48dGl0bGU+VHJh

amVjdG9yeSBvZiB0aGUgU2VsZWN0aXZlIERpc3NvbHV0aW9uIG9mIENoYXJnZWQgU2luZ2xlLVdh

bGxlZCBDYXJib24gTmFub3R1YmVzPC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPkouIFBoeXMuIENo

ZW0uIEM8L3NlY29uZGFyeS10aXRsZT48L3RpdGxlcz48cGVyaW9kaWNhbD48ZnVsbC10aXRsZT5K

LiBQaHlzLiBDaGVtLiBDPC9mdWxsLXRpdGxlPjwvcGVyaW9kaWNhbD48cGFnZXM+MjE3MDPigJMy

MTcxMjwvcGFnZXM+PHZvbHVtZT4xMjE8L3ZvbHVtZT48bnVtYmVyPjM5PC9udW1iZXI+PGRhdGVz

Pjx5ZWFyPjIwMTc8L3llYXI+PC9kYXRlcz48aXNibj4xOTMyLTc0NDc8L2lzYm4+PHVybHM+PC91

cmxzPjwvcmVjb3JkPjwvQ2l0ZT48Q2l0ZT48QXV0aG9yPkJhdGlzdGE8L0F1dGhvcj48WWVhcj4y

MDE1PC9ZZWFyPjxSZWNOdW0+MTM8L1JlY051bT48cmVjb3JkPjxyZWMtbnVtYmVyPjEzPC9yZWMt

bnVtYmVyPjxmb3JlaWduLWtleXM+PGtleSBhcHA9IkVOIiBkYi1pZD0iOXRlZmZmdnAzOWE1YWxl

ZnR2eXYwd3BzNWRlOXRmenhlemF4IiB0aW1lc3RhbXA9IjE1MzQyNTcyNzciPjEzPC9rZXk+PC9m

b3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBl

Pjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5CYXRpc3RhLCBDYXJsb3MgQS48L2F1dGhv

cj48YXV0aG9yPkxhcnNvbiwgUm9uYWxkIEcuPC9hdXRob3I+PGF1dGhvcj5Lb3RvdiwgTmljaG9s

YXMgQS48L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PHRpdGxlcz48dGl0bGU+Tm9u

YWRkaXRpdml0eSBvZiBOYW5vcGFydGljbGUgSW50ZXJhY3Rpb25zPC90aXRsZT48c2Vjb25kYXJ5

LXRpdGxlPlNjaWVuY2U8L3NlY29uZGFyeS10aXRsZT48L3RpdGxlcz48cGVyaW9kaWNhbD48ZnVs

bC10aXRsZT5TY2llbmNlPC9mdWxsLXRpdGxlPjwvcGVyaW9kaWNhbD48cGFnZXM+MTI0MjQ3Nzwv

cGFnZXM+PHZvbHVtZT4zNTA8L3ZvbHVtZT48bnVtYmVyPjYyNTc8L251bWJlcj48ZGF0ZXM+PHll

YXI+MjAxNTwveWVhcj48L2RhdGVzPjxwdWJsaXNoZXI+aGlnaHdpcmU8L3B1Ymxpc2hlcj48aXNi

bj4wMDM2LTgwNzU8L2lzYm4+PHVybHM+PHJlbGF0ZWQtdXJscz48dXJsPmh0dHA6Ly9keC5kb2ku

b3JnLzEwLjExMjYvc2NpZW5jZS4xMjQyNDc3PC91cmw+PC9yZWxhdGVkLXVybHM+PHBkZi11cmxz

Pjx1cmw+QzpcVXNlcnNcQWRhbSBDTGFuY3lcRG9jdW1lbnRzXFJlYWRDdWJlIE1lZGlhXEJhdGlz

dGEgZXQgYWwtMjAxNS1TY2llbmNlLnBkZjwvdXJsPjwvcGRmLXVybHM+PC91cmxzPjxlbGVjdHJv

bmljLXJlc291cmNlLW51bT4xMC4xMTI2L3NjaWVuY2UuMTI0MjQ3NzwvZWxlY3Ryb25pYy1yZXNv

dXJjZS1udW0+PHJlbW90ZS1kYXRhYmFzZS1uYW1lPlJFQURDVUJFPC9yZW1vdGUtZGF0YWJhc2Ut

bmFtZT48L3JlY29yZD48L0NpdGU+PC9FbmROb3RlPgB=

ADDIN EN.CITE.DATA 15, 16, 17 it is acknowledged that Coulombic repulsion between adjacent nanotubide (poly)anions in solution provides a significant energetic barrier to reagglomeration. The use of N,Ndimethylacetamide (DMAc) as a solvent simplifies nanotubide processing, as it both dissolves nanotubide ions while remaining stable in the presence of strong reducing agents, such as sodium naphthalide (NaNp). A simple equimolar solution of sodium and naphthalene in DMAc is capable of directly dissolving SWCNT powders with high yields. ADDIN EN.CITE <EndNote><Cite><Author>Clancy</Author><Year>2015</Year><RecNum>15</RecNum><DisplayText><style face="superscript">18</style></DisplayText><record><rec-number>15</rec-number><foreign-keys><key app="EN" db-id="9tefffvp39a5aleftvyv0wps5de9tfzxezax" timestamp="1534257278">15</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Clancy, A. J.</author><author>Melbourne, J.</author><author>Shaffer, M. S. P.</author></authors></contributors><titles><title>A One-Step Route to Solubilised, Purified or Functionalised Single-Walled Carbon Nanotubes</title><secondary-title>J. Mater. Chem. A</secondary-title></titles><periodical><full-title>J. Mater. Chem. A</full-title></periodical><pages>16708-16715</pages><volume>3</volume><number>32</number><dates><year>2015</year></dates><publisher>The Royal Society of Chemistry</publisher><isbn>2050-7488</isbn><work-type>10.1039/C5TA03561A</work-type><urls><related-urls><url> Following this reduction step, the added charge can be used to initiate functionalization reactions, (most commonly with organohalides) to alter dispersibility,PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5SdWJpbzwvQXV0aG9yPjxZZWFyPjIwMTc8L1llYXI+PFJl

Y051bT4xNjwvUmVjTnVtPjxEaXNwbGF5VGV4dD48c3R5bGUgZmFjZT0ic3VwZXJzY3JpcHQiPjE5

LCAyMDwvc3R5bGU+PC9EaXNwbGF5VGV4dD48cmVjb3JkPjxyZWMtbnVtYmVyPjE2PC9yZWMtbnVt

YmVyPjxmb3JlaWduLWtleXM+PGtleSBhcHA9IkVOIiBkYi1pZD0iOXRlZmZmdnAzOWE1YWxlZnR2

eXYwd3BzNWRlOXRmenhlemF4IiB0aW1lc3RhbXA9IjE1MzQyNTcyNzgiPjE2PC9rZXk+PC9mb3Jl

aWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBlPjxj

b250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5SdWJpbywgTm9lbGlhPC9hdXRob3I+PGF1dGhv

cj5BdSwgSGVhdGhlcjwvYXV0aG9yPjxhdXRob3I+TGVlc2UsIEhhbm5haCBTLjwvYXV0aG9yPjxh

dXRob3I+SHUsIFNoZW5nPC9hdXRob3I+PGF1dGhvcj5DbGFuY3ksIEFkYW0gSi48L2F1dGhvcj48

YXV0aG9yPlNoYWZmZXIsIE1pbG8gUy4gUC48L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRv

cnM+PHRpdGxlcz48dGl0bGU+R3JhZnRpbmcgZnJvbSB2ZXJzdXMgR3JhZnRpbmcgdG8gQXBwcm9h

Y2hlcyBmb3IgdGhlIEZ1bmN0aW9uYWxpemF0aW9uIG9mIEdyYXBoZW5lIE5hbm9wbGF0ZWxldHMg

d2l0aCBQb2x5KG1ldGh5bCBtZXRoYWNyeWxhdGUpPC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPk1h

Y3JvbW9sZWN1bGVzPC9zZWNvbmRhcnktdGl0bGU+PC90aXRsZXM+PHBlcmlvZGljYWw+PGZ1bGwt

dGl0bGU+TWFjcm9tb2xlY3VsZXM8L2Z1bGwtdGl0bGU+PC9wZXJpb2RpY2FsPjxwYWdlcz43MDcw

LTcwNzk8L3BhZ2VzPjx2b2x1bWU+NTA8L3ZvbHVtZT48bnVtYmVyPjE4PC9udW1iZXI+PGRhdGVz

Pjx5ZWFyPjIwMTc8L3llYXI+PHB1Yi1kYXRlcz48ZGF0ZT4yMDE3LzA5LzI2PC9kYXRlPjwvcHVi

LWRhdGVzPjwvZGF0ZXM+PHB1Ymxpc2hlcj5BbWVyaWNhbiBDaGVtaWNhbCBTb2NpZXR5PC9wdWJs

aXNoZXI+PGlzYm4+MDAyNC05Mjk3PC9pc2JuPjx1cmxzPjxyZWxhdGVkLXVybHM+PHVybD5odHRw

Oi8vZHguZG9pLm9yZy8xMC4xMDIxL2Fjcy5tYWNyb21vbC43YjAxMDQ3PC91cmw+PC9yZWxhdGVk

LXVybHM+PC91cmxzPjxlbGVjdHJvbmljLXJlc291cmNlLW51bT4xMC4xMDIxL2Fjcy5tYWNyb21v

bC43YjAxMDQ3PC9lbGVjdHJvbmljLXJlc291cmNlLW51bT48L3JlY29yZD48L0NpdGU+PENpdGU+

PEF1dGhvcj5Wb2lyeTwvQXV0aG9yPjxZZWFyPjIwMTA8L1llYXI+PFJlY051bT4xNzwvUmVjTnVt

PjxyZWNvcmQ+PHJlYy1udW1iZXI+MTc8L3JlYy1udW1iZXI+PGZvcmVpZ24ta2V5cz48a2V5IGFw

cD0iRU4iIGRiLWlkPSI5dGVmZmZ2cDM5YTVhbGVmdHZ5djB3cHM1ZGU5dGZ6eGV6YXgiIHRpbWVz

dGFtcD0iMTUzNDI1NzI3OCI+MTc8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0i

Sm91cm5hbCBBcnRpY2xlIj4xNzwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0

aG9yPlZvaXJ5LCBEYW1pZW48L2F1dGhvcj48YXV0aG9yPlJvdWJlYXUsIE9saXZpZXIgPC9hdXRo

b3I+PGF1dGhvcj5Qw6luaWNhdWQsIEFsYWluPC9hdXRob3I+PC9hdXRob3JzPjwvY29udHJpYnV0

b3JzPjx0aXRsZXM+PHRpdGxlPlN0b2ljaGlvbWV0cmljIENvbnRyb2wgb2YgU2luZ2xlIFdhbGxl

ZCBDYXJib24gTmFub3R1YmVzIEZ1bmN0aW9uYWxpemF0aW9uPC90aXRsZT48c2Vjb25kYXJ5LXRp

dGxlPkouIE1hdGVyLiBDaGVtLjwvc2Vjb25kYXJ5LXRpdGxlPjwvdGl0bGVzPjxwZXJpb2RpY2Fs

PjxmdWxsLXRpdGxlPkouIE1hdGVyLiBDaGVtLjwvZnVsbC10aXRsZT48L3BlcmlvZGljYWw+PHBh

Z2VzPjQzODUtNDM5MTwvcGFnZXM+PHZvbHVtZT4yMDwvdm9sdW1lPjxkYXRlcz48eWVhcj4yMDEw

PC95ZWFyPjwvZGF0ZXM+PGlzYm4+MDk1OS05NDI4PC9pc2JuPjx1cmxzPjxyZWxhdGVkLXVybHM+

PHVybD5odHRwOi8vZHguZG9pLm9yZy8xMC4xMDM5L2Mwam0wMDA4MmU8L3VybD48L3JlbGF0ZWQt

dXJscz48cGRmLXVybHM+PHVybD5cXGljLmFjLnVrXGhvbWVzXGFyYzExMVxSZWFkQ3ViZSBNZWRp

YVxKb3VybmFsIG9mIE1hdGVyaWFscyBDaGVtaXN0cnkgMjAxMCBEYW1pZW4gVm9pcnkucGRmPC91

cmw+PC9wZGYtdXJscz48L3VybHM+PGVsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjEwLjEwMzkvYzBq

bTAwMDgyZTwvZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+PHJlbW90ZS1kYXRhYmFzZS1uYW1lPlJl

YWRjdWJlPC9yZW1vdGUtZGF0YWJhc2UtbmFtZT48L3JlY29yZD48L0NpdGU+PC9FbmROb3RlPgB=

ADDIN EN.CITE PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5SdWJpbzwvQXV0aG9yPjxZZWFyPjIwMTc8L1llYXI+PFJl

Y051bT4xNjwvUmVjTnVtPjxEaXNwbGF5VGV4dD48c3R5bGUgZmFjZT0ic3VwZXJzY3JpcHQiPjE5

LCAyMDwvc3R5bGU+PC9EaXNwbGF5VGV4dD48cmVjb3JkPjxyZWMtbnVtYmVyPjE2PC9yZWMtbnVt

YmVyPjxmb3JlaWduLWtleXM+PGtleSBhcHA9IkVOIiBkYi1pZD0iOXRlZmZmdnAzOWE1YWxlZnR2

eXYwd3BzNWRlOXRmenhlemF4IiB0aW1lc3RhbXA9IjE1MzQyNTcyNzgiPjE2PC9rZXk+PC9mb3Jl

aWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBlPjxj

b250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5SdWJpbywgTm9lbGlhPC9hdXRob3I+PGF1dGhv

cj5BdSwgSGVhdGhlcjwvYXV0aG9yPjxhdXRob3I+TGVlc2UsIEhhbm5haCBTLjwvYXV0aG9yPjxh

dXRob3I+SHUsIFNoZW5nPC9hdXRob3I+PGF1dGhvcj5DbGFuY3ksIEFkYW0gSi48L2F1dGhvcj48

YXV0aG9yPlNoYWZmZXIsIE1pbG8gUy4gUC48L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRv

cnM+PHRpdGxlcz48dGl0bGU+R3JhZnRpbmcgZnJvbSB2ZXJzdXMgR3JhZnRpbmcgdG8gQXBwcm9h

Y2hlcyBmb3IgdGhlIEZ1bmN0aW9uYWxpemF0aW9uIG9mIEdyYXBoZW5lIE5hbm9wbGF0ZWxldHMg

d2l0aCBQb2x5KG1ldGh5bCBtZXRoYWNyeWxhdGUpPC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPk1h

Y3JvbW9sZWN1bGVzPC9zZWNvbmRhcnktdGl0bGU+PC90aXRsZXM+PHBlcmlvZGljYWw+PGZ1bGwt

dGl0bGU+TWFjcm9tb2xlY3VsZXM8L2Z1bGwtdGl0bGU+PC9wZXJpb2RpY2FsPjxwYWdlcz43MDcw

LTcwNzk8L3BhZ2VzPjx2b2x1bWU+NTA8L3ZvbHVtZT48bnVtYmVyPjE4PC9udW1iZXI+PGRhdGVz

Pjx5ZWFyPjIwMTc8L3llYXI+PHB1Yi1kYXRlcz48ZGF0ZT4yMDE3LzA5LzI2PC9kYXRlPjwvcHVi

LWRhdGVzPjwvZGF0ZXM+PHB1Ymxpc2hlcj5BbWVyaWNhbiBDaGVtaWNhbCBTb2NpZXR5PC9wdWJs

aXNoZXI+PGlzYm4+MDAyNC05Mjk3PC9pc2JuPjx1cmxzPjxyZWxhdGVkLXVybHM+PHVybD5odHRw

Oi8vZHguZG9pLm9yZy8xMC4xMDIxL2Fjcy5tYWNyb21vbC43YjAxMDQ3PC91cmw+PC9yZWxhdGVk

LXVybHM+PC91cmxzPjxlbGVjdHJvbmljLXJlc291cmNlLW51bT4xMC4xMDIxL2Fjcy5tYWNyb21v

bC43YjAxMDQ3PC9lbGVjdHJvbmljLXJlc291cmNlLW51bT48L3JlY29yZD48L0NpdGU+PENpdGU+

PEF1dGhvcj5Wb2lyeTwvQXV0aG9yPjxZZWFyPjIwMTA8L1llYXI+PFJlY051bT4xNzwvUmVjTnVt

PjxyZWNvcmQ+PHJlYy1udW1iZXI+MTc8L3JlYy1udW1iZXI+PGZvcmVpZ24ta2V5cz48a2V5IGFw

cD0iRU4iIGRiLWlkPSI5dGVmZmZ2cDM5YTVhbGVmdHZ5djB3cHM1ZGU5dGZ6eGV6YXgiIHRpbWVz

dGFtcD0iMTUzNDI1NzI3OCI+MTc8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0i

Sm91cm5hbCBBcnRpY2xlIj4xNzwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0

aG9yPlZvaXJ5LCBEYW1pZW48L2F1dGhvcj48YXV0aG9yPlJvdWJlYXUsIE9saXZpZXIgPC9hdXRo

b3I+PGF1dGhvcj5Qw6luaWNhdWQsIEFsYWluPC9hdXRob3I+PC9hdXRob3JzPjwvY29udHJpYnV0

b3JzPjx0aXRsZXM+PHRpdGxlPlN0b2ljaGlvbWV0cmljIENvbnRyb2wgb2YgU2luZ2xlIFdhbGxl

ZCBDYXJib24gTmFub3R1YmVzIEZ1bmN0aW9uYWxpemF0aW9uPC90aXRsZT48c2Vjb25kYXJ5LXRp

dGxlPkouIE1hdGVyLiBDaGVtLjwvc2Vjb25kYXJ5LXRpdGxlPjwvdGl0bGVzPjxwZXJpb2RpY2Fs

PjxmdWxsLXRpdGxlPkouIE1hdGVyLiBDaGVtLjwvZnVsbC10aXRsZT48L3BlcmlvZGljYWw+PHBh

Z2VzPjQzODUtNDM5MTwvcGFnZXM+PHZvbHVtZT4yMDwvdm9sdW1lPjxkYXRlcz48eWVhcj4yMDEw

PC95ZWFyPjwvZGF0ZXM+PGlzYm4+MDk1OS05NDI4PC9pc2JuPjx1cmxzPjxyZWxhdGVkLXVybHM+

PHVybD5odHRwOi8vZHguZG9pLm9yZy8xMC4xMDM5L2Mwam0wMDA4MmU8L3VybD48L3JlbGF0ZWQt

dXJscz48cGRmLXVybHM+PHVybD5cXGljLmFjLnVrXGhvbWVzXGFyYzExMVxSZWFkQ3ViZSBNZWRp

YVxKb3VybmFsIG9mIE1hdGVyaWFscyBDaGVtaXN0cnkgMjAxMCBEYW1pZW4gVm9pcnkucGRmPC91

cmw+PC9wZGYtdXJscz48L3VybHM+PGVsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjEwLjEwMzkvYzBq

bTAwMDgyZTwvZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+PHJlbW90ZS1kYXRhYmFzZS1uYW1lPlJl

YWRjdWJlPC9yZW1vdGUtZGF0YWJhc2UtbmFtZT48L3JlY29yZD48L0NpdGU+PC9FbmROb3RlPgB=

ADDIN EN.CITE.DATA 19, 20 crosslink the SWCNTs as gels, ADDIN EN.CITE <EndNote><Cite><Author>Schirowski</Author><Year>2018</Year><RecNum>18</RecNum><DisplayText><style face="superscript">21, 22</style></DisplayText><record><rec-number>18</rec-number><foreign-keys><key app="EN" db-id="9tefffvp39a5aleftvyv0wps5de9tfzxezax" timestamp="1534257278">18</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>M. Schirowski</author><author>G. Abellán</author><author>E. Nuin</author><author>J. Pampel</author><author>C. Dolle</author><author>V. Wedler</author><author>T. P. Fellinger</author><author>E. Spiecker</author><author>F. Hauke</author><author>A. Hirsch</author></authors></contributors><titles><title>Fundamental Insights into the Reductive Covalent CrossLinking of Single-Walled Carbon Nanotubes</title><secondary-title>J. Am. Chem. Soc.</secondary-title></titles><periodical><full-title>J. Am. Chem. Soc.</full-title></periodical><pages>3352-3360</pages><volume>140</volume><number>9</number><dates><year>2018</year></dates><urls></urls></record></Cite><Cite><Author>De Marco</Author><Year>2016</Year><RecNum>19</RecNum><record><rec-number>19</rec-number><foreign-keys><key app="EN" db-id="9tefffvp39a5aleftvyv0wps5de9tfzxezax" timestamp="1534257278">19</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>De Marco, Martina</author><author>Markoulidis, Foivos</author><author>Menzel, Robert</author><author>Bawaked, Salem M</author><author>Mokhtar, Mohamed</author><author>Al-Thabaiti, Shaeel A</author><author>Basahel, Sulaiman N</author><author>Shaffer, Milo SP</author></authors></contributors><titles><title>Cross-Linked Single-Walled Carbon Nanotube Aerogel Electrodes via Reductive Coupling Chemistry</title><secondary-title>J. Mater. Chem. A</secondary-title></titles><periodical><full-title>J. Mater. Chem. A</full-title></periodical><pages>5385-5389</pages><volume>4</volume><number>15</number><dates><year>2016</year></dates><urls></urls></record></Cite></EndNote>21, 22 or bind composite matrices.PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5DbGFuY3k8L0F1dGhvcj48WWVhcj4yMDE3PC9ZZWFyPjxS

ZWNOdW0+MjA8L1JlY051bT48RGlzcGxheVRleHQ+PHN0eWxlIGZhY2U9InN1cGVyc2NyaXB0Ij4y

MywgMjQ8L3N0eWxlPjwvRGlzcGxheVRleHQ+PHJlY29yZD48cmVjLW51bWJlcj4yMDwvcmVjLW51

bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9Ijl0ZWZmZnZwMzlhNWFsZWZ0

dnl2MHdwczVkZTl0Znp4ZXpheCIgdGltZXN0YW1wPSIxNTM0MjU3Mjc4Ij4yMDwva2V5PjwvZm9y

ZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJKb3VybmFsIEFydGljbGUiPjE3PC9yZWYtdHlwZT48

Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+Q2xhbmN5LCBBZGFtIEo8L2F1dGhvcj48YXV0

aG9yPkFudGhvbnksIERhdmlkIEJlbmJvdzwvYXV0aG9yPjxhdXRob3I+RmlzaGVyLCBTYW5kcmEg

SjwvYXV0aG9yPjxhdXRob3I+TGVlc2UsIEhhbm5haDwvYXV0aG9yPjxhdXRob3I+Um9iZXJ0cywg

Q2hyaXN0b3BoZXIgUzwvYXV0aG9yPjxhdXRob3I+U2hhZmZlciwgTWlsbyBTZWJhc3RpYW4gUGV0

ZXI8L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PHRpdGxlcz48dGl0bGU+UmVkdWN0

aXZlIERpc3NvbHV0aW9uIG9mIFN1cGVyZ3Jvd3RoIENhcmJvbiBOYW5vdHViZXMgZm9yIFRvdWdo

ZXIgTmFub2NvbXBvc2l0ZXMgYnkgUmVhY3RpdmUgQ29hZ3VsYXRpb24gU3Bpbm5pbmc8L3RpdGxl

PjxzZWNvbmRhcnktdGl0bGU+TmFub3NjYWxlPC9zZWNvbmRhcnktdGl0bGU+PC90aXRsZXM+PHBl

cmlvZGljYWw+PGZ1bGwtdGl0bGU+TmFub3NjYWxlPC9mdWxsLXRpdGxlPjwvcGVyaW9kaWNhbD48

cGFnZXM+ODc2NC04NzczIDwvcGFnZXM+PHZvbHVtZT45PC92b2x1bWU+PGRhdGVzPjx5ZWFyPjIw

MTc8L3llYXI+PC9kYXRlcz48dXJscz48L3VybHM+PC9yZWNvcmQ+PC9DaXRlPjxDaXRlPjxBdXRo

b3I+TWFydGluZXotUnViaTwvQXV0aG9yPjxZZWFyPjIwMTE8L1llYXI+PFJlY051bT4yMTwvUmVj

TnVtPjxyZWNvcmQ+PHJlYy1udW1iZXI+MjE8L3JlYy1udW1iZXI+PGZvcmVpZ24ta2V5cz48a2V5

IGFwcD0iRU4iIGRiLWlkPSI5dGVmZmZ2cDM5YTVhbGVmdHZ5djB3cHM1ZGU5dGZ6eGV6YXgiIHRp

bWVzdGFtcD0iMTUzNDI1NzI3OCI+MjE8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFt

ZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48

YXV0aG9yPk1hcnRpbmV6LVJ1YmksIFlhZGllbmthPC9hdXRob3I+PGF1dGhvcj5Bc2hyYWZpLCBC

ZWhuYW08L2F1dGhvcj48YXV0aG9yPkd1YW4sIEppbmd3ZW48L2F1dGhvcj48YXV0aG9yPktpbmdz

dG9uLCBDaHJpc3RvcGhlcjwvYXV0aG9yPjxhdXRob3I+Sm9obnN0b24sIEFuZHJldzwvYXV0aG9y

PjxhdXRob3I+U2ltYXJkLCBCZW5vaXQ8L2F1dGhvcj48YXV0aG9yPk1pcmphbGlsaSwgVmFoaWQ8

L2F1dGhvcj48YXV0aG9yPkh1YmVydCwgUGFzY2FsPC9hdXRob3I+PGF1dGhvcj5EZW5nLCBMaWJv

PC9hdXRob3I+PGF1dGhvcj5Zb3VuZywgUm9iZXJ0PC9hdXRob3I+PC9hdXRob3JzPjwvY29udHJp

YnV0b3JzPjxhdXRoLWFkZHJlc3M+U3RlYWNpZSBJbnN0aXR1dGUgZm9yIE1vbGVjdWxhciBTY2ll

bmNlcywgTmF0aW9uYWwgUmVzZWFyY2ggQ291bmNpbCBDYW5hZGEsIE90dGF3YSwgSzFBIDBSNi48

L2F1dGgtYWRkcmVzcz48dGl0bGVzPjx0aXRsZT5Ub3VnaGVuaW5nIG9mIEVwb3h5IE1hdHJpY2Vz

IFdpdGggUmVkdWNlZCBTaW5nbGUtV2FsbGVkIENhcmJvbiBOYW5vdHViZXM8L3RpdGxlPjxzZWNv

bmRhcnktdGl0bGU+QUNTIEFwcC4gTWF0ZXIuIEludGVyZi48L3NlY29uZGFyeS10aXRsZT48L3Rp

dGxlcz48cGVyaW9kaWNhbD48ZnVsbC10aXRsZT5BQ1MgQXBwLiBNYXRlci4gSW50ZXJmLjwvZnVs

bC10aXRsZT48L3BlcmlvZGljYWw+PHBhZ2VzPjIzMDktMjMxNzwvcGFnZXM+PHZvbHVtZT4zPC92

b2x1bWU+PG51bWJlcj43PC9udW1iZXI+PGRhdGVzPjx5ZWFyPjIwMTE8L3llYXI+PC9kYXRlcz48

aXNibj4xOTQ0LTgyNDQ8L2lzYm4+PHVybHM+PHJlbGF0ZWQtdXJscz48dXJsPmh0dHA6Ly9keC5k

b2kub3JnLzEwLjEwMjEvYW0yMDA1MjN6PC91cmw+PC9yZWxhdGVkLXVybHM+PHBkZi11cmxzPjx1

cmw+XFxpYy5hYy51a1xob21lc1xhcmMxMTFcUmVhZEN1YmUgTWVkaWFcQUNTIEFwcGwgTWF0ZXIg

SW50ZXJmYWNlcyAyMDExIE1hcnRpbmV6LVJ1YmkgWS5wZGY8L3VybD48L3BkZi11cmxzPjwvdXJs

cz48ZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+MTAuMTAyMS9hbTIwMDUyM3o8L2VsZWN0cm9uaWMt

cmVzb3VyY2UtbnVtPjxyZW1vdGUtZGF0YWJhc2UtbmFtZT5SZWFkY3ViZTwvcmVtb3RlLWRhdGFi

YXNlLW5hbWU+PC9yZWNvcmQ+PC9DaXRlPjwvRW5kTm90ZT4A

ADDIN EN.CITE PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5DbGFuY3k8L0F1dGhvcj48WWVhcj4yMDE3PC9ZZWFyPjxS

ZWNOdW0+MjA8L1JlY051bT48RGlzcGxheVRleHQ+PHN0eWxlIGZhY2U9InN1cGVyc2NyaXB0Ij4y

MywgMjQ8L3N0eWxlPjwvRGlzcGxheVRleHQ+PHJlY29yZD48cmVjLW51bWJlcj4yMDwvcmVjLW51

bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9Ijl0ZWZmZnZwMzlhNWFsZWZ0

dnl2MHdwczVkZTl0Znp4ZXpheCIgdGltZXN0YW1wPSIxNTM0MjU3Mjc4Ij4yMDwva2V5PjwvZm9y

ZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJKb3VybmFsIEFydGljbGUiPjE3PC9yZWYtdHlwZT48

Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+Q2xhbmN5LCBBZGFtIEo8L2F1dGhvcj48YXV0

aG9yPkFudGhvbnksIERhdmlkIEJlbmJvdzwvYXV0aG9yPjxhdXRob3I+RmlzaGVyLCBTYW5kcmEg

SjwvYXV0aG9yPjxhdXRob3I+TGVlc2UsIEhhbm5haDwvYXV0aG9yPjxhdXRob3I+Um9iZXJ0cywg

Q2hyaXN0b3BoZXIgUzwvYXV0aG9yPjxhdXRob3I+U2hhZmZlciwgTWlsbyBTZWJhc3RpYW4gUGV0

ZXI8L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PHRpdGxlcz48dGl0bGU+UmVkdWN0

aXZlIERpc3NvbHV0aW9uIG9mIFN1cGVyZ3Jvd3RoIENhcmJvbiBOYW5vdHViZXMgZm9yIFRvdWdo

ZXIgTmFub2NvbXBvc2l0ZXMgYnkgUmVhY3RpdmUgQ29hZ3VsYXRpb24gU3Bpbm5pbmc8L3RpdGxl

PjxzZWNvbmRhcnktdGl0bGU+TmFub3NjYWxlPC9zZWNvbmRhcnktdGl0bGU+PC90aXRsZXM+PHBl

cmlvZGljYWw+PGZ1bGwtdGl0bGU+TmFub3NjYWxlPC9mdWxsLXRpdGxlPjwvcGVyaW9kaWNhbD48

cGFnZXM+ODc2NC04NzczIDwvcGFnZXM+PHZvbHVtZT45PC92b2x1bWU+PGRhdGVzPjx5ZWFyPjIw

MTc8L3llYXI+PC9kYXRlcz48dXJscz48L3VybHM+PC9yZWNvcmQ+PC9DaXRlPjxDaXRlPjxBdXRo

b3I+TWFydGluZXotUnViaTwvQXV0aG9yPjxZZWFyPjIwMTE8L1llYXI+PFJlY051bT4yMTwvUmVj

TnVtPjxyZWNvcmQ+PHJlYy1udW1iZXI+MjE8L3JlYy1udW1iZXI+PGZvcmVpZ24ta2V5cz48a2V5

IGFwcD0iRU4iIGRiLWlkPSI5dGVmZmZ2cDM5YTVhbGVmdHZ5djB3cHM1ZGU5dGZ6eGV6YXgiIHRp

bWVzdGFtcD0iMTUzNDI1NzI3OCI+MjE8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFt

ZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48

YXV0aG9yPk1hcnRpbmV6LVJ1YmksIFlhZGllbmthPC9hdXRob3I+PGF1dGhvcj5Bc2hyYWZpLCBC

ZWhuYW08L2F1dGhvcj48YXV0aG9yPkd1YW4sIEppbmd3ZW48L2F1dGhvcj48YXV0aG9yPktpbmdz

dG9uLCBDaHJpc3RvcGhlcjwvYXV0aG9yPjxhdXRob3I+Sm9obnN0b24sIEFuZHJldzwvYXV0aG9y

PjxhdXRob3I+U2ltYXJkLCBCZW5vaXQ8L2F1dGhvcj48YXV0aG9yPk1pcmphbGlsaSwgVmFoaWQ8

L2F1dGhvcj48YXV0aG9yPkh1YmVydCwgUGFzY2FsPC9hdXRob3I+PGF1dGhvcj5EZW5nLCBMaWJv

PC9hdXRob3I+PGF1dGhvcj5Zb3VuZywgUm9iZXJ0PC9hdXRob3I+PC9hdXRob3JzPjwvY29udHJp

YnV0b3JzPjxhdXRoLWFkZHJlc3M+U3RlYWNpZSBJbnN0aXR1dGUgZm9yIE1vbGVjdWxhciBTY2ll

bmNlcywgTmF0aW9uYWwgUmVzZWFyY2ggQ291bmNpbCBDYW5hZGEsIE90dGF3YSwgSzFBIDBSNi48

L2F1dGgtYWRkcmVzcz48dGl0bGVzPjx0aXRsZT5Ub3VnaGVuaW5nIG9mIEVwb3h5IE1hdHJpY2Vz

IFdpdGggUmVkdWNlZCBTaW5nbGUtV2FsbGVkIENhcmJvbiBOYW5vdHViZXM8L3RpdGxlPjxzZWNv

bmRhcnktdGl0bGU+QUNTIEFwcC4gTWF0ZXIuIEludGVyZi48L3NlY29uZGFyeS10aXRsZT48L3Rp

dGxlcz48cGVyaW9kaWNhbD48ZnVsbC10aXRsZT5BQ1MgQXBwLiBNYXRlci4gSW50ZXJmLjwvZnVs

bC10aXRsZT48L3BlcmlvZGljYWw+PHBhZ2VzPjIzMDktMjMxNzwvcGFnZXM+PHZvbHVtZT4zPC92

b2x1bWU+PG51bWJlcj43PC9udW1iZXI+PGRhdGVzPjx5ZWFyPjIwMTE8L3llYXI+PC9kYXRlcz48

aXNibj4xOTQ0LTgyNDQ8L2lzYm4+PHVybHM+PHJlbGF0ZWQtdXJscz48dXJsPmh0dHA6Ly9keC5k

b2kub3JnLzEwLjEwMjEvYW0yMDA1MjN6PC91cmw+PC9yZWxhdGVkLXVybHM+PHBkZi11cmxzPjx1

cmw+XFxpYy5hYy51a1xob21lc1xhcmMxMTFcUmVhZEN1YmUgTWVkaWFcQUNTIEFwcGwgTWF0ZXIg

SW50ZXJmYWNlcyAyMDExIE1hcnRpbmV6LVJ1YmkgWS5wZGY8L3VybD48L3BkZi11cmxzPjwvdXJs

cz48ZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+MTAuMTAyMS9hbTIwMDUyM3o8L2VsZWN0cm9uaWMt

cmVzb3VyY2UtbnVtPjxyZW1vdGUtZGF0YWJhc2UtbmFtZT5SZWFkY3ViZTwvcmVtb3RlLWRhdGFi

YXNlLW5hbWU+PC9yZWNvcmQ+PC9DaXRlPjwvRW5kTm90ZT4A

ADDIN EN.CITE.DATA 23, 24 As the reaction proceeds, the functionalized SWCNTs (fSWCNTs) precipitate out of solution, a process usually attributed to removal of the stabilizing Coulombic repulsion, as the reaction consumes the nanotubide’s negative charge. ADDIN EN.CITE <EndNote><Cite><Author>Voiry</Author><Year>2011</Year><RecNum>11</RecNum><DisplayText><style face="superscript">15</style></DisplayText><record><rec-number>11</rec-number><foreign-keys><key app="EN" db-id="9tefffvp39a5aleftvyv0wps5de9tfzxezax" timestamp="1534257277">11</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Voiry, Damien</author><author>Drummond, Carlos </author><author>Pénicaud, Alain</author></authors></contributors><titles><title>Portrait of Carbon Nanotube Salts As Soluble Polyelectrolytes</title><secondary-title>Soft Matter</secondary-title></titles><periodical><full-title>Soft Matter</full-title></periodical><pages>7998-8001</pages><volume>7</volume><dates><year>2011</year></dates><isbn>1744-683X</isbn><urls><related-urls><url>;\\ic.ac.uk\homes\arc111\ReadCube Media\Soft Matter 2011 Damien Voiry.pdf</url></pdf-urls></urls><electronic-resource-num>10.1039/c1sm05959a</electronic-resource-num><remote-database-name>Readcube</remote-database-name></record></Cite></EndNote>15 However, the grafting stoichiometries (number of SWCNT carbons per grafted moiety) of most functionalization reactions, especially for sterically bulky graft-to polymers, imply that only small fraction of the available charge is consumed in the primary reaction; residual charge is known to remain on the SWCNTs after the initial functionalization and is either deliberately or inadvertently removed during subsequent work-up. ADDIN EN.CITE <EndNote><Cite><Author>Hof</Author><Year>2013</Year><RecNum>22</RecNum><DisplayText><style face="superscript">25</style></DisplayText><record><rec-number>22</rec-number><foreign-keys><key app="EN" db-id="9tefffvp39a5aleftvyv0wps5de9tfzxezax" timestamp="1534257278">22</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Hof, Ferdinand</author><author>Bosch, Sebastian</author><author>Eigler, Siegfried</author><author>Hauke, Frank</author><author>Hirsch, Andreas</author></authors></contributors><titles><title>New Basic Insight Into Reductive Functionalization Sequences of Single Walled Carbon Nanotubes</title><secondary-title>J. Am. Chem. Soc.</secondary-title></titles><periodical><full-title>J. Am. Chem. Soc.</full-title></periodical><pages>18385–18395</pages><volume>135</volume><number>49</number><dates><year>2013</year></dates><isbn>0002-7863</isbn><urls><related-urls><url>;\\ic.ac.uk\homes\arc111\ReadCube Media\J Am Chem Soc 2013 Hof F.pdf</url></pdf-urls></urls><electronic-resource-num>10.1021/ja4063713</electronic-resource-num><remote-database-name>Readcube</remote-database-name></record></Cite></EndNote>25 The reason for the precipitation during grafting (and before discharging) is, therefore, unclear and problematic since air-stable dispersions of polymer-grafted SWCNTs are crucial targets for many applications. Currently, the newly functionalized SWCNTs are usually redispersed, via shear processing steps which can introduce damage. In this sense, unlike thermodynamically stable nanotubide solutions, which form spontaneously, functionalized SWCNTs are typically metastable dispersions. Ideally, the fSWCNTs would simply remain in solution after the functionalization.Figure SEQ Figure \* ARABIC 1. Schematic of polymer end-group functionalization through (a) BOC deprotection and (b) amidation with bromoacetyl bromide, and (c) SWCNT functionalizationMETHODS AND EXPERIMENTALMaterials. Single-walled carbon nanotubes (Elicarb PR929, batch 108511/g) were supplied by Thomas Swan Ltd (U.K.). 4-aminobenzylalcohol (98 %) and 2-bromo-N-phenylacetamide (95%) were purchased from Fluorochem Ltd. (UK). Di-t-butyl dicarbonate (>99%), pyridine (anhydrous, 99.8%), thionyl chloride (>99%), anhydrous ethanol (200 proof >99.5%), vinyl acetate (>99% with 3-20 ppm hydroquinone stabiliser), trifluoroacetic acid (TFA, 99%), 2,2′-azobis(2-methylpropionitrile) (98%), lauroyl peroxide (Luperox? LP, 97%), sodium (ingot, 99.99%), naphthalene (99%), bromoacetyl bromide (>98%), and anhydrous N,N-dimethylacetamide (99.8%) were purchased from Sigma Aldrich Ltd. (U.K.). Potassium O-ethyl xanthate (98%) was purchased from Alfa Aesar (UK). Dichloromethane (DCM, 99.9%), n-hexane (99.9%), ethanol (96%), tetrahydrofuran (THF, 99.9%), and petroleum benzene (40-60 oC) were purchased from VWR UK Ltd. (U.K.). Piped nitrogen, and dry oxygen (custom 20/80 v/v oxygen nitrogen mix) were purchased from BOC gases (DE). Anhydrous DMAc was dried further with activated 4 ? molecular sieves (Sigma Aldrich) in a glovebox for 2 days prior to use. Elicarb SWCNTs were purified using a previously reported reductive procedure. ADDIN EN.CITE <EndNote><Cite><Author>Clancy</Author><Year>2016</Year><RecNum>23</RecNum><DisplayText><style face="superscript">26</style></DisplayText><record><rec-number>23</rec-number><foreign-keys><key app="EN" db-id="9tefffvp39a5aleftvyv0wps5de9tfzxezax" timestamp="1534257278">23</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Clancy, Adam J.</author><author>White, Edward R.</author><author>Tay, Hui</author><author>Yau, Hin</author><author>Shaffer, Milo</author></authors></contributors><titles><title>Systematic Comparison of Conventional and Reductive Single-Walled Carbon Nanotube Purifications</title><secondary-title>Carbon</secondary-title></titles><periodical><full-title>Carbon</full-title></periodical><pages>423-432</pages><volume>108</volume><dates><year>2016</year></dates><publisher>sciencedirect</publisher><isbn>0008-6223</isbn><urls><related-urls><url>:\Dropbox\Readcube Saved PDFs\Clancy et al-2016-Carbon.pdf</url></pdf-urls></urls><electronic-resource-num>10.1016/j.carbon.2016.07.034</electronic-resource-num><remote-database-name>Readcube</remote-database-name></record></Cite></EndNote>26 Tert-butoxycarbonyl (Boc) protected poly(vinyl acetate) (1) synthesis and end-group transformations to aniline (2) and bromide (3) terminated polymers were performed using previously reported procedures. ADDIN EN.CITE <EndNote><Cite><Author>Clancy</Author><Year>2017</Year><RecNum>24</RecNum><DisplayText><style face="superscript">27</style></DisplayText><record><rec-number>24</rec-number><foreign-keys><key app="EN" db-id="9tefffvp39a5aleftvyv0wps5de9tfzxezax" timestamp="1534257278">24</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>A. J. Clancy </author><author>J. M. Serginson</author><author>J. L. Greenfield</author><author>H. C. Yau</author><author>M. S. P. Shaffer</author></authors></contributors><titles><title>Systematic Comparison of Single-Walled Carbon Nanotube/ Poly(vinyl Acetate) Graft-to Reactions </title><secondary-title>Polymer</secondary-title></titles><periodical><full-title>Polymer</full-title></periodical><pages>263-271</pages><volume>133</volume><dates><year>2017</year></dates><urls></urls></record></Cite></EndNote>27 Nanotubide Synthesis. Procedure adapted from previously reported literature. ADDIN EN.CITE <EndNote><Cite><Author>Clancy</Author><Year>2015</Year><RecNum>15</RecNum><DisplayText><style face="superscript">18</style></DisplayText><record><rec-number>15</rec-number><foreign-keys><key app="EN" db-id="9tefffvp39a5aleftvyv0wps5de9tfzxezax" timestamp="1534257278">15</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Clancy, A. J.</author><author>Melbourne, J.</author><author>Shaffer, M. S. P.</author></authors></contributors><titles><title>A One-Step Route to Solubilised, Purified or Functionalised Single-Walled Carbon Nanotubes</title><secondary-title>J. Mater. Chem. A</secondary-title></titles><periodical><full-title>J. Mater. Chem. A</full-title></periodical><pages>16708-16715</pages><volume>3</volume><number>32</number><dates><year>2015</year></dates><publisher>The Royal Society of Chemistry</publisher><isbn>2050-7488</isbn><work-type>10.1039/C5TA03561A</work-type><urls><related-urls><url> Purified nanotubes were dried (10-2 mbar, 300 ?C, 1 h) and transferred to a nitrogen glovebox. Separately in the glovebox, a bulk solution of sodium naphthalide in DMAc was prepared by stirring sodium (10 mg) and naphthalene (55.7 mg, 1 eq.) in DMAc (10 mL) using a glass stirrer bar. This solution was stored out of light (covered in aluminium foil), used as soon as possible (maximum 1 week) and monitored for degradation immediately before use, as indicated visually by the appearance of white precipitate and spectroscopically by the reduced intensity of naphthalide’s characteristic absorbance band (ε798 nm = 26,200 m-1 M-1 in DMAc). Purified SWCNTs (24 mg) were added to the NaNp/DMAc solution (4.6 mL), diluted with DMAc (115.4 mL) and stirred with a glass stirrer bar for 16 h to give the nanotubide solution (200?μg?mL1).Polymer Functionalization. Bromide terminated poly(vinyl acetate) was dissolved in 25?mL DMAc at different concentrations (0.05, 0.5 and 5 mM), set to give final polymer concentrations of 0.025, 0.25 and 2.5?mM. The mixture was injected into a nanotubide solution (25?mL, 200?μg?mL1 to give final 50 mL of 100 μg(SWCNT) mL-1) and stirred for 2 h. The solution was then centrifuged (1,000 g, 30 min) in fluorinated ethylene propylene (FEP) centrifuge tubes, sealed with PTFE tape in the cap’s thread to give a solution and precipitate of f-(PVAc) SWCNTs which were separated by decanting.Discharging Nanotubide. To remove excess charge, samples were exposed to an atmosphere of dry oxygen overnight. To recover discharged nanotubes for TGA, solutions were filtered over a 100 nm PTFE membrane before washing with deionized water and acetone to remove sodium oxides, naphthalene, and non-grafted polymer. The discharging procedure was also performed on as-dissolved nanotubide solution which was subsequently centrifuged (1,000 g, 30 min, in FEP tubes) to give the ‘no polymer’ control solution (ESI, Fig. S3c).End-Group Only Polymer Functionalization. Nanotubide solution (10 mL, 0.2 mg mL-1, 87 μmol Na) was stirred with 2-bromo-N-phenylacetamide (56 mg, 3 eq. vs Na) with a glass stirrer bar for 16 h, before discharging and filtering over a 100 nm PTFE membrane. Characterization. UV-Vis spectroscopy was performed on a Perkin Elmer Lambda 950 with an optical glass cuvette, measured with an air background, manually subtracting a measured solvent spectrum afterwards. Concentrations were calculated on post-centrifuged SWCNT-dispersions using an extinction coefficient of ε660nm = 3616.6 mL mg-1 m-1 calculated previously ADDIN EN.CITE <EndNote><Cite><Author>Clancy</Author><Year>2016</Year><RecNum>23</RecNum><DisplayText><style face="superscript">26</style></DisplayText><record><rec-number>23</rec-number><foreign-keys><key app="EN" db-id="9tefffvp39a5aleftvyv0wps5de9tfzxezax" timestamp="1534257278">23</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Clancy, Adam J.</author><author>White, Edward R.</author><author>Tay, Hui</author><author>Yau, Hin</author><author>Shaffer, Milo</author></authors></contributors><titles><title>Systematic Comparison of Conventional and Reductive Single-Walled Carbon Nanotube Purifications</title><secondary-title>Carbon</secondary-title></titles><periodical><full-title>Carbon</full-title></periodical><pages>423-432</pages><volume>108</volume><dates><year>2016</year></dates><publisher>sciencedirect</publisher><isbn>0008-6223</isbn><urls><related-urls><url>:\Dropbox\Readcube Saved PDFs\Clancy et al-2016-Carbon.pdf</url></pdf-urls></urls><electronic-resource-num>10.1016/j.carbon.2016.07.034</electronic-resource-num><remote-database-name>Readcube</remote-database-name></record></Cite></EndNote>26 from mass measurements of undoped SWCNTs. The selected wavelength is away from any polymer absorption signal, and whilst in principle the extinction coefficient might vary between products, the change is expected to be minor compared to the inherent absorption of SWCNTs, and is known to be consistent with mass filtration and TGA based quantification. ADDIN EN.CITE <EndNote><Cite><Author>Buckley</Author><Year>2017</Year><RecNum>12</RecNum><DisplayText><style face="superscript">16</style></DisplayText><record><rec-number>12</rec-number><foreign-keys><key app="EN" db-id="9tefffvp39a5aleftvyv0wps5de9tfzxezax" timestamp="1534257277">12</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Buckley, David J</author><author>Hodge, Stephen A</author><author>De Marco, Martina</author><author>Hu, Sheng</author><author>Anthony, David Benbow</author><author>Cullen, Patrick Linden</author><author>Skipper, Neal T</author><author>Shaffer, Milo Sebastian Peter</author><author>Howard, Christopher A</author></authors></contributors><titles><title>Trajectory of the Selective Dissolution of Charged Single-Walled Carbon Nanotubes</title><secondary-title>J. Phys. Chem. C</secondary-title></titles><periodical><full-title>J. Phys. Chem. C</full-title></periodical><pages>21703–21712</pages><volume>121</volume><number>39</number><dates><year>2017</year></dates><isbn>1932-7447</isbn><urls></urls></record></Cite></EndNote>16 TGA was performed on a Perkin Elmer Pyris One under N2 (60 sccm), holding at 100 °C for 30 min before heating to 700 °C at 10 °C min-1. Grafting ratios were calculated from the weight loss at 700 °C, minus 2.8% (to account for inherent weight loss in the SWCNTs, SI Fig S3c) and multiplied by 1.08 (to account for the 8 wt% ash seen from PVAc degradation, SI Fig S3c) divided by the remaining weight at 700 °C minus the ash content (the aforementioned 8 w t% of weight loss), expressed as a percentage ratio of polymer relative to SWCNT framework. Grafting stoichiometries (C/R) were taken as the ratio of SWCNT carbon atoms (weight percentage SWCNT divided by 12, assuming all weight is carbon framework) to polymer chains (weight percentage polymer divided by Mn). Polymer weights were measured using 1H NMR spectroscopy recorded on a Bruker AV400 (400 MHz) spectrometer, with a CDCl3 (VWR) solution. Spectra were calibrated with the CHCl3 peak and number of monomers calculated from the ratio of backbone hydrogen α to the acetate (4.66-5.10 ppm, nH/monomer) and the less downshifted aromatic protons (7.08 ppm, 2H). Assigned NMR spectra are provided in the supplementary information (SI, Fig S7–10). Mn values were verified before use by Polymer Labs GPC 50 system with two PL-gel 5? columns, calibrated to PMMA standards.Raman spectroscopy was performed on a Renishaw InVia micro-Raman Spectrometer using a 785 nm laser (1800 nm grating), centered around 1450 cm-1 over a 200 × 200 μm grid with 10 μm spacing in a square array (N = 441). Fitting for D/G mode ratios was performed using WiRE 4.1, removal of a linear background followed by peak-fitting D (initial value 1340 cm-1), G- (1560?cm1) and G+ (1589 cm-1) modes; values given as ratios of D/G+ intensity. IR spectroscopy was performed on a Brooker Alpha II Platinum ATR at 4 cm-1 resolution for 16 scans using atmospheric compensation. SEM was performed on a Zeiss Leo 1530, with samples mounted to aluminium stubs (Agar Scientific) by carbon tabs (Agar Scientific). Images were taken with an accelerating voltage of 10 keV (unless stated) and post-processed in GIMP (v.2.10.4) to maximize contrast.RESULTS AND DISCUSSIONPoly(vinyl acetate) (PVAc) was selected as the polymer graft of choice as a precursor to poly(vinyl alcohol) (PVOH), which is used in high performance composites ADDIN EN.CITE <EndNote><Cite><Author>Lee</Author><Year>2016</Year><RecNum>46</RecNum><DisplayText><style face="superscript">28</style></DisplayText><record><rec-number>46</rec-number><foreign-keys><key app="EN" db-id="9tefffvp39a5aleftvyv0wps5de9tfzxezax" timestamp="1540373561">46</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Lee, Won Jun</author><author>Clancy, Adam J</author><author>Kontturi, Eero</author><author>Bismarck, Alexander</author><author>Shaffer, Milo SP</author></authors></contributors><titles><title>Strong and stiff: high-performance cellulose nanocrystal/poly (vinyl alcohol) composite fibers</title><secondary-title>ACS applied materials &amp; interfaces</secondary-title></titles><periodical><full-title>ACS applied materials &amp; interfaces</full-title></periodical><pages>31500-31504</pages><volume>8</volume><number>46</number><dates><year>2016</year></dates><isbn>1944-8244</isbn><urls></urls></record></Cite></EndNote>28 and biomedical applications ADDIN EN.CITE <EndNote><Cite><Author>Teodorescu</Author><Year>2018</Year><RecNum>45</RecNum><DisplayText><style face="superscript">29</style></DisplayText><record><rec-number>45</rec-number><foreign-keys><key app="EN" db-id="9tefffvp39a5aleftvyv0wps5de9tfzxezax" timestamp="1540373518">45</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Teodorescu, Mirela</author><author>Bercea, Maria</author><author>Morariu, Simona</author></authors></contributors><titles><title>Biomaterials of Poly (vinyl alcohol) and Natural Polymers</title><secondary-title>Polymer Reviews</secondary-title></titles><periodical><full-title>Polymer Reviews</full-title></periodical><pages>247-287</pages><volume>58</volume><number>2</number><dates><year>2018</year></dates><isbn>1558-3724</isbn><urls></urls></record></Cite></EndNote>29; PVOH is incompatible with nanotubide functionalization, as the hydroxyl protons hydrogenate the nanotube while consuming charge. Additionally, PVAc is highly soluble in in the nanotubide solvent DMAc. ADDIN EN.CITE <EndNote><Cite><Author>Clancy</Author><Year>2015</Year><RecNum>15</RecNum><DisplayText><style face="superscript">18</style></DisplayText><record><rec-number>15</rec-number><foreign-keys><key app="EN" db-id="9tefffvp39a5aleftvyv0wps5de9tfzxezax" timestamp="1534257278">15</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Clancy, A. J.</author><author>Melbourne, J.</author><author>Shaffer, M. S. P.</author></authors></contributors><titles><title>A One-Step Route to Solubilised, Purified or Functionalised Single-Walled Carbon Nanotubes</title><secondary-title>J. Mater. Chem. A</secondary-title></titles><periodical><full-title>J. Mater. Chem. A</full-title></periodical><pages>16708-16715</pages><volume>3</volume><number>32</number><dates><year>2015</year></dates><publisher>The Royal Society of Chemistry</publisher><isbn>2050-7488</isbn><work-type>10.1039/C5TA03561A</work-type><urls><related-urls><url> Using previously reported methods, ADDIN EN.CITE <EndNote><Cite><Author>Clancy</Author><Year>2017</Year><RecNum>20</RecNum><DisplayText><style face="superscript">23</style></DisplayText><record><rec-number>20</rec-number><foreign-keys><key app="EN" db-id="9tefffvp39a5aleftvyv0wps5de9tfzxezax" timestamp="1534257278">20</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Clancy, Adam J</author><author>Anthony, David Benbow</author><author>Fisher, Sandra J</author><author>Leese, Hannah</author><author>Roberts, Christopher S</author><author>Shaffer, Milo Sebastian Peter</author></authors></contributors><titles><title>Reductive Dissolution of Supergrowth Carbon Nanotubes for Tougher Nanocomposites by Reactive Coagulation Spinning</title><secondary-title>Nanoscale</secondary-title></titles><periodical><full-title>Nanoscale</full-title></periodical><pages>8764-8773 </pages><volume>9</volume><dates><year>2017</year></dates><urls></urls></record></Cite></EndNote>23 a series of mono-protected-amine (PVAc) molecules were synthesized (1) at varying molecular weights: PVAc was selected owing to its high solubility in the nanotubide solvent DMAc. These PVAcs were deprotected to the amine terminated PVAc (2, Fig. 1a), and subsequently reacted with bromoacetyl bromide to form mono-bromine-terminated polymers suitable for grafting-to nanotubide (3, Fig. 1b). Nanotubide solutions were reacted with 3 to form f-SWCNTs (Fig. 1c) to study the influence of varying polymer molecular weight (Mn 500, 5747, and 10517 Da) and concentration (2.5, 0.25 and 0.025?mM). Thermogravimetric analysis (TGA), relative to controls, determines the grafting ratio (GR; weight percentage polymer relative to SWCNT framework carbon). Higher initial polymer concentration clearly correlates with an increased grafting ratio (Fig. 2a), for all molecular weights. As verified previously, ADDIN EN.CITE <EndNote><Cite><Author>Clancy</Author><Year>2017</Year><RecNum>20</RecNum><DisplayText><style face="superscript">23</style></DisplayText><record><rec-number>20</rec-number><foreign-keys><key app="EN" db-id="9tefffvp39a5aleftvyv0wps5de9tfzxezax" timestamp="1534257278">20</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Clancy, Adam J</author><author>Anthony, David Benbow</author><author>Fisher, Sandra J</author><author>Leese, Hannah</author><author>Roberts, Christopher S</author><author>Shaffer, Milo Sebastian Peter</author></authors></contributors><titles><title>Reductive Dissolution of Supergrowth Carbon Nanotubes for Tougher Nanocomposites by Reactive Coagulation Spinning</title><secondary-title>Nanoscale</secondary-title></titles><periodical><full-title>Nanoscale</full-title></periodical><pages>8764-8773 </pages><volume>9</volume><dates><year>2017</year></dates><urls></urls></record></Cite></EndNote>23 all mass loss (relative to a polymer free control sample) observed by TGA can be attributed to grafted polymer and not physisorption. The nanotubes which precipitate during the reaction showed the same grafting ratio as the f-SWCNTs which remained in solution (ESI Fig. S3a) indicating that the SWCNTs which precipitate during the reaction is not due to inhomogeneity in the degree of functionalization. Functionalization was further verified through the Raman D/G mode ratio (ESI Fig. S11), and SEM micrographs (ESI Fig. S12 – 15) which showed no bulk free polymer.Figure SEQ Figure \* ARABIC 2. Grafting and retained dispersiblity of f -SWCNTs after reductive functionalization with PVAc-Br of varying molecular weight at varying concentrations. (a) Grafting ratio, (b) Grafting stoichiometry, (c) Grafting ratios versus polymer Mn plotted against grafting limits estimated from maximum utilization of grafting sites (solid line) and de Gennes’ surface-adhered polymer theory (dashed line), (d) Concentration of SWCNTs in solution after reductive functionalization with PVAc-Br at varying concentrations, (e) Logarithmic plot of the potential energy well derived from the integral of the interplate pressure versus inter-nanotube distance in the attractive region using μ = 2π (i.e. perpendicular 1 nm diameter SWCNTs). (f) Digital image of the post-reaction mixtures for Mn 10,417 prior to centrifugation at different initial polymer concentrations (from left to right 0.025, 0.25, 2.5 mM). See ESI for raw TGA and UVvis spectra (ESI Fig. S1).In general, the relationship between polymer molecular weight and grafting ratio is non-linear, as observed previously for both SWCNTs ADDIN EN.CITE <EndNote><Cite><Author>Chadwick</Author><Year>2013</Year><RecNum>25</RecNum><DisplayText><style face="superscript">23, 30</style></DisplayText><record><rec-number>25</rec-number><foreign-keys><key app="EN" db-id="9tefffvp39a5aleftvyv0wps5de9tfzxezax" timestamp="1534257278">25</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>R. C. Chadwick</author><author>U. Khan</author><author>J. N. Coleman</author><author>Alex Adronov </author></authors></contributors><titles><title>Polymer Grafting to Single-Walled Carbon Nanotubes: Effect of Chain Length on Solubility, Graft Density and Mechanical Properties of Macroscopic Structures</title><secondary-title>Small</secondary-title></titles><periodical><full-title>Small</full-title></periodical><pages>552-560</pages><volume>9</volume><number>4</number><dates><year>2013</year></dates><urls></urls></record></Cite><Cite><Author>Clancy</Author><Year>2017</Year><RecNum>20</RecNum><record><rec-number>20</rec-number><foreign-keys><key app="EN" db-id="9tefffvp39a5aleftvyv0wps5de9tfzxezax" timestamp="1534257278">20</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Clancy, Adam J</author><author>Anthony, David Benbow</author><author>Fisher, Sandra J</author><author>Leese, Hannah</author><author>Roberts, Christopher S</author><author>Shaffer, Milo Sebastian Peter</author></authors></contributors><titles><title>Reductive Dissolution of Supergrowth Carbon Nanotubes for Tougher Nanocomposites by Reactive Coagulation Spinning</title><secondary-title>Nanoscale</secondary-title></titles><periodical><full-title>Nanoscale</full-title></periodical><pages>8764-8773 </pages><volume>9</volume><dates><year>2017</year></dates><urls></urls></record></Cite></EndNote>23, 30 and other nanocarbons ADDIN EN.CITE <EndNote><Cite><Author>Rubio</Author><Year>2017</Year><RecNum>16</RecNum><DisplayText><style face="superscript">19</style></DisplayText><record><rec-number>16</rec-number><foreign-keys><key app="EN" db-id="9tefffvp39a5aleftvyv0wps5de9tfzxezax" timestamp="1534257278">16</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Rubio, Noelia</author><author>Au, Heather</author><author>Leese, Hannah S.</author><author>Hu, Sheng</author><author>Clancy, Adam J.</author><author>Shaffer, Milo S. P.</author></authors></contributors><titles><title>Grafting from versus Grafting to Approaches for the Functionalization of Graphene Nanoplatelets with Poly(methyl methacrylate)</title><secondary-title>Macromolecules</secondary-title></titles><periodical><full-title>Macromolecules</full-title></periodical><pages>7070-7079</pages><volume>50</volume><number>18</number><dates><year>2017</year><pub-dates><date>2017/09/26</date></pub-dates></dates><publisher>American Chemical Society</publisher><isbn>0024-9297</isbn><urls><related-urls><url> due to two contrasting effects. As polymer weight is increased, firstly, the weight added per chain increases linearly, and secondly, steric occlusion of polymers increases the average distance between grafting sites on the nanotube. The maximum number of possible grafting sites (C/Rmax), cannot simply be defined by the carbon/metal stoichiometry. As is typical in the reductive functionalization reaction of SWCNTs, only a small degree of charge was consumed in the reaction,PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5Ib2RnZTwvQXV0aG9yPjxZZWFyPjIwMTQ8L1llYXI+PFJl

Y051bT4yNjwvUmVjTnVtPjxEaXNwbGF5VGV4dD48c3R5bGUgZmFjZT0ic3VwZXJzY3JpcHQiPjI1

LCAzMTwvc3R5bGU+PC9EaXNwbGF5VGV4dD48cmVjb3JkPjxyZWMtbnVtYmVyPjI2PC9yZWMtbnVt

YmVyPjxmb3JlaWduLWtleXM+PGtleSBhcHA9IkVOIiBkYi1pZD0iOXRlZmZmdnAzOWE1YWxlZnR2

eXYwd3BzNWRlOXRmenhlemF4IiB0aW1lc3RhbXA9IjE1MzQyNTcyNzgiPjI2PC9rZXk+PC9mb3Jl

aWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBlPjxj

b250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5Ib2RnZSwgUy48L2F1dGhvcj48YXV0aG9yPlRh

eSwgSC48L2F1dGhvcj48YXV0aG9yPkFudGhvbnksIEQuPC9hdXRob3I+PGF1dGhvcj5NZW56ZWws

IFIuPC9hdXRob3I+PGF1dGhvcj5CdWNrbGV5LCBELjwvYXV0aG9yPjxhdXRob3I+Q3VsbGVuLCBQ

LjwvYXV0aG9yPjxhdXRob3I+U2tpcHBlciwgTi48L2F1dGhvcj48YXV0aG9yPkhvd2FyZCwgQy48

L2F1dGhvcj48YXV0aG9yPlNoYWZmZXIsIE0uPC9hdXRob3I+PC9hdXRob3JzPjwvY29udHJpYnV0

b3JzPjx0aXRsZXM+PHRpdGxlPlByb2JpbmcgdGhlIENoYXJnaW5nIE1lY2hhbmlzbXMgb2YgQ2Fy

Ym9uIE5hbm9tYXRlcmlhbCBQb2x5ZWxlY3Ryb2x5dGVzPC90aXRsZT48c2Vjb25kYXJ5LXRpdGxl

PkZhcmFkYXkgRGlzY3Vzcy48L3NlY29uZGFyeS10aXRsZT48L3RpdGxlcz48cGVyaW9kaWNhbD48

ZnVsbC10aXRsZT5GYXJhZGF5IERpc2N1c3MuPC9mdWxsLXRpdGxlPjwvcGVyaW9kaWNhbD48cGFn

ZXM+MzExLTMyNTwvcGFnZXM+PHZvbHVtZT4xNzI8L3ZvbHVtZT48ZGF0ZXM+PHllYXI+MjAxNDwv

eWVhcj48L2RhdGVzPjx1cmxzPjxyZWxhdGVkLXVybHM+PHVybD5odHRwOi8vZHguZG9pLm9yZy8x

MC4xMDM5L2M0ZmQwMDA0M2E8L3VybD48L3JlbGF0ZWQtdXJscz48cGRmLXVybHM+PHVybD5EOlxE

cm9wYm94XFJlYWRjdWJlIFNhdmVkIFBERnNcSG9kZ2UgZXQgYWwtMjAxNC1GYXJhZGF5IGRpc2N1

c3Npb25zLnBkZjwvdXJsPjwvcGRmLXVybHM+PC91cmxzPjxlbGVjdHJvbmljLXJlc291cmNlLW51

bT4xMC4xMDM5L2M0ZmQwMDA0M2E8L2VsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjxyZW1vdGUtZGF0

YWJhc2UtbmFtZT5SZWFkY3ViZTwvcmVtb3RlLWRhdGFiYXNlLW5hbWU+PC9yZWNvcmQ+PC9DaXRl

PjxDaXRlPjxBdXRob3I+SG9mPC9BdXRob3I+PFllYXI+MjAxMzwvWWVhcj48UmVjTnVtPjIyPC9S

ZWNOdW0+PHJlY29yZD48cmVjLW51bWJlcj4yMjwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxr

ZXkgYXBwPSJFTiIgZGItaWQ9Ijl0ZWZmZnZwMzlhNWFsZWZ0dnl2MHdwczVkZTl0Znp4ZXpheCIg

dGltZXN0YW1wPSIxNTM0MjU3Mjc4Ij4yMjwva2V5PjwvZm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBu

YW1lPSJKb3VybmFsIEFydGljbGUiPjE3PC9yZWYtdHlwZT48Y29udHJpYnV0b3JzPjxhdXRob3Jz

PjxhdXRob3I+SG9mLCBGZXJkaW5hbmQ8L2F1dGhvcj48YXV0aG9yPkJvc2NoLCBTZWJhc3RpYW48

L2F1dGhvcj48YXV0aG9yPkVpZ2xlciwgU2llZ2ZyaWVkPC9hdXRob3I+PGF1dGhvcj5IYXVrZSwg

RnJhbms8L2F1dGhvcj48YXV0aG9yPkhpcnNjaCwgQW5kcmVhczwvYXV0aG9yPjwvYXV0aG9ycz48

L2NvbnRyaWJ1dG9ycz48dGl0bGVzPjx0aXRsZT5OZXcgQmFzaWMgSW5zaWdodCBJbnRvIFJlZHVj

dGl2ZSBGdW5jdGlvbmFsaXphdGlvbiBTZXF1ZW5jZXMgb2YgU2luZ2xlIFdhbGxlZCBDYXJib24g

TmFub3R1YmVzPC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPkouIEFtLiBDaGVtLiBTb2MuPC9zZWNv

bmRhcnktdGl0bGU+PC90aXRsZXM+PHBlcmlvZGljYWw+PGZ1bGwtdGl0bGU+Si4gQW0uIENoZW0u

IFNvYy48L2Z1bGwtdGl0bGU+PC9wZXJpb2RpY2FsPjxwYWdlcz4xODM4NeKAkzE4Mzk1PC9wYWdl

cz48dm9sdW1lPjEzNTwvdm9sdW1lPjxudW1iZXI+NDk8L251bWJlcj48ZGF0ZXM+PHllYXI+MjAx

MzwveWVhcj48L2RhdGVzPjxpc2JuPjAwMDItNzg2MzwvaXNibj48dXJscz48cmVsYXRlZC11cmxz

Pjx1cmw+aHR0cDovL2R4LmRvaS5vcmcvMTAuMTAyMS9qYTQwNjM3MTM8L3VybD48L3JlbGF0ZWQt

dXJscz48cGRmLXVybHM+PHVybD5cXGljLmFjLnVrXGhvbWVzXGFyYzExMVxSZWFkQ3ViZSBNZWRp

YVxKIEFtIENoZW0gU29jIDIwMTMgSG9mIEYucGRmPC91cmw+PC9wZGYtdXJscz48L3VybHM+PGVs

ZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjEwLjEwMjEvamE0MDYzNzEzPC9lbGVjdHJvbmljLXJlc291

cmNlLW51bT48cmVtb3RlLWRhdGFiYXNlLW5hbWU+UmVhZGN1YmU8L3JlbW90ZS1kYXRhYmFzZS1u

YW1lPjwvcmVjb3JkPjwvQ2l0ZT48L0VuZE5vdGU+

ADDIN EN.CITE PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5Ib2RnZTwvQXV0aG9yPjxZZWFyPjIwMTQ8L1llYXI+PFJl

Y051bT4yNjwvUmVjTnVtPjxEaXNwbGF5VGV4dD48c3R5bGUgZmFjZT0ic3VwZXJzY3JpcHQiPjI1

LCAzMTwvc3R5bGU+PC9EaXNwbGF5VGV4dD48cmVjb3JkPjxyZWMtbnVtYmVyPjI2PC9yZWMtbnVt

YmVyPjxmb3JlaWduLWtleXM+PGtleSBhcHA9IkVOIiBkYi1pZD0iOXRlZmZmdnAzOWE1YWxlZnR2

eXYwd3BzNWRlOXRmenhlemF4IiB0aW1lc3RhbXA9IjE1MzQyNTcyNzgiPjI2PC9rZXk+PC9mb3Jl

aWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBlPjxj

b250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5Ib2RnZSwgUy48L2F1dGhvcj48YXV0aG9yPlRh

eSwgSC48L2F1dGhvcj48YXV0aG9yPkFudGhvbnksIEQuPC9hdXRob3I+PGF1dGhvcj5NZW56ZWws

IFIuPC9hdXRob3I+PGF1dGhvcj5CdWNrbGV5LCBELjwvYXV0aG9yPjxhdXRob3I+Q3VsbGVuLCBQ

LjwvYXV0aG9yPjxhdXRob3I+U2tpcHBlciwgTi48L2F1dGhvcj48YXV0aG9yPkhvd2FyZCwgQy48

L2F1dGhvcj48YXV0aG9yPlNoYWZmZXIsIE0uPC9hdXRob3I+PC9hdXRob3JzPjwvY29udHJpYnV0

b3JzPjx0aXRsZXM+PHRpdGxlPlByb2JpbmcgdGhlIENoYXJnaW5nIE1lY2hhbmlzbXMgb2YgQ2Fy

Ym9uIE5hbm9tYXRlcmlhbCBQb2x5ZWxlY3Ryb2x5dGVzPC90aXRsZT48c2Vjb25kYXJ5LXRpdGxl

PkZhcmFkYXkgRGlzY3Vzcy48L3NlY29uZGFyeS10aXRsZT48L3RpdGxlcz48cGVyaW9kaWNhbD48

ZnVsbC10aXRsZT5GYXJhZGF5IERpc2N1c3MuPC9mdWxsLXRpdGxlPjwvcGVyaW9kaWNhbD48cGFn

ZXM+MzExLTMyNTwvcGFnZXM+PHZvbHVtZT4xNzI8L3ZvbHVtZT48ZGF0ZXM+PHllYXI+MjAxNDwv

eWVhcj48L2RhdGVzPjx1cmxzPjxyZWxhdGVkLXVybHM+PHVybD5odHRwOi8vZHguZG9pLm9yZy8x

MC4xMDM5L2M0ZmQwMDA0M2E8L3VybD48L3JlbGF0ZWQtdXJscz48cGRmLXVybHM+PHVybD5EOlxE

cm9wYm94XFJlYWRjdWJlIFNhdmVkIFBERnNcSG9kZ2UgZXQgYWwtMjAxNC1GYXJhZGF5IGRpc2N1

c3Npb25zLnBkZjwvdXJsPjwvcGRmLXVybHM+PC91cmxzPjxlbGVjdHJvbmljLXJlc291cmNlLW51

bT4xMC4xMDM5L2M0ZmQwMDA0M2E8L2VsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjxyZW1vdGUtZGF0

YWJhc2UtbmFtZT5SZWFkY3ViZTwvcmVtb3RlLWRhdGFiYXNlLW5hbWU+PC9yZWNvcmQ+PC9DaXRl

PjxDaXRlPjxBdXRob3I+SG9mPC9BdXRob3I+PFllYXI+MjAxMzwvWWVhcj48UmVjTnVtPjIyPC9S

ZWNOdW0+PHJlY29yZD48cmVjLW51bWJlcj4yMjwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxr

ZXkgYXBwPSJFTiIgZGItaWQ9Ijl0ZWZmZnZwMzlhNWFsZWZ0dnl2MHdwczVkZTl0Znp4ZXpheCIg

dGltZXN0YW1wPSIxNTM0MjU3Mjc4Ij4yMjwva2V5PjwvZm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBu

YW1lPSJKb3VybmFsIEFydGljbGUiPjE3PC9yZWYtdHlwZT48Y29udHJpYnV0b3JzPjxhdXRob3Jz

PjxhdXRob3I+SG9mLCBGZXJkaW5hbmQ8L2F1dGhvcj48YXV0aG9yPkJvc2NoLCBTZWJhc3RpYW48

L2F1dGhvcj48YXV0aG9yPkVpZ2xlciwgU2llZ2ZyaWVkPC9hdXRob3I+PGF1dGhvcj5IYXVrZSwg

RnJhbms8L2F1dGhvcj48YXV0aG9yPkhpcnNjaCwgQW5kcmVhczwvYXV0aG9yPjwvYXV0aG9ycz48

L2NvbnRyaWJ1dG9ycz48dGl0bGVzPjx0aXRsZT5OZXcgQmFzaWMgSW5zaWdodCBJbnRvIFJlZHVj

dGl2ZSBGdW5jdGlvbmFsaXphdGlvbiBTZXF1ZW5jZXMgb2YgU2luZ2xlIFdhbGxlZCBDYXJib24g

TmFub3R1YmVzPC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPkouIEFtLiBDaGVtLiBTb2MuPC9zZWNv

bmRhcnktdGl0bGU+PC90aXRsZXM+PHBlcmlvZGljYWw+PGZ1bGwtdGl0bGU+Si4gQW0uIENoZW0u

IFNvYy48L2Z1bGwtdGl0bGU+PC9wZXJpb2RpY2FsPjxwYWdlcz4xODM4NeKAkzE4Mzk1PC9wYWdl

cz48dm9sdW1lPjEzNTwvdm9sdW1lPjxudW1iZXI+NDk8L251bWJlcj48ZGF0ZXM+PHllYXI+MjAx

MzwveWVhcj48L2RhdGVzPjxpc2JuPjAwMDItNzg2MzwvaXNibj48dXJscz48cmVsYXRlZC11cmxz

Pjx1cmw+aHR0cDovL2R4LmRvaS5vcmcvMTAuMTAyMS9qYTQwNjM3MTM8L3VybD48L3JlbGF0ZWQt

dXJscz48cGRmLXVybHM+PHVybD5cXGljLmFjLnVrXGhvbWVzXGFyYzExMVxSZWFkQ3ViZSBNZWRp

YVxKIEFtIENoZW0gU29jIDIwMTMgSG9mIEYucGRmPC91cmw+PC9wZGYtdXJscz48L3VybHM+PGVs

ZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjEwLjEwMjEvamE0MDYzNzEzPC9lbGVjdHJvbmljLXJlc291

cmNlLW51bT48cmVtb3RlLWRhdGFiYXNlLW5hbWU+UmVhZGN1YmU8L3JlbW90ZS1kYXRhYmFzZS1u

YW1lPjwvcmVjb3JkPjwvQ2l0ZT48L0VuZE5vdGU+

ADDIN EN.CITE.DATA 25, 31 with all grafting stoichiometries (C/R, Fig. 2b) significantly higher than the value of 10 which would correspond to complete charge utilization of the C10Na nanotubide. In principle, there may be a steric effect, depending on the size of the grafted species, and an electronic effect, depending on the availability of electrons with sufficient reducing power to initiate the reaction. The latter limit was estimated by functionalizing the SWCNTs with a polymer containing zero monomers (i.e. just the end-group) to find the end-group-only grafting ratio limit. Assuming that every possible reactive site grafts a polymer chain, regardless of molecular weight, the grafting limit in the absence of polymer chain steric occlusion may be calculated. Here, the end-group-only material is 2-bromo-N-phenylacetamide, which gives a C/Rmax of 156 (ESI Fig. S3b), and an associated GRmax that increases linearly with grafted polymer molecular weight (Fig. 2c, solid line).It has been shown previously that the reductive graft-to polymer functionalization of carbon nanomaterials leads to ‘mushroom’ like behaviourPEVuZE5vdGU+PENpdGU+PEF1dGhvcj5MZWVzZTwvQXV0aG9yPjxZZWFyPjIwMTY8L1llYXI+PFJl

Y051bT4yNzwvUmVjTnVtPjxEaXNwbGF5VGV4dD48c3R5bGUgZmFjZT0ic3VwZXJzY3JpcHQiPjE5

LCAzMjwvc3R5bGU+PC9EaXNwbGF5VGV4dD48cmVjb3JkPjxyZWMtbnVtYmVyPjI3PC9yZWMtbnVt

YmVyPjxmb3JlaWduLWtleXM+PGtleSBhcHA9IkVOIiBkYi1pZD0iOXRlZmZmdnAzOWE1YWxlZnR2

eXYwd3BzNWRlOXRmenhlemF4IiB0aW1lc3RhbXA9IjE1MzQyNTcyNzgiPjI3PC9rZXk+PC9mb3Jl

aWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBlPjxj

b250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5MZWVzZSwgSGFubmFoIFMuPC9hdXRob3I+PGF1

dGhvcj5Hb3ZhZGEsIExhdGE8L2F1dGhvcj48YXV0aG9yPlNhcmlkYWtpcywgRW1tYW51ZWw8L2F1

dGhvcj48YXV0aG9yPktodXJzaGlkLCBTYWhpcjwvYXV0aG9yPjxhdXRob3I+TWVuemVsLCBSb2Jl

cnQ8L2F1dGhvcj48YXV0aG9yPk1vcmlzaGl0YSwgVGFrdXlhPC9hdXRob3I+PGF1dGhvcj5DbGFu

Y3ksIEFkYW0gSi48L2F1dGhvcj48YXV0aG9yPldoaXRlLCBFZHdhcmQgUi48L2F1dGhvcj48YXV0

aG9yPkNoYXllbiwgTmFvbWkgRS48L2F1dGhvcj48YXV0aG9yPlNoYWZmZXIsIE1pbG8gUy4gUC48

L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PHRpdGxlcz48dGl0bGU+UmVkdWN0aXZl

bHkgUEVHeWxhdGVkIENhcmJvbiBOYW5vbWF0ZXJpYWxzIGFuZCBUaGVpciBVc2UgdG8gTnVjbGVh

dGUgM0QgUHJvdGVpbiBDcnlzdGFsczogQSBDb21wYXJpc29uIG9mIERpbWVuc2lvbmFsaXR5PC90

aXRsZT48c2Vjb25kYXJ5LXRpdGxlPkNoZW0uIFNjaS48L3NlY29uZGFyeS10aXRsZT48L3RpdGxl

cz48cGVyaW9kaWNhbD48ZnVsbC10aXRsZT5DaGVtLiBTY2kuPC9mdWxsLXRpdGxlPjwvcGVyaW9k

aWNhbD48cGFnZXM+MjkxNi0yOTIzPC9wYWdlcz48dm9sdW1lPjc8L3ZvbHVtZT48bnVtYmVyPjQ8

L251bWJlcj48ZGF0ZXM+PHllYXI+MjAxNjwveWVhcj48L2RhdGVzPjxwdWJsaXNoZXI+cnNjPC9w

dWJsaXNoZXI+PGlzYm4+MjA0MS02NTIwPC9pc2JuPjx1cmxzPjxyZWxhdGVkLXVybHM+PHVybD5o

dHRwOi8vZHguZG9pLm9yZy8xMC4xMDM5L0M1U0MwMzU5NUM8L3VybD48L3JlbGF0ZWQtdXJscz48

cGRmLXVybHM+PHVybD5EOlxEcm9wYm94XFJlYWRjdWJlIFNhdmVkIFBERnNcTGVlc2UgZXQgYWwt

MjAxNi1DaGVtIFNjaS5wZGY8L3VybD48L3BkZi11cmxzPjwvdXJscz48ZWxlY3Ryb25pYy1yZXNv

dXJjZS1udW0+MTAuMTAzOS9jNXNjMDM1OTVjPC9lbGVjdHJvbmljLXJlc291cmNlLW51bT48cmVt

b3RlLWRhdGFiYXNlLW5hbWU+UmVhZGN1YmU8L3JlbW90ZS1kYXRhYmFzZS1uYW1lPjwvcmVjb3Jk

PjwvQ2l0ZT48Q2l0ZT48QXV0aG9yPlJ1YmlvPC9BdXRob3I+PFllYXI+MjAxNzwvWWVhcj48UmVj

TnVtPjE2PC9SZWNOdW0+PHJlY29yZD48cmVjLW51bWJlcj4xNjwvcmVjLW51bWJlcj48Zm9yZWln

bi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9Ijl0ZWZmZnZwMzlhNWFsZWZ0dnl2MHdwczVkZTl0

Znp4ZXpheCIgdGltZXN0YW1wPSIxNTM0MjU3Mjc4Ij4xNjwva2V5PjwvZm9yZWlnbi1rZXlzPjxy

ZWYtdHlwZSBuYW1lPSJKb3VybmFsIEFydGljbGUiPjE3PC9yZWYtdHlwZT48Y29udHJpYnV0b3Jz

PjxhdXRob3JzPjxhdXRob3I+UnViaW8sIE5vZWxpYTwvYXV0aG9yPjxhdXRob3I+QXUsIEhlYXRo

ZXI8L2F1dGhvcj48YXV0aG9yPkxlZXNlLCBIYW5uYWggUy48L2F1dGhvcj48YXV0aG9yPkh1LCBT

aGVuZzwvYXV0aG9yPjxhdXRob3I+Q2xhbmN5LCBBZGFtIEouPC9hdXRob3I+PGF1dGhvcj5TaGFm

ZmVyLCBNaWxvIFMuIFAuPC9hdXRob3I+PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjx0aXRsZXM+

PHRpdGxlPkdyYWZ0aW5nIGZyb20gdmVyc3VzIEdyYWZ0aW5nIHRvIEFwcHJvYWNoZXMgZm9yIHRo

ZSBGdW5jdGlvbmFsaXphdGlvbiBvZiBHcmFwaGVuZSBOYW5vcGxhdGVsZXRzIHdpdGggUG9seSht

ZXRoeWwgbWV0aGFjcnlsYXRlKTwvdGl0bGU+PHNlY29uZGFyeS10aXRsZT5NYWNyb21vbGVjdWxl

czwvc2Vjb25kYXJ5LXRpdGxlPjwvdGl0bGVzPjxwZXJpb2RpY2FsPjxmdWxsLXRpdGxlPk1hY3Jv

bW9sZWN1bGVzPC9mdWxsLXRpdGxlPjwvcGVyaW9kaWNhbD48cGFnZXM+NzA3MC03MDc5PC9wYWdl

cz48dm9sdW1lPjUwPC92b2x1bWU+PG51bWJlcj4xODwvbnVtYmVyPjxkYXRlcz48eWVhcj4yMDE3

PC95ZWFyPjxwdWItZGF0ZXM+PGRhdGU+MjAxNy8wOS8yNjwvZGF0ZT48L3B1Yi1kYXRlcz48L2Rh

dGVzPjxwdWJsaXNoZXI+QW1lcmljYW4gQ2hlbWljYWwgU29jaWV0eTwvcHVibGlzaGVyPjxpc2Ju

PjAwMjQtOTI5NzwvaXNibj48dXJscz48cmVsYXRlZC11cmxzPjx1cmw+aHR0cDovL2R4LmRvaS5v

cmcvMTAuMTAyMS9hY3MubWFjcm9tb2wuN2IwMTA0NzwvdXJsPjwvcmVsYXRlZC11cmxzPjwvdXJs

cz48ZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+MTAuMTAyMS9hY3MubWFjcm9tb2wuN2IwMTA0Nzwv

ZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+PC9yZWNvcmQ+PC9DaXRlPjwvRW5kTm90ZT4A

ADDIN EN.CITE PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5MZWVzZTwvQXV0aG9yPjxZZWFyPjIwMTY8L1llYXI+PFJl

Y051bT4yNzwvUmVjTnVtPjxEaXNwbGF5VGV4dD48c3R5bGUgZmFjZT0ic3VwZXJzY3JpcHQiPjE5

LCAzMjwvc3R5bGU+PC9EaXNwbGF5VGV4dD48cmVjb3JkPjxyZWMtbnVtYmVyPjI3PC9yZWMtbnVt

YmVyPjxmb3JlaWduLWtleXM+PGtleSBhcHA9IkVOIiBkYi1pZD0iOXRlZmZmdnAzOWE1YWxlZnR2

eXYwd3BzNWRlOXRmenhlemF4IiB0aW1lc3RhbXA9IjE1MzQyNTcyNzgiPjI3PC9rZXk+PC9mb3Jl

aWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBlPjxj

b250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5MZWVzZSwgSGFubmFoIFMuPC9hdXRob3I+PGF1

dGhvcj5Hb3ZhZGEsIExhdGE8L2F1dGhvcj48YXV0aG9yPlNhcmlkYWtpcywgRW1tYW51ZWw8L2F1

dGhvcj48YXV0aG9yPktodXJzaGlkLCBTYWhpcjwvYXV0aG9yPjxhdXRob3I+TWVuemVsLCBSb2Jl

cnQ8L2F1dGhvcj48YXV0aG9yPk1vcmlzaGl0YSwgVGFrdXlhPC9hdXRob3I+PGF1dGhvcj5DbGFu

Y3ksIEFkYW0gSi48L2F1dGhvcj48YXV0aG9yPldoaXRlLCBFZHdhcmQgUi48L2F1dGhvcj48YXV0

aG9yPkNoYXllbiwgTmFvbWkgRS48L2F1dGhvcj48YXV0aG9yPlNoYWZmZXIsIE1pbG8gUy4gUC48

L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PHRpdGxlcz48dGl0bGU+UmVkdWN0aXZl

bHkgUEVHeWxhdGVkIENhcmJvbiBOYW5vbWF0ZXJpYWxzIGFuZCBUaGVpciBVc2UgdG8gTnVjbGVh

dGUgM0QgUHJvdGVpbiBDcnlzdGFsczogQSBDb21wYXJpc29uIG9mIERpbWVuc2lvbmFsaXR5PC90

aXRsZT48c2Vjb25kYXJ5LXRpdGxlPkNoZW0uIFNjaS48L3NlY29uZGFyeS10aXRsZT48L3RpdGxl

cz48cGVyaW9kaWNhbD48ZnVsbC10aXRsZT5DaGVtLiBTY2kuPC9mdWxsLXRpdGxlPjwvcGVyaW9k

aWNhbD48cGFnZXM+MjkxNi0yOTIzPC9wYWdlcz48dm9sdW1lPjc8L3ZvbHVtZT48bnVtYmVyPjQ8

L251bWJlcj48ZGF0ZXM+PHllYXI+MjAxNjwveWVhcj48L2RhdGVzPjxwdWJsaXNoZXI+cnNjPC9w

dWJsaXNoZXI+PGlzYm4+MjA0MS02NTIwPC9pc2JuPjx1cmxzPjxyZWxhdGVkLXVybHM+PHVybD5o

dHRwOi8vZHguZG9pLm9yZy8xMC4xMDM5L0M1U0MwMzU5NUM8L3VybD48L3JlbGF0ZWQtdXJscz48

cGRmLXVybHM+PHVybD5EOlxEcm9wYm94XFJlYWRjdWJlIFNhdmVkIFBERnNcTGVlc2UgZXQgYWwt

MjAxNi1DaGVtIFNjaS5wZGY8L3VybD48L3BkZi11cmxzPjwvdXJscz48ZWxlY3Ryb25pYy1yZXNv

dXJjZS1udW0+MTAuMTAzOS9jNXNjMDM1OTVjPC9lbGVjdHJvbmljLXJlc291cmNlLW51bT48cmVt

b3RlLWRhdGFiYXNlLW5hbWU+UmVhZGN1YmU8L3JlbW90ZS1kYXRhYmFzZS1uYW1lPjwvcmVjb3Jk

PjwvQ2l0ZT48Q2l0ZT48QXV0aG9yPlJ1YmlvPC9BdXRob3I+PFllYXI+MjAxNzwvWWVhcj48UmVj

TnVtPjE2PC9SZWNOdW0+PHJlY29yZD48cmVjLW51bWJlcj4xNjwvcmVjLW51bWJlcj48Zm9yZWln

bi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9Ijl0ZWZmZnZwMzlhNWFsZWZ0dnl2MHdwczVkZTl0

Znp4ZXpheCIgdGltZXN0YW1wPSIxNTM0MjU3Mjc4Ij4xNjwva2V5PjwvZm9yZWlnbi1rZXlzPjxy

ZWYtdHlwZSBuYW1lPSJKb3VybmFsIEFydGljbGUiPjE3PC9yZWYtdHlwZT48Y29udHJpYnV0b3Jz

PjxhdXRob3JzPjxhdXRob3I+UnViaW8sIE5vZWxpYTwvYXV0aG9yPjxhdXRob3I+QXUsIEhlYXRo

ZXI8L2F1dGhvcj48YXV0aG9yPkxlZXNlLCBIYW5uYWggUy48L2F1dGhvcj48YXV0aG9yPkh1LCBT

aGVuZzwvYXV0aG9yPjxhdXRob3I+Q2xhbmN5LCBBZGFtIEouPC9hdXRob3I+PGF1dGhvcj5TaGFm

ZmVyLCBNaWxvIFMuIFAuPC9hdXRob3I+PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjx0aXRsZXM+

PHRpdGxlPkdyYWZ0aW5nIGZyb20gdmVyc3VzIEdyYWZ0aW5nIHRvIEFwcHJvYWNoZXMgZm9yIHRo

ZSBGdW5jdGlvbmFsaXphdGlvbiBvZiBHcmFwaGVuZSBOYW5vcGxhdGVsZXRzIHdpdGggUG9seSht

ZXRoeWwgbWV0aGFjcnlsYXRlKTwvdGl0bGU+PHNlY29uZGFyeS10aXRsZT5NYWNyb21vbGVjdWxl

czwvc2Vjb25kYXJ5LXRpdGxlPjwvdGl0bGVzPjxwZXJpb2RpY2FsPjxmdWxsLXRpdGxlPk1hY3Jv

bW9sZWN1bGVzPC9mdWxsLXRpdGxlPjwvcGVyaW9kaWNhbD48cGFnZXM+NzA3MC03MDc5PC9wYWdl

cz48dm9sdW1lPjUwPC92b2x1bWU+PG51bWJlcj4xODwvbnVtYmVyPjxkYXRlcz48eWVhcj4yMDE3

PC95ZWFyPjxwdWItZGF0ZXM+PGRhdGU+MjAxNy8wOS8yNjwvZGF0ZT48L3B1Yi1kYXRlcz48L2Rh

dGVzPjxwdWJsaXNoZXI+QW1lcmljYW4gQ2hlbWljYWwgU29jaWV0eTwvcHVibGlzaGVyPjxpc2Ju

PjAwMjQtOTI5NzwvaXNibj48dXJscz48cmVsYXRlZC11cmxzPjx1cmw+aHR0cDovL2R4LmRvaS5v

cmcvMTAuMTAyMS9hY3MubWFjcm9tb2wuN2IwMTA0NzwvdXJsPjwvcmVsYXRlZC11cmxzPjwvdXJs

cz48ZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+MTAuMTAyMS9hY3MubWFjcm9tb2wuN2IwMTA0Nzwv

ZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+PC9yZWNvcmQ+PC9DaXRlPjwvRW5kTm90ZT4A

ADDIN EN.CITE.DATA 19, 32 as originally modelled by de Gennes ADDIN EN.CITE <EndNote><Cite><Author>de Gennes</Author><Year>1980</Year><RecNum>28</RecNum><DisplayText><style face="superscript">33</style></DisplayText><record><rec-number>28</rec-number><foreign-keys><key app="EN" db-id="9tefffvp39a5aleftvyv0wps5de9tfzxezax" timestamp="1534257278">28</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>de Gennes, P. G.</author></authors></contributors><titles><title>Conformations of Polymers Attached to an Interface</title><secondary-title>Macromolecules</secondary-title></titles><periodical><full-title>Macromolecules</full-title></periodical><pages>1069-1075</pages><volume>13</volume><number>5</number><section>1069</section><dates><year>1980</year></dates><urls><related-urls><url>:\Dropbox\Readcube Saved PDFs\de Gennes-1980-Macromolecules.pdf</url></pdf-urls></urls><electronic-resource-num>10.1021/ma60077a009</electronic-resource-num><remote-database-name>Readcube</remote-database-name></record></Cite></EndNote>33 for polymers on surfaces. At higher grafting ratios, the polymer must adopt a stretched ‘brush’ conformation extending away from the surface. Typically, this morphology only forms via graft-from reactions, in which the monomer is added at the growing-chain end, avoiding steric occlusion at the surface. Graft-to reactions of pre-synthesized polymers are limited by the steric interactions of the coils, which collapse onto the surface to form a ‘mushroom’ conformation. The occlusion area of a ‘mushroom’ polymer in de Gennes’ theory is a function of polymer Flory radius (RF, Eq. 1), which is the product of the length of the monomer (a) and number of monomers (N) to the power of 3/5. The mushroom regime of de Gennes’ theory occurs when the average separation between the loci of polymer functionalization is greater than the Flory radius. Treating the polymers as iteratively added hard circles on a plane (with an areal density of carbon atoms, ρA, 2.619??-2, ESI Fig. S4), the packing density can be modelled with random sequential adsorption theory, ADDIN EN.CITE <EndNote><Cite><Author>Hinrichsen</Author><Year>1986</Year><RecNum>29</RecNum><DisplayText><style face="superscript">34</style></DisplayText><record><rec-number>29</rec-number><foreign-keys><key app="EN" db-id="9tefffvp39a5aleftvyv0wps5de9tfzxezax" timestamp="1534257278">29</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Hinrichsen, Einar L.</author><author>Feder, Jens</author><author>J?ssang, Torstein</author></authors></contributors><titles><title>Geometry of Random Sequential Adsorption</title><secondary-title>J. Stat. Phys.</secondary-title></titles><periodical><full-title>J. Stat. Phys.</full-title></periodical><pages>793-827</pages><volume>44</volume><number>5</number><dates><year>1986</year><pub-dates><date>1986/09/01</date></pub-dates></dates><isbn>1572-9613</isbn><urls><related-urls><url> which has a packing efficiency (ηRSA) of 54.7%. Using this efficiency factor along with the Flory radius, the limits due to steric occlusion can be estimated for both the grafting stoichiometry (C/ROL, Eq. 2) and grafting ratio (GROL, Eq. 3), as a function of polymer molecular weight (Fig. 2c, dashed line): RF= N3/5a(1)C/ROL=πN65a2ηRSAρA -1(2)GROL=Mw12C/ROL(3)During reaction between bromo-terminated polymer and nanotubide, increasing the concentration of polymer increases the grafting ratio towards the maximum grafting limit for all polymer molecular weights, but notably neither the mushroom/brush transition (GROL, Fig. 2c) nor maximum grafting limit (GRmax, Fig 2c) are ever exceeded by the experimental data. However, the concentration of the fSWCNTs remaining in dispersion after the functionalization (Fig. 2d) does not follow the trend of grafting ratio. There is an inverse relationship between initial polymer concentration and retained dispersibility for all polymer molecular weights, with the highest polymer concentration (2.5 mM) leading to dispersibilities as low as 0.9 μg mL-1 (for Mn 10,417), lower even than ungrafted, oxygen-discharged nanotubide (< 10.0?μg?mL1, ESI Fig. S2). On the other hand, low polymer concentrations (0.025 mM) allow a high proportion (65%) of SWCNTs to remain in solution: up to 64. 8 μg mL-1 remain from initial loading of100 μg mL-1 (72 times higher than the maximum obtained using 2.5 mM PVAc). The dramatic differences in dispersibility occur despite substantially smaller changes in grafting densities (around 50% higher grafting ratios when increasing polymer concentration from 0.025 to 2.5 mM), particularly for the largest polymer (Mn 10,417), indicating that the retained dispersibility must depend on an alternative factor. Further decreases in polymer concentration, at constant SWCNT concentration, are not practical, as the absolute ratio would preclude significant functionalization. For example, at 0.0025 mM 550 Da PVAc, the SWCNT:polymer weight ratio would be 72:1, at the limit of detection even with perfectly efficient grafting. As the intrinsic dispersibilities of isolated PVAc-functionalised SWCNTs of comparable molecular weights are known to be greater than the concentrations seen here (>100?μg?mL-1 after filtration, washing, and redispersion ADDIN EN.CITE <EndNote><Cite><Author>Clancy</Author><Year>2017</Year><RecNum>24</RecNum><DisplayText><style face="superscript">27</style></DisplayText><record><rec-number>24</rec-number><foreign-keys><key app="EN" db-id="9tefffvp39a5aleftvyv0wps5de9tfzxezax" timestamp="1534257278">24</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>A. J. Clancy </author><author>J. M. Serginson</author><author>J. L. Greenfield</author><author>H. C. Yau</author><author>M. S. P. Shaffer</author></authors></contributors><titles><title>Systematic Comparison of Single-Walled Carbon Nanotube/ Poly(vinyl Acetate) Graft-to Reactions </title><secondary-title>Polymer</secondary-title></titles><periodical><full-title>Polymer</full-title></periodical><pages>263-271</pages><volume>133</volume><dates><year>2017</year></dates><urls></urls></record></Cite></EndNote>27), the precipitation during the reaction must be attributed to alternative effects during the reaction. Indeed, removing the residual charge from the nanotube dispersions directly after functionalization, by discharging with oxygen, had no effect on dispersed SWCNT concentration, indicating that the dispersions at their post-reaction concentrations were sufficiently stabilized by the grafted PVAc (presumably with higher intrinsic dispersibilites than the concentrations retained during the reaction). Here, the stability of the SWCNTs in solution during the grafting reaction are modelled as a balance between Coulombic repulsion and depletion interactions of solvated polymers. The short-range nature of van der Waals interactions are negligible at the length scales of interest here (>10 nm, vide infra) so can be omitted.Quantifying local forces for rod-like colloids is significantly more complex than the standard adjacent plate or spherical colloid models due to varying orientation of the rods, ADDIN EN.CITE <EndNote><Cite><Author>Matsuyama</Author><Year>2001</Year><RecNum>30</RecNum><DisplayText><style face="superscript">35</style></DisplayText><record><rec-number>30</rec-number><foreign-keys><key app="EN" db-id="9tefffvp39a5aleftvyv0wps5de9tfzxezax" timestamp="1534257278">30</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Matsuyama, A.</author><author>Kato, T.</author></authors></contributors><titles><title>Orientation-Dependent Depletion Interaction in Rodlike Colloid-Polymer Mixtures</title><secondary-title>Eur. Phys. J. E</secondary-title></titles><periodical><full-title>Eur. Phys. J. E</full-title></periodical><pages>15-24</pages><volume>6</volume><number>1</number><dates><year>2001</year></dates><urls><related-urls><url>:\Dropbox\Readcube Saved PDFs\The European Physical Journal E 2001 Matsuyama A.pdf</url></pdf-urls></urls><electronic-resource-num>10.1007/s101890170023</electronic-resource-num><remote-database-name>Readcube</remote-database-name></record></Cite></EndNote>35 so here the system is treated with the Derjaguin approximation.PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5EZXJqYWd1aW48L0F1dGhvcj48WWVhcj4xOTM0PC9ZZWFy

PjxSZWNOdW0+MzE8L1JlY051bT48RGlzcGxheVRleHQ+PHN0eWxlIGZhY2U9InN1cGVyc2NyaXB0

Ij4zNiwgMzcsIDM4PC9zdHlsZT48L0Rpc3BsYXlUZXh0PjxyZWNvcmQ+PHJlYy1udW1iZXI+MzE8

L3JlYy1udW1iZXI+PGZvcmVpZ24ta2V5cz48a2V5IGFwcD0iRU4iIGRiLWlkPSI5dGVmZmZ2cDM5

YTVhbGVmdHZ5djB3cHM1ZGU5dGZ6eGV6YXgiIHRpbWVzdGFtcD0iMTUzNDI1NzI3OCI+MzE8L2tl

eT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwvcmVm

LXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPkRlcmphZ3VpbiwgQi48L2F1dGhv

cj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PHRpdGxlcz48dGl0bGU+VW50ZXJzdWNodW5nZW4g

w7xiZXIgZGllIFJlaWJ1bmcgdW5kIEFkaMOkc2lvbiwgSVY8L3RpdGxlPjxzZWNvbmRhcnktdGl0

bGU+S29sbG9pZC1aZWl0c2NocmlmdDwvc2Vjb25kYXJ5LXRpdGxlPjwvdGl0bGVzPjxwZXJpb2Rp

Y2FsPjxmdWxsLXRpdGxlPktvbGxvaWQtWmVpdHNjaHJpZnQ8L2Z1bGwtdGl0bGU+PC9wZXJpb2Rp

Y2FsPjxwYWdlcz4xNTUtMTY0PC9wYWdlcz48dm9sdW1lPjY5PC92b2x1bWU+PG51bWJlcj4yPC9u

dW1iZXI+PGRhdGVzPjx5ZWFyPjE5MzQ8L3llYXI+PC9kYXRlcz48aXNibj4wMzAzLTQwMlg8L2lz

Ym4+PHVybHM+PHJlbGF0ZWQtdXJscz48dXJsPmh0dHA6Ly9keC5kb2kub3JnLzEwLjEwMDcvQkYw

MTQzMzIyNTwvdXJsPjwvcmVsYXRlZC11cmxzPjxwZGYtdXJscz48dXJsPkQ6XERyb3Bib3hcUmVh

ZGN1YmUgU2F2ZWQgUERGc1xEZXJqYWd1aW4tMTkzNC1Lb2xsb2lkLVplaXRzY2hyaWZ0LnBkZjwv

dXJsPjwvcGRmLXVybHM+PC91cmxzPjxlbGVjdHJvbmljLXJlc291cmNlLW51bT4xMC4xMDA3L2Jm

MDE0MzMyMjU8L2VsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjxyZW1vdGUtZGF0YWJhc2UtbmFtZT5S

ZWFkY3ViZTwvcmVtb3RlLWRhdGFiYXNlLW5hbWU+PC9yZWNvcmQ+PC9DaXRlPjxDaXRlPjxBdXRo

b3I+SXNyYWVsYWNodmlsaTwvQXV0aG9yPjxZZWFyPjE5OTI8L1llYXI+PFJlY051bT4zMjwvUmVj

TnVtPjxyZWNvcmQ+PHJlYy1udW1iZXI+MzI8L3JlYy1udW1iZXI+PGZvcmVpZ24ta2V5cz48a2V5

IGFwcD0iRU4iIGRiLWlkPSI5dGVmZmZ2cDM5YTVhbGVmdHZ5djB3cHM1ZGU5dGZ6eGV6YXgiIHRp

bWVzdGFtcD0iMTUzNDI1NzI3OCI+MzI8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFt

ZT0iQm9vayI+NjwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPkouIElz

cmFlbGFjaHZpbGk8L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PHRpdGxlcz48dGl0

bGU+SW50ZXJtb2xlY3VsYXIgYW5kIFN1cmZhY2UgRm9yY2VzLCBTZWNvbmQgRWRpdGlvbjogV2l0

aCBBcHBsaWNhdGlvbnMgdG8gQ29sbG9pZGFsIGFuZCBCaW9sb2dpY2FsIFN5c3RlbXMgKENvbGxv

aWQgU2NpZW5jZSk8L3RpdGxlPjwvdGl0bGVzPjxlZGl0aW9uPjJuZCBFZGl0aW9uPC9lZGl0aW9u

PjxkYXRlcz48eWVhcj4xOTkyPC95ZWFyPjwvZGF0ZXM+PHB1Ymxpc2hlcj5BY2FkZW1pYyBQcmVz

czwvcHVibGlzaGVyPjx1cmxzPjwvdXJscz48L3JlY29yZD48L0NpdGU+PENpdGU+PEF1dGhvcj5P

aHNoaW1hPC9BdXRob3I+PFllYXI+MjAwOTwvWWVhcj48UmVjTnVtPjMzPC9SZWNOdW0+PHJlY29y

ZD48cmVjLW51bWJlcj4zMzwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIg

ZGItaWQ9Ijl0ZWZmZnZwMzlhNWFsZWZ0dnl2MHdwczVkZTl0Znp4ZXpheCIgdGltZXN0YW1wPSIx

NTM0MjU3Mjc4Ij4zMzwva2V5PjwvZm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJKb3VybmFs

IEFydGljbGUiPjE3PC9yZWYtdHlwZT48Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+T2hz

aGltYSwgSGlyb3l1a2k8L2F1dGhvcj48YXV0aG9yPkh5b25vLCBBdHN1c2hpPC9hdXRob3I+PC9h

dXRob3JzPjwvY29udHJpYnV0b3JzPjx0aXRsZXM+PHRpdGxlPkVsZWN0cm9zdGF0aWMgSW50ZXJh

Y3Rpb24gQmV0d2VlbiBUd28gQ3lsaW5kcmljYWwgU29mdCBQYXJ0aWNsZXM8L3RpdGxlPjxzZWNv

bmRhcnktdGl0bGU+Si4gQ29sbG9pZCBJbnRlcmZhY2UgU2NpLjwvc2Vjb25kYXJ5LXRpdGxlPjwv

dGl0bGVzPjxwZXJpb2RpY2FsPjxmdWxsLXRpdGxlPkouIENvbGxvaWQgSW50ZXJmYWNlIFNjaS48

L2Z1bGwtdGl0bGU+PC9wZXJpb2RpY2FsPjxwYWdlcz4yMDItMjA4PC9wYWdlcz48dm9sdW1lPjMz

Mzwvdm9sdW1lPjxudW1iZXI+MTwvbnVtYmVyPjxkYXRlcz48eWVhcj4yMDA5PC95ZWFyPjwvZGF0

ZXM+PHB1Ymxpc2hlcj5zY2llbmNlZGlyZWN0PC9wdWJsaXNoZXI+PGlzYm4+MDAyMS05Nzk3PC9p

c2JuPjx1cmxzPjxyZWxhdGVkLXVybHM+PHVybD5odHRwOi8vZHguZG9pLm9yZy8xMC4xMDE2L2ou

amNpcy4yMDA4LjExLjA2MDwvdXJsPjwvcmVsYXRlZC11cmxzPjxwZGYtdXJscz48dXJsPkM6XFVz

ZXJzXEFkYW0gQ0xhbmN5XERvY3VtZW50c1xSZWFkQ3ViZSBNZWRpYVxPaHNoaW1hIGV0IGFsLTIw

MDktSiBDb2xsb2lkIEludGVyZiBTY2kucGRmPC91cmw+PC9wZGYtdXJscz48L3VybHM+PGVsZWN0

cm9uaWMtcmVzb3VyY2UtbnVtPjEwLjEwMTYvai5qY2lzLjIwMDguMTEuMDYwPC9lbGVjdHJvbmlj

LXJlc291cmNlLW51bT48cmVtb3RlLWRhdGFiYXNlLW5hbWU+UkVBRENVQkU8L3JlbW90ZS1kYXRh

YmFzZS1uYW1lPjwvcmVjb3JkPjwvQ2l0ZT48L0VuZE5vdGU+AG==

ADDIN EN.CITE PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5EZXJqYWd1aW48L0F1dGhvcj48WWVhcj4xOTM0PC9ZZWFy

PjxSZWNOdW0+MzE8L1JlY051bT48RGlzcGxheVRleHQ+PHN0eWxlIGZhY2U9InN1cGVyc2NyaXB0

Ij4zNiwgMzcsIDM4PC9zdHlsZT48L0Rpc3BsYXlUZXh0PjxyZWNvcmQ+PHJlYy1udW1iZXI+MzE8

L3JlYy1udW1iZXI+PGZvcmVpZ24ta2V5cz48a2V5IGFwcD0iRU4iIGRiLWlkPSI5dGVmZmZ2cDM5

YTVhbGVmdHZ5djB3cHM1ZGU5dGZ6eGV6YXgiIHRpbWVzdGFtcD0iMTUzNDI1NzI3OCI+MzE8L2tl

eT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwvcmVm

LXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPkRlcmphZ3VpbiwgQi48L2F1dGhv

cj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PHRpdGxlcz48dGl0bGU+VW50ZXJzdWNodW5nZW4g

w7xiZXIgZGllIFJlaWJ1bmcgdW5kIEFkaMOkc2lvbiwgSVY8L3RpdGxlPjxzZWNvbmRhcnktdGl0

bGU+S29sbG9pZC1aZWl0c2NocmlmdDwvc2Vjb25kYXJ5LXRpdGxlPjwvdGl0bGVzPjxwZXJpb2Rp

Y2FsPjxmdWxsLXRpdGxlPktvbGxvaWQtWmVpdHNjaHJpZnQ8L2Z1bGwtdGl0bGU+PC9wZXJpb2Rp

Y2FsPjxwYWdlcz4xNTUtMTY0PC9wYWdlcz48dm9sdW1lPjY5PC92b2x1bWU+PG51bWJlcj4yPC9u

dW1iZXI+PGRhdGVzPjx5ZWFyPjE5MzQ8L3llYXI+PC9kYXRlcz48aXNibj4wMzAzLTQwMlg8L2lz

Ym4+PHVybHM+PHJlbGF0ZWQtdXJscz48dXJsPmh0dHA6Ly9keC5kb2kub3JnLzEwLjEwMDcvQkYw

MTQzMzIyNTwvdXJsPjwvcmVsYXRlZC11cmxzPjxwZGYtdXJscz48dXJsPkQ6XERyb3Bib3hcUmVh

ZGN1YmUgU2F2ZWQgUERGc1xEZXJqYWd1aW4tMTkzNC1Lb2xsb2lkLVplaXRzY2hyaWZ0LnBkZjwv

dXJsPjwvcGRmLXVybHM+PC91cmxzPjxlbGVjdHJvbmljLXJlc291cmNlLW51bT4xMC4xMDA3L2Jm

MDE0MzMyMjU8L2VsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjxyZW1vdGUtZGF0YWJhc2UtbmFtZT5S

ZWFkY3ViZTwvcmVtb3RlLWRhdGFiYXNlLW5hbWU+PC9yZWNvcmQ+PC9DaXRlPjxDaXRlPjxBdXRo

b3I+SXNyYWVsYWNodmlsaTwvQXV0aG9yPjxZZWFyPjE5OTI8L1llYXI+PFJlY051bT4zMjwvUmVj

TnVtPjxyZWNvcmQ+PHJlYy1udW1iZXI+MzI8L3JlYy1udW1iZXI+PGZvcmVpZ24ta2V5cz48a2V5

IGFwcD0iRU4iIGRiLWlkPSI5dGVmZmZ2cDM5YTVhbGVmdHZ5djB3cHM1ZGU5dGZ6eGV6YXgiIHRp

bWVzdGFtcD0iMTUzNDI1NzI3OCI+MzI8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFt

ZT0iQm9vayI+NjwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPkouIElz

cmFlbGFjaHZpbGk8L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PHRpdGxlcz48dGl0

bGU+SW50ZXJtb2xlY3VsYXIgYW5kIFN1cmZhY2UgRm9yY2VzLCBTZWNvbmQgRWRpdGlvbjogV2l0

aCBBcHBsaWNhdGlvbnMgdG8gQ29sbG9pZGFsIGFuZCBCaW9sb2dpY2FsIFN5c3RlbXMgKENvbGxv

aWQgU2NpZW5jZSk8L3RpdGxlPjwvdGl0bGVzPjxlZGl0aW9uPjJuZCBFZGl0aW9uPC9lZGl0aW9u

PjxkYXRlcz48eWVhcj4xOTkyPC95ZWFyPjwvZGF0ZXM+PHB1Ymxpc2hlcj5BY2FkZW1pYyBQcmVz

czwvcHVibGlzaGVyPjx1cmxzPjwvdXJscz48L3JlY29yZD48L0NpdGU+PENpdGU+PEF1dGhvcj5P

aHNoaW1hPC9BdXRob3I+PFllYXI+MjAwOTwvWWVhcj48UmVjTnVtPjMzPC9SZWNOdW0+PHJlY29y

ZD48cmVjLW51bWJlcj4zMzwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIg

ZGItaWQ9Ijl0ZWZmZnZwMzlhNWFsZWZ0dnl2MHdwczVkZTl0Znp4ZXpheCIgdGltZXN0YW1wPSIx

NTM0MjU3Mjc4Ij4zMzwva2V5PjwvZm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJKb3VybmFs

IEFydGljbGUiPjE3PC9yZWYtdHlwZT48Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+T2hz

aGltYSwgSGlyb3l1a2k8L2F1dGhvcj48YXV0aG9yPkh5b25vLCBBdHN1c2hpPC9hdXRob3I+PC9h

dXRob3JzPjwvY29udHJpYnV0b3JzPjx0aXRsZXM+PHRpdGxlPkVsZWN0cm9zdGF0aWMgSW50ZXJh

Y3Rpb24gQmV0d2VlbiBUd28gQ3lsaW5kcmljYWwgU29mdCBQYXJ0aWNsZXM8L3RpdGxlPjxzZWNv

bmRhcnktdGl0bGU+Si4gQ29sbG9pZCBJbnRlcmZhY2UgU2NpLjwvc2Vjb25kYXJ5LXRpdGxlPjwv

dGl0bGVzPjxwZXJpb2RpY2FsPjxmdWxsLXRpdGxlPkouIENvbGxvaWQgSW50ZXJmYWNlIFNjaS48

L2Z1bGwtdGl0bGU+PC9wZXJpb2RpY2FsPjxwYWdlcz4yMDItMjA4PC9wYWdlcz48dm9sdW1lPjMz

Mzwvdm9sdW1lPjxudW1iZXI+MTwvbnVtYmVyPjxkYXRlcz48eWVhcj4yMDA5PC95ZWFyPjwvZGF0

ZXM+PHB1Ymxpc2hlcj5zY2llbmNlZGlyZWN0PC9wdWJsaXNoZXI+PGlzYm4+MDAyMS05Nzk3PC9p

c2JuPjx1cmxzPjxyZWxhdGVkLXVybHM+PHVybD5odHRwOi8vZHguZG9pLm9yZy8xMC4xMDE2L2ou

amNpcy4yMDA4LjExLjA2MDwvdXJsPjwvcmVsYXRlZC11cmxzPjxwZGYtdXJscz48dXJsPkM6XFVz

ZXJzXEFkYW0gQ0xhbmN5XERvY3VtZW50c1xSZWFkQ3ViZSBNZWRpYVxPaHNoaW1hIGV0IGFsLTIw

MDktSiBDb2xsb2lkIEludGVyZiBTY2kucGRmPC91cmw+PC9wZGYtdXJscz48L3VybHM+PGVsZWN0

cm9uaWMtcmVzb3VyY2UtbnVtPjEwLjEwMTYvai5qY2lzLjIwMDguMTEuMDYwPC9lbGVjdHJvbmlj

LXJlc291cmNlLW51bT48cmVtb3RlLWRhdGFiYXNlLW5hbWU+UkVBRENVQkU8L3JlbW90ZS1kYXRh

YmFzZS1uYW1lPjwvcmVjb3JkPjwvQ2l0ZT48L0VuZE5vdGU+AG==

ADDIN EN.CITE.DATA 36, 37, 38 A full discussion is provided in the ESI, but in short, cylinders may be treated numerically as linearly related to plate models, multiplied by a coefficient (μ) determined by the radius (R) and angle of interaction of the cylinders. Trends remain constant across all interaction angles and diameters. This assumption requires that cylinders are of equal and constant radius, and the distribution of inter-cylinder angles is stochastic. The Coulombic repulsion between reduced nanotubes in solution (Π, Eq. 4) is modelled as a superposition ADDIN EN.CITE <EndNote><Cite><Author>Russel</Author><Year>1991</Year><RecNum>34</RecNum><DisplayText><style face="superscript">39</style></DisplayText><record><rec-number>34</rec-number><foreign-keys><key app="EN" db-id="9tefffvp39a5aleftvyv0wps5de9tfzxezax" timestamp="1534257278">34</key></foreign-keys><ref-type name="Book">6</ref-type><contributors><authors><author>W. B. Russel</author><author>D. A. Saville</author><author>W. R. Schowalter</author></authors></contributors><titles><title>Colloidal Dispersions</title></titles><edition>1st Paperback (with corrections)</edition><dates><year>1991</year></dates><publisher>Cambridge University Press</publisher><isbn>0 521 42600 6</isbn><urls></urls></record></Cite></EndNote>39 of two like-charged nanotubes treated with the electrostatic component of DVLO theory ADDIN EN.CITE <EndNote><Cite><Author>Ise</Author><Year>2005</Year><RecNum>35</RecNum><DisplayText><style face="superscript">40</style></DisplayText><record><rec-number>35</rec-number><foreign-keys><key app="EN" db-id="9tefffvp39a5aleftvyv0wps5de9tfzxezax" timestamp="1534257278">35</key></foreign-keys><ref-type name="Book">6</ref-type><contributors><authors><author>Norio Ise</author><author>Ikuo Sogami</author></authors></contributors><titles><title>Structure Formation in Solution: Ionic Polymers and Colloidal Particles</title></titles><dates><year>2005</year></dates><publisher>Springer Science &amp; Business Media</publisher><urls></urls></record></Cite></EndNote>40 (named for Derjaguin, Landau, Verwey, and Overbeek); dispersive forces are omitted as noted above. The repulsion is a function of surface potential (Ψ0, Eq. 5), electrolyte concentration (NT), solvent dielectric constant (εr), and temperature (T), inversely exponentially related to inter-nanotube distance (h) and the solvent/temperature-dependent Debye length (κ-1, Eq. 6). As the degree of charging is high, the average charge separation on the SWCNT framework will be below the Bjerrum length (λB), and in accordance with Manning-Oosawa (MO) theory, ADDIN EN.CITE <EndNote><Cite><Author>O’Shaughnessy</Author><Year>2005</Year><RecNum>43</RecNum><DisplayText><style face="superscript">41</style></DisplayText><record><rec-number>43</rec-number><foreign-keys><key app="EN" db-id="9tefffvp39a5aleftvyv0wps5de9tfzxezax" timestamp="1534345608">43</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>O’Shaughnessy, Ben</author><author>Yang, Qingbo</author></authors></contributors><titles><title>Manning-Oosawa Counterion Condensation</title><secondary-title>Phys. Rev. Lett.</secondary-title></titles><periodical><full-title>Phys. Rev. Lett.</full-title></periodical><pages>048302</pages><volume>94</volume><number>4</number><dates><year>2005</year></dates><urls></urls></record></Cite></EndNote>41 counterions will condense on the charge surface to limit the unshielded surface charge density ADDIN EN.CITE <EndNote><Cite><Author>Pénicaud</Author><Year>2005</Year><RecNum>36</RecNum><DisplayText><style face="superscript">42</style></DisplayText><record><rec-number>36</rec-number><foreign-keys><key app="EN" db-id="9tefffvp39a5aleftvyv0wps5de9tfzxezax" timestamp="1534257278">36</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Pénicaud, Alain</author><author>Poulin, Philippe</author><author>Derré, Alain</author><author>Anglaret, Eric</author><author>Petit, Pierre</author></authors></contributors><titles><title>Spontaneous Dissolution of a Single-Wall Carbon Nanotube Salt</title><secondary-title>J. Am. Chem. Soc.</secondary-title></titles><periodical><full-title>J. Am. Chem. Soc.</full-title></periodical><pages>8-9</pages><volume>127</volume><dates><year>2005</year></dates><urls><related-urls><url> d drive/Steve/Research Papers/Dispersion papers/Spontaneous Dissolution of a Single-Wall Carbon Nanotube Salt.pdf</url></pdf-urls></urls><electronic-resource-num>10.1021/ja0443373</electronic-resource-num></record></Cite></EndNote>42 (σ) to e/λB2 (Eq. 7). As a negligible proportion of the total charge is consumed during functionalization (C/R ≥ 387 from C:Na 10:1), the nanotubide surface charge is assumed to remain within the MO limited regime throughout functionalization. Additionally, it is assumed that the polymer (both adhered and in solution) does not affect the effective dielectric constant of the electrolyte.Π=2εrε0κ2Ψ02e-κh(4)Ψ0=2kBTzesinh-1σ8NTNAεrkBT(5)κ-1=2e2z2NTNAεrε0kBT-0.5(6)σ=eλB 2=16π2εrε0kB2T2e(7)Attractive ‘depletion interactions’ develop between colloidal particles in a dilute polymer solution due to osmotic effects. ADDIN EN.CITE <EndNote><Cite><Author>Ohshima</Author><Year>1997</Year><RecNum>37</RecNum><DisplayText><style face="superscript">43</style></DisplayText><record><rec-number>37</rec-number><foreign-keys><key app="EN" db-id="9tefffvp39a5aleftvyv0wps5de9tfzxezax" timestamp="1534257278">37</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Ohshima, Y. N.</author><author>Sakagami, H.</author><author>Okumoto, K.</author><author>Tokoyoda, A.</author></authors></contributors><titles><title>Direct Measurement of Infinitesimal Depletion Force in a Colloid-Polymer Mixture by Laser Radiation Pressure</title><secondary-title>Phys. Rev. Lett.</secondary-title></titles><periodical><full-title>Phys. Rev. Lett.</full-title></periodical><pages>3963</pages><volume>78</volume><dates><year>1997</year></dates><urls><related-urls><url>:\Dropbox\Readcube Saved PDFs\Physical review 1997 Ohshima Y.pdf</url></pdf-urls></urls><remote-database-name>Readcube</remote-database-name></record></Cite></EndNote>43 Classically, the depletion force (D, Eq. 8) is linearly related to the number concentration of the polymer (ρ) and occurs when twice the radius of gyration ADDIN EN.CITE <EndNote><Cite><Author>Teraoka</Author><Year>2002</Year><RecNum>38</RecNum><DisplayText><style face="superscript">44</style></DisplayText><record><rec-number>38</rec-number><foreign-keys><key app="EN" db-id="9tefffvp39a5aleftvyv0wps5de9tfzxezax" timestamp="1534257278">38</key></foreign-keys><ref-type name="Book">6</ref-type><contributors><authors><author>I. Teraoka</author></authors></contributors><titles><title>Polymer Solutions. An Introduction to Physical Properties</title></titles><dates><year>2002</year></dates><pub-location>New York</pub-location><publisher>John Wiley &amp; Sons, Inc</publisher><isbn>0-471-22451-0</isbn><urls></urls></record></Cite></EndNote>44 (Rs, Eq. 9) is greater than the distance between two plates (h), i.e. where 2RS > h (Fig. 3a); the Heaviside function (Θ) ensures repulsion doesn’t occur outside this regime. For polymer grafted nanotubes, the occlusion distance is not equivalent to the inter-SWCNT distance (h) as the additional volume of the grafted polymer (of radius RF) on both SWCNTs must be accommodated (Fig. 3) to give a f-SWCNT specific depletion force (DCNT, Eq. 10). D=ρkBTΘ(2RS-h)(8)RS=16N1/2a(9)DCNT=ρkBTΘ(2RS+2RF-h)(10)Figure 3. Schematic of depletion interaction onset distance of plates (green) in a solution of free polymer (blue dashed) for (a) plain plates and (b) plates covered in grafted polymer (red cross-hatch) Here, the inter-SWCNT areal force (F) is treated as the simple combination of the linear depletion force and exponential Coulombic repulsion, each treated with the Derjaguin approximation (Eq. 11–12). F=μ(Π-DCNT)(11)F=2μεrε0κ2Ψ02eκh- μρkBTΘ2RS+2RF-h(12)At distances that satisfy the relations 2εrε0κ2Ψ2e-κh = ρkBTΘ(2RS+ 2RF - h) and h?≈?(2RS + 2RdG), the net force is attractive (Fig. 4). Integrating numerically, the inter-nanotube force with respect to distance within this region provides an estimate of the surface-normalised attractive energy (as tabulated in Fig. 2e). Larger free polymers cause stronger depletion forces owing to the higher probability of being excluded from the inter-SWCNT region. By far, the most significant decrease in nanotube dispersiblity is seen for the 10517?Da PVAc, which were calculated to have by far the largest attractive energy wells (Fig. 2e). When polymer concentration is sufficiently low to avoid significant depletion interactions (as calculated here for 0.025?mM PVAc), functionalization with larger molecular weight polymers increases the retained dispersiblity; conversely, at higher concentration, depletion interactions with the free polymer reduce dispersiblity at high molecular weights (Fig. 2d). Figure 4. Inter-nanotube pressure versus inter-nanotube distance (green solid) showing contributing Coulombic (red dash-dot) and depletion (blue dash) pressures. Attractive energy well illustrated by grey shading. Distance limits of the attractive well are shown (black dotted) alongside equations. Graph of 2.5 mM 500 Da PVAc shown here; data for all combinations provided in ESI (Fig. S5). By fixing the concentration and molecular weight of free polymer, the depletion interactions can be kept constant, simplifying studies of other factors. As an example, the kinetics of the grafting reaction as a function of varying end group concentration were studied in this way. For a given total polymer concentration, the proportion of reactive end groups was lowered by adding a 50/50 mixture (Mn 7720 Da) of unreactive Boc-terminated 1 and reactive bromine-terminated 3 to the nanotubide. In comparison to SWCNTs grafted with the same total concentration of only bromine-terminated 3, the mixed system showed a lower grafting ratio (Fig 5a) and lower dispersability (Fig. 5b). The decreases are attributed to slower grafting kinetics at lower bromide concentration, while the rate of depletion-driven aggregation remains constant; as bundles form, unfunctionalized SWCNTs become occluded. Similar trends are seen at both high and low total polymer concentration, indicating that the availability of reactive end groups affects grafting ratio, as noted above. Where depletion interactions are constant, higher grafting ratio favors retained dispersiblity; however, as before, reducing depletion interactions has a greater effect than increasing grafting ratio (Fig. 5b). The importance of depletion interactions can be seen even in purely non-grafting conditions. Non-grafted, discharged nanotubide yields very low residual levels (10.0?μg?mL1) of metastable dispersed SWCNTs, however, addition of 2 (Mn 5747 Da) at 0.025 mM lowers the f-SWCNT concentration to 6.9 μg mL-1, and removes all measurable SWCNTs from solution at 0.25mM (ESI, Fig. S2b). Figure 5. (a) TGA and (b) UV-Vis spectra of SWCNTs mixed with either fully bromide terminated PVAc (solid lines), or an equivalent weight of NHBoc and bromide terminated PVAc, at total polymer concentrations of 0.25 (black), and 0.025 (red) mM. CONCLUSIONIn summary, negatively-charged SWCNT solution behaviors are critically affected by co-solvated polymers, as stabilizing local Coulombic repulsion can be overcome by the osmotic pressure arising from depletion interactions. The interaction between polymer and nanotubide anions is of particular importance for polymer functionalization reactions where reducing the polymer concentration can be used to curtail depletion interactions and allow the majority of functionalized SWCNTs to remain dispersed. With development, it may be possible to retain the dispersiblity of all the functionalized SWCNTs throughout the reaction. The retained dispersiblity allows further solution processing of the SWCNTs without requiring potentially damaging redispersion techniques. If retaining solvation is of lesser importance compared to maximising grafting, the polymer concentration may be raised to increase grafting ratio, pushing the degree of functionalization towards the de Gennes limit for graft-to reactions. This work not only provides a route to fSWCNT solutions but provides a fundamental framework for a unique system combining classic (polymer) and contemporary (nanotubide) macromolecules. It is likely that the balance between functionalization, depletion and Coulombic repulsion will be seen for other charged, solvated nanomaterials ADDIN EN.CITE <EndNote><Cite><Author>Clancy</Author><Year>2018</Year><RecNum>42</RecNum><DisplayText><style face="superscript">12</style></DisplayText><record><rec-number>42</rec-number><foreign-keys><key app="EN" db-id="9tefffvp39a5aleftvyv0wps5de9tfzxezax" timestamp="1534329558">42</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>A. J. Clancy</author><author>M. K. Bayazit</author><author>S. A. Hodge,</author><author>N. T. Skipper</author><author>C. A. Howard</author><author>M. S. P. Shaffer</author></authors></contributors><titles><title>Charged Carbon Nanomaterials: Redox Chemistries of Fullerenes, Carbon Nanotubes, and Graphenes</title><secondary-title>Chem. Rev.</secondary-title></titles><periodical><full-title>Chem. Rev.</full-title></periodical><pages>7363-7408</pages><volume>118</volume><number>16</number><dates><year>2018</year></dates><urls></urls></record></Cite></EndNote>12 (graphenide, charged transition metal dichalcogenides, nanohorns anions, etc.). Further, it is expected that the same depletion effects will be seen for other polymers with relevance for a range of functionalized SWCNT applications. It is hoped that the simple models demonstrated here may be expanded to predict retained dispersiblity and functionality of a range of functionalized (nano)materials. AUTHOR INFORMATIONAuthor ContributionsThe manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.ACKNOWLEDGMENTThis research was funded by the EPSRC (Doctoral Prize Fellowship, EP/M507878/1, and Program Grant on High Performance Ductile Composite Technology, EP/I02946X/1). In addition, the authors would like to extend thanks to Thomas Swan Ltd. for supplying Elicarb SWCNTs. Supporting data can be requested from the corresponding author, but may be subject to confidentiality obligations. The authors declare no competing financial interest. REFERENCES ADDIN EN.REFLIST 1.Hodge, S. A.; Bayazit, M. K.; Coleman, K. S.; Shaffer, M. S. P. Unweaving the Rainbow: A Review of the Relationship Between Single-Walled Carbon Nanotube Molecular Structures and Their Chemical Reactivity. Chem. Soc. Rev. 2012, 41 (12), 4409-4429.2.Coleman, J. N.; Khan, U.; Blau, W. J.; Gun’ko, Y. K. Small but Strong: A Review of the Mechanical Properties of Carbon Nanotube–Polymer Composites. Carbon 2006, 44 (9), 1624–1652.3.Sgobba, V.; Guldi, D. M. Carbon Nanotubes —Electronic/Electrochemical Properties and Application for Nanoelectronics and Photonics. Chem. Soc. Rev. 2008, 38 (1), 165-184.4.Zhang, W.; Zhang, Z.; Zhang, Y. The Application of Carbon Nanotubes in Target Drug Delivery Systems for Cancer Therapies. Nanoscale Res. Lett. 2011, 6 (1), 1-22.5.Wang, R.; Cherukuri, P.; Duque, J. G.; Leeuw, T. K.; Lackey, M. K.; Moran, C. H.; Moore, V. C.; Conyers, J. L.; Smalley, R. E.; Schmidt, H. K.; Weisman, B. R.; Engel, P. S. SWCNT PEG-Eggs: Single-Walled Carbon Nanotubes in Biocompatible Shell-Crosslinked Micelles. Carbon 2007, 45 (12), 2388-2393.6.Yao, Z.; Braidy, N.; Botton, G. A.; Adronov, A. Polymerization from the surface of single-walled carbon nanotubes? preparation and characterization of nanocomposites. Journal of the American Chemical Society 2003, 125 (51), 16015-16024.7.Qin, S.; Qin, D.; Ford, W. T.; Resasco, D. E.; Herrera, J. E. Functionalization of Single-Walled Carbon Nanotubes with Polystyrene via Grafting to and Grafting from Methods. Macromolecules 2004, 37 (3), 752-757.8.Li, H.; Cheng, F.; Duft, A. M.; Adronov, A. Functionalization of single-walled carbon nanotubes with well-defined polystyrene by “click” coupling. Journal of the American Chemical Society 2005, 127 (41), 14518-14524.9.Liu, Y.; Yao, Z.; Adronov, A. Functionalization of single-walled carbon nanotubes with well-defined polymers by radical coupling. Macromolecules 2005, 38 (4), 1172-1179.10.Stephenson, J. J.; Hudson, J. L.; Leonard, A. D.; Price, K. B.; Tour, J. M. Repetitive Functionalization of Water-Soluble Single-Walled Carbon Nanotubes. Addition of Acid-Sensitive Addends. Chem. Mater. 2007, 19 (14), 3491-3498.11.Doorn, S. K.; Strano, M. S.; O'Connell, M. J.; Haroz, E. H.; Rialon, K. L.; Hauge, R. H.; Smalley, R. E. Capillary Electrophoresis Separations of Bundled and Individual Carbon Nanotubes. J. Phys. Chem. B 2003, 107 (25), 6063-6069.12.Clancy, A. J.; Bayazit, M. K.; S. A. Hodge; Skipper, N. T.; Howard, C. A.; Shaffer, M. S. P. Charged Carbon Nanomaterials: Redox Chemistries of Fullerenes, Carbon Nanotubes, and Graphenes. Chem. Rev. 2018, 118 (16), 7363-7408.13.Penicaud, A.; Valat, L.; Derre, A.; Poulin, P.; Zakri, C.; Roubeau, O.; Maugey, M.; Miaudet, P.; Anglaret, E.; Petit, P.; Loiseau, A.; Enouz, S. Mild Dissolution of Carbon Nanotubes: Composite Carbon Nanotube Fibres From Polyelectrolyte Solutions. Compos. Sci. Technol. 2007, 67, 795–797.14.Fogden, S.; Howard, C. A.; Heenan, R. K.; Skipper, N. T.; Shaffer, M. S. P. Scalable Method for the Reductive Dissolution, Purification, and Separation of Single-Walled Carbon Nanotubes. ACS Nano 2012, 6 (1), 54-62.15.Voiry, D.; Drummond, C.; Pénicaud, A. Portrait of Carbon Nanotube Salts As Soluble Polyelectrolytes. Soft Matter 2011, 7, 7998-8001.16.Buckley, D. J.; Hodge, S. A.; De Marco, M.; Hu, S.; Anthony, D. B.; Cullen, P. L.; Skipper, N. T.; Shaffer, M. S. P.; Howard, C. A. Trajectory of the Selective Dissolution of Charged Single-Walled Carbon Nanotubes. J. Phys. Chem. C 2017, 121 (39), 21703–21712.17.Batista, C. A.; Larson, R. G.; Kotov, N. A. Nonadditivity of Nanoparticle Interactions. Science 2015, 350 (6257), 1242477.18.Clancy, A. J.; Melbourne, J.; Shaffer, M. S. P. A One-Step Route to Solubilised, Purified or Functionalised Single-Walled Carbon Nanotubes. J. Mater. Chem. A 2015, 3 (32), 16708-16715.19.Rubio, N.; Au, H.; Leese, H. S.; Hu, S.; Clancy, A. J.; Shaffer, M. S. P. Grafting from versus Grafting to Approaches for the Functionalization of Graphene Nanoplatelets with Poly(methyl methacrylate). Macromolecules 2017, 50 (18), 7070-7079.20.Voiry, D.; Roubeau, O.; Pénicaud, A. Stoichiometric Control of Single Walled Carbon Nanotubes Functionalization. J. Mater. Chem. 2010, 20, 4385-4391.21.Schirowski, M.; Abellán, G.; Nuin, E.; Pampel, J.; Dolle, C.; Wedler, V.; Fellinger, T. P.; Spiecker, E.; Hauke, F.; Hirsch, A. Fundamental Insights into the Reductive Covalent CrossLinking of Single-Walled Carbon Nanotubes. J. Am. Chem. Soc. 2018, 140 (9), 3352-3360.22.De Marco, M.; Markoulidis, F.; Menzel, R.; Bawaked, S. M.; Mokhtar, M.; Al-Thabaiti, S. A.; Basahel, S. N.; Shaffer, M. S. Cross-Linked Single-Walled Carbon Nanotube Aerogel Electrodes via Reductive Coupling Chemistry. J. Mater. Chem. A 2016, 4 (15), 5385-5389.23.Clancy, A. J.; Anthony, D. B.; Fisher, S. J.; Leese, H.; Roberts, C. S.; Shaffer, M. S. P. Reductive Dissolution of Supergrowth Carbon Nanotubes for Tougher Nanocomposites by Reactive Coagulation Spinning. Nanoscale 2017, 9, 8764-8773 24.Martinez-Rubi, Y.; Ashrafi, B.; Guan, J.; Kingston, C.; Johnston, A.; Simard, B.; Mirjalili, V.; Hubert, P.; Deng, L.; Young, R. Toughening of Epoxy Matrices With Reduced Single-Walled Carbon Nanotubes. ACS App. Mater. Interf. 2011, 3 (7), 2309-2317.25.Hof, F.; Bosch, S.; Eigler, S.; Hauke, F.; Hirsch, A. New Basic Insight Into Reductive Functionalization Sequences of Single Walled Carbon Nanotubes. J. Am. Chem. Soc. 2013, 135 (49), 18385–18395.26.Clancy, A. J.; White, E. R.; Tay, H.; Yau, H.; Shaffer, M. Systematic Comparison of Conventional and Reductive Single-Walled Carbon Nanotube Purifications. Carbon 2016, 108, 423-432.27.Clancy, A. J.; Serginson, J. M.; Greenfield, J. L.; Yau, H. C.; Shaffer, M. S. P. Systematic Comparison of Single-Walled Carbon Nanotube/ Poly(vinyl Acetate) Graft-to Reactions Polymer 2017, 133, 263-271.28.Lee, W. J.; Clancy, A. J.; Kontturi, E.; Bismarck, A.; Shaffer, M. S. Strong and stiff: high-performance cellulose nanocrystal/poly (vinyl alcohol) composite fibers. ACS applied materials & interfaces 2016, 8 (46), 31500-31504.29.Teodorescu, M.; Bercea, M.; Morariu, S. Biomaterials of Poly (vinyl alcohol) and Natural Polymers. Polymer Reviews 2018, 58 (2), 247-287.30.Chadwick, R. C.; Khan, U.; Coleman, J. N.; Adronov, A. Polymer Grafting to Single-Walled Carbon Nanotubes: Effect of Chain Length on Solubility, Graft Density and Mechanical Properties of Macroscopic Structures. Small 2013, 9 (4), 552-560.31.Hodge, S.; Tay, H.; Anthony, D.; Menzel, R.; Buckley, D.; Cullen, P.; Skipper, N.; Howard, C.; Shaffer, M. Probing the Charging Mechanisms of Carbon Nanomaterial Polyelectrolytes. Faraday Discuss. 2014, 172, 311-325.32.Leese, H. S.; Govada, L.; Saridakis, E.; Khurshid, S.; Menzel, R.; Morishita, T.; Clancy, A. J.; White, E. R.; Chayen, N. E.; Shaffer, M. S. P. Reductively PEGylated Carbon Nanomaterials and Their Use to Nucleate 3D Protein Crystals: A Comparison of Dimensionality. Chem. Sci. 2016, 7 (4), 2916-2923.33.de Gennes, P. G. Conformations of Polymers Attached to an Interface. Macromolecules 1980, 13 (5), 1069-1075.34.Hinrichsen, E. L.; Feder, J.; J?ssang, T. Geometry of Random Sequential Adsorption. J. Stat. Phys. 1986, 44 (5), 793-827.35.Matsuyama, A.; Kato, T. Orientation-Dependent Depletion Interaction in Rodlike Colloid-Polymer Mixtures. Eur. Phys. J. E 2001, 6 (1), 15-24.36.Derjaguin, B. Untersuchungen über die Reibung und Adh?sion, IV. Kolloid-Zeitschrift 1934, 69 (2), 155-164.37.Israelachvili, J. Intermolecular and Surface Forces, Second Edition: With Applications to Colloidal and Biological Systems (Colloid Science); 2nd Edition ed.; Academic Press1992.38.Ohshima, H.; Hyono, A. Electrostatic Interaction Between Two Cylindrical Soft Particles. J. Colloid Interface Sci. 2009, 333 (1), 202-208.39.Russel, W. B.; Saville, D. A.; Schowalter, W. R. Colloidal Dispersions; 1st Paperback (with corrections) ed.; Cambridge University Press1991.40.Ise, N.; Sogami, I. Structure Formation in Solution: Ionic Polymers and Colloidal Particles; Springer Science & Business Media2005.41.O’Shaughnessy, B.; Yang, Q. Manning-Oosawa Counterion Condensation. Phys. Rev. Lett. 2005, 94 (4), 048302.42.Pénicaud, A.; Poulin, P.; Derré, A.; Anglaret, E.; Petit, P. Spontaneous Dissolution of a Single-Wall Carbon Nanotube Salt. J. Am. Chem. Soc. 2005, 127, 8-9.43.Ohshima, Y. N.; Sakagami, H.; Okumoto, K.; Tokoyoda, A. Direct Measurement of Infinitesimal Depletion Force in a Colloid-Polymer Mixture by Laser Radiation Pressure. Phys. Rev. Lett. 1997, 78, 3963.44.Teraoka, I. Polymer Solutions. An Introduction to Physical Properties; John Wiley & Sons, Inc: New York, 2002. ................
................

In order to avoid copyright disputes, this page is only a partial summary.

Google Online Preview   Download