United States Environmental Protection Agency | US EPA



Acute toxicity prediction to threatened and endangered species using Interspecies Correlation Estimation (ICE) modelsMorgan M. Willming*?, Crystal R. Lilavois?, Mace G. Barron?, Sandy Raimondo??Oak Ridge Institute for Science and Education, U.S. Environmental Protection Agency, Gulf Ecology Division, 1 Sabine Island Drive, Gulf Breeze, FL USA 32561?U.S. Environmental Protection Agency, National Health and Environmental Effects Laboratory, Gulf Ecology Division, 1 Sabine Island Drive, Gulf Breeze, FL USA 32561*Corresponding author: Willming.Morgan@; Phone: 850-934-9297; Fax: 851-934-2406 AbstractEvaluating contaminant sensitivity of threatened and endangered (listed) species and protectiveness of chemical regulations often depends on toxicity data for commonly tested surrogate species. The U.S. EPA’s internet application Web-ICE is a suite of Interspecies Correlation Estimation (ICE) models that can extrapolate species sensitivity to listed taxa. ICE models are least squares regressions of the sensitivity of a surrogate species and a predicted taxon (species, genus, or family) constructed from acute toxicity values measured in each pair of taxa. Web-ICE was updated with additional toxicity records, optimized model selection guidance, and new models with the potential to predict to over 250 listed species. A case study was used to assess protectiveness of genus and family models derived from either geometric mean or minimum taxa toxicity values for U.S. federally listed species and priority chemicals from the Sacramento California and Ohio River Valleys. Genus and family models developed from the most sensitive value for each chemical were generally protective of the most sensitive species within predicted taxa, including listed species, and were more protective than geometric means models. ICE models provide robust toxicity predictions and can generate protective toxicity estimates for assessing contaminant risk to listed species. IntroductionThe U.S. Endangered Species Act (ESA) requires EPA to determine risks of pesticides and other chemicals to U.S. federally endangered and threatened (listed) species to ensure that chemical registration and water quality criteria are protective of listed taxa. A significant challenge in this process is determining the sensitivity of the diversity of listed species to chemicals that have only been evaluated using common test species or have limited data available. Historically, toxicity data for the majority of listed species or closely related representatives has been unavailable because of a lack of standardized culture and test methods, and limited organism availability. However, previous research suggests that listed species are not consistently more sensitive than more commonly tested species ADDIN EN.CITE <EndNote><Cite><Author>Sappington</Author><Year>2001</Year><RecNum>15</RecNum><DisplayText><style face="superscript">1, 2</style></DisplayText><record><rec-number>15</rec-number><foreign-keys><key app="EN" db-id="0feedwazb55ae5eeeavvx5x2rsevpzsd9w9z" timestamp="1441049414">15</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Sappington, Linda C</author><author>Mayer, Foster L</author><author>Dwyer, F James</author><author>Buckler, Denny R</author><author>Jones, John R</author><author>Ellersieck, Mark R</author></authors></contributors><titles><title>Contaminant sensitivity of threatened and endangered fishes compared to standard surrogate species</title><secondary-title>Environmental Toxicology and Chemistry</secondary-title></titles><periodical><full-title>Environmental Toxicology and Chemistry</full-title></periodical><pages>2869-2876</pages><volume>20</volume><number>12</number><dates><year>2001</year></dates><isbn>1552-8618</isbn><urls></urls></record></Cite><Cite><Author>Raimondo</Author><Year>2008</Year><RecNum>7</RecNum><record><rec-number>7</rec-number><foreign-keys><key app="EN" db-id="0feedwazb55ae5eeeavvx5x2rsevpzsd9w9z" timestamp="1441048561">7</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Raimondo, Sandy</author><author>Vivian, Deborah N</author><author>Delos, Charles</author><author>Barron, Mace G</author></authors></contributors><titles><title>Protectiveness of species sensitivity distribution hazard concentrations for acute toxicity used in endangered species risk assessment</title><secondary-title>Environmental Toxicology and Chemistry</secondary-title></titles><periodical><full-title>Environmental Toxicology and Chemistry</full-title></periodical><pages>2599-2607</pages><volume>27</volume><number>12</number><dates><year>2008</year></dates><isbn>1552-8618</isbn><urls></urls></record></Cite></EndNote>1, 2. In the absence of species-specific toxicity data, conservative approaches such as applying generic safety factors to toxicity values of surrogate species have been used to develop hazard levels assumed to be protective of listed species. Recently, the U.S. National Research Council ADDIN EN.CITE <EndNote><Cite><Author>National Research Council</Author><Year>2013</Year><RecNum>35</RecNum><DisplayText><style face="superscript">3</style></DisplayText><record><rec-number>35</rec-number><foreign-keys><key app="EN" db-id="0feedwazb55ae5eeeavvx5x2rsevpzsd9w9z" timestamp="1444747771">35</key></foreign-keys><ref-type name="Report">27</ref-type><contributors><authors><author>National Research Council,</author></authors></contributors><titles><title>Assessing risks to endangered and threatened species from pesticides</title></titles><pages>142</pages><dates><year>2013</year></dates><pub-location>Washington, DC</pub-location><publisher>National Academies Press</publisher><urls></urls></record></Cite></EndNote>3 recommended the use of Interspecies Correlation Estimation (ICE) models in pesticide risk assessments as an alternative to generic safety factors. ICE models estimate acute toxicity to aquatic or terrestrial organisms using the known toxicity data of a chemical for a surrogate species ADDIN EN.CITE <EndNote><Cite><Author>Raimondo</Author><Year>2010</Year><RecNum>3</RecNum><DisplayText><style face="superscript">4, 5</style></DisplayText><record><rec-number>3</rec-number><foreign-keys><key app="EN" db-id="0feedwazb55ae5eeeavvx5x2rsevpzsd9w9z" timestamp="1441047310">3</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Raimondo, Sandy</author><author>Jackson, Crystal R.</author><author>Barron, Mace G.</author></authors></contributors><titles><title>Influence of Taxonomic Relatedness and Chemical Mode of Action in Acute Interspecies Estimation Models for Aquatic Species</title><secondary-title>Environmental Science &amp; Technology</secondary-title></titles><periodical><full-title>Environmental Science &amp; Technology</full-title></periodical><pages>7711-7716</pages><volume>44</volume><number>19</number><dates><year>2010</year><pub-dates><date>2010/10/01</date></pub-dates></dates><publisher>American Chemical Society</publisher><isbn>0013-936X</isbn><urls><related-urls><url> app="EN" db-id="0feedwazb55ae5eeeavvx5x2rsevpzsd9w9z" timestamp="1441048766">11</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Raimondo, S</author><author>Mineau, P</author><author>Barron, MG</author></authors></contributors><titles><title>Estimation of chemical toxicity to wildlife species using interspecies correlation models</title><secondary-title>Environmental science &amp; technology</secondary-title></titles><periodical><full-title>Environmental Science &amp; Technology</full-title></periodical><pages>5888-5894</pages><volume>41</volume><number>16</number><dates><year>2007</year></dates><isbn>0013-936X</isbn><urls></urls></record></Cite></EndNote>4, 5. The models are log-linear least squares regressions of the sensitivity of a predicted taxon (species, genus, or family) and a surrogate species and are constructed from existing acute toxicity values determined in each pair of taxa across a number of chemicals. ICE models for aquatic species contain acute toxicity values (median lethal or median effect concentrations; LC50/EC50) for a minimum of any three different chemicals and have been demonstrated to be robust, accurate estimators of toxicity when the surrogate and predicted taxa are within the same taxonomic Order ADDIN EN.CITE <EndNote><Cite><Author>Raimondo</Author><Year>2010</Year><RecNum>3</RecNum><DisplayText><style face="superscript">4</style></DisplayText><record><rec-number>3</rec-number><foreign-keys><key app="EN" db-id="0feedwazb55ae5eeeavvx5x2rsevpzsd9w9z" timestamp="1441047310">3</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Raimondo, Sandy</author><author>Jackson, Crystal R.</author><author>Barron, Mace G.</author></authors></contributors><titles><title>Influence of Taxonomic Relatedness and Chemical Mode of Action in Acute Interspecies Estimation Models for Aquatic Species</title><secondary-title>Environmental Science &amp; Technology</secondary-title></titles><periodical><full-title>Environmental Science &amp; Technology</full-title></periodical><pages>7711-7716</pages><volume>44</volume><number>19</number><dates><year>2010</year><pub-dates><date>2010/10/01</date></pub-dates></dates><publisher>American Chemical Society</publisher><isbn>0013-936X</isbn><urls><related-urls><url>. Species, genus, and family level ICE models are publically available on the U.S. EPA internet application Web-ICE (www3.webice).ICE model predictions are intended to supplement toxicity databases where species of concern or species diversity have not been or cannot be adequately tested ADDIN EN.CITE <EndNote><Cite><Author>Awkerman</Author><Year>2014</Year><RecNum>5</RecNum><DisplayText><style face="superscript">6</style></DisplayText><record><rec-number>5</rec-number><foreign-keys><key app="EN" db-id="0feedwazb55ae5eeeavvx5x2rsevpzsd9w9z" timestamp="1441047390">5</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Awkerman, Jill A.</author><author>Raimondo, Sandy</author><author>Jackson, Crystal R.</author><author>Barron, Mace G.</author></authors></contributors><titles><title>Augmenting aquatic species sensitivity distributions with interspecies toxicity estimation models</title><secondary-title>Environmental Toxicology and Chemistry</secondary-title></titles><periodical><full-title>Environmental Toxicology and Chemistry</full-title></periodical><pages>688-695</pages><volume>33</volume><number>3</number><keywords><keyword>Aquatic toxicology</keyword><keyword>Species sensitivity distributions</keyword><keyword>Species extrapolation</keyword><keyword>Risk assessment</keyword></keywords><dates><year>2014</year></dates><isbn>1552-8618</isbn><urls><related-urls><url>. Previous studies evaluating the robustness and application of ICE model predictions have focused primarily on species level models and their use in either direct toxicity estimation or in developing species sensitivity distributions (SSDs)PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5Bd2tlcm1hbjwvQXV0aG9yPjxZZWFyPjIwMTQ8L1llYXI+

PFJlY051bT41PC9SZWNOdW0+PERpc3BsYXlUZXh0PjxzdHlsZSBmYWNlPSJzdXBlcnNjcmlwdCI+

NC04PC9zdHlsZT48L0Rpc3BsYXlUZXh0PjxyZWNvcmQ+PHJlYy1udW1iZXI+NTwvcmVjLW51bWJl

cj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9IjBmZWVkd2F6YjU1YWU1ZWVlYXZ2

eDV4MnJzZXZwenNkOXc5eiIgdGltZXN0YW1wPSIxNDQxMDQ3MzkwIj41PC9rZXk+PC9mb3JlaWdu

LWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBlPjxjb250

cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5Bd2tlcm1hbiwgSmlsbCBBLjwvYXV0aG9yPjxhdXRo

b3I+UmFpbW9uZG8sIFNhbmR5PC9hdXRob3I+PGF1dGhvcj5KYWNrc29uLCBDcnlzdGFsIFIuPC9h

dXRob3I+PGF1dGhvcj5CYXJyb24sIE1hY2UgRy48L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmli

dXRvcnM+PHRpdGxlcz48dGl0bGU+QXVnbWVudGluZyBhcXVhdGljIHNwZWNpZXMgc2Vuc2l0aXZp

dHkgZGlzdHJpYnV0aW9ucyB3aXRoIGludGVyc3BlY2llcyB0b3hpY2l0eSBlc3RpbWF0aW9uIG1v

ZGVsczwvdGl0bGU+PHNlY29uZGFyeS10aXRsZT5FbnZpcm9ubWVudGFsIFRveGljb2xvZ3kgYW5k

IENoZW1pc3RyeTwvc2Vjb25kYXJ5LXRpdGxlPjwvdGl0bGVzPjxwZXJpb2RpY2FsPjxmdWxsLXRp

dGxlPkVudmlyb25tZW50YWwgVG94aWNvbG9neSBhbmQgQ2hlbWlzdHJ5PC9mdWxsLXRpdGxlPjwv

cGVyaW9kaWNhbD48cGFnZXM+Njg4LTY5NTwvcGFnZXM+PHZvbHVtZT4zMzwvdm9sdW1lPjxudW1i

ZXI+MzwvbnVtYmVyPjxrZXl3b3Jkcz48a2V5d29yZD5BcXVhdGljIHRveGljb2xvZ3k8L2tleXdv

cmQ+PGtleXdvcmQ+U3BlY2llcyBzZW5zaXRpdml0eSBkaXN0cmlidXRpb25zPC9rZXl3b3JkPjxr

ZXl3b3JkPlNwZWNpZXMgZXh0cmFwb2xhdGlvbjwva2V5d29yZD48a2V5d29yZD5SaXNrIGFzc2Vz

c21lbnQ8L2tleXdvcmQ+PC9rZXl3b3Jkcz48ZGF0ZXM+PHllYXI+MjAxNDwveWVhcj48L2RhdGVz

Pjxpc2JuPjE1NTItODYxODwvaXNibj48dXJscz48cmVsYXRlZC11cmxzPjx1cmw+aHR0cDovL2R4

LmRvaS5vcmcvMTAuMTAwMi9ldGMuMjQ1NjwvdXJsPjwvcmVsYXRlZC11cmxzPjwvdXJscz48ZWxl

Y3Ryb25pYy1yZXNvdXJjZS1udW0+MTAuMTAwMi9ldGMuMjQ1NjwvZWxlY3Ryb25pYy1yZXNvdXJj

ZS1udW0+PC9yZWNvcmQ+PC9DaXRlPjxDaXRlPjxBdXRob3I+QXdrZXJtYW48L0F1dGhvcj48WWVh

cj4yMDA4PC9ZZWFyPjxSZWNOdW0+MjA8L1JlY051bT48cmVjb3JkPjxyZWMtbnVtYmVyPjIwPC9y

ZWMtbnVtYmVyPjxmb3JlaWduLWtleXM+PGtleSBhcHA9IkVOIiBkYi1pZD0iMGZlZWR3YXpiNTVh

ZTVlZWVhdnZ4NXgycnNldnB6c2Q5dzl6IiB0aW1lc3RhbXA9IjE0NDMxMDU5NTUiPjIwPC9rZXk+

PC9mb3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10

eXBlPjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5Bd2tlcm1hbiwgSmlsbCBBLjwvYXV0

aG9yPjxhdXRob3I+UmFpbW9uZG8sIFNhbmR5PC9hdXRob3I+PGF1dGhvcj5CYXJyb24sIE1hY2Ug

Ry48L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PHRpdGxlcz48dGl0bGU+RGV2ZWxv

cG1lbnQgb2YgU3BlY2llcyBTZW5zaXRpdml0eSBEaXN0cmlidXRpb25zIGZvciBXaWxkbGlmZSB1

c2luZyBJbnRlcnNwZWNpZXMgVG94aWNpdHkgQ29ycmVsYXRpb24gTW9kZWxzPC90aXRsZT48c2Vj

b25kYXJ5LXRpdGxlPkVudmlyb25tZW50YWwgU2NpZW5jZSAmYW1wOyBUZWNobm9sb2d5PC9zZWNv

bmRhcnktdGl0bGU+PC90aXRsZXM+PHBlcmlvZGljYWw+PGZ1bGwtdGl0bGU+RW52aXJvbm1lbnRh

bCBTY2llbmNlICZhbXA7IFRlY2hub2xvZ3k8L2Z1bGwtdGl0bGU+PC9wZXJpb2RpY2FsPjxwYWdl

cz4zNDQ3LTM0NTI8L3BhZ2VzPjx2b2x1bWU+NDI8L3ZvbHVtZT48bnVtYmVyPjk8L251bWJlcj48

ZGF0ZXM+PHllYXI+MjAwODwveWVhcj48cHViLWRhdGVzPjxkYXRlPjIwMDgvMDUvMDE8L2RhdGU+

PC9wdWItZGF0ZXM+PC9kYXRlcz48cHVibGlzaGVyPkFtZXJpY2FuIENoZW1pY2FsIFNvY2lldHk8

L3B1Ymxpc2hlcj48aXNibj4wMDEzLTkzNlg8L2lzYm4+PHVybHM+PHJlbGF0ZWQtdXJscz48dXJs

Pmh0dHA6Ly9keC5kb2kub3JnLzEwLjEwMjEvZXM3MDI4NjF1PC91cmw+PC9yZWxhdGVkLXVybHM+

PC91cmxzPjxlbGVjdHJvbmljLXJlc291cmNlLW51bT4xMC4xMDIxL2VzNzAyODYxdTwvZWxlY3Ry

b25pYy1yZXNvdXJjZS1udW0+PC9yZWNvcmQ+PC9DaXRlPjxDaXRlPjxBdXRob3I+RHllcjwvQXV0

aG9yPjxZZWFyPjIwMDg8L1llYXI+PFJlY051bT4yPC9SZWNOdW0+PHJlY29yZD48cmVjLW51bWJl

cj4yPC9yZWMtbnVtYmVyPjxmb3JlaWduLWtleXM+PGtleSBhcHA9IkVOIiBkYi1pZD0iMGZlZWR3

YXpiNTVhZTVlZWVhdnZ4NXgycnNldnB6c2Q5dzl6IiB0aW1lc3RhbXA9IjE0NDEwNDcyNzIiPjI8

L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwv

cmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPkR5ZXIsIFNjb3R0IEQuPC9h

dXRob3I+PGF1dGhvcj5WZXJzdGVlZywgRG9uYWxkIEouPC9hdXRob3I+PGF1dGhvcj5CZWxhbmdl

ciwgU2NvdHQgRS48L2F1dGhvcj48YXV0aG9yPkNoYW5leSwgSm9lbCBHLjwvYXV0aG9yPjxhdXRo

b3I+UmFpbW9uZG8sIFNhbmR5PC9hdXRob3I+PGF1dGhvcj5CYXJyb24sIE1hY2UgRy48L2F1dGhv

cj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PHRpdGxlcz48dGl0bGU+Q29tcGFyaXNvbiBvZiBT

cGVjaWVzIFNlbnNpdGl2aXR5IERpc3RyaWJ1dGlvbnMgRGVyaXZlZCBmcm9tIEludGVyc3BlY2ll

cyBDb3JyZWxhdGlvbiBNb2RlbHMgdG8gRGlzdHJpYnV0aW9ucyB1c2VkIHRvIERlcml2ZSBXYXRl

ciBRdWFsaXR5IENyaXRlcmlhPC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPkVudmlyb25tZW50YWwg

U2NpZW5jZSAmYW1wOyBUZWNobm9sb2d5PC9zZWNvbmRhcnktdGl0bGU+PC90aXRsZXM+PHBlcmlv

ZGljYWw+PGZ1bGwtdGl0bGU+RW52aXJvbm1lbnRhbCBTY2llbmNlICZhbXA7IFRlY2hub2xvZ3k8

L2Z1bGwtdGl0bGU+PC9wZXJpb2RpY2FsPjxwYWdlcz4zMDc2LTMwODM8L3BhZ2VzPjx2b2x1bWU+

NDI8L3ZvbHVtZT48bnVtYmVyPjg8L251bWJlcj48ZGF0ZXM+PHllYXI+MjAwODwveWVhcj48cHVi

LWRhdGVzPjxkYXRlPjIwMDgvMDQvMDE8L2RhdGU+PC9wdWItZGF0ZXM+PC9kYXRlcz48cHVibGlz

aGVyPkFtZXJpY2FuIENoZW1pY2FsIFNvY2lldHk8L3B1Ymxpc2hlcj48aXNibj4wMDEzLTkzNlg8

L2lzYm4+PHVybHM+PHJlbGF0ZWQtdXJscz48dXJsPmh0dHA6Ly9keC5kb2kub3JnLzEwLjEwMjEv

ZXM3MDIzMDJlPC91cmw+PC9yZWxhdGVkLXVybHM+PC91cmxzPjxlbGVjdHJvbmljLXJlc291cmNl

LW51bT4xMC4xMDIxL2VzNzAyMzAyZTwvZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+PC9yZWNvcmQ+

PC9DaXRlPjxDaXRlPjxBdXRob3I+UmFpbW9uZG88L0F1dGhvcj48WWVhcj4yMDA3PC9ZZWFyPjxS

ZWNOdW0+MTE8L1JlY051bT48cmVjb3JkPjxyZWMtbnVtYmVyPjExPC9yZWMtbnVtYmVyPjxmb3Jl

aWduLWtleXM+PGtleSBhcHA9IkVOIiBkYi1pZD0iMGZlZWR3YXpiNTVhZTVlZWVhdnZ4NXgycnNl

dnB6c2Q5dzl6IiB0aW1lc3RhbXA9IjE0NDEwNDg3NjYiPjExPC9rZXk+PC9mb3JlaWduLWtleXM+

PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBlPjxjb250cmlidXRv

cnM+PGF1dGhvcnM+PGF1dGhvcj5SYWltb25kbywgUzwvYXV0aG9yPjxhdXRob3I+TWluZWF1LCBQ

PC9hdXRob3I+PGF1dGhvcj5CYXJyb24sIE1HPC9hdXRob3I+PC9hdXRob3JzPjwvY29udHJpYnV0

b3JzPjx0aXRsZXM+PHRpdGxlPkVzdGltYXRpb24gb2YgY2hlbWljYWwgdG94aWNpdHkgdG8gd2ls

ZGxpZmUgc3BlY2llcyB1c2luZyBpbnRlcnNwZWNpZXMgY29ycmVsYXRpb24gbW9kZWxzPC90aXRs

ZT48c2Vjb25kYXJ5LXRpdGxlPkVudmlyb25tZW50YWwgc2NpZW5jZSAmYW1wOyB0ZWNobm9sb2d5

PC9zZWNvbmRhcnktdGl0bGU+PC90aXRsZXM+PHBlcmlvZGljYWw+PGZ1bGwtdGl0bGU+RW52aXJv

bm1lbnRhbCBTY2llbmNlICZhbXA7IFRlY2hub2xvZ3k8L2Z1bGwtdGl0bGU+PC9wZXJpb2RpY2Fs

PjxwYWdlcz41ODg4LTU4OTQ8L3BhZ2VzPjx2b2x1bWU+NDE8L3ZvbHVtZT48bnVtYmVyPjE2PC9u

dW1iZXI+PGRhdGVzPjx5ZWFyPjIwMDc8L3llYXI+PC9kYXRlcz48aXNibj4wMDEzLTkzNlg8L2lz

Ym4+PHVybHM+PC91cmxzPjwvcmVjb3JkPjwvQ2l0ZT48Q2l0ZT48QXV0aG9yPlJhaW1vbmRvPC9B

dXRob3I+PFllYXI+MjAxMDwvWWVhcj48UmVjTnVtPjM8L1JlY051bT48cmVjb3JkPjxyZWMtbnVt

YmVyPjM8L3JlYy1udW1iZXI+PGZvcmVpZ24ta2V5cz48a2V5IGFwcD0iRU4iIGRiLWlkPSIwZmVl

ZHdhemI1NWFlNWVlZWF2dng1eDJyc2V2cHpzZDl3OXoiIHRpbWVzdGFtcD0iMTQ0MTA0NzMxMCI+

Mzwva2V5PjwvZm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJKb3VybmFsIEFydGljbGUiPjE3

PC9yZWYtdHlwZT48Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+UmFpbW9uZG8sIFNhbmR5

PC9hdXRob3I+PGF1dGhvcj5KYWNrc29uLCBDcnlzdGFsIFIuPC9hdXRob3I+PGF1dGhvcj5CYXJy

b24sIE1hY2UgRy48L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PHRpdGxlcz48dGl0

bGU+SW5mbHVlbmNlIG9mIFRheG9ub21pYyBSZWxhdGVkbmVzcyBhbmQgQ2hlbWljYWwgTW9kZSBv

ZiBBY3Rpb24gaW4gQWN1dGUgSW50ZXJzcGVjaWVzIEVzdGltYXRpb24gTW9kZWxzIGZvciBBcXVh

dGljIFNwZWNpZXM8L3RpdGxlPjxzZWNvbmRhcnktdGl0bGU+RW52aXJvbm1lbnRhbCBTY2llbmNl

ICZhbXA7IFRlY2hub2xvZ3k8L3NlY29uZGFyeS10aXRsZT48L3RpdGxlcz48cGVyaW9kaWNhbD48

ZnVsbC10aXRsZT5FbnZpcm9ubWVudGFsIFNjaWVuY2UgJmFtcDsgVGVjaG5vbG9neTwvZnVsbC10

aXRsZT48L3BlcmlvZGljYWw+PHBhZ2VzPjc3MTEtNzcxNjwvcGFnZXM+PHZvbHVtZT40NDwvdm9s

dW1lPjxudW1iZXI+MTk8L251bWJlcj48ZGF0ZXM+PHllYXI+MjAxMDwveWVhcj48cHViLWRhdGVz

PjxkYXRlPjIwMTAvMTAvMDE8L2RhdGU+PC9wdWItZGF0ZXM+PC9kYXRlcz48cHVibGlzaGVyPkFt

ZXJpY2FuIENoZW1pY2FsIFNvY2lldHk8L3B1Ymxpc2hlcj48aXNibj4wMDEzLTkzNlg8L2lzYm4+

PHVybHM+PHJlbGF0ZWQtdXJscz48dXJsPmh0dHA6Ly9keC5kb2kub3JnLzEwLjEwMjEvZXMxMDE2

MzBiPC91cmw+PC9yZWxhdGVkLXVybHM+PC91cmxzPjxlbGVjdHJvbmljLXJlc291cmNlLW51bT4x

MC4xMDIxL2VzMTAxNjMwYjwvZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+PC9yZWNvcmQ+PC9DaXRl

PjwvRW5kTm90ZT5=

ADDIN EN.CITE PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5Bd2tlcm1hbjwvQXV0aG9yPjxZZWFyPjIwMTQ8L1llYXI+

PFJlY051bT41PC9SZWNOdW0+PERpc3BsYXlUZXh0PjxzdHlsZSBmYWNlPSJzdXBlcnNjcmlwdCI+

NC04PC9zdHlsZT48L0Rpc3BsYXlUZXh0PjxyZWNvcmQ+PHJlYy1udW1iZXI+NTwvcmVjLW51bWJl

cj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9IjBmZWVkd2F6YjU1YWU1ZWVlYXZ2

eDV4MnJzZXZwenNkOXc5eiIgdGltZXN0YW1wPSIxNDQxMDQ3MzkwIj41PC9rZXk+PC9mb3JlaWdu

LWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBlPjxjb250

cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5Bd2tlcm1hbiwgSmlsbCBBLjwvYXV0aG9yPjxhdXRo

b3I+UmFpbW9uZG8sIFNhbmR5PC9hdXRob3I+PGF1dGhvcj5KYWNrc29uLCBDcnlzdGFsIFIuPC9h

dXRob3I+PGF1dGhvcj5CYXJyb24sIE1hY2UgRy48L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmli

dXRvcnM+PHRpdGxlcz48dGl0bGU+QXVnbWVudGluZyBhcXVhdGljIHNwZWNpZXMgc2Vuc2l0aXZp

dHkgZGlzdHJpYnV0aW9ucyB3aXRoIGludGVyc3BlY2llcyB0b3hpY2l0eSBlc3RpbWF0aW9uIG1v

ZGVsczwvdGl0bGU+PHNlY29uZGFyeS10aXRsZT5FbnZpcm9ubWVudGFsIFRveGljb2xvZ3kgYW5k

IENoZW1pc3RyeTwvc2Vjb25kYXJ5LXRpdGxlPjwvdGl0bGVzPjxwZXJpb2RpY2FsPjxmdWxsLXRp

dGxlPkVudmlyb25tZW50YWwgVG94aWNvbG9neSBhbmQgQ2hlbWlzdHJ5PC9mdWxsLXRpdGxlPjwv

cGVyaW9kaWNhbD48cGFnZXM+Njg4LTY5NTwvcGFnZXM+PHZvbHVtZT4zMzwvdm9sdW1lPjxudW1i

ZXI+MzwvbnVtYmVyPjxrZXl3b3Jkcz48a2V5d29yZD5BcXVhdGljIHRveGljb2xvZ3k8L2tleXdv

cmQ+PGtleXdvcmQ+U3BlY2llcyBzZW5zaXRpdml0eSBkaXN0cmlidXRpb25zPC9rZXl3b3JkPjxr

ZXl3b3JkPlNwZWNpZXMgZXh0cmFwb2xhdGlvbjwva2V5d29yZD48a2V5d29yZD5SaXNrIGFzc2Vz

c21lbnQ8L2tleXdvcmQ+PC9rZXl3b3Jkcz48ZGF0ZXM+PHllYXI+MjAxNDwveWVhcj48L2RhdGVz

Pjxpc2JuPjE1NTItODYxODwvaXNibj48dXJscz48cmVsYXRlZC11cmxzPjx1cmw+aHR0cDovL2R4

LmRvaS5vcmcvMTAuMTAwMi9ldGMuMjQ1NjwvdXJsPjwvcmVsYXRlZC11cmxzPjwvdXJscz48ZWxl

Y3Ryb25pYy1yZXNvdXJjZS1udW0+MTAuMTAwMi9ldGMuMjQ1NjwvZWxlY3Ryb25pYy1yZXNvdXJj

ZS1udW0+PC9yZWNvcmQ+PC9DaXRlPjxDaXRlPjxBdXRob3I+QXdrZXJtYW48L0F1dGhvcj48WWVh

cj4yMDA4PC9ZZWFyPjxSZWNOdW0+MjA8L1JlY051bT48cmVjb3JkPjxyZWMtbnVtYmVyPjIwPC9y

ZWMtbnVtYmVyPjxmb3JlaWduLWtleXM+PGtleSBhcHA9IkVOIiBkYi1pZD0iMGZlZWR3YXpiNTVh

ZTVlZWVhdnZ4NXgycnNldnB6c2Q5dzl6IiB0aW1lc3RhbXA9IjE0NDMxMDU5NTUiPjIwPC9rZXk+

PC9mb3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10

eXBlPjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5Bd2tlcm1hbiwgSmlsbCBBLjwvYXV0

aG9yPjxhdXRob3I+UmFpbW9uZG8sIFNhbmR5PC9hdXRob3I+PGF1dGhvcj5CYXJyb24sIE1hY2Ug

Ry48L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PHRpdGxlcz48dGl0bGU+RGV2ZWxv

cG1lbnQgb2YgU3BlY2llcyBTZW5zaXRpdml0eSBEaXN0cmlidXRpb25zIGZvciBXaWxkbGlmZSB1

c2luZyBJbnRlcnNwZWNpZXMgVG94aWNpdHkgQ29ycmVsYXRpb24gTW9kZWxzPC90aXRsZT48c2Vj

b25kYXJ5LXRpdGxlPkVudmlyb25tZW50YWwgU2NpZW5jZSAmYW1wOyBUZWNobm9sb2d5PC9zZWNv

bmRhcnktdGl0bGU+PC90aXRsZXM+PHBlcmlvZGljYWw+PGZ1bGwtdGl0bGU+RW52aXJvbm1lbnRh

bCBTY2llbmNlICZhbXA7IFRlY2hub2xvZ3k8L2Z1bGwtdGl0bGU+PC9wZXJpb2RpY2FsPjxwYWdl

cz4zNDQ3LTM0NTI8L3BhZ2VzPjx2b2x1bWU+NDI8L3ZvbHVtZT48bnVtYmVyPjk8L251bWJlcj48

ZGF0ZXM+PHllYXI+MjAwODwveWVhcj48cHViLWRhdGVzPjxkYXRlPjIwMDgvMDUvMDE8L2RhdGU+

PC9wdWItZGF0ZXM+PC9kYXRlcz48cHVibGlzaGVyPkFtZXJpY2FuIENoZW1pY2FsIFNvY2lldHk8

L3B1Ymxpc2hlcj48aXNibj4wMDEzLTkzNlg8L2lzYm4+PHVybHM+PHJlbGF0ZWQtdXJscz48dXJs

Pmh0dHA6Ly9keC5kb2kub3JnLzEwLjEwMjEvZXM3MDI4NjF1PC91cmw+PC9yZWxhdGVkLXVybHM+

PC91cmxzPjxlbGVjdHJvbmljLXJlc291cmNlLW51bT4xMC4xMDIxL2VzNzAyODYxdTwvZWxlY3Ry

b25pYy1yZXNvdXJjZS1udW0+PC9yZWNvcmQ+PC9DaXRlPjxDaXRlPjxBdXRob3I+RHllcjwvQXV0

aG9yPjxZZWFyPjIwMDg8L1llYXI+PFJlY051bT4yPC9SZWNOdW0+PHJlY29yZD48cmVjLW51bWJl

cj4yPC9yZWMtbnVtYmVyPjxmb3JlaWduLWtleXM+PGtleSBhcHA9IkVOIiBkYi1pZD0iMGZlZWR3

YXpiNTVhZTVlZWVhdnZ4NXgycnNldnB6c2Q5dzl6IiB0aW1lc3RhbXA9IjE0NDEwNDcyNzIiPjI8

L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwv

cmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPkR5ZXIsIFNjb3R0IEQuPC9h

dXRob3I+PGF1dGhvcj5WZXJzdGVlZywgRG9uYWxkIEouPC9hdXRob3I+PGF1dGhvcj5CZWxhbmdl

ciwgU2NvdHQgRS48L2F1dGhvcj48YXV0aG9yPkNoYW5leSwgSm9lbCBHLjwvYXV0aG9yPjxhdXRo

b3I+UmFpbW9uZG8sIFNhbmR5PC9hdXRob3I+PGF1dGhvcj5CYXJyb24sIE1hY2UgRy48L2F1dGhv

cj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PHRpdGxlcz48dGl0bGU+Q29tcGFyaXNvbiBvZiBT

cGVjaWVzIFNlbnNpdGl2aXR5IERpc3RyaWJ1dGlvbnMgRGVyaXZlZCBmcm9tIEludGVyc3BlY2ll

cyBDb3JyZWxhdGlvbiBNb2RlbHMgdG8gRGlzdHJpYnV0aW9ucyB1c2VkIHRvIERlcml2ZSBXYXRl

ciBRdWFsaXR5IENyaXRlcmlhPC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPkVudmlyb25tZW50YWwg

U2NpZW5jZSAmYW1wOyBUZWNobm9sb2d5PC9zZWNvbmRhcnktdGl0bGU+PC90aXRsZXM+PHBlcmlv

ZGljYWw+PGZ1bGwtdGl0bGU+RW52aXJvbm1lbnRhbCBTY2llbmNlICZhbXA7IFRlY2hub2xvZ3k8

L2Z1bGwtdGl0bGU+PC9wZXJpb2RpY2FsPjxwYWdlcz4zMDc2LTMwODM8L3BhZ2VzPjx2b2x1bWU+

NDI8L3ZvbHVtZT48bnVtYmVyPjg8L251bWJlcj48ZGF0ZXM+PHllYXI+MjAwODwveWVhcj48cHVi

LWRhdGVzPjxkYXRlPjIwMDgvMDQvMDE8L2RhdGU+PC9wdWItZGF0ZXM+PC9kYXRlcz48cHVibGlz

aGVyPkFtZXJpY2FuIENoZW1pY2FsIFNvY2lldHk8L3B1Ymxpc2hlcj48aXNibj4wMDEzLTkzNlg8

L2lzYm4+PHVybHM+PHJlbGF0ZWQtdXJscz48dXJsPmh0dHA6Ly9keC5kb2kub3JnLzEwLjEwMjEv

ZXM3MDIzMDJlPC91cmw+PC9yZWxhdGVkLXVybHM+PC91cmxzPjxlbGVjdHJvbmljLXJlc291cmNl

LW51bT4xMC4xMDIxL2VzNzAyMzAyZTwvZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+PC9yZWNvcmQ+

PC9DaXRlPjxDaXRlPjxBdXRob3I+UmFpbW9uZG88L0F1dGhvcj48WWVhcj4yMDA3PC9ZZWFyPjxS

ZWNOdW0+MTE8L1JlY051bT48cmVjb3JkPjxyZWMtbnVtYmVyPjExPC9yZWMtbnVtYmVyPjxmb3Jl

aWduLWtleXM+PGtleSBhcHA9IkVOIiBkYi1pZD0iMGZlZWR3YXpiNTVhZTVlZWVhdnZ4NXgycnNl

dnB6c2Q5dzl6IiB0aW1lc3RhbXA9IjE0NDEwNDg3NjYiPjExPC9rZXk+PC9mb3JlaWduLWtleXM+

PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBlPjxjb250cmlidXRv

cnM+PGF1dGhvcnM+PGF1dGhvcj5SYWltb25kbywgUzwvYXV0aG9yPjxhdXRob3I+TWluZWF1LCBQ

PC9hdXRob3I+PGF1dGhvcj5CYXJyb24sIE1HPC9hdXRob3I+PC9hdXRob3JzPjwvY29udHJpYnV0

b3JzPjx0aXRsZXM+PHRpdGxlPkVzdGltYXRpb24gb2YgY2hlbWljYWwgdG94aWNpdHkgdG8gd2ls

ZGxpZmUgc3BlY2llcyB1c2luZyBpbnRlcnNwZWNpZXMgY29ycmVsYXRpb24gbW9kZWxzPC90aXRs

ZT48c2Vjb25kYXJ5LXRpdGxlPkVudmlyb25tZW50YWwgc2NpZW5jZSAmYW1wOyB0ZWNobm9sb2d5

PC9zZWNvbmRhcnktdGl0bGU+PC90aXRsZXM+PHBlcmlvZGljYWw+PGZ1bGwtdGl0bGU+RW52aXJv

bm1lbnRhbCBTY2llbmNlICZhbXA7IFRlY2hub2xvZ3k8L2Z1bGwtdGl0bGU+PC9wZXJpb2RpY2Fs

PjxwYWdlcz41ODg4LTU4OTQ8L3BhZ2VzPjx2b2x1bWU+NDE8L3ZvbHVtZT48bnVtYmVyPjE2PC9u

dW1iZXI+PGRhdGVzPjx5ZWFyPjIwMDc8L3llYXI+PC9kYXRlcz48aXNibj4wMDEzLTkzNlg8L2lz

Ym4+PHVybHM+PC91cmxzPjwvcmVjb3JkPjwvQ2l0ZT48Q2l0ZT48QXV0aG9yPlJhaW1vbmRvPC9B

dXRob3I+PFllYXI+MjAxMDwvWWVhcj48UmVjTnVtPjM8L1JlY051bT48cmVjb3JkPjxyZWMtbnVt

YmVyPjM8L3JlYy1udW1iZXI+PGZvcmVpZ24ta2V5cz48a2V5IGFwcD0iRU4iIGRiLWlkPSIwZmVl

ZHdhemI1NWFlNWVlZWF2dng1eDJyc2V2cHpzZDl3OXoiIHRpbWVzdGFtcD0iMTQ0MTA0NzMxMCI+

Mzwva2V5PjwvZm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJKb3VybmFsIEFydGljbGUiPjE3

PC9yZWYtdHlwZT48Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+UmFpbW9uZG8sIFNhbmR5

PC9hdXRob3I+PGF1dGhvcj5KYWNrc29uLCBDcnlzdGFsIFIuPC9hdXRob3I+PGF1dGhvcj5CYXJy

b24sIE1hY2UgRy48L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PHRpdGxlcz48dGl0

bGU+SW5mbHVlbmNlIG9mIFRheG9ub21pYyBSZWxhdGVkbmVzcyBhbmQgQ2hlbWljYWwgTW9kZSBv

ZiBBY3Rpb24gaW4gQWN1dGUgSW50ZXJzcGVjaWVzIEVzdGltYXRpb24gTW9kZWxzIGZvciBBcXVh

dGljIFNwZWNpZXM8L3RpdGxlPjxzZWNvbmRhcnktdGl0bGU+RW52aXJvbm1lbnRhbCBTY2llbmNl

ICZhbXA7IFRlY2hub2xvZ3k8L3NlY29uZGFyeS10aXRsZT48L3RpdGxlcz48cGVyaW9kaWNhbD48

ZnVsbC10aXRsZT5FbnZpcm9ubWVudGFsIFNjaWVuY2UgJmFtcDsgVGVjaG5vbG9neTwvZnVsbC10

aXRsZT48L3BlcmlvZGljYWw+PHBhZ2VzPjc3MTEtNzcxNjwvcGFnZXM+PHZvbHVtZT40NDwvdm9s

dW1lPjxudW1iZXI+MTk8L251bWJlcj48ZGF0ZXM+PHllYXI+MjAxMDwveWVhcj48cHViLWRhdGVz

PjxkYXRlPjIwMTAvMTAvMDE8L2RhdGU+PC9wdWItZGF0ZXM+PC9kYXRlcz48cHVibGlzaGVyPkFt

ZXJpY2FuIENoZW1pY2FsIFNvY2lldHk8L3B1Ymxpc2hlcj48aXNibj4wMDEzLTkzNlg8L2lzYm4+

PHVybHM+PHJlbGF0ZWQtdXJscz48dXJsPmh0dHA6Ly9keC5kb2kub3JnLzEwLjEwMjEvZXMxMDE2

MzBiPC91cmw+PC9yZWxhdGVkLXVybHM+PC91cmxzPjxlbGVjdHJvbmljLXJlc291cmNlLW51bT4x

MC4xMDIxL2VzMTAxNjMwYjwvZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+PC9yZWNvcmQ+PC9DaXRl

PjwvRW5kTm90ZT5=

ADDIN EN.CITE.DATA 4-8. Less work has explored the protectiveness of ICE predictions in risk assessments for listed species or the use of genus and family models. Few species-specific ICE models can be developed for listed species due to limited existing toxicity data, therefore genus or family level models may be required to predict toxicity to the higher taxonomic level. Genus and family models have historically been developed using geometric means of toxicity values from multiple species, which are useful in generating toxicity estimates in cases such as water quality criteria development. However, the protectiveness of these predictions across the range of species sensitivity within the predicted taxon is uncertain, especially for listed or sensitive species. The present study evaluates the prediction accuracy of ICE models for listed species and compares the protectiveness of genus and family level models developed from either geometric means or minimum toxicity values. Models used in this evaluation were developed from an acute toxicity database that was substantially expanded from the previous version of Web-ICE (v3.2, release April 2013) and contains 314 species and 1501 chemicals, including new toxicity records for listed species. Of particular emphasis was the expansion of models for prediction to freshwater unionid mussels ADDIN EN.CITE <EndNote><Cite><Author>Raimondo</Author><Year>2016</Year><RecNum>14</RecNum><DisplayText><style face="superscript">9</style></DisplayText><record><rec-number>14</rec-number><foreign-keys><key app="EN" db-id="0feedwazb55ae5eeeavvx5x2rsevpzsd9w9z" timestamp="1441049217">14</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Raimondo, S.</author><author>Lilavois, C.R.</author><author>Lee, L.</author><author>Augspurger, T.</author><author>Wang, N.</author><author>Ingersoll, C.G.</author><author>Bauer, C.</author><author>Hammer, E.</author><author>Barron, M.G.</author></authors></contributors><titles><title>Assessing variability in chemical acute toxicity of unionid mussels: influence of intra-and inter-laboratory testing, life stage, and species</title><secondary-title>Environmental Toxicology and Chemistry</secondary-title></titles><periodical><full-title>Environmental Toxicology and Chemistry</full-title></periodical><volume>In print</volume><dates><year>2016</year></dates><urls></urls><electronic-resource-num>10.1002/etc.3245</electronic-resource-num></record></Cite></EndNote>9. We compare the development of genus and family models using the most sensitive toxicity value for each chemical within the predicted taxon to models built with geometric means, as a potential approach to developing models that are protective of the most sensitive species within a taxon. We revised model selection guidelines to reduce reliance on professional judgement and increase reproducibility of their application. Lastly, we demonstrate the application of models and guidelines using a case study of 8 listed species exposed to a diversity of pesticides encompassing a range of aquatic toxicity modes of action (MOA). MethodsDatabase developmentStandardization of toxicity data for inclusion in ICE models followed the approach and selection criteria described in Raimondo et al. (2010). This included confirming chemical and species identity; compiling acute toxicity values as 48 hour EC50/LC50 for specific invertebrate taxa (e.g., daphnids, fairy shrimp) or 96 hour EC50/LC50 for fish, amphibians and other aquatic invertebrates (e.g., insects); and determining whether each data record met standardization criteria for life stage, test conditions, and water quality parameters (e.g., temperature, dissolved oxygen, salinity) ADDIN EN.CITE <EndNote><Cite><Author>Raimondo</Author><Year>2010</Year><RecNum>3</RecNum><DisplayText><style face="superscript">4</style></DisplayText><record><rec-number>3</rec-number><foreign-keys><key app="EN" db-id="0feedwazb55ae5eeeavvx5x2rsevpzsd9w9z" timestamp="1441047310">3</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Raimondo, Sandy</author><author>Jackson, Crystal R.</author><author>Barron, Mace G.</author></authors></contributors><titles><title>Influence of Taxonomic Relatedness and Chemical Mode of Action in Acute Interspecies Estimation Models for Aquatic Species</title><secondary-title>Environmental Science &amp; Technology</secondary-title></titles><periodical><full-title>Environmental Science &amp; Technology</full-title></periodical><pages>7711-7716</pages><volume>44</volume><number>19</number><dates><year>2010</year><pub-dates><date>2010/10/01</date></pub-dates></dates><publisher>American Chemical Society</publisher><isbn>0013-936X</isbn><urls><related-urls><url>. The database included records from the previous Web-ICE database appended with new records from ECOTOX (ecotox/; downloaded September 2014), and recently collected primary data on freshwater mussels ADDIN EN.CITE <EndNote><Cite><Author>Raimondo</Author><Year>2016</Year><RecNum>14</RecNum><DisplayText><style face="superscript">9</style></DisplayText><record><rec-number>14</rec-number><foreign-keys><key app="EN" db-id="0feedwazb55ae5eeeavvx5x2rsevpzsd9w9z" timestamp="1441049217">14</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Raimondo, S.</author><author>Lilavois, C.R.</author><author>Lee, L.</author><author>Augspurger, T.</author><author>Wang, N.</author><author>Ingersoll, C.G.</author><author>Bauer, C.</author><author>Hammer, E.</author><author>Barron, M.G.</author></authors></contributors><titles><title>Assessing variability in chemical acute toxicity of unionid mussels: influence of intra-and inter-laboratory testing, life stage, and species</title><secondary-title>Environmental Toxicology and Chemistry</secondary-title></titles><periodical><full-title>Environmental Toxicology and Chemistry</full-title></periodical><volume>In print</volume><dates><year>2016</year></dates><urls></urls><electronic-resource-num>10.1002/etc.3245</electronic-resource-num></record></Cite></EndNote>9 and fairy shrimp (unpublished data). Data were standardized for life stage by using only juveniles for fish and decapods, immature aquatic life stages for amphibians and insects, and juveniles and spat for molluscs. All life stages were included for other taxa groups except egg or embryo stages. Specific aspects of the mussel toxicity dataset are detailed in Raimondo et al. ADDIN EN.CITE <EndNote><Cite ExcludeAuth="1"><Author>Raimondo</Author><Year>2016</Year><RecNum>14</RecNum><DisplayText><style face="superscript">9</style></DisplayText><record><rec-number>14</rec-number><foreign-keys><key app="EN" db-id="0feedwazb55ae5eeeavvx5x2rsevpzsd9w9z" timestamp="1441049217">14</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Raimondo, S.</author><author>Lilavois, C.R.</author><author>Lee, L.</author><author>Augspurger, T.</author><author>Wang, N.</author><author>Ingersoll, C.G.</author><author>Bauer, C.</author><author>Hammer, E.</author><author>Barron, M.G.</author></authors></contributors><titles><title>Assessing variability in chemical acute toxicity of unionid mussels: influence of intra-and inter-laboratory testing, life stage, and species</title><secondary-title>Environmental Toxicology and Chemistry</secondary-title></titles><periodical><full-title>Environmental Toxicology and Chemistry</full-title></periodical><volume>In print</volume><dates><year>2016</year></dates><urls></urls><electronic-resource-num>10.1002/etc.3245</electronic-resource-num></record></Cite></EndNote>9. All chemicals in the ICE database were curated using the distributed structure-searchable toxicity database (DSSTox; ncct/dsstox/).?A single name and the confirmed chemical abstract services registry number from the source material were checked against DSSTox to validate their consistency.?Names that were not contained within the DSSTox list of synonyms for a particular chemical were manually checked to validate the agreement between the chemical identifiers and confirm the chemical-data linkage. The ICE database toxicity value was specified as the compound tested, except for some metal salts (recorded as the element or hardness normalized element), pentachlorophenol (pH normalized) and ammonia (pH and temperature normalized). Only records for chemicals with an active ingredient purity of ≥ 90% were accepted. Open ended (e.g., LC50 > 100 mg/L) or unconfirmed toxicity values were not used. ICE Model DevelopmentModels were developed as least squares log-linear regressions by pairing all possible surrogate species with all possible predicted taxa (i.e., a species, genus, or family) by common chemical. Each model required toxicity values from at least three different chemicals available for both the surrogate species and predicted taxon. For species level models, the geometric mean of toxicity values was used in both the surrogate and predicted species where multiple records occurred for the same species and chemical. Two sets of genus and family level models were developed: geometric mean and minimum toxicity models. Geometric mean models were developed using the geometric mean of the mean predicted species toxicity value for all species within that genus or family for each chemical. Minimum toxicity models were developed using the minimum value of toxicity data for all species within each predicted genus or family for each chemical. For both sets of genus and family level models, the predicted taxon toxicity value was paired with the geometric mean of the respective chemical for the surrogate species. ICE models with four or more chemicals were validated using leave-one-out cross-validation ADDIN EN.CITE <EndNote><Cite><Author>Raimondo</Author><Year>2010</Year><RecNum>3</RecNum><DisplayText><style face="superscript">4</style></DisplayText><record><rec-number>3</rec-number><foreign-keys><key app="EN" db-id="0feedwazb55ae5eeeavvx5x2rsevpzsd9w9z" timestamp="1441047310">3</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Raimondo, Sandy</author><author>Jackson, Crystal R.</author><author>Barron, Mace G.</author></authors></contributors><titles><title>Influence of Taxonomic Relatedness and Chemical Mode of Action in Acute Interspecies Estimation Models for Aquatic Species</title><secondary-title>Environmental Science &amp; Technology</secondary-title></titles><periodical><full-title>Environmental Science &amp; Technology</full-title></periodical><pages>7711-7716</pages><volume>44</volume><number>19</number><dates><year>2010</year><pub-dates><date>2010/10/01</date></pub-dates></dates><publisher>American Chemical Society</publisher><isbn>0013-936X</isbn><urls><related-urls><url>. In this process, each data point within a model (e.g., chemical pair of acute values for surrogate and predicted taxon) was systematically removed from the original model and a new model was rebuilt with the remaining data. The new model was used to estimate the toxicity value of the removed predicted species from the removed surrogate species toxicity value. For each removed data point, the N-fold difference was calculated as the greater value of the estimated/actual or actual/estimated for non-transformed values. For each model, the number of removed data points predicted within 5-fold of the actual value was determined and a cross-validation success rate was determined as the percentage of removed values predicted within 5-fold of the actual value ADDIN EN.CITE <EndNote><Cite><Author>Raimondo</Author><Year>2010</Year><RecNum>3</RecNum><DisplayText><style face="superscript">4</style></DisplayText><record><rec-number>3</rec-number><foreign-keys><key app="EN" db-id="0feedwazb55ae5eeeavvx5x2rsevpzsd9w9z" timestamp="1441047310">3</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Raimondo, Sandy</author><author>Jackson, Crystal R.</author><author>Barron, Mace G.</author></authors></contributors><titles><title>Influence of Taxonomic Relatedness and Chemical Mode of Action in Acute Interspecies Estimation Models for Aquatic Species</title><secondary-title>Environmental Science &amp; Technology</secondary-title></titles><periodical><full-title>Environmental Science &amp; Technology</full-title></periodical><pages>7711-7716</pages><volume>44</volume><number>19</number><dates><year>2010</year><pub-dates><date>2010/10/01</date></pub-dates></dates><publisher>American Chemical Society</publisher><isbn>0013-936X</isbn><urls><related-urls><url>. The 5-fold range represents standard inter-laboratory variation of a toxicity value tested for the same species and chemical as demonstrated in previous studiesPEVuZE5vdGU+PENpdGU+PEF1dGhvcj5GYWlyYnJvdGhlcjwvQXV0aG9yPjxZZWFyPjIwMDg8L1ll

YXI+PFJlY051bT4xNzwvUmVjTnVtPjxEaXNwbGF5VGV4dD48c3R5bGUgZmFjZT0ic3VwZXJzY3Jp

cHQiPjQsIDUsIDktMTE8L3N0eWxlPjwvRGlzcGxheVRleHQ+PHJlY29yZD48cmVjLW51bWJlcj4x

NzwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9IjBmZWVkd2F6

YjU1YWU1ZWVlYXZ2eDV4MnJzZXZwenNkOXc5eiIgdGltZXN0YW1wPSIxNDQxMDUwMTc5Ij4xNzwv

a2V5PjwvZm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJCb29rIFNlY3Rpb24iPjU8L3JlZi10

eXBlPjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5GYWlyYnJvdGhlciwgQTwvYXV0aG9y

PjwvYXV0aG9ycz48c2Vjb25kYXJ5LWF1dGhvcnM+PGF1dGhvcj5TLlIuIEpvcmdlbnNlbjwvYXV0

aG9yPjxhdXRob3I+IEIuRC4gRmF0aDwvYXV0aG9yPjwvc2Vjb25kYXJ5LWF1dGhvcnM+PC9jb250

cmlidXRvcnM+PHRpdGxlcz48dGl0bGU+UmlzayBtYW5hZ2VtZW50IHNhZmV0eSBmYWN0b3I8L3Rp

dGxlPjxzZWNvbmRhcnktdGl0bGU+RW5jeWxvcGVkaWEgb2YgRWNvbG9neTwvc2Vjb25kYXJ5LXRp

dGxlPjwvdGl0bGVzPjx2b2x1bWU+NDwvdm9sdW1lPjxzZWN0aW9uPkVjb3RveGljb2xvZ3k8L3Nl

Y3Rpb24+PGRhdGVzPjx5ZWFyPjIwMDg8L3llYXI+PC9kYXRlcz48cHViLWxvY2F0aW9uPk94Zm9y

ZCwgVUs8L3B1Yi1sb2NhdGlvbj48cHVibGlzaGVyPkVsc2V2aWVyPC9wdWJsaXNoZXI+PHVybHM+

PC91cmxzPjwvcmVjb3JkPjwvQ2l0ZT48Q2l0ZT48QXV0aG9yPlJhaW1vbmRvPC9BdXRob3I+PFll

YXI+MjAxMDwvWWVhcj48UmVjTnVtPjM8L1JlY051bT48cmVjb3JkPjxyZWMtbnVtYmVyPjM8L3Jl

Yy1udW1iZXI+PGZvcmVpZ24ta2V5cz48a2V5IGFwcD0iRU4iIGRiLWlkPSIwZmVlZHdhemI1NWFl

NWVlZWF2dng1eDJyc2V2cHpzZDl3OXoiIHRpbWVzdGFtcD0iMTQ0MTA0NzMxMCI+Mzwva2V5Pjwv

Zm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJKb3VybmFsIEFydGljbGUiPjE3PC9yZWYtdHlw

ZT48Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+UmFpbW9uZG8sIFNhbmR5PC9hdXRob3I+

PGF1dGhvcj5KYWNrc29uLCBDcnlzdGFsIFIuPC9hdXRob3I+PGF1dGhvcj5CYXJyb24sIE1hY2Ug

Ry48L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PHRpdGxlcz48dGl0bGU+SW5mbHVl

bmNlIG9mIFRheG9ub21pYyBSZWxhdGVkbmVzcyBhbmQgQ2hlbWljYWwgTW9kZSBvZiBBY3Rpb24g

aW4gQWN1dGUgSW50ZXJzcGVjaWVzIEVzdGltYXRpb24gTW9kZWxzIGZvciBBcXVhdGljIFNwZWNp

ZXM8L3RpdGxlPjxzZWNvbmRhcnktdGl0bGU+RW52aXJvbm1lbnRhbCBTY2llbmNlICZhbXA7IFRl

Y2hub2xvZ3k8L3NlY29uZGFyeS10aXRsZT48L3RpdGxlcz48cGVyaW9kaWNhbD48ZnVsbC10aXRs

ZT5FbnZpcm9ubWVudGFsIFNjaWVuY2UgJmFtcDsgVGVjaG5vbG9neTwvZnVsbC10aXRsZT48L3Bl

cmlvZGljYWw+PHBhZ2VzPjc3MTEtNzcxNjwvcGFnZXM+PHZvbHVtZT40NDwvdm9sdW1lPjxudW1i

ZXI+MTk8L251bWJlcj48ZGF0ZXM+PHllYXI+MjAxMDwveWVhcj48cHViLWRhdGVzPjxkYXRlPjIw

MTAvMTAvMDE8L2RhdGU+PC9wdWItZGF0ZXM+PC9kYXRlcz48cHVibGlzaGVyPkFtZXJpY2FuIENo

ZW1pY2FsIFNvY2lldHk8L3B1Ymxpc2hlcj48aXNibj4wMDEzLTkzNlg8L2lzYm4+PHVybHM+PHJl

bGF0ZWQtdXJscz48dXJsPmh0dHA6Ly9keC5kb2kub3JnLzEwLjEwMjEvZXMxMDE2MzBiPC91cmw+

PC9yZWxhdGVkLXVybHM+PC91cmxzPjxlbGVjdHJvbmljLXJlc291cmNlLW51bT4xMC4xMDIxL2Vz

MTAxNjMwYjwvZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+PC9yZWNvcmQ+PC9DaXRlPjxDaXRlPjxB

dXRob3I+UmFpbW9uZG88L0F1dGhvcj48WWVhcj4yMDA5PC9ZZWFyPjxSZWNOdW0+OTwvUmVjTnVt

PjxyZWNvcmQ+PHJlYy1udW1iZXI+OTwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBw

PSJFTiIgZGItaWQ9IjBmZWVkd2F6YjU1YWU1ZWVlYXZ2eDV4MnJzZXZwenNkOXc5eiIgdGltZXN0

YW1wPSIxNDQxMDQ4NjI0Ij45PC9rZXk+PC9mb3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9Ikpv

dXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBlPjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhv

cj5SYWltb25kbywgU2FuZHk8L2F1dGhvcj48YXV0aG9yPlZpdmlhbiwgRGVib3JhaCBOPC9hdXRo

b3I+PGF1dGhvcj5CYXJyb24sIE1hY2UgRzwvYXV0aG9yPjwvYXV0aG9ycz48L2NvbnRyaWJ1dG9y

cz48dGl0bGVzPjx0aXRsZT5TdGFuZGFyZGl6aW5nIGFjdXRlIHRveGljaXR5IGRhdGEgZm9yIHVz

ZSBpbiBlY290b3hpY29sb2d5IG1vZGVsczogaW5mbHVlbmNlIG9mIHRlc3QgdHlwZSwgbGlmZSBz

dGFnZSwgYW5kIGNvbmNlbnRyYXRpb24gcmVwb3J0aW5nPC90aXRsZT48c2Vjb25kYXJ5LXRpdGxl

PkVjb3RveGljb2xvZ3k8L3NlY29uZGFyeS10aXRsZT48L3RpdGxlcz48cGVyaW9kaWNhbD48ZnVs

bC10aXRsZT5FY290b3hpY29sb2d5PC9mdWxsLXRpdGxlPjwvcGVyaW9kaWNhbD48cGFnZXM+OTE4

LTkyODwvcGFnZXM+PHZvbHVtZT4xODwvdm9sdW1lPjxudW1iZXI+NzwvbnVtYmVyPjxkYXRlcz48

eWVhcj4yMDA5PC95ZWFyPjwvZGF0ZXM+PGlzYm4+MDk2My05MjkyPC9pc2JuPjx1cmxzPjwvdXJs

cz48L3JlY29yZD48L0NpdGU+PENpdGU+PEF1dGhvcj5SYWltb25kbzwvQXV0aG9yPjxZZWFyPjIw

MDc8L1llYXI+PFJlY051bT4xMTwvUmVjTnVtPjxyZWNvcmQ+PHJlYy1udW1iZXI+MTE8L3JlYy1u

dW1iZXI+PGZvcmVpZ24ta2V5cz48a2V5IGFwcD0iRU4iIGRiLWlkPSIwZmVlZHdhemI1NWFlNWVl

ZWF2dng1eDJyc2V2cHpzZDl3OXoiIHRpbWVzdGFtcD0iMTQ0MTA0ODc2NiI+MTE8L2tleT48L2Zv

cmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwvcmVmLXR5cGU+

PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPlJhaW1vbmRvLCBTPC9hdXRob3I+PGF1dGhv

cj5NaW5lYXUsIFA8L2F1dGhvcj48YXV0aG9yPkJhcnJvbiwgTUc8L2F1dGhvcj48L2F1dGhvcnM+

PC9jb250cmlidXRvcnM+PHRpdGxlcz48dGl0bGU+RXN0aW1hdGlvbiBvZiBjaGVtaWNhbCB0b3hp

Y2l0eSB0byB3aWxkbGlmZSBzcGVjaWVzIHVzaW5nIGludGVyc3BlY2llcyBjb3JyZWxhdGlvbiBt

b2RlbHM8L3RpdGxlPjxzZWNvbmRhcnktdGl0bGU+RW52aXJvbm1lbnRhbCBzY2llbmNlICZhbXA7

IHRlY2hub2xvZ3k8L3NlY29uZGFyeS10aXRsZT48L3RpdGxlcz48cGVyaW9kaWNhbD48ZnVsbC10

aXRsZT5FbnZpcm9ubWVudGFsIFNjaWVuY2UgJmFtcDsgVGVjaG5vbG9neTwvZnVsbC10aXRsZT48

L3BlcmlvZGljYWw+PHBhZ2VzPjU4ODgtNTg5NDwvcGFnZXM+PHZvbHVtZT40MTwvdm9sdW1lPjxu

dW1iZXI+MTY8L251bWJlcj48ZGF0ZXM+PHllYXI+MjAwNzwveWVhcj48L2RhdGVzPjxpc2JuPjAw

MTMtOTM2WDwvaXNibj48dXJscz48L3VybHM+PC9yZWNvcmQ+PC9DaXRlPjxDaXRlPjxBdXRob3I+

UmFpbW9uZG88L0F1dGhvcj48WWVhcj4yMDE2PC9ZZWFyPjxSZWNOdW0+MTQ8L1JlY051bT48cmVj

b3JkPjxyZWMtbnVtYmVyPjE0PC9yZWMtbnVtYmVyPjxmb3JlaWduLWtleXM+PGtleSBhcHA9IkVO

IiBkYi1pZD0iMGZlZWR3YXpiNTVhZTVlZWVhdnZ4NXgycnNldnB6c2Q5dzl6IiB0aW1lc3RhbXA9

IjE0NDEwNDkyMTciPjE0PC9rZXk+PC9mb3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJu

YWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBlPjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5S

YWltb25kbywgUy48L2F1dGhvcj48YXV0aG9yPkxpbGF2b2lzLCBDLlIuPC9hdXRob3I+PGF1dGhv

cj5MZWUsIEwuPC9hdXRob3I+PGF1dGhvcj5BdWdzcHVyZ2VyLCBULjwvYXV0aG9yPjxhdXRob3I+

V2FuZywgTi48L2F1dGhvcj48YXV0aG9yPkluZ2Vyc29sbCwgQy5HLjwvYXV0aG9yPjxhdXRob3I+

QmF1ZXIsIEMuPC9hdXRob3I+PGF1dGhvcj5IYW1tZXIsIEUuPC9hdXRob3I+PGF1dGhvcj5CYXJy

b24sIE0uRy48L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PHRpdGxlcz48dGl0bGU+

QXNzZXNzaW5nIHZhcmlhYmlsaXR5IGluIGNoZW1pY2FsIGFjdXRlIHRveGljaXR5IG9mIHVuaW9u

aWQgbXVzc2VsczogaW5mbHVlbmNlIG9mIGludHJhLWFuZCBpbnRlci1sYWJvcmF0b3J5IHRlc3Rp

bmcsIGxpZmUgc3RhZ2UsIGFuZCBzcGVjaWVzPC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPkVudmly

b25tZW50YWwgVG94aWNvbG9neSBhbmQgQ2hlbWlzdHJ5PC9zZWNvbmRhcnktdGl0bGU+PC90aXRs

ZXM+PHBlcmlvZGljYWw+PGZ1bGwtdGl0bGU+RW52aXJvbm1lbnRhbCBUb3hpY29sb2d5IGFuZCBD

aGVtaXN0cnk8L2Z1bGwtdGl0bGU+PC9wZXJpb2RpY2FsPjx2b2x1bWU+SW4gcHJpbnQ8L3ZvbHVt

ZT48ZGF0ZXM+PHllYXI+MjAxNjwveWVhcj48L2RhdGVzPjx1cmxzPjwvdXJscz48ZWxlY3Ryb25p

Yy1yZXNvdXJjZS1udW0+MTAuMTAwMi9ldGMuMzI0NTwvZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+

PC9yZWNvcmQ+PC9DaXRlPjwvRW5kTm90ZT4A

ADDIN EN.CITE PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5GYWlyYnJvdGhlcjwvQXV0aG9yPjxZZWFyPjIwMDg8L1ll

YXI+PFJlY051bT4xNzwvUmVjTnVtPjxEaXNwbGF5VGV4dD48c3R5bGUgZmFjZT0ic3VwZXJzY3Jp

cHQiPjQsIDUsIDktMTE8L3N0eWxlPjwvRGlzcGxheVRleHQ+PHJlY29yZD48cmVjLW51bWJlcj4x

NzwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9IjBmZWVkd2F6

YjU1YWU1ZWVlYXZ2eDV4MnJzZXZwenNkOXc5eiIgdGltZXN0YW1wPSIxNDQxMDUwMTc5Ij4xNzwv

a2V5PjwvZm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJCb29rIFNlY3Rpb24iPjU8L3JlZi10

eXBlPjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5GYWlyYnJvdGhlciwgQTwvYXV0aG9y

PjwvYXV0aG9ycz48c2Vjb25kYXJ5LWF1dGhvcnM+PGF1dGhvcj5TLlIuIEpvcmdlbnNlbjwvYXV0

aG9yPjxhdXRob3I+IEIuRC4gRmF0aDwvYXV0aG9yPjwvc2Vjb25kYXJ5LWF1dGhvcnM+PC9jb250

cmlidXRvcnM+PHRpdGxlcz48dGl0bGU+UmlzayBtYW5hZ2VtZW50IHNhZmV0eSBmYWN0b3I8L3Rp

dGxlPjxzZWNvbmRhcnktdGl0bGU+RW5jeWxvcGVkaWEgb2YgRWNvbG9neTwvc2Vjb25kYXJ5LXRp

dGxlPjwvdGl0bGVzPjx2b2x1bWU+NDwvdm9sdW1lPjxzZWN0aW9uPkVjb3RveGljb2xvZ3k8L3Nl

Y3Rpb24+PGRhdGVzPjx5ZWFyPjIwMDg8L3llYXI+PC9kYXRlcz48cHViLWxvY2F0aW9uPk94Zm9y

ZCwgVUs8L3B1Yi1sb2NhdGlvbj48cHVibGlzaGVyPkVsc2V2aWVyPC9wdWJsaXNoZXI+PHVybHM+

PC91cmxzPjwvcmVjb3JkPjwvQ2l0ZT48Q2l0ZT48QXV0aG9yPlJhaW1vbmRvPC9BdXRob3I+PFll

YXI+MjAxMDwvWWVhcj48UmVjTnVtPjM8L1JlY051bT48cmVjb3JkPjxyZWMtbnVtYmVyPjM8L3Jl

Yy1udW1iZXI+PGZvcmVpZ24ta2V5cz48a2V5IGFwcD0iRU4iIGRiLWlkPSIwZmVlZHdhemI1NWFl

NWVlZWF2dng1eDJyc2V2cHpzZDl3OXoiIHRpbWVzdGFtcD0iMTQ0MTA0NzMxMCI+Mzwva2V5Pjwv

Zm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJKb3VybmFsIEFydGljbGUiPjE3PC9yZWYtdHlw

ZT48Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+UmFpbW9uZG8sIFNhbmR5PC9hdXRob3I+

PGF1dGhvcj5KYWNrc29uLCBDcnlzdGFsIFIuPC9hdXRob3I+PGF1dGhvcj5CYXJyb24sIE1hY2Ug

Ry48L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PHRpdGxlcz48dGl0bGU+SW5mbHVl

bmNlIG9mIFRheG9ub21pYyBSZWxhdGVkbmVzcyBhbmQgQ2hlbWljYWwgTW9kZSBvZiBBY3Rpb24g

aW4gQWN1dGUgSW50ZXJzcGVjaWVzIEVzdGltYXRpb24gTW9kZWxzIGZvciBBcXVhdGljIFNwZWNp

ZXM8L3RpdGxlPjxzZWNvbmRhcnktdGl0bGU+RW52aXJvbm1lbnRhbCBTY2llbmNlICZhbXA7IFRl

Y2hub2xvZ3k8L3NlY29uZGFyeS10aXRsZT48L3RpdGxlcz48cGVyaW9kaWNhbD48ZnVsbC10aXRs

ZT5FbnZpcm9ubWVudGFsIFNjaWVuY2UgJmFtcDsgVGVjaG5vbG9neTwvZnVsbC10aXRsZT48L3Bl

cmlvZGljYWw+PHBhZ2VzPjc3MTEtNzcxNjwvcGFnZXM+PHZvbHVtZT40NDwvdm9sdW1lPjxudW1i

ZXI+MTk8L251bWJlcj48ZGF0ZXM+PHllYXI+MjAxMDwveWVhcj48cHViLWRhdGVzPjxkYXRlPjIw

MTAvMTAvMDE8L2RhdGU+PC9wdWItZGF0ZXM+PC9kYXRlcz48cHVibGlzaGVyPkFtZXJpY2FuIENo

ZW1pY2FsIFNvY2lldHk8L3B1Ymxpc2hlcj48aXNibj4wMDEzLTkzNlg8L2lzYm4+PHVybHM+PHJl

bGF0ZWQtdXJscz48dXJsPmh0dHA6Ly9keC5kb2kub3JnLzEwLjEwMjEvZXMxMDE2MzBiPC91cmw+

PC9yZWxhdGVkLXVybHM+PC91cmxzPjxlbGVjdHJvbmljLXJlc291cmNlLW51bT4xMC4xMDIxL2Vz

MTAxNjMwYjwvZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+PC9yZWNvcmQ+PC9DaXRlPjxDaXRlPjxB

dXRob3I+UmFpbW9uZG88L0F1dGhvcj48WWVhcj4yMDA5PC9ZZWFyPjxSZWNOdW0+OTwvUmVjTnVt

PjxyZWNvcmQ+PHJlYy1udW1iZXI+OTwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBw

PSJFTiIgZGItaWQ9IjBmZWVkd2F6YjU1YWU1ZWVlYXZ2eDV4MnJzZXZwenNkOXc5eiIgdGltZXN0

YW1wPSIxNDQxMDQ4NjI0Ij45PC9rZXk+PC9mb3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9Ikpv

dXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBlPjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhv

cj5SYWltb25kbywgU2FuZHk8L2F1dGhvcj48YXV0aG9yPlZpdmlhbiwgRGVib3JhaCBOPC9hdXRo

b3I+PGF1dGhvcj5CYXJyb24sIE1hY2UgRzwvYXV0aG9yPjwvYXV0aG9ycz48L2NvbnRyaWJ1dG9y

cz48dGl0bGVzPjx0aXRsZT5TdGFuZGFyZGl6aW5nIGFjdXRlIHRveGljaXR5IGRhdGEgZm9yIHVz

ZSBpbiBlY290b3hpY29sb2d5IG1vZGVsczogaW5mbHVlbmNlIG9mIHRlc3QgdHlwZSwgbGlmZSBz

dGFnZSwgYW5kIGNvbmNlbnRyYXRpb24gcmVwb3J0aW5nPC90aXRsZT48c2Vjb25kYXJ5LXRpdGxl

PkVjb3RveGljb2xvZ3k8L3NlY29uZGFyeS10aXRsZT48L3RpdGxlcz48cGVyaW9kaWNhbD48ZnVs

bC10aXRsZT5FY290b3hpY29sb2d5PC9mdWxsLXRpdGxlPjwvcGVyaW9kaWNhbD48cGFnZXM+OTE4

LTkyODwvcGFnZXM+PHZvbHVtZT4xODwvdm9sdW1lPjxudW1iZXI+NzwvbnVtYmVyPjxkYXRlcz48

eWVhcj4yMDA5PC95ZWFyPjwvZGF0ZXM+PGlzYm4+MDk2My05MjkyPC9pc2JuPjx1cmxzPjwvdXJs

cz48L3JlY29yZD48L0NpdGU+PENpdGU+PEF1dGhvcj5SYWltb25kbzwvQXV0aG9yPjxZZWFyPjIw

MDc8L1llYXI+PFJlY051bT4xMTwvUmVjTnVtPjxyZWNvcmQ+PHJlYy1udW1iZXI+MTE8L3JlYy1u

dW1iZXI+PGZvcmVpZ24ta2V5cz48a2V5IGFwcD0iRU4iIGRiLWlkPSIwZmVlZHdhemI1NWFlNWVl

ZWF2dng1eDJyc2V2cHpzZDl3OXoiIHRpbWVzdGFtcD0iMTQ0MTA0ODc2NiI+MTE8L2tleT48L2Zv

cmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwvcmVmLXR5cGU+

PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPlJhaW1vbmRvLCBTPC9hdXRob3I+PGF1dGhv

cj5NaW5lYXUsIFA8L2F1dGhvcj48YXV0aG9yPkJhcnJvbiwgTUc8L2F1dGhvcj48L2F1dGhvcnM+

PC9jb250cmlidXRvcnM+PHRpdGxlcz48dGl0bGU+RXN0aW1hdGlvbiBvZiBjaGVtaWNhbCB0b3hp

Y2l0eSB0byB3aWxkbGlmZSBzcGVjaWVzIHVzaW5nIGludGVyc3BlY2llcyBjb3JyZWxhdGlvbiBt

b2RlbHM8L3RpdGxlPjxzZWNvbmRhcnktdGl0bGU+RW52aXJvbm1lbnRhbCBzY2llbmNlICZhbXA7

IHRlY2hub2xvZ3k8L3NlY29uZGFyeS10aXRsZT48L3RpdGxlcz48cGVyaW9kaWNhbD48ZnVsbC10

aXRsZT5FbnZpcm9ubWVudGFsIFNjaWVuY2UgJmFtcDsgVGVjaG5vbG9neTwvZnVsbC10aXRsZT48

L3BlcmlvZGljYWw+PHBhZ2VzPjU4ODgtNTg5NDwvcGFnZXM+PHZvbHVtZT40MTwvdm9sdW1lPjxu

dW1iZXI+MTY8L251bWJlcj48ZGF0ZXM+PHllYXI+MjAwNzwveWVhcj48L2RhdGVzPjxpc2JuPjAw

MTMtOTM2WDwvaXNibj48dXJscz48L3VybHM+PC9yZWNvcmQ+PC9DaXRlPjxDaXRlPjxBdXRob3I+

UmFpbW9uZG88L0F1dGhvcj48WWVhcj4yMDE2PC9ZZWFyPjxSZWNOdW0+MTQ8L1JlY051bT48cmVj

b3JkPjxyZWMtbnVtYmVyPjE0PC9yZWMtbnVtYmVyPjxmb3JlaWduLWtleXM+PGtleSBhcHA9IkVO

IiBkYi1pZD0iMGZlZWR3YXpiNTVhZTVlZWVhdnZ4NXgycnNldnB6c2Q5dzl6IiB0aW1lc3RhbXA9

IjE0NDEwNDkyMTciPjE0PC9rZXk+PC9mb3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJu

YWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBlPjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5S

YWltb25kbywgUy48L2F1dGhvcj48YXV0aG9yPkxpbGF2b2lzLCBDLlIuPC9hdXRob3I+PGF1dGhv

cj5MZWUsIEwuPC9hdXRob3I+PGF1dGhvcj5BdWdzcHVyZ2VyLCBULjwvYXV0aG9yPjxhdXRob3I+

V2FuZywgTi48L2F1dGhvcj48YXV0aG9yPkluZ2Vyc29sbCwgQy5HLjwvYXV0aG9yPjxhdXRob3I+

QmF1ZXIsIEMuPC9hdXRob3I+PGF1dGhvcj5IYW1tZXIsIEUuPC9hdXRob3I+PGF1dGhvcj5CYXJy

b24sIE0uRy48L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PHRpdGxlcz48dGl0bGU+

QXNzZXNzaW5nIHZhcmlhYmlsaXR5IGluIGNoZW1pY2FsIGFjdXRlIHRveGljaXR5IG9mIHVuaW9u

aWQgbXVzc2VsczogaW5mbHVlbmNlIG9mIGludHJhLWFuZCBpbnRlci1sYWJvcmF0b3J5IHRlc3Rp

bmcsIGxpZmUgc3RhZ2UsIGFuZCBzcGVjaWVzPC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPkVudmly

b25tZW50YWwgVG94aWNvbG9neSBhbmQgQ2hlbWlzdHJ5PC9zZWNvbmRhcnktdGl0bGU+PC90aXRs

ZXM+PHBlcmlvZGljYWw+PGZ1bGwtdGl0bGU+RW52aXJvbm1lbnRhbCBUb3hpY29sb2d5IGFuZCBD

aGVtaXN0cnk8L2Z1bGwtdGl0bGU+PC9wZXJpb2RpY2FsPjx2b2x1bWU+SW4gcHJpbnQ8L3ZvbHVt

ZT48ZGF0ZXM+PHllYXI+MjAxNjwveWVhcj48L2RhdGVzPjx1cmxzPjwvdXJscz48ZWxlY3Ryb25p

Yy1yZXNvdXJjZS1udW0+MTAuMTAwMi9ldGMuMzI0NTwvZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+

PC9yZWNvcmQ+PC9DaXRlPjwvRW5kTm90ZT4A

ADDIN EN.CITE.DATA 4, 5, 9-11. A separate set of MOA-specific models was developed using only chemicals from a single MOA for each model. MOA-specific models have been shown to be more robust than models comprised of chemicals from multiple MOAs ADDIN EN.CITE <EndNote><Cite><Author>Raimondo</Author><Year>2010</Year><RecNum>3</RecNum><DisplayText><style face="superscript">4</style></DisplayText><record><rec-number>3</rec-number><foreign-keys><key app="EN" db-id="0feedwazb55ae5eeeavvx5x2rsevpzsd9w9z" timestamp="1441047310">3</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Raimondo, Sandy</author><author>Jackson, Crystal R.</author><author>Barron, Mace G.</author></authors></contributors><titles><title>Influence of Taxonomic Relatedness and Chemical Mode of Action in Acute Interspecies Estimation Models for Aquatic Species</title><secondary-title>Environmental Science &amp; Technology</secondary-title></titles><periodical><full-title>Environmental Science &amp; Technology</full-title></periodical><pages>7711-7716</pages><volume>44</volume><number>19</number><dates><year>2010</year><pub-dates><date>2010/10/01</date></pub-dates></dates><publisher>American Chemical Society</publisher><isbn>0013-936X</isbn><urls><related-urls><url>. Model Selection GuidelinesModel selection guidelines were developed to reduce the amount of professional judgement needed to select the best available model when multiple ICE models (i.e., multiple surrogate species) were available for predicting to one taxon. Selection guidance was determined from the combination of model attributes (mean square error; MSE, R2, and slope) that optimized the percent of cross-validated data points predicted within 5-fold of the measured value. By using models rebuilt in the cross-validation, we maintained independence between the predicted and measured values. Each model was assigned a taxonomic distance (TD) that identified the relatedness of the surrogate and predicted taxon (within genus = 1, within family = 2, etc). An iterative approach was used in which MSE, R2, and slope were randomly selected because these three parameters were autocorrelated and related to model robustness. We identified rebuilt models that contained the parameters within the randomly selected limits, and determined the percent of predicted data points from these models that were within 5-fold of the actual value. Parameters were randomly adjusted one at a time in increments of 0.05. This process continued until model parameters converged on an optimized percent of accurately predicted values. Optimization was achieved at the highest MSE, lowest R2 and lowest slope that corresponded to the highest percent accuracy and the point at which no additional data points were added. Each iteration was required to have a minimum of 50 data points was required to inform the optimization process. Prior to this process, confidence intervals were calculated for all cross-validated data points. Only predicted values with an upper 95th confidence limit less than 5-fold greater than the predicted value were used because large confidence intervals are often indicative of values that are outside the model training set. This was performed separately for each taxonomic level, and separately within taxonomic levels for models with N > 10 and N < 10. The optimized values for each model attribute were then applied as the model selection guidelines. This analysis was only performed on species level models because the objective of genus and family models was protectiveness of multiple species within the taxon rather than prediction accuracy of a single point. Evaluation of Web-ICE for Listed SpeciesA case study approach was used to evaluate the optimized selection guidelines and to assess the protectiveness of genus and family models applied to listed species. The 13 chemicals chosen for the case study represented priority chemicals (primarily pesticides) encompassing a broad range of MOAs (Table 1). The 8 selected species represented a diverse taxonomic range of listed populations, including fish, amphibians, and molluscs from either the Sacramento California ADDIN EN.CITE <EndNote><Cite><Author>Hoogeweg</Author><Year>2012</Year><RecNum>23</RecNum><DisplayText><style face="superscript">12</style></DisplayText><record><rec-number>23</rec-number><foreign-keys><key app="EN" db-id="0feedwazb55ae5eeeavvx5x2rsevpzsd9w9z" timestamp="1443392903">23</key></foreign-keys><ref-type name="Book Section">5</ref-type><contributors><authors><author>Cornelis G. Hoogeweg</author><author>Debra L. Denton</author><author>Rich Breuer</author><author>W. Martin Williams</author><author>Patti TenBrook</author></authors></contributors><titles><title>Development of a Spatial-Temporal Co-occurrence Index To Evaluate Relative Pesticide Risks to Threatened and Endangered Species</title><secondary-title>Pesticide Regulation and the Endangered Species Act</secondary-title><tertiary-title>ACS Symposium Series</tertiary-title></titles><pages>303-323</pages><volume>1111</volume><number>1111</number><num-vols>0</num-vols><section>22</section><dates><year>2012</year></dates><publisher>American Chemical Society</publisher><isbn>0-8412-2703-9</isbn><urls><related-urls><url> or Ohio River Valleys with toxicity data and models available in the ICE database (Table 1). First, all ICE models available for predicting to the genera and families of the listed case study species were identified using both sets of models (i.e., minimum and geometric mean models). Toxicity values for all possible surrogate species were selected from data available in the Web-ICE database to ensure data quality and standardization. The geometric mean of the surrogate species toxicity values was used as the model input for each chemical and surrogate species when multiple toxicity records were available. Toxicity estimates for each chemical and 95% confidence intervals (CI) were calculated for each of the available models. When predictions from multiple surrogates were available for a given taxon and chemical, we applied optimized model selection guidance to identify the best model (Fig. 1). Model selection was first based on the taxonomic distance of the surrogate and predicted taxon, because previous analyses indicated higher prediction accuracy for models from closely related taxa. Models were then chosen with a low MSE (≤ 0.95), and a narrow 95% CI. If models had similar MSE, the model with the greater N was selected. Protectiveness of the toxicity estimate and the lower 95% CI predicted from the best model for each taxon and chemical was determined by comparing each ICE model prediction to the measured minimum toxicity value for that taxon available in the ICE database. For example, the model prediction to the family Salmonidae for malathion was compared to the minimum value (lowest) Salmonidae LC50 for malathion available in the ICE database. If the model prediction was greater than the minimum toxicity value in the database, then the minimum value was compared to the lower 95% CI of the predicted value. The number of model predictions or lower CI values that were protective of the most sensitive value within each taxon was compared for the genus and family level and within each prediction category. Each model prediction was then categorized as either protective, the lower 95% CI protective, or not protective for genus and family models developed from both minimum toxicity values and geometric means. ResultsDatabase and model developmentThe expanded Web-ICE database (v. 3.3) contained a substantial increase in the number of toxicity records, species, chemicals, and models, including those predicting to listed species (Table 2). The developed ICE models were able to predict toxicity values for 25 listed species and 20 genera and 20 families containing U.S. federally listed species (Table 3). Overall, species model prediction accuracy and cross validation success were consistent with previous results for a smaller dataset ADDIN EN.CITE <EndNote><Cite><Author>Raimondo</Author><Year>2010</Year><RecNum>3</RecNum><DisplayText><style face="superscript">4</style></DisplayText><record><rec-number>3</rec-number><foreign-keys><key app="EN" db-id="0feedwazb55ae5eeeavvx5x2rsevpzsd9w9z" timestamp="1441047310">3</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Raimondo, Sandy</author><author>Jackson, Crystal R.</author><author>Barron, Mace G.</author></authors></contributors><titles><title>Influence of Taxonomic Relatedness and Chemical Mode of Action in Acute Interspecies Estimation Models for Aquatic Species</title><secondary-title>Environmental Science &amp; Technology</secondary-title></titles><periodical><full-title>Environmental Science &amp; Technology</full-title></periodical><pages>7711-7716</pages><volume>44</volume><number>19</number><dates><year>2010</year><pub-dates><date>2010/10/01</date></pub-dates></dates><publisher>American Chemical Society</publisher><isbn>0013-936X</isbn><urls><related-urls><url>. Models developed with predicted and surrogate species within the same family predicted within 5- and 10-fold of the actual value for 92 and 98% of data points, respectively (Table 4). All model parameters are available on the EPA Web-ICE application webpage (www3.webice). MOA-specific models were developed for acetylcholinesterase inhibition, electron transport inhibition, iono/osmoregulatory/circulatory impairment, narcosis, neurotoxicity, and reactivity, and had similar performance as previous MOA-specific models ADDIN EN.CITE <EndNote><Cite><Author>Raimondo</Author><Year>2010</Year><RecNum>3</RecNum><DisplayText><style face="superscript">4</style></DisplayText><record><rec-number>3</rec-number><foreign-keys><key app="EN" db-id="0feedwazb55ae5eeeavvx5x2rsevpzsd9w9z" timestamp="1441047310">3</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Raimondo, Sandy</author><author>Jackson, Crystal R.</author><author>Barron, Mace G.</author></authors></contributors><titles><title>Influence of Taxonomic Relatedness and Chemical Mode of Action in Acute Interspecies Estimation Models for Aquatic Species</title><secondary-title>Environmental Science &amp; Technology</secondary-title></titles><periodical><full-title>Environmental Science &amp; Technology</full-title></periodical><pages>7711-7716</pages><volume>44</volume><number>19</number><dates><year>2010</year><pub-dates><date>2010/10/01</date></pub-dates></dates><publisher>American Chemical Society</publisher><isbn>0013-936X</isbn><urls><related-urls><url>. Model selection & prediction guidanceOptimization analysis of model parameters based on model MSE, R2, and slope indicated that models with MSE < 0.95, R2 > 0.6, and slope > 0.6 will have the highest prediction accuracy (Table 5). For models with a taxonomic distance of 6 (same Kingdom) that have N > 10, models with MSE < 0.55 will have improved prediction accuracy because of the increased variation in toxicity data associated with less closely related taxa. Distributions of each model parameter by taxonomic distance are available in the Supporting Information (Fig. S1). Figure 1 summarizes the procedures for model selection based on the optimized model parameters when models for multiple surrogates are available. Web-ICE users should first select models with the closest taxonomic distance and then apply the optimized model parameters to identify the best model. Optimization analysis also indicated selection of models with confidence intervals within 5-fold of the predicted value, although using 3-fold slightly improves prediction accuracy, but not substantially. Case study analysis of model protectivenessThe case study of 13 chemicals and 8 listed species resulted in 599 potential minimum and 613 geometric mean ICE model predictions. Predictions were dependent on the availability of surrogate toxicity values and ICE models for predicted taxa. Applying model selection guidance resulted in 39 accepted ICE predictions for the listed species for each set of models (Supporting Information SI 002; Table S1). For both minimum and geometric mean models, 22 of the 39 predicted values were from family models and 17 were genus models. The Supporting Information (SI 002) provides all available minimum models predicting to these taxa with the best selected model identified. When model predictions were available for both a family and a genus within that same family (e.g., Oncorhynchus and Salmonidae), we selected the family model if both models had similar parameters (Table S2). Because family models are comprised of greater taxa diversity, estimates derived from these models can be considered to be protective of more species. In other cases genus models may generate more conservative estimates, but model selection should ultimately be guided by the goal of the particular analysis.The predicted value for genus level minimum models was protective of the most sensitive species within the genus in 80% of cases and for 100% of instances when using the lower 95% CI (Fig. 2). For family level minimum models, predictions were protective in 77% of cases and the lower 95% CI was protective in 86% of instances (Fig. 2). Of the family level models where the toxicity of the most sensitive species was less than the lower 95% CI of the prediction (14%, N = 3 models), two of these models were at a taxonomic distance of greater than 5 because no models with a closer taxonomic distance were available. For models developed with geometric means, model predictions were protective of the most sensitive species in 29 and 32% cases for genus and family models, respectively (Fig. 2). The lower 95% CI was protective in 53% of genus models and 50% of family models built with geometric means.DiscussionSpecies extrapolation has remained a significant challenge in ecotoxicology for over 40 years. Traditionally, safety factors have been used to account for uncertainty in extrapolating between species, with larger values used for protected taxa such as endangered species ADDIN EN.CITE <EndNote><Cite><Author>Dwyer</Author><Year>2005</Year><RecNum>562</RecNum><DisplayText><style face="superscript">13</style></DisplayText><record><rec-number>562</rec-number><foreign-keys><key app="EN" db-id="0feedwazb55ae5eeeavvx5x2rsevpzsd9w9z" timestamp="1448383820">562</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Dwyer, F. J.</author><author>Mayer, F. L.</author><author>Sappington, L. C.</author><author>Buckler, D. R.</author><author>Bridges, C. M.</author><author>Greer, I. E.</author><author>Hardesty, D. K.</author><author>Henke, C. E.</author><author>Ingersoll, C. G.</author><author>Kunz, J. L.</author><author>Whites, D. W.</author><author>Augspurger, T.</author><author>Mount, D. R.</author><author>Hattala, K.</author><author>Neuderfer, G. N.</author></authors></contributors><titles><title>Assessing Contaminant Sensitivity of Endangered and Threatened Aquatic Species: Part I. Acute Toxicity of Five Chemicals</title><secondary-title>Archives of Environmental Contamination and Toxicology</secondary-title><alt-title>Arch Environ Contam Toxicol</alt-title></titles><periodical><full-title>Archives of Environmental Contamination and Toxicology</full-title></periodical><pages>143-154</pages><volume>48</volume><number>2</number><dates><year>2005</year><pub-dates><date>2005/02/01</date></pub-dates></dates><publisher>Springer-Verlag</publisher><isbn>0090-4341</isbn><urls><related-urls><url>. While potentially conservative, safety factors fail to account for taxon-specific variability in sensitivity that may occur with chemicals of different modes of action. For example, molluscs are consistently more sensitive to metals than other invertebratesPEVuZE5vdGU+PENpdGU+PEF1dGhvcj5SYWltb25kbzwvQXV0aG9yPjxZZWFyPjIwMDk8L1llYXI+

PFJlY051bT45PC9SZWNOdW0+PERpc3BsYXlUZXh0PjxzdHlsZSBmYWNlPSJzdXBlcnNjcmlwdCI+

MTEsIDE0PC9zdHlsZT48L0Rpc3BsYXlUZXh0PjxyZWNvcmQ+PHJlYy1udW1iZXI+OTwvcmVjLW51

bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9IjBmZWVkd2F6YjU1YWU1ZWVl

YXZ2eDV4MnJzZXZwenNkOXc5eiIgdGltZXN0YW1wPSIxNDQxMDQ4NjI0Ij45PC9rZXk+PC9mb3Jl

aWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBlPjxj

b250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5SYWltb25kbywgU2FuZHk8L2F1dGhvcj48YXV0

aG9yPlZpdmlhbiwgRGVib3JhaCBOPC9hdXRob3I+PGF1dGhvcj5CYXJyb24sIE1hY2UgRzwvYXV0

aG9yPjwvYXV0aG9ycz48L2NvbnRyaWJ1dG9ycz48dGl0bGVzPjx0aXRsZT5TdGFuZGFyZGl6aW5n

IGFjdXRlIHRveGljaXR5IGRhdGEgZm9yIHVzZSBpbiBlY290b3hpY29sb2d5IG1vZGVsczogaW5m

bHVlbmNlIG9mIHRlc3QgdHlwZSwgbGlmZSBzdGFnZSwgYW5kIGNvbmNlbnRyYXRpb24gcmVwb3J0

aW5nPC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPkVjb3RveGljb2xvZ3k8L3NlY29uZGFyeS10aXRs

ZT48L3RpdGxlcz48cGVyaW9kaWNhbD48ZnVsbC10aXRsZT5FY290b3hpY29sb2d5PC9mdWxsLXRp

dGxlPjwvcGVyaW9kaWNhbD48cGFnZXM+OTE4LTkyODwvcGFnZXM+PHZvbHVtZT4xODwvdm9sdW1l

PjxudW1iZXI+NzwvbnVtYmVyPjxkYXRlcz48eWVhcj4yMDA5PC95ZWFyPjwvZGF0ZXM+PGlzYm4+

MDk2My05MjkyPC9pc2JuPjx1cmxzPjwvdXJscz48L3JlY29yZD48L0NpdGU+PENpdGU+PEF1dGhv

cj5XYW5nPC9BdXRob3I+PFllYXI+MjAwNzwvWWVhcj48UmVjTnVtPjU2MTwvUmVjTnVtPjxyZWNv

cmQ+PHJlYy1udW1iZXI+NTYxPC9yZWMtbnVtYmVyPjxmb3JlaWduLWtleXM+PGtleSBhcHA9IkVO

IiBkYi1pZD0iMGZlZWR3YXpiNTVhZTVlZWVhdnZ4NXgycnNldnB6c2Q5dzl6IiB0aW1lc3RhbXA9

IjE0NDgzODA4MzEiPjU2MTwva2V5PjwvZm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJKb3Vy

bmFsIEFydGljbGUiPjE3PC9yZWYtdHlwZT48Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+

V2FuZywgTmluZzwvYXV0aG9yPjxhdXRob3I+SW5nZXJzb2xsLCBDaHJpc3RvcGhlciBHLjwvYXV0

aG9yPjxhdXRob3I+SGFyZGVzdHksIERvdWdsYXMgSy48L2F1dGhvcj48YXV0aG9yPkl2ZXksIENo

cmlzdG9waGVyIEQuPC9hdXRob3I+PGF1dGhvcj5LdW56LCBKYW1lcyBMLjwvYXV0aG9yPjxhdXRo

b3I+TWF5LCBUaG9tYXMgVy48L2F1dGhvcj48YXV0aG9yPkR3eWVyLCBGLiBKYW1lczwvYXV0aG9y

PjxhdXRob3I+Um9iZXJ0cywgQW5keSBELjwvYXV0aG9yPjxhdXRob3I+QXVnc3B1cmdlciwgVG9t

PC9hdXRob3I+PGF1dGhvcj5LYW5lLCBDeW50aGlhIE0uPC9hdXRob3I+PGF1dGhvcj5OZXZlcywg

UmljaGFyZCBKLjwvYXV0aG9yPjxhdXRob3I+QmFybmhhcnQsIE0uIENocmlzPC9hdXRob3I+PC9h

dXRob3JzPjwvY29udHJpYnV0b3JzPjx0aXRsZXM+PHRpdGxlPkFjdXRlIHRveGljaXR5IG9mIGNv

cHBlciwgYW1tb25pYSwgYW5kIGNobG9yaW5lIHRvIGdsb2NoaWRpYSBhbmQganV2ZW5pbGVzIG9m

IGZyZXNod2F0ZXIgbXVzc2VscyAodW5pb25pZGFlKTwvdGl0bGU+PHNlY29uZGFyeS10aXRsZT5F

bnZpcm9ubWVudGFsIFRveGljb2xvZ3kgYW5kIENoZW1pc3RyeTwvc2Vjb25kYXJ5LXRpdGxlPjwv

dGl0bGVzPjxwZXJpb2RpY2FsPjxmdWxsLXRpdGxlPkVudmlyb25tZW50YWwgVG94aWNvbG9neSBh

bmQgQ2hlbWlzdHJ5PC9mdWxsLXRpdGxlPjwvcGVyaW9kaWNhbD48cGFnZXM+MjAzNi0yMDQ3PC9w

YWdlcz48dm9sdW1lPjI2PC92b2x1bWU+PG51bWJlcj4xMDwvbnVtYmVyPjxrZXl3b3Jkcz48a2V5

d29yZD5GcmVzaHdhdGVyIG11c3NlbHM8L2tleXdvcmQ+PGtleXdvcmQ+R2xvY2hpZGlhPC9rZXl3

b3JkPjxrZXl3b3JkPkp1dmVuaWxlIG11c3NlbHM8L2tleXdvcmQ+PGtleXdvcmQ+QWN1dGUgdG94

aWNpdHk8L2tleXdvcmQ+PGtleXdvcmQ+V2F0ZXIgcXVhbGl0eSBjcml0ZXJpYTwva2V5d29yZD48

L2tleXdvcmRzPjxkYXRlcz48eWVhcj4yMDA3PC95ZWFyPjwvZGF0ZXM+PHB1Ymxpc2hlcj5XaWxl

eSBQZXJpb2RpY2FscywgSW5jLjwvcHVibGlzaGVyPjxpc2JuPjE1NTItODYxODwvaXNibj48dXJs

cz48cmVsYXRlZC11cmxzPjx1cmw+aHR0cDovL2R4LmRvaS5vcmcvMTAuMTg5Ny8wNi01MjNSLjE8

L3VybD48L3JlbGF0ZWQtdXJscz48L3VybHM+PGVsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjEwLjE4

OTcvMDYtNTIzUi4xPC9lbGVjdHJvbmljLXJlc291cmNlLW51bT48L3JlY29yZD48L0NpdGU+PC9F

bmROb3RlPn==

ADDIN EN.CITE PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5SYWltb25kbzwvQXV0aG9yPjxZZWFyPjIwMDk8L1llYXI+

PFJlY051bT45PC9SZWNOdW0+PERpc3BsYXlUZXh0PjxzdHlsZSBmYWNlPSJzdXBlcnNjcmlwdCI+

MTEsIDE0PC9zdHlsZT48L0Rpc3BsYXlUZXh0PjxyZWNvcmQ+PHJlYy1udW1iZXI+OTwvcmVjLW51

bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9IjBmZWVkd2F6YjU1YWU1ZWVl

YXZ2eDV4MnJzZXZwenNkOXc5eiIgdGltZXN0YW1wPSIxNDQxMDQ4NjI0Ij45PC9rZXk+PC9mb3Jl

aWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBlPjxj

b250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5SYWltb25kbywgU2FuZHk8L2F1dGhvcj48YXV0

aG9yPlZpdmlhbiwgRGVib3JhaCBOPC9hdXRob3I+PGF1dGhvcj5CYXJyb24sIE1hY2UgRzwvYXV0

aG9yPjwvYXV0aG9ycz48L2NvbnRyaWJ1dG9ycz48dGl0bGVzPjx0aXRsZT5TdGFuZGFyZGl6aW5n

IGFjdXRlIHRveGljaXR5IGRhdGEgZm9yIHVzZSBpbiBlY290b3hpY29sb2d5IG1vZGVsczogaW5m

bHVlbmNlIG9mIHRlc3QgdHlwZSwgbGlmZSBzdGFnZSwgYW5kIGNvbmNlbnRyYXRpb24gcmVwb3J0

aW5nPC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPkVjb3RveGljb2xvZ3k8L3NlY29uZGFyeS10aXRs

ZT48L3RpdGxlcz48cGVyaW9kaWNhbD48ZnVsbC10aXRsZT5FY290b3hpY29sb2d5PC9mdWxsLXRp

dGxlPjwvcGVyaW9kaWNhbD48cGFnZXM+OTE4LTkyODwvcGFnZXM+PHZvbHVtZT4xODwvdm9sdW1l

PjxudW1iZXI+NzwvbnVtYmVyPjxkYXRlcz48eWVhcj4yMDA5PC95ZWFyPjwvZGF0ZXM+PGlzYm4+

MDk2My05MjkyPC9pc2JuPjx1cmxzPjwvdXJscz48L3JlY29yZD48L0NpdGU+PENpdGU+PEF1dGhv

cj5XYW5nPC9BdXRob3I+PFllYXI+MjAwNzwvWWVhcj48UmVjTnVtPjU2MTwvUmVjTnVtPjxyZWNv

cmQ+PHJlYy1udW1iZXI+NTYxPC9yZWMtbnVtYmVyPjxmb3JlaWduLWtleXM+PGtleSBhcHA9IkVO

IiBkYi1pZD0iMGZlZWR3YXpiNTVhZTVlZWVhdnZ4NXgycnNldnB6c2Q5dzl6IiB0aW1lc3RhbXA9

IjE0NDgzODA4MzEiPjU2MTwva2V5PjwvZm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJKb3Vy

bmFsIEFydGljbGUiPjE3PC9yZWYtdHlwZT48Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+

V2FuZywgTmluZzwvYXV0aG9yPjxhdXRob3I+SW5nZXJzb2xsLCBDaHJpc3RvcGhlciBHLjwvYXV0

aG9yPjxhdXRob3I+SGFyZGVzdHksIERvdWdsYXMgSy48L2F1dGhvcj48YXV0aG9yPkl2ZXksIENo

cmlzdG9waGVyIEQuPC9hdXRob3I+PGF1dGhvcj5LdW56LCBKYW1lcyBMLjwvYXV0aG9yPjxhdXRo

b3I+TWF5LCBUaG9tYXMgVy48L2F1dGhvcj48YXV0aG9yPkR3eWVyLCBGLiBKYW1lczwvYXV0aG9y

PjxhdXRob3I+Um9iZXJ0cywgQW5keSBELjwvYXV0aG9yPjxhdXRob3I+QXVnc3B1cmdlciwgVG9t

PC9hdXRob3I+PGF1dGhvcj5LYW5lLCBDeW50aGlhIE0uPC9hdXRob3I+PGF1dGhvcj5OZXZlcywg

UmljaGFyZCBKLjwvYXV0aG9yPjxhdXRob3I+QmFybmhhcnQsIE0uIENocmlzPC9hdXRob3I+PC9h

dXRob3JzPjwvY29udHJpYnV0b3JzPjx0aXRsZXM+PHRpdGxlPkFjdXRlIHRveGljaXR5IG9mIGNv

cHBlciwgYW1tb25pYSwgYW5kIGNobG9yaW5lIHRvIGdsb2NoaWRpYSBhbmQganV2ZW5pbGVzIG9m

IGZyZXNod2F0ZXIgbXVzc2VscyAodW5pb25pZGFlKTwvdGl0bGU+PHNlY29uZGFyeS10aXRsZT5F

bnZpcm9ubWVudGFsIFRveGljb2xvZ3kgYW5kIENoZW1pc3RyeTwvc2Vjb25kYXJ5LXRpdGxlPjwv

dGl0bGVzPjxwZXJpb2RpY2FsPjxmdWxsLXRpdGxlPkVudmlyb25tZW50YWwgVG94aWNvbG9neSBh

bmQgQ2hlbWlzdHJ5PC9mdWxsLXRpdGxlPjwvcGVyaW9kaWNhbD48cGFnZXM+MjAzNi0yMDQ3PC9w

YWdlcz48dm9sdW1lPjI2PC92b2x1bWU+PG51bWJlcj4xMDwvbnVtYmVyPjxrZXl3b3Jkcz48a2V5

d29yZD5GcmVzaHdhdGVyIG11c3NlbHM8L2tleXdvcmQ+PGtleXdvcmQ+R2xvY2hpZGlhPC9rZXl3

b3JkPjxrZXl3b3JkPkp1dmVuaWxlIG11c3NlbHM8L2tleXdvcmQ+PGtleXdvcmQ+QWN1dGUgdG94

aWNpdHk8L2tleXdvcmQ+PGtleXdvcmQ+V2F0ZXIgcXVhbGl0eSBjcml0ZXJpYTwva2V5d29yZD48

L2tleXdvcmRzPjxkYXRlcz48eWVhcj4yMDA3PC95ZWFyPjwvZGF0ZXM+PHB1Ymxpc2hlcj5XaWxl

eSBQZXJpb2RpY2FscywgSW5jLjwvcHVibGlzaGVyPjxpc2JuPjE1NTItODYxODwvaXNibj48dXJs

cz48cmVsYXRlZC11cmxzPjx1cmw+aHR0cDovL2R4LmRvaS5vcmcvMTAuMTg5Ny8wNi01MjNSLjE8

L3VybD48L3JlbGF0ZWQtdXJscz48L3VybHM+PGVsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjEwLjE4

OTcvMDYtNTIzUi4xPC9lbGVjdHJvbmljLXJlc291cmNlLW51bT48L3JlY29yZD48L0NpdGU+PC9F

bmROb3RlPn==

ADDIN EN.CITE.DATA 11, 14. ICE models between surrogates and listed taxa should provide risk assessors a protective evaluation of relative sensitivity. Because of the unquantifiable uncertainty associated with generic safety factors, the NRC recommended ICE models as an alternative in risk assessments of listed species ADDIN EN.CITE <EndNote><Cite><Author>National Research Council</Author><Year>2013</Year><RecNum>35</RecNum><DisplayText><style face="superscript">3</style></DisplayText><record><rec-number>35</rec-number><foreign-keys><key app="EN" db-id="0feedwazb55ae5eeeavvx5x2rsevpzsd9w9z" timestamp="1444747771">35</key></foreign-keys><ref-type name="Report">27</ref-type><contributors><authors><author>National Research Council,</author></authors></contributors><titles><title>Assessing risks to endangered and threatened species from pesticides</title></titles><pages>142</pages><dates><year>2013</year></dates><pub-location>Washington, DC</pub-location><publisher>National Academies Press</publisher><urls></urls></record></Cite></EndNote>3. We demonstrate that genus and family ICE models that are developed using the minimum toxicity value for species within the predicted taxon and which meet the revised selection guidelines are consistently protective of the range of species within that taxon.Listed species are not necessarily more sensitive to toxicants than their non-listed congeners ADDIN EN.CITE <EndNote><Cite><Author>Raimondo</Author><Year>2009</Year><RecNum>9</RecNum><DisplayText><style face="superscript">11</style></DisplayText><record><rec-number>9</rec-number><foreign-keys><key app="EN" db-id="0feedwazb55ae5eeeavvx5x2rsevpzsd9w9z" timestamp="1441048624">9</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Raimondo, Sandy</author><author>Vivian, Deborah N</author><author>Barron, Mace G</author></authors></contributors><titles><title>Standardizing acute toxicity data for use in ecotoxicology models: influence of test type, life stage, and concentration reporting</title><secondary-title>Ecotoxicology</secondary-title></titles><periodical><full-title>Ecotoxicology</full-title></periodical><pages>918-928</pages><volume>18</volume><number>7</number><dates><year>2009</year></dates><isbn>0963-9292</isbn><urls></urls></record></Cite></EndNote>11. While contaminants pose a serious risk to vulnerable populations, many listed species are imperiled due to a combination of factors such as habitat degradation and loss and exotic species introductions. Listed species exposed to contaminants are at risk for larger population-level impacts than non-listed species because of smaller effective population size and the combination of multiple stressors rather than a higher inherent sensitivity. However, because of the increased vulnerability of listed populations, ensuring their chemical sensitivity is adequately represented is critical in the risk assessment of chemicals that may be applied within their ranges. ICE models provide a more accurate value for chemical sensitivity of a diversity of compounds and contain reduced, quantifiable uncertainty compared to generic safety factors.The present study substantially expands the potential of ICE models to predict to listed species as well as provides guidelines for model selection and prediction evaluation that reduces reliance on professional judgement. Increased taxa and chemical diversity and the redevelopment of genus and family models improve model protectiveness for sensitive species and increased the number of available models for prediction to listed species. Based on analysis of model prediction accuracy and optimization of model selection guidance, ICE models continue to be a useful, robust tool for toxicity prediction to guide risk assessment of listed species and species with limited toxicity data.A principle focus for updating Web-ICE was expansion of species diversity with a particular emphasis on increasing the number of models predicting to listed species, particularly freshwater mussels in the family Unionidae ADDIN EN.CITE <EndNote><Cite><Author>Raimondo</Author><Year>2016</Year><RecNum>14</RecNum><DisplayText><style face="superscript">9</style></DisplayText><record><rec-number>14</rec-number><foreign-keys><key app="EN" db-id="0feedwazb55ae5eeeavvx5x2rsevpzsd9w9z" timestamp="1441049217">14</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Raimondo, S.</author><author>Lilavois, C.R.</author><author>Lee, L.</author><author>Augspurger, T.</author><author>Wang, N.</author><author>Ingersoll, C.G.</author><author>Bauer, C.</author><author>Hammer, E.</author><author>Barron, M.G.</author></authors></contributors><titles><title>Assessing variability in chemical acute toxicity of unionid mussels: influence of intra-and inter-laboratory testing, life stage, and species</title><secondary-title>Environmental Toxicology and Chemistry</secondary-title></titles><periodical><full-title>Environmental Toxicology and Chemistry</full-title></periodical><volume>In print</volume><dates><year>2016</year></dates><urls></urls><electronic-resource-num>10.1002/etc.3245</electronic-resource-num></record></Cite></EndNote>9. The previously available models contained only limited data for unionids, with only two ICE models that predicted toxicity to the family Unionidae. A focused effort in collaboration with other federal agencies was initiated to expand the freshwater mussel toxicity database that included developing mussel specific data standardization procedures, evaluating life stage sensitivity and optimal surrogates, and maximizing the number of validated models available for toxicity estimation in a diversity of mussel species ADDIN EN.CITE <EndNote><Cite><Author>Raimondo</Author><Year>2016</Year><RecNum>14</RecNum><DisplayText><style face="superscript">9</style></DisplayText><record><rec-number>14</rec-number><foreign-keys><key app="EN" db-id="0feedwazb55ae5eeeavvx5x2rsevpzsd9w9z" timestamp="1441049217">14</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Raimondo, S.</author><author>Lilavois, C.R.</author><author>Lee, L.</author><author>Augspurger, T.</author><author>Wang, N.</author><author>Ingersoll, C.G.</author><author>Bauer, C.</author><author>Hammer, E.</author><author>Barron, M.G.</author></authors></contributors><titles><title>Assessing variability in chemical acute toxicity of unionid mussels: influence of intra-and inter-laboratory testing, life stage, and species</title><secondary-title>Environmental Toxicology and Chemistry</secondary-title></titles><periodical><full-title>Environmental Toxicology and Chemistry</full-title></periodical><volume>In print</volume><dates><year>2016</year></dates><urls></urls><electronic-resource-num>10.1002/etc.3245</electronic-resource-num></record></Cite></EndNote>9. The results of this research and development has been the substantial expansion and improvement of Web-ICE for listed species and other taxa with limited toxicity data.Model validation and prediction success results from the present study were similar to previously developed models ADDIN EN.CITE <EndNote><Cite><Author>Raimondo</Author><Year>2010</Year><RecNum>3</RecNum><DisplayText><style face="superscript">4</style></DisplayText><record><rec-number>3</rec-number><foreign-keys><key app="EN" db-id="0feedwazb55ae5eeeavvx5x2rsevpzsd9w9z" timestamp="1441047310">3</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Raimondo, Sandy</author><author>Jackson, Crystal R.</author><author>Barron, Mace G.</author></authors></contributors><titles><title>Influence of Taxonomic Relatedness and Chemical Mode of Action in Acute Interspecies Estimation Models for Aquatic Species</title><secondary-title>Environmental Science &amp; Technology</secondary-title></titles><periodical><full-title>Environmental Science &amp; Technology</full-title></periodical><pages>7711-7716</pages><volume>44</volume><number>19</number><dates><year>2010</year><pub-dates><date>2010/10/01</date></pub-dates></dates><publisher>American Chemical Society</publisher><isbn>0013-936X</isbn><urls><related-urls><url>, resulting in a larger model set with similar performance, indicating that underlying sensitivity relationships are preserved across data. Models with close taxonomic distance of the surrogate and predicted species had the highest prediction accuracy, comparable to results in Raimondo et al. ADDIN EN.CITE <EndNote><Cite ExcludeAuth="1"><Author>Raimondo</Author><Year>2010</Year><RecNum>3</RecNum><DisplayText><style face="superscript">4</style></DisplayText><record><rec-number>3</rec-number><foreign-keys><key app="EN" db-id="0feedwazb55ae5eeeavvx5x2rsevpzsd9w9z" timestamp="1441047310">3</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Raimondo, Sandy</author><author>Jackson, Crystal R.</author><author>Barron, Mace G.</author></authors></contributors><titles><title>Influence of Taxonomic Relatedness and Chemical Mode of Action in Acute Interspecies Estimation Models for Aquatic Species</title><secondary-title>Environmental Science &amp; Technology</secondary-title></titles><periodical><full-title>Environmental Science &amp; Technology</full-title></periodical><pages>7711-7716</pages><volume>44</volume><number>19</number><dates><year>2010</year><pub-dates><date>2010/10/01</date></pub-dates></dates><publisher>American Chemical Society</publisher><isbn>0013-936X</isbn><urls><related-urls><url>. The relationship of taxonomic distance and prediction accuracy is likely driven by similarities in toxicokinetics for more closely related taxa. Optimization of model selection guidance continues to recommend selecting a closely related surrogate species as a first step in model selection. In cases where models for surrogates within the same Order are not available, minimum genus and family models may still provide conservative toxicity estimates protective of the most sensitive species within the predicted taxon. Analysis of model prediction accuracy indicates that ICE models continue to be robust predictors of toxicity especially for closely related taxa. We recommend genus and family models developed from the most sensitive species toxicity value within the predicted taxon, rather than the geometric mean of multiple species toxicity values, for conservative estimates to predict to listed species. These models provide toxicity estimates that are protective of a group of species that may have a wide range of sensitivities. Our case study of priority chemicals and listed species in the Sacramento and Ohio River Valleys indicated that when applying model selection guidelines, minimum models are considerably more protective of the most sensitive species within the predicted taxon compared to models based on geometric means. For the majority of the best selected models, the minimum model prediction or the lower CI of the prediction were protective of the most sensitive species in the predicted taxon whereas the surrogate species value was not. However, genus and family geometric mean models are still appropriate for generating mean toxicity estimates when conservative estimates of protectiveness may not be required such as in supplementing data in water quality criteria development.ICE models have been previously demonstrated as robust tools for generating toxicity predictions for use in wildlife risk assessment and augmenting species diversity in SSDsPEVuZE5vdGU+PENpdGU+PEF1dGhvcj5Bd2tlcm1hbjwvQXV0aG9yPjxZZWFyPjIwMDg8L1llYXI+

PFJlY051bT4yMDwvUmVjTnVtPjxEaXNwbGF5VGV4dD48c3R5bGUgZmFjZT0ic3VwZXJzY3JpcHQi

PjYsIDc8L3N0eWxlPjwvRGlzcGxheVRleHQ+PHJlY29yZD48cmVjLW51bWJlcj4yMDwvcmVjLW51

bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9IjBmZWVkd2F6YjU1YWU1ZWVl

YXZ2eDV4MnJzZXZwenNkOXc5eiIgdGltZXN0YW1wPSIxNDQzMTA1OTU1Ij4yMDwva2V5PjwvZm9y

ZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJKb3VybmFsIEFydGljbGUiPjE3PC9yZWYtdHlwZT48

Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+QXdrZXJtYW4sIEppbGwgQS48L2F1dGhvcj48

YXV0aG9yPlJhaW1vbmRvLCBTYW5keTwvYXV0aG9yPjxhdXRob3I+QmFycm9uLCBNYWNlIEcuPC9h

dXRob3I+PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjx0aXRsZXM+PHRpdGxlPkRldmVsb3BtZW50

IG9mIFNwZWNpZXMgU2Vuc2l0aXZpdHkgRGlzdHJpYnV0aW9ucyBmb3IgV2lsZGxpZmUgdXNpbmcg

SW50ZXJzcGVjaWVzIFRveGljaXR5IENvcnJlbGF0aW9uIE1vZGVsczwvdGl0bGU+PHNlY29uZGFy

eS10aXRsZT5FbnZpcm9ubWVudGFsIFNjaWVuY2UgJmFtcDsgVGVjaG5vbG9neTwvc2Vjb25kYXJ5

LXRpdGxlPjwvdGl0bGVzPjxwZXJpb2RpY2FsPjxmdWxsLXRpdGxlPkVudmlyb25tZW50YWwgU2Np

ZW5jZSAmYW1wOyBUZWNobm9sb2d5PC9mdWxsLXRpdGxlPjwvcGVyaW9kaWNhbD48cGFnZXM+MzQ0

Ny0zNDUyPC9wYWdlcz48dm9sdW1lPjQyPC92b2x1bWU+PG51bWJlcj45PC9udW1iZXI+PGRhdGVz

Pjx5ZWFyPjIwMDg8L3llYXI+PHB1Yi1kYXRlcz48ZGF0ZT4yMDA4LzA1LzAxPC9kYXRlPjwvcHVi

LWRhdGVzPjwvZGF0ZXM+PHB1Ymxpc2hlcj5BbWVyaWNhbiBDaGVtaWNhbCBTb2NpZXR5PC9wdWJs

aXNoZXI+PGlzYm4+MDAxMy05MzZYPC9pc2JuPjx1cmxzPjxyZWxhdGVkLXVybHM+PHVybD5odHRw

Oi8vZHguZG9pLm9yZy8xMC4xMDIxL2VzNzAyODYxdTwvdXJsPjwvcmVsYXRlZC11cmxzPjwvdXJs

cz48ZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+MTAuMTAyMS9lczcwMjg2MXU8L2VsZWN0cm9uaWMt

cmVzb3VyY2UtbnVtPjwvcmVjb3JkPjwvQ2l0ZT48Q2l0ZT48QXV0aG9yPkF3a2VybWFuPC9BdXRo

b3I+PFllYXI+MjAxNDwvWWVhcj48UmVjTnVtPjU8L1JlY051bT48cmVjb3JkPjxyZWMtbnVtYmVy

PjU8L3JlYy1udW1iZXI+PGZvcmVpZ24ta2V5cz48a2V5IGFwcD0iRU4iIGRiLWlkPSIwZmVlZHdh

emI1NWFlNWVlZWF2dng1eDJyc2V2cHpzZDl3OXoiIHRpbWVzdGFtcD0iMTQ0MTA0NzM5MCI+NTwv

a2V5PjwvZm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJKb3VybmFsIEFydGljbGUiPjE3PC9y

ZWYtdHlwZT48Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+QXdrZXJtYW4sIEppbGwgQS48

L2F1dGhvcj48YXV0aG9yPlJhaW1vbmRvLCBTYW5keTwvYXV0aG9yPjxhdXRob3I+SmFja3Nvbiwg

Q3J5c3RhbCBSLjwvYXV0aG9yPjxhdXRob3I+QmFycm9uLCBNYWNlIEcuPC9hdXRob3I+PC9hdXRo

b3JzPjwvY29udHJpYnV0b3JzPjx0aXRsZXM+PHRpdGxlPkF1Z21lbnRpbmcgYXF1YXRpYyBzcGVj

aWVzIHNlbnNpdGl2aXR5IGRpc3RyaWJ1dGlvbnMgd2l0aCBpbnRlcnNwZWNpZXMgdG94aWNpdHkg

ZXN0aW1hdGlvbiBtb2RlbHM8L3RpdGxlPjxzZWNvbmRhcnktdGl0bGU+RW52aXJvbm1lbnRhbCBU

b3hpY29sb2d5IGFuZCBDaGVtaXN0cnk8L3NlY29uZGFyeS10aXRsZT48L3RpdGxlcz48cGVyaW9k

aWNhbD48ZnVsbC10aXRsZT5FbnZpcm9ubWVudGFsIFRveGljb2xvZ3kgYW5kIENoZW1pc3RyeTwv

ZnVsbC10aXRsZT48L3BlcmlvZGljYWw+PHBhZ2VzPjY4OC02OTU8L3BhZ2VzPjx2b2x1bWU+MzM8

L3ZvbHVtZT48bnVtYmVyPjM8L251bWJlcj48a2V5d29yZHM+PGtleXdvcmQ+QXF1YXRpYyB0b3hp

Y29sb2d5PC9rZXl3b3JkPjxrZXl3b3JkPlNwZWNpZXMgc2Vuc2l0aXZpdHkgZGlzdHJpYnV0aW9u

czwva2V5d29yZD48a2V5d29yZD5TcGVjaWVzIGV4dHJhcG9sYXRpb248L2tleXdvcmQ+PGtleXdv

cmQ+UmlzayBhc3Nlc3NtZW50PC9rZXl3b3JkPjwva2V5d29yZHM+PGRhdGVzPjx5ZWFyPjIwMTQ8

L3llYXI+PC9kYXRlcz48aXNibj4xNTUyLTg2MTg8L2lzYm4+PHVybHM+PHJlbGF0ZWQtdXJscz48

dXJsPmh0dHA6Ly9keC5kb2kub3JnLzEwLjEwMDIvZXRjLjI0NTY8L3VybD48L3JlbGF0ZWQtdXJs

cz48L3VybHM+PGVsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjEwLjEwMDIvZXRjLjI0NTY8L2VsZWN0

cm9uaWMtcmVzb3VyY2UtbnVtPjwvcmVjb3JkPjwvQ2l0ZT48L0VuZE5vdGU+

ADDIN EN.CITE PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5Bd2tlcm1hbjwvQXV0aG9yPjxZZWFyPjIwMDg8L1llYXI+

PFJlY051bT4yMDwvUmVjTnVtPjxEaXNwbGF5VGV4dD48c3R5bGUgZmFjZT0ic3VwZXJzY3JpcHQi

PjYsIDc8L3N0eWxlPjwvRGlzcGxheVRleHQ+PHJlY29yZD48cmVjLW51bWJlcj4yMDwvcmVjLW51

bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9IjBmZWVkd2F6YjU1YWU1ZWVl

YXZ2eDV4MnJzZXZwenNkOXc5eiIgdGltZXN0YW1wPSIxNDQzMTA1OTU1Ij4yMDwva2V5PjwvZm9y

ZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJKb3VybmFsIEFydGljbGUiPjE3PC9yZWYtdHlwZT48

Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+QXdrZXJtYW4sIEppbGwgQS48L2F1dGhvcj48

YXV0aG9yPlJhaW1vbmRvLCBTYW5keTwvYXV0aG9yPjxhdXRob3I+QmFycm9uLCBNYWNlIEcuPC9h

dXRob3I+PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjx0aXRsZXM+PHRpdGxlPkRldmVsb3BtZW50

IG9mIFNwZWNpZXMgU2Vuc2l0aXZpdHkgRGlzdHJpYnV0aW9ucyBmb3IgV2lsZGxpZmUgdXNpbmcg

SW50ZXJzcGVjaWVzIFRveGljaXR5IENvcnJlbGF0aW9uIE1vZGVsczwvdGl0bGU+PHNlY29uZGFy

eS10aXRsZT5FbnZpcm9ubWVudGFsIFNjaWVuY2UgJmFtcDsgVGVjaG5vbG9neTwvc2Vjb25kYXJ5

LXRpdGxlPjwvdGl0bGVzPjxwZXJpb2RpY2FsPjxmdWxsLXRpdGxlPkVudmlyb25tZW50YWwgU2Np

ZW5jZSAmYW1wOyBUZWNobm9sb2d5PC9mdWxsLXRpdGxlPjwvcGVyaW9kaWNhbD48cGFnZXM+MzQ0

Ny0zNDUyPC9wYWdlcz48dm9sdW1lPjQyPC92b2x1bWU+PG51bWJlcj45PC9udW1iZXI+PGRhdGVz

Pjx5ZWFyPjIwMDg8L3llYXI+PHB1Yi1kYXRlcz48ZGF0ZT4yMDA4LzA1LzAxPC9kYXRlPjwvcHVi

LWRhdGVzPjwvZGF0ZXM+PHB1Ymxpc2hlcj5BbWVyaWNhbiBDaGVtaWNhbCBTb2NpZXR5PC9wdWJs

aXNoZXI+PGlzYm4+MDAxMy05MzZYPC9pc2JuPjx1cmxzPjxyZWxhdGVkLXVybHM+PHVybD5odHRw

Oi8vZHguZG9pLm9yZy8xMC4xMDIxL2VzNzAyODYxdTwvdXJsPjwvcmVsYXRlZC11cmxzPjwvdXJs

cz48ZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+MTAuMTAyMS9lczcwMjg2MXU8L2VsZWN0cm9uaWMt

cmVzb3VyY2UtbnVtPjwvcmVjb3JkPjwvQ2l0ZT48Q2l0ZT48QXV0aG9yPkF3a2VybWFuPC9BdXRo

b3I+PFllYXI+MjAxNDwvWWVhcj48UmVjTnVtPjU8L1JlY051bT48cmVjb3JkPjxyZWMtbnVtYmVy

PjU8L3JlYy1udW1iZXI+PGZvcmVpZ24ta2V5cz48a2V5IGFwcD0iRU4iIGRiLWlkPSIwZmVlZHdh

emI1NWFlNWVlZWF2dng1eDJyc2V2cHpzZDl3OXoiIHRpbWVzdGFtcD0iMTQ0MTA0NzM5MCI+NTwv

a2V5PjwvZm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJKb3VybmFsIEFydGljbGUiPjE3PC9y

ZWYtdHlwZT48Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+QXdrZXJtYW4sIEppbGwgQS48

L2F1dGhvcj48YXV0aG9yPlJhaW1vbmRvLCBTYW5keTwvYXV0aG9yPjxhdXRob3I+SmFja3Nvbiwg

Q3J5c3RhbCBSLjwvYXV0aG9yPjxhdXRob3I+QmFycm9uLCBNYWNlIEcuPC9hdXRob3I+PC9hdXRo

b3JzPjwvY29udHJpYnV0b3JzPjx0aXRsZXM+PHRpdGxlPkF1Z21lbnRpbmcgYXF1YXRpYyBzcGVj

aWVzIHNlbnNpdGl2aXR5IGRpc3RyaWJ1dGlvbnMgd2l0aCBpbnRlcnNwZWNpZXMgdG94aWNpdHkg

ZXN0aW1hdGlvbiBtb2RlbHM8L3RpdGxlPjxzZWNvbmRhcnktdGl0bGU+RW52aXJvbm1lbnRhbCBU

b3hpY29sb2d5IGFuZCBDaGVtaXN0cnk8L3NlY29uZGFyeS10aXRsZT48L3RpdGxlcz48cGVyaW9k

aWNhbD48ZnVsbC10aXRsZT5FbnZpcm9ubWVudGFsIFRveGljb2xvZ3kgYW5kIENoZW1pc3RyeTwv

ZnVsbC10aXRsZT48L3BlcmlvZGljYWw+PHBhZ2VzPjY4OC02OTU8L3BhZ2VzPjx2b2x1bWU+MzM8

L3ZvbHVtZT48bnVtYmVyPjM8L251bWJlcj48a2V5d29yZHM+PGtleXdvcmQ+QXF1YXRpYyB0b3hp

Y29sb2d5PC9rZXl3b3JkPjxrZXl3b3JkPlNwZWNpZXMgc2Vuc2l0aXZpdHkgZGlzdHJpYnV0aW9u

czwva2V5d29yZD48a2V5d29yZD5TcGVjaWVzIGV4dHJhcG9sYXRpb248L2tleXdvcmQ+PGtleXdv

cmQ+UmlzayBhc3Nlc3NtZW50PC9rZXl3b3JkPjwva2V5d29yZHM+PGRhdGVzPjx5ZWFyPjIwMTQ8

L3llYXI+PC9kYXRlcz48aXNibj4xNTUyLTg2MTg8L2lzYm4+PHVybHM+PHJlbGF0ZWQtdXJscz48

dXJsPmh0dHA6Ly9keC5kb2kub3JnLzEwLjEwMDIvZXRjLjI0NTY8L3VybD48L3JlbGF0ZWQtdXJs

cz48L3VybHM+PGVsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjEwLjEwMDIvZXRjLjI0NTY8L2VsZWN0

cm9uaWMtcmVzb3VyY2UtbnVtPjwvcmVjb3JkPjwvQ2l0ZT48L0VuZE5vdGU+

ADDIN EN.CITE.DATA 6, 7. The present study has improved and expanded their application for risk assessment of aquatic threatened and endangered species and demonstrated application of the user guidance to evaluate surrogate species and acute toxicity predictions. Genus and family models developed from minimum toxicity values are available in the endangered species module of Web-ICE v3.3, where models developed from geometric means are available on the genus and family modules of the website. The new user guidance should be applied to select models with high prediction accuracy, and minimum genus and family models provide toxicity estimates that are generally protective of the most sensitive species within the predicted taxon and can be used for toxicity prediction of listed species. Supporting InformationSI 001: Model parameter output used for development of optimized model selection guidance; summary of available models used in the case study; summary of selected models for each listed species and chemical in the case study.SI 002: Table of available minimum ICE genus and family models used in the case study of listed species.AcknowledgementsThis project was supported in part by an appointment to the Internship/Research Participation Program at the Office of Research and Development, U.S. Environmental Protection Agency, administered by the Oak Ridge Institute for Science and Education through in interagency agreement between the U.S. Department of Energy and EPA. The conclusions may not necessarily reflect the views of EPA and no official endorsement should be inferred.References ADDIN EN.REFLIST 1.Sappington, L. C.; Mayer, F. L.; Dwyer, F. J.; Buckler, D. R.; Jones, J. R.; Ellersieck, M. R., Contaminant sensitivity of threatened and endangered fishes compared to standard surrogate species. Environmental Toxicology and Chemistry 2001, 20, (12), 2869-2876.2.Raimondo, S.; Vivian, D. N.; Delos, C.; Barron, M. G., Protectiveness of species sensitivity distribution hazard concentrations for acute toxicity used in endangered species risk assessment. Environmental Toxicology and Chemistry 2008, 27, (12), 2599-2607.3.National Research Council Assessing risks to endangered and threatened species from pesticides; National Academies Press: Washington, DC, 2013; p 142.4.Raimondo, S.; Jackson, C. R.; Barron, M. G., Influence of Taxonomic Relatedness and Chemical Mode of Action in Acute Interspecies Estimation Models for Aquatic Species. Environmental Science & Technology 2010, 44, (19), 7711-7716.5.Raimondo, S.; Mineau, P.; Barron, M., Estimation of chemical toxicity to wildlife species using interspecies correlation models. Environmental science & technology 2007, 41, (16), 5888-5894.6.Awkerman, J. A.; Raimondo, S.; Jackson, C. R.; Barron, M. G., Augmenting aquatic species sensitivity distributions with interspecies toxicity estimation models. Environmental Toxicology and Chemistry 2014, 33, (3), 688-695.7.Awkerman, J. A.; Raimondo, S.; Barron, M. G., Development of Species Sensitivity Distributions for Wildlife using Interspecies Toxicity Correlation Models. Environmental Science & Technology 2008, 42, (9), 3447-3452.8.Dyer, S. D.; Versteeg, D. J.; Belanger, S. E.; Chaney, J. G.; Raimondo, S.; Barron, M. G., Comparison of Species Sensitivity Distributions Derived from Interspecies Correlation Models to Distributions used to Derive Water Quality Criteria. Environmental Science & Technology 2008, 42, (8), 3076-3083.9.Raimondo, S.; Lilavois, C. R.; Lee, L.; Augspurger, T.; Wang, N.; Ingersoll, C. G.; Bauer, C.; Hammer, E.; Barron, M. G., Assessing variability in chemical acute toxicity of unionid mussels: influence of intra-and inter-laboratory testing, life stage, and species. Environmental Toxicology and Chemistry 2016, In print.10.Fairbrother, A., Risk management safety factor. In Encylopedia of Ecology, Jorgensen, S. R.; Fath, B. D., Eds. Elsevier: Oxford, UK, 2008; Vol. 4.11.Raimondo, S.; Vivian, D. N.; Barron, M. G., Standardizing acute toxicity data for use in ecotoxicology models: influence of test type, life stage, and concentration reporting. Ecotoxicology 2009, 18, (7), 918-928.12.Hoogeweg, C. G.; Denton, D. L.; Breuer, R.; Williams, W. M.; TenBrook, P., Development of a Spatial-Temporal Co-occurrence Index To Evaluate Relative Pesticide Risks to Threatened and Endangered Species. In Pesticide Regulation and the Endangered Species Act, American Chemical Society: 2012; Vol. 1111, pp 303-323.13.Dwyer, F. J.; Mayer, F. L.; Sappington, L. C.; Buckler, D. R.; Bridges, C. M.; Greer, I. E.; Hardesty, D. K.; Henke, C. E.; Ingersoll, C. G.; Kunz, J. L.; Whites, D. W.; Augspurger, T.; Mount, D. R.; Hattala, K.; Neuderfer, G. N., Assessing Contaminant Sensitivity of Endangered and Threatened Aquatic Species: Part I. Acute Toxicity of Five Chemicals. Archives of Environmental Contamination and Toxicology 2005, 48, (2), 143-154.14.Wang, N.; Ingersoll, C. G.; Hardesty, D. K.; Ivey, C. D.; Kunz, J. L.; May, T. W.; Dwyer, F. J.; Roberts, A. D.; Augspurger, T.; Kane, C. M.; Neves, R. J.; Barnhart, M. C., Acute toxicity of copper, ammonia, and chlorine to glochidia and juveniles of freshwater mussels (unionidae). Environmental Toxicology and Chemistry 2007, 26, (10), 2036-2047.Table 1. Selected priority chemicals, their mode of action (MOA) in aquatic animals, and listed species for the case study analysis. Case study chemicals?Taxa containing listed speciesChemical MOA ?RegionFamilySpeciesAtrazineNarcosis Sacramento ValleyAcipenseridaeAcipenser medirostris (Southern North American green sturgeon)CarbarylAChE inhibition BranchinectidaeBranchinecta lynchi (Vernal pool fairy shrimp)ChlorpyrifosAChE inhibitionRanidaeRana draytonii (California Red-legged frog)CopperIono/Osmoregulatory/Circulatory impairmentSalmonidaeOncorhynchus tshawytscha (Chinook Salmon)CypermethrinNeurotoxicityOncorhynchus mykiss (Central Valley Steelhead)DiazinonAChE inhibitionOhio River ValleyUnionidae?Lampsilis abrupta (Pink mucket)FipronilNeurotoxicityVillosa fabilis (Rayed bean mussel)GlyphosateNarcosis Villosa trabalis (Cumberland bean pearly mussel) ImidaclopridNeurotoxicityMalathionAChE inhibitionMethomylAChE inhibitionPermethrinNeurotoxicityThiobencarbNarcosis????Table. 2. Web-ICE database attributes including the number of threatened and endangered (listed) species records and models available at each taxonomic level for each database version.Web-ICE VersionDatabase AttributesNumber of modelsRecordsSpeciesChemicalsSpeciesGenusFamilyv. 3.3 (2015)820331415011544854887Listed species159132492379428547v. 3.2 (2013) ADDIN EN.CITE <EndNote><Cite><Author>Raimondo</Author><Year>2010</Year><RecNum>3</RecNum><DisplayText><style face="superscript">4</style></DisplayText><record><rec-number>3</rec-number><foreign-keys><key app="EN" db-id="0feedwazb55ae5eeeavvx5x2rsevpzsd9w9z" timestamp="1441047310">3</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Raimondo, Sandy</author><author>Jackson, Crystal R.</author><author>Barron, Mace G.</author></authors></contributors><titles><title>Influence of Taxonomic Relatedness and Chemical Mode of Action in Acute Interspecies Estimation Models for Aquatic Species</title><secondary-title>Environmental Science &amp; Technology</secondary-title></titles><periodical><full-title>Environmental Science &amp; Technology</full-title></periodical><pages>7711-7716</pages><volume>44</volume><number>19</number><dates><year>2010</year><pub-dates><date>2010/10/01</date></pub-dates></dates><publisher>American Chemical Society</publisher><isbn>0013-936X</isbn><urls><related-urls><url> species127221449230168267Table 3. Threatened and endangered species model summary with the number of significant species, genus, or family ICE models available predicting to listed species (N surrogates) or taxa containing U.S. federally listed species (N species). Model LevelSpeciesN surrogatesGenusN speciesN surrogatesFamilyN speciesN surrogatesAcipenser brevirostrum16Acipenser915Acipenseridae1415Branchinecta lynchi14Anaxyrus414Asellidae138Cyprinodon bovinus13Branchinecta414Atherinopsidae111Epioblasma capsaeformis8Catostomus49Branchinectidae414Erimonax monachus15Cyprinodon721Bufonidae919Etheostoma fonticola9Etheostoma1717Cambaridae34Gasterosteus aculeatus williamsoni7Gammarus435Catostomidae930Gila elegans14Ictalurus136Coenagrionidae51Lampsilis rafinesqueana4Lampsilis629Cyprinidae4577Notropis mekistocholas17Lasmigona116Cyprinodontidae735Oncorhynchus clarkii henshawi37Lirceus12Gammaridae437Oncorhynchus clarkii seleniris37Lithobates222Ictaluridae838Oncorhynchus clarkii stomias37Menidia111Lymnaeidae220Oncorhynchus gilae16Notropis825Palaemonidae15Oncorhynchus keta1Oncorhynchus1174Percidae2330Oncorhynchus kisutch41Palaemonetes12Poeciliidae539Oncorhynchus mykiss77Salmo225Ranidae622Oncorhynchus mykiss whitei77Salvelinus134Salmonidae1472Oncorhynchus nerka4Streptocephalus111Streptocephalidae111Oncorhynchus tshawytscha34Villosa316Unionidae8729Poeciliopsis occidentalis3Ptychocheilus lucius12Salmo salar17Salvelinus confluentus2Xyrauchen texanus17Table 4. Species model cross-validation prediction success of observations for each shared taxonomic level within each prediction category representing the fold difference in the model toxicity prediction to the measured data point.Taxonomic levelSignificant models (N)Percentage within prediction category5-fold10-fold50-fold>50-foldgenus44495410family114492620order430871130class57347710103phylum16586214168kingdom800655151911Table 5. Percent of cross validated data points within 5-fold of the measured toxicity value for models meeting guidelines. Taxonomic distanceAll ModelsModels N < 10Models N ≥10NPercentNPercentNPercent141794799533894210529332592727943343892578986884437680560803816805839662328060760613896547977136a72aa Mean Square Error < 0.55047625000TOC/Abstract ArtFigure 169532566675Model Selection Guidance:Identify surrogates with closest taxonomic distance (highest accuracy within TD 1-3, same Order).Choose model with a low MSE (≤ 0.95 for N > 10 and < 0.55 for N ≥ 10).Select model with narrow 95% CI (within 5-fold of prediction). If models with similar MSE’s, choose model with greater N. 00Model Selection Guidance:Identify surrogates with closest taxonomic distance (highest accuracy within TD 1-3, same Order).Choose model with a low MSE (≤ 0.95 for N > 10 and < 0.55 for N ≥ 10).Select model with narrow 95% CI (within 5-fold of prediction). If models with similar MSE’s, choose model with greater N. Fig. 1. ICE model selection guidance based on optimized model parameters used to identify the best model when predictions from multiple surrogates are available.Figure 2Fig. 2. Comparison of model protectiveness for geometric mean and minimum genus and family models used with priority chemicals and taxa containing listed species in the Sacramento and Ohio River Valleys. There were 17 genus model and 22 family model predictions for both geometric mean and minimum models. ................
................

In order to avoid copyright disputes, this page is only a partial summary.

Google Online Preview   Download