Oikos - Home



Aerobic Respiration00Anaerobic Respiration00What if oxygen is not present? If oxygen is not present, no electron acceptor exists to accept the electrons at the end of the electron transport chain. If this occurs, then NADH accumulates. After all the NAD+ has been converted to NADH, the Krebs cycle and glycolysis both stop (both need NAD+ to accept electrons). When this happens, no new ATP is produced, and the cell soon dies.Anaerobic respiration is a method cells use to escape this fate. Two common metabolic pathways, alcohol and lactic acid fermentation, are slightly different, but the objective of both processes is to replenish NAD+ so that glycolysis can proceed once again. Anaerobic respiration occurs in the cytosol alongside glycolysis.320040019875507620Alcohol FermentationAlcohol fermentation (or sometimes, just fermentation) occurs in plants, fungi (such as yeasts), and bacteria. The steps, illustrated in Figure b (above), are as follows:1. Pyruvate to acetaldehyde. For each pyruvate, 1 CO2 and 1 acetaldehyde are produced. The CO2 formed is the source of carbonation in fermented drinks like beer and champagne.2. Acetaldehyde to ethanol. The important part of this step is that the energy in NADH is used to drive this reaction, releasing NAD+. For each acetaldehyde, 1 ethanol is made and 1 NAD+ is produced. The ethanol (ethyl alcohol) produced here is the source of alcohol in beer and wine.It is important that you recognize the objective of this pathway. At first glance, you should wonder why the energy in an energy-rich molecule like NADH is removed and put into the formation of ethanol, essentially a waste product that eventually kills the yeast (and other organisms) that produce it. The goal of this pathway, however, does not really concern ethanol, but the task of freeing NAD+ to allow glycolysis to continue. Recall that in the absence of O2, all the NAD+ is bottled up in NADH. This is because oxidative phosphorylation cannot accept the electrons of NADH without oxygen.The purpose of the fermentation pathway, then, is to release some NAD+ for use by glycolysis. The reward for this effort is 2 ATP from glycolysis for each 2 converted pyruvate. This is not much, but it’s better than the alternative—0 ATP. Lactic Acid Fermentation1371600525145Only one step occurs in lactic acid fermentation (Figure a above). A pyruvate is converted to lactate (or lactic acid) and in the process, NADH gives up its electrons to form NAD+. As in alcohol fermentation, the NAD+ can now be used for glycolysis. In humans and other mammals, most lactate is transported to the liver where it is converted back to glucose when surplus ATP is available. ................
................

In order to avoid copyright disputes, this page is only a partial summary.

Google Online Preview   Download