Graphing with Phase Shift Homework
Graphing with Phase Shift Homework
Pre-Calculus – Section 5.6
Find the period and phase shift for the following functions.
|1. y = 9 sin (7x – 2) |2. y = ⅓ cos (½x + 11) |3. y = – tan (2πx + 3) |
| | | |
| | | |
| | | |
|Period: |Period: |Period: |
| | | |
|Phase Shift: |Phase Shift: |Phase Shift: |
|4. y = 4 cot (5x + 3π) |5. y = ⅝ sec (6x – π) |6. y = csc ([pic]x – [pic]) |
| | | |
| | | |
| | | |
|Period: |Period: |Period: |
| | | |
|Phase Shift: |Phase Shift: |Phase Shift: |
Graph each function using vertical stretch/compression, period, and phase shift. Label each axis, and state the domain and range.
|7. y = 2 sin (3x – π) |
| |
| |
| |
| |
| |
| |
| |
| |
|Domain: |
| |
|Range: |
|8. y = -3 cos [pic] |
| |
| |
| |
| |
| |
| |
| |
| |
|Domain: |
| |
|Range: |
Graph each function using vertical stretch/compression, period, and phase shift. Label each axis, and state the domain and range.
|9. y = 3 csc [pic] |
| |
| |
| |
| |
| |
| |
| |
|Domain: |
| |
|Range: |
|10. y = tan [pic] |
| |
| |
| |
| |
| |
| |
| |
|Domain: |
| |
|Range: |
|11. y = sin [pic] + 3 |
| |
| |
| |
| |
| |
| |
| |
|Domain: |
| |
|Range: |
Write the equation of the sine function that has the given characteristics.
|12. Amplitude: 5 |13. Amplitude: 4 |
|Period: π |Period: 3π |
|Phase Shift: ½ |Phase Shift: -2 |
| | |
| | |
| | |
................
................
In order to avoid copyright disputes, this page is only a partial summary.
To fulfill the demand for quickly locating and searching documents.
It is intelligent file search solution for home and business.
Related download
Related searches
- phase shift calculator
- amplitude period phase shift and frequency calculator
- find amplitude period phase shift calculator
- function phase shift calculator
- amplitude and phase shift calculator
- amplitude period phase shift formula
- period and phase shift formula
- phase shift formula
- phase shift problems
- phase shift formula tan
- period amplitude and phase shift calculator
- phase shift equation