ACS Publications: Chemistry journals, books, and ...



Supporting Information:SweepStat: A Build-it-Yourself, Two-Electrode Potentiostatfor Macroelectrode and Ultramicroelectrode StudiesMatthew W. Glasscotta, Matthew D. Verbera, Jackson Halla, Andrew D. Pendergasta, Collin J. McKinneya, and Jeffrey E. Dicka,b*aDepartment of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3290, USAbLineberger Comprehensive Cancer Center, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3290, USA* To whom correspondence should be addressed: jedick@email.unc.edu??Table of ContentsPagePedagogical and Technical Two and Three Electrode System Details (Figure S1-S2)S-2SweepStat Enclosure Design (Figure S3)S-5Materials for Electrochemical ExperimentsS-5Pedagogical Overview of Macro and Microelectrochemical Measurements (Figure S4)S-6Finite-Element Simulation and Commercial Potentiostat Comparison (Figure S5)S-6List of SweepStat Components (Table S1)S-9Complete Circuit Diagram (Figure S6)S-10Printed Circuit Board Layout and Completed SweepStat Image (Figure S7)S-11Faraday Cage Construction (Figure S8)S-12Dummy Cell Experiment (Figure S9)S-13Step-by-Step Assembly and Testing ProcedureS-14COMSOL Finite Element Simulation Parameters (Table S2)S-16 Pedagogical and Technical Two and Three Electrode System DetailsWithin the field of analytical chemistry, electrochemistry is uniquely capable of extremely high sensitivity,PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5aaG91PC9BdXRob3I+PFllYXI+MjAxODwvWWVhcj48UmVj

TnVtPjE4NTU8L1JlY051bT48RGlzcGxheVRleHQ+PHN0eWxlIGZhY2U9InN1cGVyc2NyaXB0Ij4x

LTEyPC9zdHlsZT48L0Rpc3BsYXlUZXh0PjxyZWNvcmQ+PHJlYy1udW1iZXI+MTg1NTwvcmVjLW51

bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9IjU5d3p3dnJ0MXNzMndjZTl2

MjN4dnIweWQ5d2VlMnp2enNhMiIgdGltZXN0YW1wPSIwIj4xODU1PC9rZXk+PC9mb3JlaWduLWtl

eXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBlPjxjb250cmli

dXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5aaG91LCBNLjwvYXV0aG9yPjxhdXRob3I+RGljaywgSi4g

RS48L2F1dGhvcj48YXV0aG9yPkh1LCBLLiBLLjwvYXV0aG9yPjxhdXRob3I+TWlya2luLCBNLiBW

LjwvYXV0aG9yPjxhdXRob3I+QmFyZCwgQS4gSi48L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmli

dXRvcnM+PHRpdGxlcz48dGl0bGU+VWx0cmFzZW5zaXRpdmUgRWxlY3Ryb2FuYWx5c2lzOiBGZW10

b21vbGFyIERldGVybWluYXRpb24gb2YgTGVhZCwgQ29iYWx0LCBhbmQgTmlja2VsPC90aXRsZT48

c2Vjb25kYXJ5LXRpdGxlPkFuYWx5dGljYWwgQ2hlbWlzdHJ5PC9zZWNvbmRhcnktdGl0bGU+PC90

aXRsZXM+PHBlcmlvZGljYWw+PGZ1bGwtdGl0bGU+QW5hbHl0aWNhbCBDaGVtaXN0cnk8L2Z1bGwt

dGl0bGU+PGFiYnItMT5BbmFsLiBDaGVtLjwvYWJici0xPjxhYmJyLTI+QW5hbCBDaGVtPC9hYmJy

LTI+PC9wZXJpb2RpY2FsPjxwYWdlcz4xMTQyLTExNDY8L3BhZ2VzPjx2b2x1bWU+OTA8L3ZvbHVt

ZT48bnVtYmVyPjI8L251bWJlcj48ZGF0ZXM+PHllYXI+MjAxODwveWVhcj48cHViLWRhdGVzPjxk

YXRlPkphbjwvZGF0ZT48L3B1Yi1kYXRlcz48L2RhdGVzPjxpc2JuPjAwMDMtMjcwMDwvaXNibj48

YWNjZXNzaW9uLW51bT5XT1M6MDAwNDIzMDExNjAwMDE3PC9hY2Nlc3Npb24tbnVtPjx1cmxzPjxy

ZWxhdGVkLXVybHM+PHVybD4mbHQ7R28gdG8gSVNJJmd0OzovL1dPUzowMDA0MjMwMTE2MDAwMTc8

L3VybD48L3JlbGF0ZWQtdXJscz48L3VybHM+PGVsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjEwLjEw

MjEvYWNzLmFuYWxjaGVtLjcxMzAzMzU1PC9lbGVjdHJvbmljLXJlc291cmNlLW51bT48L3JlY29y

ZD48L0NpdGU+PENpdGU+PEF1dGhvcj5QZXJjaXZhbDwvQXV0aG9yPjxZZWFyPjIwMTc8L1llYXI+

PFJlY051bT40OTwvUmVjTnVtPjxyZWNvcmQ+PHJlYy1udW1iZXI+NDk8L3JlYy1udW1iZXI+PGZv

cmVpZ24ta2V5cz48a2V5IGFwcD0iRU4iIGRiLWlkPSJwOXowZWRkZm56OXNzcmUwdGU1cDByMHMy

d3B6cHJ0YWU5dDkiIHRpbWVzdGFtcD0iMTUyNDYxNTc5MCI+NDk8L2tleT48L2ZvcmVpZ24ta2V5

cz48cmVmLXR5cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwvcmVmLXR5cGU+PGNvbnRyaWJ1

dG9ycz48YXV0aG9ycz48YXV0aG9yPlBlcmNpdmFsLCBTLiBKLjwvYXV0aG9yPjxhdXRob3I+RGlj

aywgSi4gRS48L2F1dGhvcj48YXV0aG9yPkJhcmQsIEEuIEouPC9hdXRob3I+PC9hdXRob3JzPjwv

Y29udHJpYnV0b3JzPjx0aXRsZXM+PHRpdGxlPkNhdGhvZGljYWxseSBEaXNzb2x2ZWQgUGxhdGlu

dW0gUmVzdWx0aW5nIGZyb20gdGhlIE8tMiBhbmQgSDJPMiBSZWR1Y3Rpb24gUmVhY3Rpb25zIG9u

IFBsYXRpbnVtIFVsdHJhbWljcm9lbGVjdHJvZGVzPC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPkFu

YWx5dGljYWwgQ2hlbWlzdHJ5PC9zZWNvbmRhcnktdGl0bGU+PC90aXRsZXM+PHBlcmlvZGljYWw+

PGZ1bGwtdGl0bGU+QW5hbHl0aWNhbCBDaGVtaXN0cnk8L2Z1bGwtdGl0bGU+PGFiYnItMT5BbmFs

LiBDaGVtLjwvYWJici0xPjwvcGVyaW9kaWNhbD48cGFnZXM+MzA4Ny0zMDkyPC9wYWdlcz48dm9s

dW1lPjg5PC92b2x1bWU+PG51bWJlcj41PC9udW1iZXI+PGRhdGVzPjx5ZWFyPjIwMTc8L3llYXI+

PHB1Yi1kYXRlcz48ZGF0ZT5NYXI8L2RhdGU+PC9wdWItZGF0ZXM+PC9kYXRlcz48aXNibj4wMDAz

LTI3MDA8L2lzYm4+PGFjY2Vzc2lvbi1udW0+V09TOjAwMDM5NTk2NDQwMDA1ODwvYWNjZXNzaW9u

LW51bT48dXJscz48cmVsYXRlZC11cmxzPjx1cmw+Jmx0O0dvIHRvIElTSSZndDs6Ly9XT1M6MDAw

Mzk1OTY0NDAwMDU4PC91cmw+PC9yZWxhdGVkLXVybHM+PC91cmxzPjxlbGVjdHJvbmljLXJlc291

cmNlLW51bT4xMC4xMDIxL2Fjcy5hbmFsY2hlbS42YjA0ODMyPC9lbGVjdHJvbmljLXJlc291cmNl

LW51bT48L3JlY29yZD48L0NpdGU+PENpdGU+PEF1dGhvcj5aaG91PC9BdXRob3I+PFllYXI+MjAx

NzwvWWVhcj48UmVjTnVtPjg2NzwvUmVjTnVtPjxyZWNvcmQ+PHJlYy1udW1iZXI+ODY3PC9yZWMt

bnVtYmVyPjxmb3JlaWduLWtleXM+PGtleSBhcHA9IkVOIiBkYi1pZD0iNTl3end2cnQxc3Myd2Nl

OXYyM3h2cjB5ZDl3ZWUyenZ6c2EyIiB0aW1lc3RhbXA9IjAiPjg2Nzwva2V5PjwvZm9yZWlnbi1r

ZXlzPjxyZWYtdHlwZSBuYW1lPSJKb3VybmFsIEFydGljbGUiPjE3PC9yZWYtdHlwZT48Y29udHJp

YnV0b3JzPjxhdXRob3JzPjxhdXRob3I+WmhvdSwgTS48L2F1dGhvcj48YXV0aG9yPkRpY2ssIEou

IEUuPC9hdXRob3I+PGF1dGhvcj5CYXJkLCBBLiBKLjwvYXV0aG9yPjwvYXV0aG9ycz48L2NvbnRy

aWJ1dG9ycz48dGl0bGVzPjx0aXRsZT5FbGVjdHJvZGVwb3NpdGlvbiBvZiBJc29sYXRlZCBQbGF0

aW51bSBBdG9tcyBhbmQgQ2x1c3RlcnMgb24gQmlzbXV0aC1DaGFyYWN0ZXJpemF0aW9uIGFuZCBF

bGVjdHJvY2F0YWx5c2lzPC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPkpvdXJuYWwgb2YgdGhlIEFt

ZXJpY2FuIENoZW1pY2FsIFNvY2lldHk8L3NlY29uZGFyeS10aXRsZT48L3RpdGxlcz48cGVyaW9k

aWNhbD48ZnVsbC10aXRsZT5Kb3VybmFsIG9mIHRoZSBBbWVyaWNhbiBDaGVtaWNhbCBTb2NpZXR5

PC9mdWxsLXRpdGxlPjxhYmJyLTE+Si4gQW0uIENoZW0uIFNvYy48L2FiYnItMT48YWJici0yPkog

QW0gQ2hlbSBTb2M8L2FiYnItMj48L3BlcmlvZGljYWw+PHBhZ2VzPjE3Njc3LTE3NjgyPC9wYWdl

cz48dm9sdW1lPjEzOTwvdm9sdW1lPjxudW1iZXI+NDg8L251bWJlcj48ZGF0ZXM+PHllYXI+MjAx

NzwveWVhcj48cHViLWRhdGVzPjxkYXRlPkRlYzwvZGF0ZT48L3B1Yi1kYXRlcz48L2RhdGVzPjxp

c2JuPjAwMDItNzg2MzwvaXNibj48YWNjZXNzaW9uLW51bT5XT1M6MDAwNDE3NjY5MDAwMDY2PC9h

Y2Nlc3Npb24tbnVtPjx1cmxzPjxyZWxhdGVkLXVybHM+PHVybD4mbHQ7R28gdG8gSVNJJmd0Ozov

L1dPUzowMDA0MTc2NjkwMDAwNjY8L3VybD48L3JlbGF0ZWQtdXJscz48L3VybHM+PGVsZWN0cm9u

aWMtcmVzb3VyY2UtbnVtPjEwLjEwMjEvamFjcy43YjEwNjQ2PC9lbGVjdHJvbmljLXJlc291cmNl

LW51bT48L3JlY29yZD48L0NpdGU+PENpdGU+PEF1dGhvcj5LaW08L0F1dGhvcj48WWVhcj4yMDE2

PC9ZZWFyPjxSZWNOdW0+MzM8L1JlY051bT48cmVjb3JkPjxyZWMtbnVtYmVyPjMzPC9yZWMtbnVt

YmVyPjxmb3JlaWduLWtleXM+PGtleSBhcHA9IkVOIiBkYi1pZD0icDl6MGVkZGZuejlzc3JlMHRl

NXAwcjBzMndwenBydGFlOXQ5IiB0aW1lc3RhbXA9IjE1MjQ2MTU3ODkiPjMzPC9rZXk+PC9mb3Jl

aWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBlPjxj

b250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5LaW0sIEouPC9hdXRob3I+PGF1dGhvcj5EaWNr

LCBKLiBFLjwvYXV0aG9yPjxhdXRob3I+QmFyZCwgQS4gSi48L2F1dGhvcj48L2F1dGhvcnM+PC9j

b250cmlidXRvcnM+PHRpdGxlcz48dGl0bGU+QWR2YW5jZWQgRWxlY3Ryb2NoZW1pc3RyeSBvZiBJ

bmRpdmlkdWFsIE1ldGFsIENsdXN0ZXJzIEVsZWN0cm9kZXBvc2l0ZWQgQXRvbSBieSBBdG9tIHRv

IE5hbm9tZXRlciBieSBOYW5vbWV0ZXI8L3RpdGxlPjxzZWNvbmRhcnktdGl0bGU+QWNjb3VudHMg

b2YgQ2hlbWljYWwgUmVzZWFyY2g8L3NlY29uZGFyeS10aXRsZT48L3RpdGxlcz48cGVyaW9kaWNh

bD48ZnVsbC10aXRsZT5BY2NvdW50cyBvZiBDaGVtaWNhbCBSZXNlYXJjaDwvZnVsbC10aXRsZT48

L3BlcmlvZGljYWw+PHBhZ2VzPjI1ODctMjU5NTwvcGFnZXM+PHZvbHVtZT40OTwvdm9sdW1lPjxu

dW1iZXI+MTE8L251bWJlcj48ZGF0ZXM+PHllYXI+MjAxNjwveWVhcj48cHViLWRhdGVzPjxkYXRl

Pk5vdjwvZGF0ZT48L3B1Yi1kYXRlcz48L2RhdGVzPjxpc2JuPjAwMDEtNDg0MjwvaXNibj48YWNj

ZXNzaW9uLW51bT5XT1M6MDAwMzg4MTU0ODAwMDIzPC9hY2Nlc3Npb24tbnVtPjx1cmxzPjxyZWxh

dGVkLXVybHM+PHVybD4mbHQ7R28gdG8gSVNJJmd0OzovL1dPUzowMDAzODgxNTQ4MDAwMjM8L3Vy

bD48L3JlbGF0ZWQtdXJscz48L3VybHM+PGVsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjEwLjEwMjEv

YWNzLmFjY291bnRzLjZiMDAzNDA8L2VsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjwvcmVjb3JkPjwv

Q2l0ZT48Q2l0ZT48QXV0aG9yPkRpY2s8L0F1dGhvcj48WWVhcj4yMDE2PC9ZZWFyPjxSZWNOdW0+

NTExPC9SZWNOdW0+PHJlY29yZD48cmVjLW51bWJlcj41MTE8L3JlYy1udW1iZXI+PGZvcmVpZ24t

a2V5cz48a2V5IGFwcD0iRU4iIGRiLWlkPSJwOXowZWRkZm56OXNzcmUwdGU1cDByMHMyd3B6cHJ0

YWU5dDkiIHRpbWVzdGFtcD0iMTUyOTc5NzMwMSI+NTExPC9rZXk+PC9mb3JlaWduLWtleXM+PHJl

Zi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBlPjxjb250cmlidXRvcnM+

PGF1dGhvcnM+PGF1dGhvcj5EaWNrLCBKLiBFLjwvYXV0aG9yPjxhdXRob3I+TGViZWd1ZSwgRS48

L2F1dGhvcj48YXV0aG9yPlN0cmF3c2luZSwgTC4gTS48L2F1dGhvcj48YXV0aG9yPkJhcmQsIEEu

IEouPC9hdXRob3I+PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjx0aXRsZXM+PHRpdGxlPk1pbGxp

c2Vjb25kIENvdWxvbWV0cnkgdmlhIFplcHRvbGl0ZXIgRHJvcGxldCBDb2xsaXNpb25zIG9uIGFu

IFVsdHJhbWljcm9lbGVjdHJvZGU8L3RpdGxlPjxzZWNvbmRhcnktdGl0bGU+RWxlY3Ryb2FuYWx5

c2lzPC9zZWNvbmRhcnktdGl0bGU+PC90aXRsZXM+PHBlcmlvZGljYWw+PGZ1bGwtdGl0bGU+RWxl

Y3Ryb2FuYWx5c2lzPC9mdWxsLXRpdGxlPjwvcGVyaW9kaWNhbD48cGFnZXM+MjMyMC0yMzI2PC9w

YWdlcz48dm9sdW1lPjI4PC92b2x1bWU+PG51bWJlcj4xMDwvbnVtYmVyPjxkYXRlcz48eWVhcj4y

MDE2PC95ZWFyPjxwdWItZGF0ZXM+PGRhdGU+T2N0PC9kYXRlPjwvcHViLWRhdGVzPjwvZGF0ZXM+

PGlzYm4+MTA0MC0wMzk3PC9pc2JuPjxhY2Nlc3Npb24tbnVtPldPUzowMDAzODc4ODY1MDAwMDk8

L2FjY2Vzc2lvbi1udW0+PHVybHM+PHJlbGF0ZWQtdXJscz48dXJsPiZsdDtHbyB0byBJU0kmZ3Q7

Oi8vV09TOjAwMDM4Nzg4NjUwMDAwOTwvdXJsPjwvcmVsYXRlZC11cmxzPjwvdXJscz48ZWxlY3Ry

b25pYy1yZXNvdXJjZS1udW0+MTAuMTAwMi9lbGFuLjIwMTYwMDE4MjwvZWxlY3Ryb25pYy1yZXNv

dXJjZS1udW0+PC9yZWNvcmQ+PC9DaXRlPjxDaXRlPjxBdXRob3I+RGljazwvQXV0aG9yPjxZZWFy

PjIwMTY8L1llYXI+PFJlY051bT41NDI8L1JlY051bT48cmVjb3JkPjxyZWMtbnVtYmVyPjU0Mjwv

cmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9InA5ejBlZGRmbno5

c3NyZTB0ZTVwMHIwczJ3cHpwcnRhZTl0OSIgdGltZXN0YW1wPSIxNTI5Nzk3MzAyIj41NDI8L2tl

eT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwvcmVm

LXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPkRpY2ssIEouIEUuPC9hdXRob3I+

PGF1dGhvcj5CYXJkLCBBLiBKLjwvYXV0aG9yPjwvYXV0aG9ycz48L2NvbnRyaWJ1dG9ycz48dGl0

bGVzPjx0aXRsZT5Ub3dhcmQgdGhlIERpZ2l0YWwgRWxlY3Ryb2NoZW1pY2FsIFJlY29nbml0aW9u

IG9mIENvYmFsdCwgSXJpZGl1bSwgTmlja2VsLCBhbmQgSXJvbiBJb24gQ29sbGlzaW9ucyBieSBD

YXRhbHl0aWMgQW1wbGlmaWNhdGlvbjwvdGl0bGU+PHNlY29uZGFyeS10aXRsZT5Kb3VybmFsIG9m

IHRoZSBBbWVyaWNhbiBDaGVtaWNhbCBTb2NpZXR5PC9zZWNvbmRhcnktdGl0bGU+PC90aXRsZXM+

PHBlcmlvZGljYWw+PGZ1bGwtdGl0bGU+Sm91cm5hbCBvZiB0aGUgQW1lcmljYW4gQ2hlbWljYWwg

U29jaWV0eTwvZnVsbC10aXRsZT48YWJici0xPkouIEFtLiBDaGVtLiBTb2MuPC9hYmJyLTE+PC9w

ZXJpb2RpY2FsPjxwYWdlcz44NDQ2LTg0NTI8L3BhZ2VzPjx2b2x1bWU+MTM4PC92b2x1bWU+PG51

bWJlcj4yNzwvbnVtYmVyPjxkYXRlcz48eWVhcj4yMDE2PC95ZWFyPjxwdWItZGF0ZXM+PGRhdGU+

SnVsPC9kYXRlPjwvcHViLWRhdGVzPjwvZGF0ZXM+PGlzYm4+MDAwMi03ODYzPC9pc2JuPjxhY2Nl

c3Npb24tbnVtPldPUzowMDAzNzk3OTQ0MDAwMjc8L2FjY2Vzc2lvbi1udW0+PHVybHM+PHJlbGF0

ZWQtdXJscz48dXJsPiZsdDtHbyB0byBJU0kmZ3Q7Oi8vV09TOjAwMDM3OTc5NDQwMDAyNzwvdXJs

PjwvcmVsYXRlZC11cmxzPjwvdXJscz48ZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+MTAuMTAyMS9q

YWNzLjZiMDMyMDI8L2VsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjwvcmVjb3JkPjwvQ2l0ZT48Q2l0

ZT48QXV0aG9yPkRpY2s8L0F1dGhvcj48WWVhcj4yMDE2PC9ZZWFyPjxSZWNOdW0+OTc1PC9SZWNO

dW0+PHJlY29yZD48cmVjLW51bWJlcj45NzU8L3JlYy1udW1iZXI+PGZvcmVpZ24ta2V5cz48a2V5

IGFwcD0iRU4iIGRiLWlkPSI1OXd6d3ZydDFzczJ3Y2U5djIzeHZyMHlkOXdlZTJ6dnpzYTIiIHRp

bWVzdGFtcD0iMCI+OTc1PC9rZXk+PC9mb3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJu

YWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBlPjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5E

aWNrLCBKLiBFLjwvYXV0aG9yPjxhdXRob3I+QmFyZCwgQS4gSi48L2F1dGhvcj48L2F1dGhvcnM+

PC9jb250cmlidXRvcnM+PHRpdGxlcz48dGl0bGU+VG93YXJkIHRoZSBEaWdpdGFsIEVsZWN0cm9j

aGVtaWNhbCBSZWNvZ25pdGlvbiBvZiBDb2JhbHQsIElyaWRpdW0sIE5pY2tlbCwgYW5kIElyb24g

SW9uIENvbGxpc2lvbnMgYnkgQ2F0YWx5dGljIEFtcGxpZmljYXRpb248L3RpdGxlPjxzZWNvbmRh

cnktdGl0bGU+Sm91cm5hbCBvZiB0aGUgQW1lcmljYW4gQ2hlbWljYWwgU29jaWV0eTwvc2Vjb25k

YXJ5LXRpdGxlPjwvdGl0bGVzPjxwZXJpb2RpY2FsPjxmdWxsLXRpdGxlPkpvdXJuYWwgb2YgdGhl

IEFtZXJpY2FuIENoZW1pY2FsIFNvY2lldHk8L2Z1bGwtdGl0bGU+PGFiYnItMT5KLiBBbS4gQ2hl

bS4gU29jLjwvYWJici0xPjxhYmJyLTI+SiBBbSBDaGVtIFNvYzwvYWJici0yPjwvcGVyaW9kaWNh

bD48cGFnZXM+ODQ0Ni04NDUyPC9wYWdlcz48dm9sdW1lPjEzODwvdm9sdW1lPjxudW1iZXI+Mjc8

L251bWJlcj48ZGF0ZXM+PHllYXI+MjAxNjwveWVhcj48cHViLWRhdGVzPjxkYXRlPkp1bDwvZGF0

ZT48L3B1Yi1kYXRlcz48L2RhdGVzPjxpc2JuPjAwMDItNzg2MzwvaXNibj48YWNjZXNzaW9uLW51

bT5XT1M6MDAwMzc5Nzk0NDAwMDI3PC9hY2Nlc3Npb24tbnVtPjx1cmxzPjxyZWxhdGVkLXVybHM+

PHVybD4mbHQ7R28gdG8gSVNJJmd0OzovL1dPUzowMDAzNzk3OTQ0MDAwMjc8L3VybD48L3JlbGF0

ZWQtdXJscz48L3VybHM+PGVsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjEwLjEwMjEvamFjcy42YjAz

MjAyPC9lbGVjdHJvbmljLXJlc291cmNlLW51bT48L3JlY29yZD48L0NpdGU+PENpdGU+PEF1dGhv

cj5EaWNrPC9BdXRob3I+PFllYXI+MjAxNjwvWWVhcj48UmVjTnVtPjE4NTY8L1JlY051bT48cmVj

b3JkPjxyZWMtbnVtYmVyPjE4NTY8L3JlYy1udW1iZXI+PGZvcmVpZ24ta2V5cz48a2V5IGFwcD0i

RU4iIGRiLWlkPSI1OXd6d3ZydDFzczJ3Y2U5djIzeHZyMHlkOXdlZTJ6dnpzYTIiIHRpbWVzdGFt

cD0iMCI+MTg1Njwva2V5PjwvZm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJKb3VybmFsIEFy

dGljbGUiPjE3PC9yZWYtdHlwZT48Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+RGljaywg

Si4gRS48L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PHRpdGxlcz48dGl0bGU+RWxl

Y3Ryb2NoZW1pY2FsIGRldGVjdGlvbiBvZiBzaW5nbGUgY2FuY2VyIGFuZCBoZWFsdGh5IGNlbGwg

Y29sbGlzaW9ucyBvbiBhIG1pY3JvZWxlY3Ryb2RlPC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPkNo

ZW1pY2FsIENvbW11bmljYXRpb25zPC9zZWNvbmRhcnktdGl0bGU+PC90aXRsZXM+PHBlcmlvZGlj

YWw+PGZ1bGwtdGl0bGU+Q2hlbWljYWwgQ29tbXVuaWNhdGlvbnM8L2Z1bGwtdGl0bGU+PGFiYnIt

MT5DaGVtLiBDb21tdW4uPC9hYmJyLTE+PGFiYnItMj5DaGVtIENvbW11bjwvYWJici0yPjwvcGVy

aW9kaWNhbD48cGFnZXM+MTA5MDYtMTA5MDk8L3BhZ2VzPjx2b2x1bWU+NTI8L3ZvbHVtZT48bnVt

YmVyPjcyPC9udW1iZXI+PGRhdGVzPjx5ZWFyPjIwMTY8L3llYXI+PC9kYXRlcz48aXNibj4xMzU5

LTczNDU8L2lzYm4+PGFjY2Vzc2lvbi1udW0+V09TOjAwMDM4MjY3MzYwMDAyMTwvYWNjZXNzaW9u

LW51bT48dXJscz48cmVsYXRlZC11cmxzPjx1cmw+Jmx0O0dvIHRvIElTSSZndDs6Ly9XT1M6MDAw

MzgyNjczNjAwMDIxPC91cmw+PC9yZWxhdGVkLXVybHM+PC91cmxzPjxlbGVjdHJvbmljLXJlc291

cmNlLW51bT4xMC4xMDM5L2M2Y2MwNDUxNWQ8L2VsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjwvcmVj

b3JkPjwvQ2l0ZT48Q2l0ZT48QXV0aG9yPkxlYmVndWU8L0F1dGhvcj48WWVhcj4yMDE1PC9ZZWFy

PjxSZWNOdW0+Mjk8L1JlY051bT48cmVjb3JkPjxyZWMtbnVtYmVyPjI5PC9yZWMtbnVtYmVyPjxm

b3JlaWduLWtleXM+PGtleSBhcHA9IkVOIiBkYi1pZD0icDl6MGVkZGZuejlzc3JlMHRlNXAwcjBz

MndwenBydGFlOXQ5IiB0aW1lc3RhbXA9IjE1MjQ2MTU3ODkiPjI5PC9rZXk+PC9mb3JlaWduLWtl

eXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBlPjxjb250cmli

dXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5MZWJlZ3VlLCBFLjwvYXV0aG9yPjxhdXRob3I+QW5kZXJz

b24sIEMuIE0uPC9hdXRob3I+PGF1dGhvcj5EaWNrLCBKLiBFLjwvYXV0aG9yPjxhdXRob3I+V2Vi

YiwgTC4gSi48L2F1dGhvcj48YXV0aG9yPkJhcmQsIEEuIEouPC9hdXRob3I+PC9hdXRob3JzPjwv

Y29udHJpYnV0b3JzPjx0aXRsZXM+PHRpdGxlPkVsZWN0cm9jaGVtaWNhbCBEZXRlY3Rpb24gb2Yg

U2luZ2xlIFBob3NwaG9saXBpZCBWZXNpY2xlIENvbGxpc2lvbnMgYXQgYSBQdCBVbHRyYW1pY3Jv

ZWxlY3Ryb2RlPC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPkxhbmdtdWlyPC9zZWNvbmRhcnktdGl0

bGU+PC90aXRsZXM+PHBlcmlvZGljYWw+PGZ1bGwtdGl0bGU+TGFuZ211aXI8L2Z1bGwtdGl0bGU+

PC9wZXJpb2RpY2FsPjxwYWdlcz4xMTczNC0xMTczOTwvcGFnZXM+PHZvbHVtZT4zMTwvdm9sdW1l

PjxudW1iZXI+NDI8L251bWJlcj48ZGF0ZXM+PHllYXI+MjAxNTwveWVhcj48cHViLWRhdGVzPjxk

YXRlPk9jdDwvZGF0ZT48L3B1Yi1kYXRlcz48L2RhdGVzPjxpc2JuPjA3NDMtNzQ2MzwvaXNibj48

YWNjZXNzaW9uLW51bT5XT1M6MDAwMzYzOTE0NjAwMDQyPC9hY2Nlc3Npb24tbnVtPjx1cmxzPjxy

ZWxhdGVkLXVybHM+PHVybD4mbHQ7R28gdG8gSVNJJmd0OzovL1dPUzowMDAzNjM5MTQ2MDAwNDI8

L3VybD48L3JlbGF0ZWQtdXJscz48L3VybHM+PGVsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjEwLjEw

MjEvYWNzLmxhbmdtdWlyLjViMDMxMjM8L2VsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjwvcmVjb3Jk

PjwvQ2l0ZT48Q2l0ZT48QXV0aG9yPkRpY2s8L0F1dGhvcj48WWVhcj4yMDE1PC9ZZWFyPjxSZWNO

dW0+NTQ8L1JlY051bT48cmVjb3JkPjxyZWMtbnVtYmVyPjU0PC9yZWMtbnVtYmVyPjxmb3JlaWdu

LWtleXM+PGtleSBhcHA9IkVOIiBkYi1pZD0icDl6MGVkZGZuejlzc3JlMHRlNXAwcjBzMndwenBy

dGFlOXQ5IiB0aW1lc3RhbXA9IjE1MjQ2MTU3OTAiPjU0PC9rZXk+PC9mb3JlaWduLWtleXM+PHJl

Zi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBlPjxjb250cmlidXRvcnM+

PGF1dGhvcnM+PGF1dGhvcj5EaWNrLCBKLiBFLjwvYXV0aG9yPjxhdXRob3I+UmVuYXVsdCwgQy48

L2F1dGhvcj48YXV0aG9yPkJhcmQsIEEuIEouPC9hdXRob3I+PC9hdXRob3JzPjwvY29udHJpYnV0

b3JzPjx0aXRsZXM+PHRpdGxlPk9ic2VydmF0aW9uIG9mIFNpbmdsZS1Qcm90ZWluIGFuZCBETkEg

TWFjcm9tb2xlY3VsZSBDb2xsaXNpb25zIG9uIFVsdHJhbWljcm9lbGVjdHJvZGVzPC90aXRsZT48

c2Vjb25kYXJ5LXRpdGxlPkpvdXJuYWwgb2YgdGhlIEFtZXJpY2FuIENoZW1pY2FsIFNvY2lldHk8

L3NlY29uZGFyeS10aXRsZT48L3RpdGxlcz48cGVyaW9kaWNhbD48ZnVsbC10aXRsZT5Kb3VybmFs

IG9mIHRoZSBBbWVyaWNhbiBDaGVtaWNhbCBTb2NpZXR5PC9mdWxsLXRpdGxlPjxhYmJyLTE+Si4g

QW0uIENoZW0uIFNvYy48L2FiYnItMT48L3BlcmlvZGljYWw+PHBhZ2VzPjgzNzYtODM3OTwvcGFn

ZXM+PHZvbHVtZT4xMzc8L3ZvbHVtZT48bnVtYmVyPjI2PC9udW1iZXI+PGRhdGVzPjx5ZWFyPjIw

MTU8L3llYXI+PHB1Yi1kYXRlcz48ZGF0ZT5KdWw8L2RhdGU+PC9wdWItZGF0ZXM+PC9kYXRlcz48

aXNibj4wMDAyLTc4NjM8L2lzYm4+PGFjY2Vzc2lvbi1udW0+V09TOjAwMDM1Nzk2NDQwMDAxNjwv

YWNjZXNzaW9uLW51bT48dXJscz48cmVsYXRlZC11cmxzPjx1cmw+Jmx0O0dvIHRvIElTSSZndDs6

Ly9XT1M6MDAwMzU3OTY0NDAwMDE2PC91cmw+PC9yZWxhdGVkLXVybHM+PC91cmxzPjxlbGVjdHJv

bmljLXJlc291cmNlLW51bT4xMC4xMDIxL2phY3MuNWIwNDU0NTwvZWxlY3Ryb25pYy1yZXNvdXJj

ZS1udW0+PC9yZWNvcmQ+PC9DaXRlPjxDaXRlPjxBdXRob3I+RGljazwvQXV0aG9yPjxZZWFyPjIw

MTU8L1llYXI+PFJlY051bT41MTk8L1JlY051bT48cmVjb3JkPjxyZWMtbnVtYmVyPjUxOTwvcmVj

LW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9InA5ejBlZGRmbno5c3Ny

ZTB0ZTVwMHIwczJ3cHpwcnRhZTl0OSIgdGltZXN0YW1wPSIxNTI5Nzk3MzAxIj41MTk8L2tleT48

L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwvcmVmLXR5

cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPkRpY2ssIEouIEUuPC9hdXRob3I+PGF1

dGhvcj5CYXJkLCBBLiBKLjwvYXV0aG9yPjwvYXV0aG9ycz48L2NvbnRyaWJ1dG9ycz48dGl0bGVz

Pjx0aXRsZT5SZWNvZ25pemluZyBTaW5nbGUgQ29sbGlzaW9ucyBvZiBQdENsNjItIGF0IEZlbXRv

bW9sYXIgQ29uY2VudHJhdGlvbnMgb24gVWx0cmFtaWNyb2VsZWN0cm9kZXMgYnkgTnVjbGVhdGlu

ZyBFbGVjdHJvY2F0YWx5dGljIENsdXN0ZXJzPC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPkpvdXJu

YWwgb2YgdGhlIEFtZXJpY2FuIENoZW1pY2FsIFNvY2lldHk8L3NlY29uZGFyeS10aXRsZT48L3Rp

dGxlcz48cGVyaW9kaWNhbD48ZnVsbC10aXRsZT5Kb3VybmFsIG9mIHRoZSBBbWVyaWNhbiBDaGVt

aWNhbCBTb2NpZXR5PC9mdWxsLXRpdGxlPjxhYmJyLTE+Si4gQW0uIENoZW0uIFNvYy48L2FiYnIt

MT48L3BlcmlvZGljYWw+PHBhZ2VzPjEzNzUyLTEzNzU1PC9wYWdlcz48dm9sdW1lPjEzNzwvdm9s

dW1lPjxudW1iZXI+NDM8L251bWJlcj48ZGF0ZXM+PHllYXI+MjAxNTwveWVhcj48cHViLWRhdGVz

PjxkYXRlPk5vdjwvZGF0ZT48L3B1Yi1kYXRlcz48L2RhdGVzPjxpc2JuPjAwMDItNzg2MzwvaXNi

bj48YWNjZXNzaW9uLW51bT5XT1M6MDAwMzY0MzU1OTAwMDA4PC9hY2Nlc3Npb24tbnVtPjx1cmxz

PjxyZWxhdGVkLXVybHM+PHVybD4mbHQ7R28gdG8gSVNJJmd0OzovL1dPUzowMDAzNjQzNTU5MDAw

MDg8L3VybD48L3JlbGF0ZWQtdXJscz48L3VybHM+PGVsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjEw

LjEwMjEvamFjcy41YjA4NjI4PC9lbGVjdHJvbmljLXJlc291cmNlLW51bT48L3JlY29yZD48L0Np

dGU+PENpdGU+PEF1dGhvcj5EaWNrPC9BdXRob3I+PFllYXI+MjAxNDwvWWVhcj48UmVjTnVtPjQw

MTwvUmVjTnVtPjxyZWNvcmQ+PHJlYy1udW1iZXI+NDAxPC9yZWMtbnVtYmVyPjxmb3JlaWduLWtl

eXM+PGtleSBhcHA9IkVOIiBkYi1pZD0icDl6MGVkZGZuejlzc3JlMHRlNXAwcjBzMndwenBydGFl

OXQ5IiB0aW1lc3RhbXA9IjE1MjQ2MTU3OTgiPjQwMTwva2V5PjwvZm9yZWlnbi1rZXlzPjxyZWYt

dHlwZSBuYW1lPSJKb3VybmFsIEFydGljbGUiPjE3PC9yZWYtdHlwZT48Y29udHJpYnV0b3JzPjxh

dXRob3JzPjxhdXRob3I+RGljaywgSi4gRS48L2F1dGhvcj48YXV0aG9yPlJlbmF1bHQsIEMuPC9h

dXRob3I+PGF1dGhvcj5LaW0sIEIuIEsuPC9hdXRob3I+PGF1dGhvcj5CYXJkLCBBLiBKLjwvYXV0

aG9yPjwvYXV0aG9ycz48L2NvbnRyaWJ1dG9ycz48dGl0bGVzPjx0aXRsZT5FbGVjdHJvZ2VuZXJh

dGVkIENoZW1pbHVtaW5lc2NlbmNlIG9mIENvbW1vbiBPcmdhbmljIEx1bWlub3Bob3JlcyBpbiBX

YXRlciBVc2luZyBhbiBFbXVsc2lvbiBTeXN0ZW08L3RpdGxlPjxzZWNvbmRhcnktdGl0bGU+Sm91

cm5hbCBvZiB0aGUgQW1lcmljYW4gQ2hlbWljYWwgU29jaWV0eTwvc2Vjb25kYXJ5LXRpdGxlPjwv

dGl0bGVzPjxwZXJpb2RpY2FsPjxmdWxsLXRpdGxlPkpvdXJuYWwgb2YgdGhlIEFtZXJpY2FuIENo

ZW1pY2FsIFNvY2lldHk8L2Z1bGwtdGl0bGU+PGFiYnItMT5KLiBBbS4gQ2hlbS4gU29jLjwvYWJi

ci0xPjwvcGVyaW9kaWNhbD48cGFnZXM+MTM1NDYtMTM1NDk8L3BhZ2VzPjx2b2x1bWU+MTM2PC92

b2x1bWU+PG51bWJlcj4zOTwvbnVtYmVyPjxkYXRlcz48eWVhcj4yMDE0PC95ZWFyPjxwdWItZGF0

ZXM+PGRhdGU+T2N0PC9kYXRlPjwvcHViLWRhdGVzPjwvZGF0ZXM+PGlzYm4+MDAwMi03ODYzPC9p

c2JuPjxhY2Nlc3Npb24tbnVtPldPUzowMDAzNDI2MDg4MDAwMjA8L2FjY2Vzc2lvbi1udW0+PHVy

bHM+PHJlbGF0ZWQtdXJscz48dXJsPiZsdDtHbyB0byBJU0kmZ3Q7Oi8vV09TOjAwMDM0MjYwODgw

MDAyMDwvdXJsPjwvcmVsYXRlZC11cmxzPjwvdXJscz48ZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+

MTAuMTAyMS9qYTUwNzE5OHI8L2VsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjwvcmVjb3JkPjwvQ2l0

ZT48Q2l0ZT48QXV0aG9yPkRpY2s8L0F1dGhvcj48WWVhcj4yMDE0PC9ZZWFyPjxSZWNOdW0+NTE4

PC9SZWNOdW0+PHJlY29yZD48cmVjLW51bWJlcj41MTg8L3JlYy1udW1iZXI+PGZvcmVpZ24ta2V5

cz48a2V5IGFwcD0iRU4iIGRiLWlkPSJwOXowZWRkZm56OXNzcmUwdGU1cDByMHMyd3B6cHJ0YWU5

dDkiIHRpbWVzdGFtcD0iMTUyOTc5NzMwMSI+NTE4PC9rZXk+PC9mb3JlaWduLWtleXM+PHJlZi10

eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBlPjxjb250cmlidXRvcnM+PGF1

dGhvcnM+PGF1dGhvcj5EaWNrLCBKLiBFLjwvYXV0aG9yPjxhdXRob3I+UmVuYXVsdCwgQy48L2F1

dGhvcj48YXV0aG9yPktpbSwgQi4gSy48L2F1dGhvcj48YXV0aG9yPkJhcmQsIEEuIEouPC9hdXRo

b3I+PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjx0aXRsZXM+PHRpdGxlPlNpbXVsdGFuZW91cyBE

ZXRlY3Rpb24gb2YgU2luZ2xlIEF0dG9saXRlciBEcm9wbGV0IENvbGxpc2lvbnMgYnkgRWxlY3Ry

b2NoZW1pY2FsIGFuZCBFbGVjdHJvZ2VuZXJhdGVkIENoZW1pbHVtaW5lc2NlbnQgUmVzcG9uc2Vz

PC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPkFuZ2V3YW5kdGUgQ2hlbWllLUludGVybmF0aW9uYWwg

RWRpdGlvbjwvc2Vjb25kYXJ5LXRpdGxlPjwvdGl0bGVzPjxwZXJpb2RpY2FsPjxmdWxsLXRpdGxl

PkFuZ2V3YW5kdGUgQ2hlbWllLUludGVybmF0aW9uYWwgRWRpdGlvbjwvZnVsbC10aXRsZT48YWJi

ci0xPkFuZ2V3LiBDaGVtLiBJbnQuIEVkLjwvYWJici0xPjwvcGVyaW9kaWNhbD48cGFnZXM+MTE4

NTktMTE4NjI8L3BhZ2VzPjx2b2x1bWU+NTM8L3ZvbHVtZT48bnVtYmVyPjQ0PC9udW1iZXI+PGRh

dGVzPjx5ZWFyPjIwMTQ8L3llYXI+PHB1Yi1kYXRlcz48ZGF0ZT5PY3Q8L2RhdGU+PC9wdWItZGF0

ZXM+PC9kYXRlcz48aXNibj4xNDMzLTc4NTE8L2lzYm4+PGFjY2Vzc2lvbi1udW0+V09TOjAwMDM0

NDA1MDcwMDAyNTwvYWNjZXNzaW9uLW51bT48dXJscz48cmVsYXRlZC11cmxzPjx1cmw+Jmx0O0dv

IHRvIElTSSZndDs6Ly9XT1M6MDAwMzQ0MDUwNzAwMDI1PC91cmw+PC9yZWxhdGVkLXVybHM+PC91

cmxzPjxlbGVjdHJvbmljLXJlc291cmNlLW51bT4xMC4xMDAyL2FuaWUuMjAxNDA3OTM3PC9lbGVj

dHJvbmljLXJlc291cmNlLW51bT48L3JlY29yZD48L0NpdGU+PC9FbmROb3RlPn==

ADDIN EN.CITE PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5aaG91PC9BdXRob3I+PFllYXI+MjAxODwvWWVhcj48UmVj

TnVtPjE4NTU8L1JlY051bT48RGlzcGxheVRleHQ+PHN0eWxlIGZhY2U9InN1cGVyc2NyaXB0Ij4x

LTEyPC9zdHlsZT48L0Rpc3BsYXlUZXh0PjxyZWNvcmQ+PHJlYy1udW1iZXI+MTg1NTwvcmVjLW51

bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9IjU5d3p3dnJ0MXNzMndjZTl2

MjN4dnIweWQ5d2VlMnp2enNhMiIgdGltZXN0YW1wPSIwIj4xODU1PC9rZXk+PC9mb3JlaWduLWtl

eXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBlPjxjb250cmli

dXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5aaG91LCBNLjwvYXV0aG9yPjxhdXRob3I+RGljaywgSi4g

RS48L2F1dGhvcj48YXV0aG9yPkh1LCBLLiBLLjwvYXV0aG9yPjxhdXRob3I+TWlya2luLCBNLiBW

LjwvYXV0aG9yPjxhdXRob3I+QmFyZCwgQS4gSi48L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmli

dXRvcnM+PHRpdGxlcz48dGl0bGU+VWx0cmFzZW5zaXRpdmUgRWxlY3Ryb2FuYWx5c2lzOiBGZW10

b21vbGFyIERldGVybWluYXRpb24gb2YgTGVhZCwgQ29iYWx0LCBhbmQgTmlja2VsPC90aXRsZT48

c2Vjb25kYXJ5LXRpdGxlPkFuYWx5dGljYWwgQ2hlbWlzdHJ5PC9zZWNvbmRhcnktdGl0bGU+PC90

aXRsZXM+PHBlcmlvZGljYWw+PGZ1bGwtdGl0bGU+QW5hbHl0aWNhbCBDaGVtaXN0cnk8L2Z1bGwt

dGl0bGU+PGFiYnItMT5BbmFsLiBDaGVtLjwvYWJici0xPjxhYmJyLTI+QW5hbCBDaGVtPC9hYmJy

LTI+PC9wZXJpb2RpY2FsPjxwYWdlcz4xMTQyLTExNDY8L3BhZ2VzPjx2b2x1bWU+OTA8L3ZvbHVt

ZT48bnVtYmVyPjI8L251bWJlcj48ZGF0ZXM+PHllYXI+MjAxODwveWVhcj48cHViLWRhdGVzPjxk

YXRlPkphbjwvZGF0ZT48L3B1Yi1kYXRlcz48L2RhdGVzPjxpc2JuPjAwMDMtMjcwMDwvaXNibj48

YWNjZXNzaW9uLW51bT5XT1M6MDAwNDIzMDExNjAwMDE3PC9hY2Nlc3Npb24tbnVtPjx1cmxzPjxy

ZWxhdGVkLXVybHM+PHVybD4mbHQ7R28gdG8gSVNJJmd0OzovL1dPUzowMDA0MjMwMTE2MDAwMTc8

L3VybD48L3JlbGF0ZWQtdXJscz48L3VybHM+PGVsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjEwLjEw

MjEvYWNzLmFuYWxjaGVtLjcxMzAzMzU1PC9lbGVjdHJvbmljLXJlc291cmNlLW51bT48L3JlY29y

ZD48L0NpdGU+PENpdGU+PEF1dGhvcj5QZXJjaXZhbDwvQXV0aG9yPjxZZWFyPjIwMTc8L1llYXI+

PFJlY051bT40OTwvUmVjTnVtPjxyZWNvcmQ+PHJlYy1udW1iZXI+NDk8L3JlYy1udW1iZXI+PGZv

cmVpZ24ta2V5cz48a2V5IGFwcD0iRU4iIGRiLWlkPSJwOXowZWRkZm56OXNzcmUwdGU1cDByMHMy

d3B6cHJ0YWU5dDkiIHRpbWVzdGFtcD0iMTUyNDYxNTc5MCI+NDk8L2tleT48L2ZvcmVpZ24ta2V5

cz48cmVmLXR5cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwvcmVmLXR5cGU+PGNvbnRyaWJ1

dG9ycz48YXV0aG9ycz48YXV0aG9yPlBlcmNpdmFsLCBTLiBKLjwvYXV0aG9yPjxhdXRob3I+RGlj

aywgSi4gRS48L2F1dGhvcj48YXV0aG9yPkJhcmQsIEEuIEouPC9hdXRob3I+PC9hdXRob3JzPjwv

Y29udHJpYnV0b3JzPjx0aXRsZXM+PHRpdGxlPkNhdGhvZGljYWxseSBEaXNzb2x2ZWQgUGxhdGlu

dW0gUmVzdWx0aW5nIGZyb20gdGhlIE8tMiBhbmQgSDJPMiBSZWR1Y3Rpb24gUmVhY3Rpb25zIG9u

IFBsYXRpbnVtIFVsdHJhbWljcm9lbGVjdHJvZGVzPC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPkFu

YWx5dGljYWwgQ2hlbWlzdHJ5PC9zZWNvbmRhcnktdGl0bGU+PC90aXRsZXM+PHBlcmlvZGljYWw+

PGZ1bGwtdGl0bGU+QW5hbHl0aWNhbCBDaGVtaXN0cnk8L2Z1bGwtdGl0bGU+PGFiYnItMT5BbmFs

LiBDaGVtLjwvYWJici0xPjwvcGVyaW9kaWNhbD48cGFnZXM+MzA4Ny0zMDkyPC9wYWdlcz48dm9s

dW1lPjg5PC92b2x1bWU+PG51bWJlcj41PC9udW1iZXI+PGRhdGVzPjx5ZWFyPjIwMTc8L3llYXI+

PHB1Yi1kYXRlcz48ZGF0ZT5NYXI8L2RhdGU+PC9wdWItZGF0ZXM+PC9kYXRlcz48aXNibj4wMDAz

LTI3MDA8L2lzYm4+PGFjY2Vzc2lvbi1udW0+V09TOjAwMDM5NTk2NDQwMDA1ODwvYWNjZXNzaW9u

LW51bT48dXJscz48cmVsYXRlZC11cmxzPjx1cmw+Jmx0O0dvIHRvIElTSSZndDs6Ly9XT1M6MDAw

Mzk1OTY0NDAwMDU4PC91cmw+PC9yZWxhdGVkLXVybHM+PC91cmxzPjxlbGVjdHJvbmljLXJlc291

cmNlLW51bT4xMC4xMDIxL2Fjcy5hbmFsY2hlbS42YjA0ODMyPC9lbGVjdHJvbmljLXJlc291cmNl

LW51bT48L3JlY29yZD48L0NpdGU+PENpdGU+PEF1dGhvcj5aaG91PC9BdXRob3I+PFllYXI+MjAx

NzwvWWVhcj48UmVjTnVtPjg2NzwvUmVjTnVtPjxyZWNvcmQ+PHJlYy1udW1iZXI+ODY3PC9yZWMt

bnVtYmVyPjxmb3JlaWduLWtleXM+PGtleSBhcHA9IkVOIiBkYi1pZD0iNTl3end2cnQxc3Myd2Nl

OXYyM3h2cjB5ZDl3ZWUyenZ6c2EyIiB0aW1lc3RhbXA9IjAiPjg2Nzwva2V5PjwvZm9yZWlnbi1r

ZXlzPjxyZWYtdHlwZSBuYW1lPSJKb3VybmFsIEFydGljbGUiPjE3PC9yZWYtdHlwZT48Y29udHJp

YnV0b3JzPjxhdXRob3JzPjxhdXRob3I+WmhvdSwgTS48L2F1dGhvcj48YXV0aG9yPkRpY2ssIEou

IEUuPC9hdXRob3I+PGF1dGhvcj5CYXJkLCBBLiBKLjwvYXV0aG9yPjwvYXV0aG9ycz48L2NvbnRy

aWJ1dG9ycz48dGl0bGVzPjx0aXRsZT5FbGVjdHJvZGVwb3NpdGlvbiBvZiBJc29sYXRlZCBQbGF0

aW51bSBBdG9tcyBhbmQgQ2x1c3RlcnMgb24gQmlzbXV0aC1DaGFyYWN0ZXJpemF0aW9uIGFuZCBF

bGVjdHJvY2F0YWx5c2lzPC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPkpvdXJuYWwgb2YgdGhlIEFt

ZXJpY2FuIENoZW1pY2FsIFNvY2lldHk8L3NlY29uZGFyeS10aXRsZT48L3RpdGxlcz48cGVyaW9k

aWNhbD48ZnVsbC10aXRsZT5Kb3VybmFsIG9mIHRoZSBBbWVyaWNhbiBDaGVtaWNhbCBTb2NpZXR5

PC9mdWxsLXRpdGxlPjxhYmJyLTE+Si4gQW0uIENoZW0uIFNvYy48L2FiYnItMT48YWJici0yPkog

QW0gQ2hlbSBTb2M8L2FiYnItMj48L3BlcmlvZGljYWw+PHBhZ2VzPjE3Njc3LTE3NjgyPC9wYWdl

cz48dm9sdW1lPjEzOTwvdm9sdW1lPjxudW1iZXI+NDg8L251bWJlcj48ZGF0ZXM+PHllYXI+MjAx

NzwveWVhcj48cHViLWRhdGVzPjxkYXRlPkRlYzwvZGF0ZT48L3B1Yi1kYXRlcz48L2RhdGVzPjxp

c2JuPjAwMDItNzg2MzwvaXNibj48YWNjZXNzaW9uLW51bT5XT1M6MDAwNDE3NjY5MDAwMDY2PC9h

Y2Nlc3Npb24tbnVtPjx1cmxzPjxyZWxhdGVkLXVybHM+PHVybD4mbHQ7R28gdG8gSVNJJmd0Ozov

L1dPUzowMDA0MTc2NjkwMDAwNjY8L3VybD48L3JlbGF0ZWQtdXJscz48L3VybHM+PGVsZWN0cm9u

aWMtcmVzb3VyY2UtbnVtPjEwLjEwMjEvamFjcy43YjEwNjQ2PC9lbGVjdHJvbmljLXJlc291cmNl

LW51bT48L3JlY29yZD48L0NpdGU+PENpdGU+PEF1dGhvcj5LaW08L0F1dGhvcj48WWVhcj4yMDE2

PC9ZZWFyPjxSZWNOdW0+MzM8L1JlY051bT48cmVjb3JkPjxyZWMtbnVtYmVyPjMzPC9yZWMtbnVt

YmVyPjxmb3JlaWduLWtleXM+PGtleSBhcHA9IkVOIiBkYi1pZD0icDl6MGVkZGZuejlzc3JlMHRl

NXAwcjBzMndwenBydGFlOXQ5IiB0aW1lc3RhbXA9IjE1MjQ2MTU3ODkiPjMzPC9rZXk+PC9mb3Jl

aWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBlPjxj

b250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5LaW0sIEouPC9hdXRob3I+PGF1dGhvcj5EaWNr

LCBKLiBFLjwvYXV0aG9yPjxhdXRob3I+QmFyZCwgQS4gSi48L2F1dGhvcj48L2F1dGhvcnM+PC9j

b250cmlidXRvcnM+PHRpdGxlcz48dGl0bGU+QWR2YW5jZWQgRWxlY3Ryb2NoZW1pc3RyeSBvZiBJ

bmRpdmlkdWFsIE1ldGFsIENsdXN0ZXJzIEVsZWN0cm9kZXBvc2l0ZWQgQXRvbSBieSBBdG9tIHRv

IE5hbm9tZXRlciBieSBOYW5vbWV0ZXI8L3RpdGxlPjxzZWNvbmRhcnktdGl0bGU+QWNjb3VudHMg

b2YgQ2hlbWljYWwgUmVzZWFyY2g8L3NlY29uZGFyeS10aXRsZT48L3RpdGxlcz48cGVyaW9kaWNh

bD48ZnVsbC10aXRsZT5BY2NvdW50cyBvZiBDaGVtaWNhbCBSZXNlYXJjaDwvZnVsbC10aXRsZT48

L3BlcmlvZGljYWw+PHBhZ2VzPjI1ODctMjU5NTwvcGFnZXM+PHZvbHVtZT40OTwvdm9sdW1lPjxu

dW1iZXI+MTE8L251bWJlcj48ZGF0ZXM+PHllYXI+MjAxNjwveWVhcj48cHViLWRhdGVzPjxkYXRl

Pk5vdjwvZGF0ZT48L3B1Yi1kYXRlcz48L2RhdGVzPjxpc2JuPjAwMDEtNDg0MjwvaXNibj48YWNj

ZXNzaW9uLW51bT5XT1M6MDAwMzg4MTU0ODAwMDIzPC9hY2Nlc3Npb24tbnVtPjx1cmxzPjxyZWxh

dGVkLXVybHM+PHVybD4mbHQ7R28gdG8gSVNJJmd0OzovL1dPUzowMDAzODgxNTQ4MDAwMjM8L3Vy

bD48L3JlbGF0ZWQtdXJscz48L3VybHM+PGVsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjEwLjEwMjEv

YWNzLmFjY291bnRzLjZiMDAzNDA8L2VsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjwvcmVjb3JkPjwv

Q2l0ZT48Q2l0ZT48QXV0aG9yPkRpY2s8L0F1dGhvcj48WWVhcj4yMDE2PC9ZZWFyPjxSZWNOdW0+

NTExPC9SZWNOdW0+PHJlY29yZD48cmVjLW51bWJlcj41MTE8L3JlYy1udW1iZXI+PGZvcmVpZ24t

a2V5cz48a2V5IGFwcD0iRU4iIGRiLWlkPSJwOXowZWRkZm56OXNzcmUwdGU1cDByMHMyd3B6cHJ0

YWU5dDkiIHRpbWVzdGFtcD0iMTUyOTc5NzMwMSI+NTExPC9rZXk+PC9mb3JlaWduLWtleXM+PHJl

Zi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBlPjxjb250cmlidXRvcnM+

PGF1dGhvcnM+PGF1dGhvcj5EaWNrLCBKLiBFLjwvYXV0aG9yPjxhdXRob3I+TGViZWd1ZSwgRS48

L2F1dGhvcj48YXV0aG9yPlN0cmF3c2luZSwgTC4gTS48L2F1dGhvcj48YXV0aG9yPkJhcmQsIEEu

IEouPC9hdXRob3I+PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjx0aXRsZXM+PHRpdGxlPk1pbGxp

c2Vjb25kIENvdWxvbWV0cnkgdmlhIFplcHRvbGl0ZXIgRHJvcGxldCBDb2xsaXNpb25zIG9uIGFu

IFVsdHJhbWljcm9lbGVjdHJvZGU8L3RpdGxlPjxzZWNvbmRhcnktdGl0bGU+RWxlY3Ryb2FuYWx5

c2lzPC9zZWNvbmRhcnktdGl0bGU+PC90aXRsZXM+PHBlcmlvZGljYWw+PGZ1bGwtdGl0bGU+RWxl

Y3Ryb2FuYWx5c2lzPC9mdWxsLXRpdGxlPjwvcGVyaW9kaWNhbD48cGFnZXM+MjMyMC0yMzI2PC9w

YWdlcz48dm9sdW1lPjI4PC92b2x1bWU+PG51bWJlcj4xMDwvbnVtYmVyPjxkYXRlcz48eWVhcj4y

MDE2PC95ZWFyPjxwdWItZGF0ZXM+PGRhdGU+T2N0PC9kYXRlPjwvcHViLWRhdGVzPjwvZGF0ZXM+

PGlzYm4+MTA0MC0wMzk3PC9pc2JuPjxhY2Nlc3Npb24tbnVtPldPUzowMDAzODc4ODY1MDAwMDk8

L2FjY2Vzc2lvbi1udW0+PHVybHM+PHJlbGF0ZWQtdXJscz48dXJsPiZsdDtHbyB0byBJU0kmZ3Q7

Oi8vV09TOjAwMDM4Nzg4NjUwMDAwOTwvdXJsPjwvcmVsYXRlZC11cmxzPjwvdXJscz48ZWxlY3Ry

b25pYy1yZXNvdXJjZS1udW0+MTAuMTAwMi9lbGFuLjIwMTYwMDE4MjwvZWxlY3Ryb25pYy1yZXNv

dXJjZS1udW0+PC9yZWNvcmQ+PC9DaXRlPjxDaXRlPjxBdXRob3I+RGljazwvQXV0aG9yPjxZZWFy

PjIwMTY8L1llYXI+PFJlY051bT41NDI8L1JlY051bT48cmVjb3JkPjxyZWMtbnVtYmVyPjU0Mjwv

cmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9InA5ejBlZGRmbno5

c3NyZTB0ZTVwMHIwczJ3cHpwcnRhZTl0OSIgdGltZXN0YW1wPSIxNTI5Nzk3MzAyIj41NDI8L2tl

eT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwvcmVm

LXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPkRpY2ssIEouIEUuPC9hdXRob3I+

PGF1dGhvcj5CYXJkLCBBLiBKLjwvYXV0aG9yPjwvYXV0aG9ycz48L2NvbnRyaWJ1dG9ycz48dGl0

bGVzPjx0aXRsZT5Ub3dhcmQgdGhlIERpZ2l0YWwgRWxlY3Ryb2NoZW1pY2FsIFJlY29nbml0aW9u

IG9mIENvYmFsdCwgSXJpZGl1bSwgTmlja2VsLCBhbmQgSXJvbiBJb24gQ29sbGlzaW9ucyBieSBD

YXRhbHl0aWMgQW1wbGlmaWNhdGlvbjwvdGl0bGU+PHNlY29uZGFyeS10aXRsZT5Kb3VybmFsIG9m

IHRoZSBBbWVyaWNhbiBDaGVtaWNhbCBTb2NpZXR5PC9zZWNvbmRhcnktdGl0bGU+PC90aXRsZXM+

PHBlcmlvZGljYWw+PGZ1bGwtdGl0bGU+Sm91cm5hbCBvZiB0aGUgQW1lcmljYW4gQ2hlbWljYWwg

U29jaWV0eTwvZnVsbC10aXRsZT48YWJici0xPkouIEFtLiBDaGVtLiBTb2MuPC9hYmJyLTE+PC9w

ZXJpb2RpY2FsPjxwYWdlcz44NDQ2LTg0NTI8L3BhZ2VzPjx2b2x1bWU+MTM4PC92b2x1bWU+PG51

bWJlcj4yNzwvbnVtYmVyPjxkYXRlcz48eWVhcj4yMDE2PC95ZWFyPjxwdWItZGF0ZXM+PGRhdGU+

SnVsPC9kYXRlPjwvcHViLWRhdGVzPjwvZGF0ZXM+PGlzYm4+MDAwMi03ODYzPC9pc2JuPjxhY2Nl

c3Npb24tbnVtPldPUzowMDAzNzk3OTQ0MDAwMjc8L2FjY2Vzc2lvbi1udW0+PHVybHM+PHJlbGF0

ZWQtdXJscz48dXJsPiZsdDtHbyB0byBJU0kmZ3Q7Oi8vV09TOjAwMDM3OTc5NDQwMDAyNzwvdXJs

PjwvcmVsYXRlZC11cmxzPjwvdXJscz48ZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+MTAuMTAyMS9q

YWNzLjZiMDMyMDI8L2VsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjwvcmVjb3JkPjwvQ2l0ZT48Q2l0

ZT48QXV0aG9yPkRpY2s8L0F1dGhvcj48WWVhcj4yMDE2PC9ZZWFyPjxSZWNOdW0+OTc1PC9SZWNO

dW0+PHJlY29yZD48cmVjLW51bWJlcj45NzU8L3JlYy1udW1iZXI+PGZvcmVpZ24ta2V5cz48a2V5

IGFwcD0iRU4iIGRiLWlkPSI1OXd6d3ZydDFzczJ3Y2U5djIzeHZyMHlkOXdlZTJ6dnpzYTIiIHRp

bWVzdGFtcD0iMCI+OTc1PC9rZXk+PC9mb3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJu

YWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBlPjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5E

aWNrLCBKLiBFLjwvYXV0aG9yPjxhdXRob3I+QmFyZCwgQS4gSi48L2F1dGhvcj48L2F1dGhvcnM+

PC9jb250cmlidXRvcnM+PHRpdGxlcz48dGl0bGU+VG93YXJkIHRoZSBEaWdpdGFsIEVsZWN0cm9j

aGVtaWNhbCBSZWNvZ25pdGlvbiBvZiBDb2JhbHQsIElyaWRpdW0sIE5pY2tlbCwgYW5kIElyb24g

SW9uIENvbGxpc2lvbnMgYnkgQ2F0YWx5dGljIEFtcGxpZmljYXRpb248L3RpdGxlPjxzZWNvbmRh

cnktdGl0bGU+Sm91cm5hbCBvZiB0aGUgQW1lcmljYW4gQ2hlbWljYWwgU29jaWV0eTwvc2Vjb25k

YXJ5LXRpdGxlPjwvdGl0bGVzPjxwZXJpb2RpY2FsPjxmdWxsLXRpdGxlPkpvdXJuYWwgb2YgdGhl

IEFtZXJpY2FuIENoZW1pY2FsIFNvY2lldHk8L2Z1bGwtdGl0bGU+PGFiYnItMT5KLiBBbS4gQ2hl

bS4gU29jLjwvYWJici0xPjxhYmJyLTI+SiBBbSBDaGVtIFNvYzwvYWJici0yPjwvcGVyaW9kaWNh

bD48cGFnZXM+ODQ0Ni04NDUyPC9wYWdlcz48dm9sdW1lPjEzODwvdm9sdW1lPjxudW1iZXI+Mjc8

L251bWJlcj48ZGF0ZXM+PHllYXI+MjAxNjwveWVhcj48cHViLWRhdGVzPjxkYXRlPkp1bDwvZGF0

ZT48L3B1Yi1kYXRlcz48L2RhdGVzPjxpc2JuPjAwMDItNzg2MzwvaXNibj48YWNjZXNzaW9uLW51

bT5XT1M6MDAwMzc5Nzk0NDAwMDI3PC9hY2Nlc3Npb24tbnVtPjx1cmxzPjxyZWxhdGVkLXVybHM+

PHVybD4mbHQ7R28gdG8gSVNJJmd0OzovL1dPUzowMDAzNzk3OTQ0MDAwMjc8L3VybD48L3JlbGF0

ZWQtdXJscz48L3VybHM+PGVsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjEwLjEwMjEvamFjcy42YjAz

MjAyPC9lbGVjdHJvbmljLXJlc291cmNlLW51bT48L3JlY29yZD48L0NpdGU+PENpdGU+PEF1dGhv

cj5EaWNrPC9BdXRob3I+PFllYXI+MjAxNjwvWWVhcj48UmVjTnVtPjE4NTY8L1JlY051bT48cmVj

b3JkPjxyZWMtbnVtYmVyPjE4NTY8L3JlYy1udW1iZXI+PGZvcmVpZ24ta2V5cz48a2V5IGFwcD0i

RU4iIGRiLWlkPSI1OXd6d3ZydDFzczJ3Y2U5djIzeHZyMHlkOXdlZTJ6dnpzYTIiIHRpbWVzdGFt

cD0iMCI+MTg1Njwva2V5PjwvZm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJKb3VybmFsIEFy

dGljbGUiPjE3PC9yZWYtdHlwZT48Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+RGljaywg

Si4gRS48L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PHRpdGxlcz48dGl0bGU+RWxl

Y3Ryb2NoZW1pY2FsIGRldGVjdGlvbiBvZiBzaW5nbGUgY2FuY2VyIGFuZCBoZWFsdGh5IGNlbGwg

Y29sbGlzaW9ucyBvbiBhIG1pY3JvZWxlY3Ryb2RlPC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPkNo

ZW1pY2FsIENvbW11bmljYXRpb25zPC9zZWNvbmRhcnktdGl0bGU+PC90aXRsZXM+PHBlcmlvZGlj

YWw+PGZ1bGwtdGl0bGU+Q2hlbWljYWwgQ29tbXVuaWNhdGlvbnM8L2Z1bGwtdGl0bGU+PGFiYnIt

MT5DaGVtLiBDb21tdW4uPC9hYmJyLTE+PGFiYnItMj5DaGVtIENvbW11bjwvYWJici0yPjwvcGVy

aW9kaWNhbD48cGFnZXM+MTA5MDYtMTA5MDk8L3BhZ2VzPjx2b2x1bWU+NTI8L3ZvbHVtZT48bnVt

YmVyPjcyPC9udW1iZXI+PGRhdGVzPjx5ZWFyPjIwMTY8L3llYXI+PC9kYXRlcz48aXNibj4xMzU5

LTczNDU8L2lzYm4+PGFjY2Vzc2lvbi1udW0+V09TOjAwMDM4MjY3MzYwMDAyMTwvYWNjZXNzaW9u

LW51bT48dXJscz48cmVsYXRlZC11cmxzPjx1cmw+Jmx0O0dvIHRvIElTSSZndDs6Ly9XT1M6MDAw

MzgyNjczNjAwMDIxPC91cmw+PC9yZWxhdGVkLXVybHM+PC91cmxzPjxlbGVjdHJvbmljLXJlc291

cmNlLW51bT4xMC4xMDM5L2M2Y2MwNDUxNWQ8L2VsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjwvcmVj

b3JkPjwvQ2l0ZT48Q2l0ZT48QXV0aG9yPkxlYmVndWU8L0F1dGhvcj48WWVhcj4yMDE1PC9ZZWFy

PjxSZWNOdW0+Mjk8L1JlY051bT48cmVjb3JkPjxyZWMtbnVtYmVyPjI5PC9yZWMtbnVtYmVyPjxm

b3JlaWduLWtleXM+PGtleSBhcHA9IkVOIiBkYi1pZD0icDl6MGVkZGZuejlzc3JlMHRlNXAwcjBz

MndwenBydGFlOXQ5IiB0aW1lc3RhbXA9IjE1MjQ2MTU3ODkiPjI5PC9rZXk+PC9mb3JlaWduLWtl

eXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBlPjxjb250cmli

dXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5MZWJlZ3VlLCBFLjwvYXV0aG9yPjxhdXRob3I+QW5kZXJz

b24sIEMuIE0uPC9hdXRob3I+PGF1dGhvcj5EaWNrLCBKLiBFLjwvYXV0aG9yPjxhdXRob3I+V2Vi

YiwgTC4gSi48L2F1dGhvcj48YXV0aG9yPkJhcmQsIEEuIEouPC9hdXRob3I+PC9hdXRob3JzPjwv

Y29udHJpYnV0b3JzPjx0aXRsZXM+PHRpdGxlPkVsZWN0cm9jaGVtaWNhbCBEZXRlY3Rpb24gb2Yg

U2luZ2xlIFBob3NwaG9saXBpZCBWZXNpY2xlIENvbGxpc2lvbnMgYXQgYSBQdCBVbHRyYW1pY3Jv

ZWxlY3Ryb2RlPC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPkxhbmdtdWlyPC9zZWNvbmRhcnktdGl0

bGU+PC90aXRsZXM+PHBlcmlvZGljYWw+PGZ1bGwtdGl0bGU+TGFuZ211aXI8L2Z1bGwtdGl0bGU+

PC9wZXJpb2RpY2FsPjxwYWdlcz4xMTczNC0xMTczOTwvcGFnZXM+PHZvbHVtZT4zMTwvdm9sdW1l

PjxudW1iZXI+NDI8L251bWJlcj48ZGF0ZXM+PHllYXI+MjAxNTwveWVhcj48cHViLWRhdGVzPjxk

YXRlPk9jdDwvZGF0ZT48L3B1Yi1kYXRlcz48L2RhdGVzPjxpc2JuPjA3NDMtNzQ2MzwvaXNibj48

YWNjZXNzaW9uLW51bT5XT1M6MDAwMzYzOTE0NjAwMDQyPC9hY2Nlc3Npb24tbnVtPjx1cmxzPjxy

ZWxhdGVkLXVybHM+PHVybD4mbHQ7R28gdG8gSVNJJmd0OzovL1dPUzowMDAzNjM5MTQ2MDAwNDI8

L3VybD48L3JlbGF0ZWQtdXJscz48L3VybHM+PGVsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjEwLjEw

MjEvYWNzLmxhbmdtdWlyLjViMDMxMjM8L2VsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjwvcmVjb3Jk

PjwvQ2l0ZT48Q2l0ZT48QXV0aG9yPkRpY2s8L0F1dGhvcj48WWVhcj4yMDE1PC9ZZWFyPjxSZWNO

dW0+NTQ8L1JlY051bT48cmVjb3JkPjxyZWMtbnVtYmVyPjU0PC9yZWMtbnVtYmVyPjxmb3JlaWdu

LWtleXM+PGtleSBhcHA9IkVOIiBkYi1pZD0icDl6MGVkZGZuejlzc3JlMHRlNXAwcjBzMndwenBy

dGFlOXQ5IiB0aW1lc3RhbXA9IjE1MjQ2MTU3OTAiPjU0PC9rZXk+PC9mb3JlaWduLWtleXM+PHJl

Zi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBlPjxjb250cmlidXRvcnM+

PGF1dGhvcnM+PGF1dGhvcj5EaWNrLCBKLiBFLjwvYXV0aG9yPjxhdXRob3I+UmVuYXVsdCwgQy48

L2F1dGhvcj48YXV0aG9yPkJhcmQsIEEuIEouPC9hdXRob3I+PC9hdXRob3JzPjwvY29udHJpYnV0

b3JzPjx0aXRsZXM+PHRpdGxlPk9ic2VydmF0aW9uIG9mIFNpbmdsZS1Qcm90ZWluIGFuZCBETkEg

TWFjcm9tb2xlY3VsZSBDb2xsaXNpb25zIG9uIFVsdHJhbWljcm9lbGVjdHJvZGVzPC90aXRsZT48

c2Vjb25kYXJ5LXRpdGxlPkpvdXJuYWwgb2YgdGhlIEFtZXJpY2FuIENoZW1pY2FsIFNvY2lldHk8

L3NlY29uZGFyeS10aXRsZT48L3RpdGxlcz48cGVyaW9kaWNhbD48ZnVsbC10aXRsZT5Kb3VybmFs

IG9mIHRoZSBBbWVyaWNhbiBDaGVtaWNhbCBTb2NpZXR5PC9mdWxsLXRpdGxlPjxhYmJyLTE+Si4g

QW0uIENoZW0uIFNvYy48L2FiYnItMT48L3BlcmlvZGljYWw+PHBhZ2VzPjgzNzYtODM3OTwvcGFn

ZXM+PHZvbHVtZT4xMzc8L3ZvbHVtZT48bnVtYmVyPjI2PC9udW1iZXI+PGRhdGVzPjx5ZWFyPjIw

MTU8L3llYXI+PHB1Yi1kYXRlcz48ZGF0ZT5KdWw8L2RhdGU+PC9wdWItZGF0ZXM+PC9kYXRlcz48

aXNibj4wMDAyLTc4NjM8L2lzYm4+PGFjY2Vzc2lvbi1udW0+V09TOjAwMDM1Nzk2NDQwMDAxNjwv

YWNjZXNzaW9uLW51bT48dXJscz48cmVsYXRlZC11cmxzPjx1cmw+Jmx0O0dvIHRvIElTSSZndDs6

Ly9XT1M6MDAwMzU3OTY0NDAwMDE2PC91cmw+PC9yZWxhdGVkLXVybHM+PC91cmxzPjxlbGVjdHJv

bmljLXJlc291cmNlLW51bT4xMC4xMDIxL2phY3MuNWIwNDU0NTwvZWxlY3Ryb25pYy1yZXNvdXJj

ZS1udW0+PC9yZWNvcmQ+PC9DaXRlPjxDaXRlPjxBdXRob3I+RGljazwvQXV0aG9yPjxZZWFyPjIw

MTU8L1llYXI+PFJlY051bT41MTk8L1JlY051bT48cmVjb3JkPjxyZWMtbnVtYmVyPjUxOTwvcmVj

LW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9InA5ejBlZGRmbno5c3Ny

ZTB0ZTVwMHIwczJ3cHpwcnRhZTl0OSIgdGltZXN0YW1wPSIxNTI5Nzk3MzAxIj41MTk8L2tleT48

L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwvcmVmLXR5

cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPkRpY2ssIEouIEUuPC9hdXRob3I+PGF1

dGhvcj5CYXJkLCBBLiBKLjwvYXV0aG9yPjwvYXV0aG9ycz48L2NvbnRyaWJ1dG9ycz48dGl0bGVz

Pjx0aXRsZT5SZWNvZ25pemluZyBTaW5nbGUgQ29sbGlzaW9ucyBvZiBQdENsNjItIGF0IEZlbXRv

bW9sYXIgQ29uY2VudHJhdGlvbnMgb24gVWx0cmFtaWNyb2VsZWN0cm9kZXMgYnkgTnVjbGVhdGlu

ZyBFbGVjdHJvY2F0YWx5dGljIENsdXN0ZXJzPC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPkpvdXJu

YWwgb2YgdGhlIEFtZXJpY2FuIENoZW1pY2FsIFNvY2lldHk8L3NlY29uZGFyeS10aXRsZT48L3Rp

dGxlcz48cGVyaW9kaWNhbD48ZnVsbC10aXRsZT5Kb3VybmFsIG9mIHRoZSBBbWVyaWNhbiBDaGVt

aWNhbCBTb2NpZXR5PC9mdWxsLXRpdGxlPjxhYmJyLTE+Si4gQW0uIENoZW0uIFNvYy48L2FiYnIt

MT48L3BlcmlvZGljYWw+PHBhZ2VzPjEzNzUyLTEzNzU1PC9wYWdlcz48dm9sdW1lPjEzNzwvdm9s

dW1lPjxudW1iZXI+NDM8L251bWJlcj48ZGF0ZXM+PHllYXI+MjAxNTwveWVhcj48cHViLWRhdGVz

PjxkYXRlPk5vdjwvZGF0ZT48L3B1Yi1kYXRlcz48L2RhdGVzPjxpc2JuPjAwMDItNzg2MzwvaXNi

bj48YWNjZXNzaW9uLW51bT5XT1M6MDAwMzY0MzU1OTAwMDA4PC9hY2Nlc3Npb24tbnVtPjx1cmxz

PjxyZWxhdGVkLXVybHM+PHVybD4mbHQ7R28gdG8gSVNJJmd0OzovL1dPUzowMDAzNjQzNTU5MDAw

MDg8L3VybD48L3JlbGF0ZWQtdXJscz48L3VybHM+PGVsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjEw

LjEwMjEvamFjcy41YjA4NjI4PC9lbGVjdHJvbmljLXJlc291cmNlLW51bT48L3JlY29yZD48L0Np

dGU+PENpdGU+PEF1dGhvcj5EaWNrPC9BdXRob3I+PFllYXI+MjAxNDwvWWVhcj48UmVjTnVtPjQw

MTwvUmVjTnVtPjxyZWNvcmQ+PHJlYy1udW1iZXI+NDAxPC9yZWMtbnVtYmVyPjxmb3JlaWduLWtl

eXM+PGtleSBhcHA9IkVOIiBkYi1pZD0icDl6MGVkZGZuejlzc3JlMHRlNXAwcjBzMndwenBydGFl

OXQ5IiB0aW1lc3RhbXA9IjE1MjQ2MTU3OTgiPjQwMTwva2V5PjwvZm9yZWlnbi1rZXlzPjxyZWYt

dHlwZSBuYW1lPSJKb3VybmFsIEFydGljbGUiPjE3PC9yZWYtdHlwZT48Y29udHJpYnV0b3JzPjxh

dXRob3JzPjxhdXRob3I+RGljaywgSi4gRS48L2F1dGhvcj48YXV0aG9yPlJlbmF1bHQsIEMuPC9h

dXRob3I+PGF1dGhvcj5LaW0sIEIuIEsuPC9hdXRob3I+PGF1dGhvcj5CYXJkLCBBLiBKLjwvYXV0

aG9yPjwvYXV0aG9ycz48L2NvbnRyaWJ1dG9ycz48dGl0bGVzPjx0aXRsZT5FbGVjdHJvZ2VuZXJh

dGVkIENoZW1pbHVtaW5lc2NlbmNlIG9mIENvbW1vbiBPcmdhbmljIEx1bWlub3Bob3JlcyBpbiBX

YXRlciBVc2luZyBhbiBFbXVsc2lvbiBTeXN0ZW08L3RpdGxlPjxzZWNvbmRhcnktdGl0bGU+Sm91

cm5hbCBvZiB0aGUgQW1lcmljYW4gQ2hlbWljYWwgU29jaWV0eTwvc2Vjb25kYXJ5LXRpdGxlPjwv

dGl0bGVzPjxwZXJpb2RpY2FsPjxmdWxsLXRpdGxlPkpvdXJuYWwgb2YgdGhlIEFtZXJpY2FuIENo

ZW1pY2FsIFNvY2lldHk8L2Z1bGwtdGl0bGU+PGFiYnItMT5KLiBBbS4gQ2hlbS4gU29jLjwvYWJi

ci0xPjwvcGVyaW9kaWNhbD48cGFnZXM+MTM1NDYtMTM1NDk8L3BhZ2VzPjx2b2x1bWU+MTM2PC92

b2x1bWU+PG51bWJlcj4zOTwvbnVtYmVyPjxkYXRlcz48eWVhcj4yMDE0PC95ZWFyPjxwdWItZGF0

ZXM+PGRhdGU+T2N0PC9kYXRlPjwvcHViLWRhdGVzPjwvZGF0ZXM+PGlzYm4+MDAwMi03ODYzPC9p

c2JuPjxhY2Nlc3Npb24tbnVtPldPUzowMDAzNDI2MDg4MDAwMjA8L2FjY2Vzc2lvbi1udW0+PHVy

bHM+PHJlbGF0ZWQtdXJscz48dXJsPiZsdDtHbyB0byBJU0kmZ3Q7Oi8vV09TOjAwMDM0MjYwODgw

MDAyMDwvdXJsPjwvcmVsYXRlZC11cmxzPjwvdXJscz48ZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+

MTAuMTAyMS9qYTUwNzE5OHI8L2VsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjwvcmVjb3JkPjwvQ2l0

ZT48Q2l0ZT48QXV0aG9yPkRpY2s8L0F1dGhvcj48WWVhcj4yMDE0PC9ZZWFyPjxSZWNOdW0+NTE4

PC9SZWNOdW0+PHJlY29yZD48cmVjLW51bWJlcj41MTg8L3JlYy1udW1iZXI+PGZvcmVpZ24ta2V5

cz48a2V5IGFwcD0iRU4iIGRiLWlkPSJwOXowZWRkZm56OXNzcmUwdGU1cDByMHMyd3B6cHJ0YWU5

dDkiIHRpbWVzdGFtcD0iMTUyOTc5NzMwMSI+NTE4PC9rZXk+PC9mb3JlaWduLWtleXM+PHJlZi10

eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBlPjxjb250cmlidXRvcnM+PGF1

dGhvcnM+PGF1dGhvcj5EaWNrLCBKLiBFLjwvYXV0aG9yPjxhdXRob3I+UmVuYXVsdCwgQy48L2F1

dGhvcj48YXV0aG9yPktpbSwgQi4gSy48L2F1dGhvcj48YXV0aG9yPkJhcmQsIEEuIEouPC9hdXRo

b3I+PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjx0aXRsZXM+PHRpdGxlPlNpbXVsdGFuZW91cyBE

ZXRlY3Rpb24gb2YgU2luZ2xlIEF0dG9saXRlciBEcm9wbGV0IENvbGxpc2lvbnMgYnkgRWxlY3Ry

b2NoZW1pY2FsIGFuZCBFbGVjdHJvZ2VuZXJhdGVkIENoZW1pbHVtaW5lc2NlbnQgUmVzcG9uc2Vz

PC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPkFuZ2V3YW5kdGUgQ2hlbWllLUludGVybmF0aW9uYWwg

RWRpdGlvbjwvc2Vjb25kYXJ5LXRpdGxlPjwvdGl0bGVzPjxwZXJpb2RpY2FsPjxmdWxsLXRpdGxl

PkFuZ2V3YW5kdGUgQ2hlbWllLUludGVybmF0aW9uYWwgRWRpdGlvbjwvZnVsbC10aXRsZT48YWJi

ci0xPkFuZ2V3LiBDaGVtLiBJbnQuIEVkLjwvYWJici0xPjwvcGVyaW9kaWNhbD48cGFnZXM+MTE4

NTktMTE4NjI8L3BhZ2VzPjx2b2x1bWU+NTM8L3ZvbHVtZT48bnVtYmVyPjQ0PC9udW1iZXI+PGRh

dGVzPjx5ZWFyPjIwMTQ8L3llYXI+PHB1Yi1kYXRlcz48ZGF0ZT5PY3Q8L2RhdGU+PC9wdWItZGF0

ZXM+PC9kYXRlcz48aXNibj4xNDMzLTc4NTE8L2lzYm4+PGFjY2Vzc2lvbi1udW0+V09TOjAwMDM0

NDA1MDcwMDAyNTwvYWNjZXNzaW9uLW51bT48dXJscz48cmVsYXRlZC11cmxzPjx1cmw+Jmx0O0dv

IHRvIElTSSZndDs6Ly9XT1M6MDAwMzQ0MDUwNzAwMDI1PC91cmw+PC9yZWxhdGVkLXVybHM+PC91

cmxzPjxlbGVjdHJvbmljLXJlc291cmNlLW51bT4xMC4xMDAyL2FuaWUuMjAxNDA3OTM3PC9lbGVj

dHJvbmljLXJlc291cmNlLW51bT48L3JlY29yZD48L0NpdGU+PC9FbmROb3RlPn==

ADDIN EN.CITE.DATA 1-12 tunable selectivity, and excellent spatiotemporal resolution with applications ranging from in vivo glucose sensing to electrocatalytic nanomaterial synthesis.PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5HbGFzc2NvdHQ8L0F1dGhvcj48WWVhcj4yMDE4PC9ZZWFy

PjxSZWNOdW0+MzA8L1JlY051bT48RGlzcGxheVRleHQ+PHN0eWxlIGZhY2U9InN1cGVyc2NyaXB0

Ij4xMy0xNzwvc3R5bGU+PC9EaXNwbGF5VGV4dD48cmVjb3JkPjxyZWMtbnVtYmVyPjMwPC9yZWMt

bnVtYmVyPjxmb3JlaWduLWtleXM+PGtleSBhcHA9IkVOIiBkYi1pZD0iZjJ3NXBkc2R2ZHd3MmJl

cnhkM3Z6cDk2d3dkcGV4OXMyc3d4IiB0aW1lc3RhbXA9IjE1MzU0NzYxNDIiIGd1aWQ9IjZhODhj

NWVlLWM4MjQtNDVkZi1hYzNmLTgyOGVhYmE1NjgyNSI+MzA8L2tleT48L2ZvcmVpZ24ta2V5cz48

cmVmLXR5cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9y

cz48YXV0aG9ycz48YXV0aG9yPkdsYXNzY290dCwgTWF0dGhldyBXaWxsaWFtPC9hdXRob3I+PGF1

dGhvcj5QZW5kZXJnYXN0LCBBbmRyZXcgRGF2aWQ8L2F1dGhvcj48YXV0aG9yPkRpY2ssIEplZmZy

ZXkgRS48L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PHRpdGxlcz48dGl0bGU+QSBV

bml2ZXJzYWwgUGxhdGZvcm0gZm9yIHRoZSBFbGVjdHJvZGVwb3NpdGlvbiBvZiBMaWdhbmQtRnJl

ZSBNZXRhbCBOYW5vcGFydGljbGVzIGZyb20gYSBXYXRlci1pbi1PaWwgRW11bHNpb24gU3lzdGVt

PC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPkFDUyBBcHBsaWVkIE5hbm8gTWF0ZXJpYWxzPC9zZWNv

bmRhcnktdGl0bGU+PC90aXRsZXM+PHBlcmlvZGljYWw+PGZ1bGwtdGl0bGU+QUNTIEFwcGxpZWQg

TmFubyBNYXRlcmlhbHM8L2Z1bGwtdGl0bGU+PC9wZXJpb2RpY2FsPjxkYXRlcz48eWVhcj4yMDE4

PC95ZWFyPjxwdWItZGF0ZXM+PGRhdGU+MjAxOC8wOC8yMDwvZGF0ZT48L3B1Yi1kYXRlcz48L2Rh

dGVzPjxwdWJsaXNoZXI+QW1lcmljYW4gQ2hlbWljYWwgU29jaWV0eTwvcHVibGlzaGVyPjx1cmxz

PjxyZWxhdGVkLXVybHM+PHVybD5odHRwczovL2RvaS5vcmcvMTAuMTAyMS9hY3Nhbm0uOGIwMTMw

ODwvdXJsPjwvcmVsYXRlZC11cmxzPjwvdXJscz48ZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+MTAu

MTAyMS9hY3Nhbm0uOGIwMTMwODwvZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+PC9yZWNvcmQ+PC9D

aXRlPjxDaXRlPjxBdXRob3I+UGVuZGVyZ2FzdDwvQXV0aG9yPjxZZWFyPjIwMTk8L1llYXI+PFJl

Y051bT4yMDQxPC9SZWNOdW0+PHJlY29yZD48cmVjLW51bWJlcj4yMDQxPC9yZWMtbnVtYmVyPjxm

b3JlaWduLWtleXM+PGtleSBhcHA9IkVOIiBkYi1pZD0iNTl3end2cnQxc3Myd2NlOXYyM3h2cjB5

ZDl3ZWUyenZ6c2EyIiB0aW1lc3RhbXA9IjE1NjU5NTY1NDQiPjIwNDE8L2tleT48L2ZvcmVpZ24t

a2V5cz48cmVmLXR5cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwvcmVmLXR5cGU+PGNvbnRy

aWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPlBlbmRlcmdhc3QsIEFuZHJldyBELjwvYXV0aG9yPjxh

dXRob3I+R2xhc3Njb3R0LCBNYXR0aGV3IFcuPC9hdXRob3I+PGF1dGhvcj5SZW5hdWx0LCBDaHJp

c3RvcGhlPC9hdXRob3I+PGF1dGhvcj5EaWNrLCBKZWZmcmV5IEUuPC9hdXRob3I+PC9hdXRob3Jz

PjwvY29udHJpYnV0b3JzPjx0aXRsZXM+PHRpdGxlPk9uZS1zdGVwIGVsZWN0cm9kZXBvc2l0aW9u

IG9mIGxpZ2FuZC1mcmVlIFBkUHQgYWxsb3kgbmFub3BhcnRpY2xlcyBmcm9tIHdhdGVyIGRyb3Bs

ZXRzOiBDb250cm9sbGluZyBzaXplLCBjb3ZlcmFnZSwgYW5kIGVsZW1lbnRhbCBzdG9pY2hpb21l

dHJ5PC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPkVsZWN0cm9jaGVtaXN0cnkgQ29tbXVuaWNhdGlv

bnM8L3NlY29uZGFyeS10aXRsZT48L3RpdGxlcz48cGVyaW9kaWNhbD48ZnVsbC10aXRsZT5FbGVj

dHJvY2hlbWlzdHJ5IENvbW11bmljYXRpb25zPC9mdWxsLXRpdGxlPjxhYmJyLTE+RWxlY3Ryb2No

ZW0uIENvbW11bi48L2FiYnItMT48YWJici0yPkVsZWN0cm9jaGVtIENvbW11bjwvYWJici0yPjwv

cGVyaW9kaWNhbD48cGFnZXM+MS01PC9wYWdlcz48dm9sdW1lPjk4PC92b2x1bWU+PGtleXdvcmRz

PjxrZXl3b3JkPkFsbG95PC9rZXl3b3JkPjxrZXl3b3JkPkJpbWV0YWxsaWM8L2tleXdvcmQ+PGtl

eXdvcmQ+RWxlY3Ryb2RlcG9zaXRpb248L2tleXdvcmQ+PGtleXdvcmQ+RW11bHNpb24gZHJvcGxl

dDwva2V5d29yZD48a2V5d29yZD5OYW5vcGFydGljbGU8L2tleXdvcmQ+PC9rZXl3b3Jkcz48ZGF0

ZXM+PHllYXI+MjAxOTwveWVhcj48cHViLWRhdGVzPjxkYXRlPjIwMTkvMDEvMDEvPC9kYXRlPjwv

cHViLWRhdGVzPjwvZGF0ZXM+PGlzYm4+MTM4OC0yNDgxPC9pc2JuPjx1cmxzPjxyZWxhdGVkLXVy

bHM+PHVybD5odHRwOi8vd3d3LnNjaWVuY2VkaXJlY3QuY29tL3NjaWVuY2UvYXJ0aWNsZS9waWkv

UzEzODgyNDgxMTgzMDI5MFg8L3VybD48L3JlbGF0ZWQtdXJscz48L3VybHM+PGVsZWN0cm9uaWMt

cmVzb3VyY2UtbnVtPmh0dHBzOi8vZG9pLm9yZy8xMC4xMDE2L2ouZWxlY29tLjIwMTguMTEuMDA1

PC9lbGVjdHJvbmljLXJlc291cmNlLW51bT48L3JlY29yZD48L0NpdGU+PENpdGU+PEF1dGhvcj5C

YXJkPC9BdXRob3I+PFllYXI+MjAwMDwvWWVhcj48UmVjTnVtPjY3PC9SZWNOdW0+PHJlY29yZD48

cmVjLW51bWJlcj42NzwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGIt

aWQ9ImYydzVwZHNkdmR3dzJiZXJ4ZDN2enA5Nnd3ZHBleDlzMnN3eCIgdGltZXN0YW1wPSIxNTQw

NDA1NDc4IiBndWlkPSJjZDRjMTA1MS02MmU2LTRkZjEtYjU1NS1iZTA4NzU1MjdiZjQiPjY3PC9r

ZXk+PC9mb3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkJvb2siPjY8L3JlZi10eXBlPjxjb250

cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5CYXJkLCBBbGxlbiBKLjsgRmF1bGtuZXIsIExhcnJ5

IFIuIDwvYXV0aG9yPjwvYXV0aG9ycz48L2NvbnRyaWJ1dG9ycz48dGl0bGVzPjx0aXRsZT5FbGVj

dHJvY2hlbWljYWwgTWV0aG9kczogRnVuZGFtZW50YWxzIGFuZCBBcHBsaWNhdGlvbnMsIDJuZCBF

ZGl0aW9uJiN4RDs8L3RpdGxlPjwvdGl0bGVzPjxkYXRlcz48eWVhcj4yMDAwPC95ZWFyPjwvZGF0

ZXM+PHB1Ymxpc2hlcj5XaWxleTwvcHVibGlzaGVyPjxpc2JuPjk3OC0wLTQ3MS0wNDM3Mi0wPC9p

c2JuPjx1cmxzPjwvdXJscz48L3JlY29yZD48L0NpdGU+PENpdGU+PEF1dGhvcj5YaWFvPC9BdXRo

b3I+PFllYXI+MjAwNzwvWWVhcj48UmVjTnVtPjU3PC9SZWNOdW0+PHJlY29yZD48cmVjLW51bWJl

cj41NzwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9ImYydzVw

ZHNkdmR3dzJiZXJ4ZDN2enA5Nnd3ZHBleDlzMnN3eCIgdGltZXN0YW1wPSIxNTM3NDU0MDM0IiBn

dWlkPSI2ZWI3MWFlOS01OTVkLTRhZjAtYjViMS1mMjhiZTQ1MDM5NGMiPjU3PC9rZXk+PC9mb3Jl

aWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBlPjxj

b250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5YaWFvLCBYaWFveWluPC9hdXRob3I+PGF1dGhv

cj5CYXJkLCBBbGxlbiBKLjwvYXV0aG9yPjwvYXV0aG9ycz48L2NvbnRyaWJ1dG9ycz48dGl0bGVz

Pjx0aXRsZT5PYnNlcnZpbmcgU2luZ2xlIE5hbm9wYXJ0aWNsZSBDb2xsaXNpb25zIGF0IGFuIFVs

dHJhbWljcm9lbGVjdHJvZGUgYnkgRWxlY3Ryb2NhdGFseXRpYyBBbXBsaWZpY2F0aW9uPC90aXRs

ZT48c2Vjb25kYXJ5LXRpdGxlPkpvdXJuYWwgb2YgdGhlIEFtZXJpY2FuIENoZW1pY2FsIFNvY2ll

dHk8L3NlY29uZGFyeS10aXRsZT48L3RpdGxlcz48cGVyaW9kaWNhbD48ZnVsbC10aXRsZT5Kb3Vy

bmFsIG9mIHRoZSBBbWVyaWNhbiBDaGVtaWNhbCBTb2NpZXR5PC9mdWxsLXRpdGxlPjwvcGVyaW9k

aWNhbD48cGFnZXM+OTYxMC05NjEyPC9wYWdlcz48dm9sdW1lPjEyOTwvdm9sdW1lPjxudW1iZXI+

MzE8L251bWJlcj48ZGF0ZXM+PHllYXI+MjAwNzwveWVhcj48cHViLWRhdGVzPjxkYXRlPjIwMDcv

MDgvMDE8L2RhdGU+PC9wdWItZGF0ZXM+PC9kYXRlcz48cHVibGlzaGVyPkFtZXJpY2FuIENoZW1p

Y2FsIFNvY2lldHk8L3B1Ymxpc2hlcj48aXNibj4wMDAyLTc4NjM8L2lzYm4+PHVybHM+PHJlbGF0

ZWQtdXJscz48dXJsPmh0dHBzOi8vZG9pLm9yZy8xMC4xMDIxL2phMDcyMzQ0dzwvdXJsPjwvcmVs

YXRlZC11cmxzPjwvdXJscz48ZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+MTAuMTAyMS9qYTA3MjM0

NHc8L2VsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjwvcmVjb3JkPjwvQ2l0ZT48Q2l0ZT48QXV0aG9y

PkJhcmQ8L0F1dGhvcj48WWVhcj4yMDEwPC9ZZWFyPjxSZWNOdW0+NTM8L1JlY051bT48cmVjb3Jk

PjxyZWMtbnVtYmVyPjUzPC9yZWMtbnVtYmVyPjxmb3JlaWduLWtleXM+PGtleSBhcHA9IkVOIiBk

Yi1pZD0iZjJ3NXBkc2R2ZHd3MmJlcnhkM3Z6cDk2d3dkcGV4OXMyc3d4IiB0aW1lc3RhbXA9IjE1

Mzc0NTMwNDIiIGd1aWQ9IjE2NjhjZTUyLTIzY2ItNDcwYS04ZTZkLTU1OTc0ZDQ5NmQ3MiI+NTM8

L2tleT48a2V5IGFwcD0iRU5XZWIiIGRiLWlkPSIiPjA8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVm

LXR5cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48

YXV0aG9ycz48YXV0aG9yPkJhcmQsIEFsbGVuIEouPC9hdXRob3I+PGF1dGhvcj5aaG91LCBIb25n

anVuPC9hdXRob3I+PGF1dGhvcj5Ld29uLCBTZW9uZyBKdW5nPC9hdXRob3I+PC9hdXRob3JzPjwv

Y29udHJpYnV0b3JzPjx0aXRsZXM+PHRpdGxlPkVsZWN0cm9jaGVtaXN0cnkgb2YgU2luZ2xlIE5h

bm9wYXJ0aWNsZXMgdmlhIEVsZWN0cm9jYXRhbHl0aWMgQW1wbGlmaWNhdGlvbjwvdGl0bGU+PHNl

Y29uZGFyeS10aXRsZT5Jc3JhZWwgSm91cm5hbCBvZiBDaGVtaXN0cnk8L3NlY29uZGFyeS10aXRs

ZT48L3RpdGxlcz48cGVyaW9kaWNhbD48ZnVsbC10aXRsZT5Jc3JhZWwgSm91cm5hbCBvZiBDaGVt

aXN0cnk8L2Z1bGwtdGl0bGU+PC9wZXJpb2RpY2FsPjxwYWdlcz4yNjctMjc2PC9wYWdlcz48dm9s

dW1lPjUwPC92b2x1bWU+PG51bWJlcj4zPC9udW1iZXI+PHNlY3Rpb24+MjY3PC9zZWN0aW9uPjxk

YXRlcz48eWVhcj4yMDEwPC95ZWFyPjwvZGF0ZXM+PGlzYm4+MDAyMTIxNDg8L2lzYm4+PHVybHM+

PC91cmxzPjxlbGVjdHJvbmljLXJlc291cmNlLW51bT4xMC4xMDAyL2lqY2guMjAxMDAwMDE0PC9l

bGVjdHJvbmljLXJlc291cmNlLW51bT48L3JlY29yZD48L0NpdGU+PC9FbmROb3RlPn==

ADDIN EN.CITE PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5HbGFzc2NvdHQ8L0F1dGhvcj48WWVhcj4yMDE4PC9ZZWFy

PjxSZWNOdW0+MzA8L1JlY051bT48RGlzcGxheVRleHQ+PHN0eWxlIGZhY2U9InN1cGVyc2NyaXB0

Ij4xMy0xNzwvc3R5bGU+PC9EaXNwbGF5VGV4dD48cmVjb3JkPjxyZWMtbnVtYmVyPjMwPC9yZWMt

bnVtYmVyPjxmb3JlaWduLWtleXM+PGtleSBhcHA9IkVOIiBkYi1pZD0iZjJ3NXBkc2R2ZHd3MmJl

cnhkM3Z6cDk2d3dkcGV4OXMyc3d4IiB0aW1lc3RhbXA9IjE1MzU0NzYxNDIiIGd1aWQ9IjZhODhj

NWVlLWM4MjQtNDVkZi1hYzNmLTgyOGVhYmE1NjgyNSI+MzA8L2tleT48L2ZvcmVpZ24ta2V5cz48

cmVmLXR5cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9y

cz48YXV0aG9ycz48YXV0aG9yPkdsYXNzY290dCwgTWF0dGhldyBXaWxsaWFtPC9hdXRob3I+PGF1

dGhvcj5QZW5kZXJnYXN0LCBBbmRyZXcgRGF2aWQ8L2F1dGhvcj48YXV0aG9yPkRpY2ssIEplZmZy

ZXkgRS48L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PHRpdGxlcz48dGl0bGU+QSBV

bml2ZXJzYWwgUGxhdGZvcm0gZm9yIHRoZSBFbGVjdHJvZGVwb3NpdGlvbiBvZiBMaWdhbmQtRnJl

ZSBNZXRhbCBOYW5vcGFydGljbGVzIGZyb20gYSBXYXRlci1pbi1PaWwgRW11bHNpb24gU3lzdGVt

PC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPkFDUyBBcHBsaWVkIE5hbm8gTWF0ZXJpYWxzPC9zZWNv

bmRhcnktdGl0bGU+PC90aXRsZXM+PHBlcmlvZGljYWw+PGZ1bGwtdGl0bGU+QUNTIEFwcGxpZWQg

TmFubyBNYXRlcmlhbHM8L2Z1bGwtdGl0bGU+PC9wZXJpb2RpY2FsPjxkYXRlcz48eWVhcj4yMDE4

PC95ZWFyPjxwdWItZGF0ZXM+PGRhdGU+MjAxOC8wOC8yMDwvZGF0ZT48L3B1Yi1kYXRlcz48L2Rh

dGVzPjxwdWJsaXNoZXI+QW1lcmljYW4gQ2hlbWljYWwgU29jaWV0eTwvcHVibGlzaGVyPjx1cmxz

PjxyZWxhdGVkLXVybHM+PHVybD5odHRwczovL2RvaS5vcmcvMTAuMTAyMS9hY3Nhbm0uOGIwMTMw

ODwvdXJsPjwvcmVsYXRlZC11cmxzPjwvdXJscz48ZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+MTAu

MTAyMS9hY3Nhbm0uOGIwMTMwODwvZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+PC9yZWNvcmQ+PC9D

aXRlPjxDaXRlPjxBdXRob3I+UGVuZGVyZ2FzdDwvQXV0aG9yPjxZZWFyPjIwMTk8L1llYXI+PFJl

Y051bT4yMDQxPC9SZWNOdW0+PHJlY29yZD48cmVjLW51bWJlcj4yMDQxPC9yZWMtbnVtYmVyPjxm

b3JlaWduLWtleXM+PGtleSBhcHA9IkVOIiBkYi1pZD0iNTl3end2cnQxc3Myd2NlOXYyM3h2cjB5

ZDl3ZWUyenZ6c2EyIiB0aW1lc3RhbXA9IjE1NjU5NTY1NDQiPjIwNDE8L2tleT48L2ZvcmVpZ24t

a2V5cz48cmVmLXR5cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwvcmVmLXR5cGU+PGNvbnRy

aWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPlBlbmRlcmdhc3QsIEFuZHJldyBELjwvYXV0aG9yPjxh

dXRob3I+R2xhc3Njb3R0LCBNYXR0aGV3IFcuPC9hdXRob3I+PGF1dGhvcj5SZW5hdWx0LCBDaHJp

c3RvcGhlPC9hdXRob3I+PGF1dGhvcj5EaWNrLCBKZWZmcmV5IEUuPC9hdXRob3I+PC9hdXRob3Jz

PjwvY29udHJpYnV0b3JzPjx0aXRsZXM+PHRpdGxlPk9uZS1zdGVwIGVsZWN0cm9kZXBvc2l0aW9u

IG9mIGxpZ2FuZC1mcmVlIFBkUHQgYWxsb3kgbmFub3BhcnRpY2xlcyBmcm9tIHdhdGVyIGRyb3Bs

ZXRzOiBDb250cm9sbGluZyBzaXplLCBjb3ZlcmFnZSwgYW5kIGVsZW1lbnRhbCBzdG9pY2hpb21l

dHJ5PC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPkVsZWN0cm9jaGVtaXN0cnkgQ29tbXVuaWNhdGlv

bnM8L3NlY29uZGFyeS10aXRsZT48L3RpdGxlcz48cGVyaW9kaWNhbD48ZnVsbC10aXRsZT5FbGVj

dHJvY2hlbWlzdHJ5IENvbW11bmljYXRpb25zPC9mdWxsLXRpdGxlPjxhYmJyLTE+RWxlY3Ryb2No

ZW0uIENvbW11bi48L2FiYnItMT48YWJici0yPkVsZWN0cm9jaGVtIENvbW11bjwvYWJici0yPjwv

cGVyaW9kaWNhbD48cGFnZXM+MS01PC9wYWdlcz48dm9sdW1lPjk4PC92b2x1bWU+PGtleXdvcmRz

PjxrZXl3b3JkPkFsbG95PC9rZXl3b3JkPjxrZXl3b3JkPkJpbWV0YWxsaWM8L2tleXdvcmQ+PGtl

eXdvcmQ+RWxlY3Ryb2RlcG9zaXRpb248L2tleXdvcmQ+PGtleXdvcmQ+RW11bHNpb24gZHJvcGxl

dDwva2V5d29yZD48a2V5d29yZD5OYW5vcGFydGljbGU8L2tleXdvcmQ+PC9rZXl3b3Jkcz48ZGF0

ZXM+PHllYXI+MjAxOTwveWVhcj48cHViLWRhdGVzPjxkYXRlPjIwMTkvMDEvMDEvPC9kYXRlPjwv

cHViLWRhdGVzPjwvZGF0ZXM+PGlzYm4+MTM4OC0yNDgxPC9pc2JuPjx1cmxzPjxyZWxhdGVkLXVy

bHM+PHVybD5odHRwOi8vd3d3LnNjaWVuY2VkaXJlY3QuY29tL3NjaWVuY2UvYXJ0aWNsZS9waWkv

UzEzODgyNDgxMTgzMDI5MFg8L3VybD48L3JlbGF0ZWQtdXJscz48L3VybHM+PGVsZWN0cm9uaWMt

cmVzb3VyY2UtbnVtPmh0dHBzOi8vZG9pLm9yZy8xMC4xMDE2L2ouZWxlY29tLjIwMTguMTEuMDA1

PC9lbGVjdHJvbmljLXJlc291cmNlLW51bT48L3JlY29yZD48L0NpdGU+PENpdGU+PEF1dGhvcj5C

YXJkPC9BdXRob3I+PFllYXI+MjAwMDwvWWVhcj48UmVjTnVtPjY3PC9SZWNOdW0+PHJlY29yZD48

cmVjLW51bWJlcj42NzwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGIt

aWQ9ImYydzVwZHNkdmR3dzJiZXJ4ZDN2enA5Nnd3ZHBleDlzMnN3eCIgdGltZXN0YW1wPSIxNTQw

NDA1NDc4IiBndWlkPSJjZDRjMTA1MS02MmU2LTRkZjEtYjU1NS1iZTA4NzU1MjdiZjQiPjY3PC9r

ZXk+PC9mb3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkJvb2siPjY8L3JlZi10eXBlPjxjb250

cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5CYXJkLCBBbGxlbiBKLjsgRmF1bGtuZXIsIExhcnJ5

IFIuIDwvYXV0aG9yPjwvYXV0aG9ycz48L2NvbnRyaWJ1dG9ycz48dGl0bGVzPjx0aXRsZT5FbGVj

dHJvY2hlbWljYWwgTWV0aG9kczogRnVuZGFtZW50YWxzIGFuZCBBcHBsaWNhdGlvbnMsIDJuZCBF

ZGl0aW9uJiN4RDs8L3RpdGxlPjwvdGl0bGVzPjxkYXRlcz48eWVhcj4yMDAwPC95ZWFyPjwvZGF0

ZXM+PHB1Ymxpc2hlcj5XaWxleTwvcHVibGlzaGVyPjxpc2JuPjk3OC0wLTQ3MS0wNDM3Mi0wPC9p

c2JuPjx1cmxzPjwvdXJscz48L3JlY29yZD48L0NpdGU+PENpdGU+PEF1dGhvcj5YaWFvPC9BdXRo

b3I+PFllYXI+MjAwNzwvWWVhcj48UmVjTnVtPjU3PC9SZWNOdW0+PHJlY29yZD48cmVjLW51bWJl

cj41NzwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9ImYydzVw

ZHNkdmR3dzJiZXJ4ZDN2enA5Nnd3ZHBleDlzMnN3eCIgdGltZXN0YW1wPSIxNTM3NDU0MDM0IiBn

dWlkPSI2ZWI3MWFlOS01OTVkLTRhZjAtYjViMS1mMjhiZTQ1MDM5NGMiPjU3PC9rZXk+PC9mb3Jl

aWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBlPjxj

b250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5YaWFvLCBYaWFveWluPC9hdXRob3I+PGF1dGhv

cj5CYXJkLCBBbGxlbiBKLjwvYXV0aG9yPjwvYXV0aG9ycz48L2NvbnRyaWJ1dG9ycz48dGl0bGVz

Pjx0aXRsZT5PYnNlcnZpbmcgU2luZ2xlIE5hbm9wYXJ0aWNsZSBDb2xsaXNpb25zIGF0IGFuIFVs

dHJhbWljcm9lbGVjdHJvZGUgYnkgRWxlY3Ryb2NhdGFseXRpYyBBbXBsaWZpY2F0aW9uPC90aXRs

ZT48c2Vjb25kYXJ5LXRpdGxlPkpvdXJuYWwgb2YgdGhlIEFtZXJpY2FuIENoZW1pY2FsIFNvY2ll

dHk8L3NlY29uZGFyeS10aXRsZT48L3RpdGxlcz48cGVyaW9kaWNhbD48ZnVsbC10aXRsZT5Kb3Vy

bmFsIG9mIHRoZSBBbWVyaWNhbiBDaGVtaWNhbCBTb2NpZXR5PC9mdWxsLXRpdGxlPjwvcGVyaW9k

aWNhbD48cGFnZXM+OTYxMC05NjEyPC9wYWdlcz48dm9sdW1lPjEyOTwvdm9sdW1lPjxudW1iZXI+

MzE8L251bWJlcj48ZGF0ZXM+PHllYXI+MjAwNzwveWVhcj48cHViLWRhdGVzPjxkYXRlPjIwMDcv

MDgvMDE8L2RhdGU+PC9wdWItZGF0ZXM+PC9kYXRlcz48cHVibGlzaGVyPkFtZXJpY2FuIENoZW1p

Y2FsIFNvY2lldHk8L3B1Ymxpc2hlcj48aXNibj4wMDAyLTc4NjM8L2lzYm4+PHVybHM+PHJlbGF0

ZWQtdXJscz48dXJsPmh0dHBzOi8vZG9pLm9yZy8xMC4xMDIxL2phMDcyMzQ0dzwvdXJsPjwvcmVs

YXRlZC11cmxzPjwvdXJscz48ZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+MTAuMTAyMS9qYTA3MjM0

NHc8L2VsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjwvcmVjb3JkPjwvQ2l0ZT48Q2l0ZT48QXV0aG9y

PkJhcmQ8L0F1dGhvcj48WWVhcj4yMDEwPC9ZZWFyPjxSZWNOdW0+NTM8L1JlY051bT48cmVjb3Jk

PjxyZWMtbnVtYmVyPjUzPC9yZWMtbnVtYmVyPjxmb3JlaWduLWtleXM+PGtleSBhcHA9IkVOIiBk

Yi1pZD0iZjJ3NXBkc2R2ZHd3MmJlcnhkM3Z6cDk2d3dkcGV4OXMyc3d4IiB0aW1lc3RhbXA9IjE1

Mzc0NTMwNDIiIGd1aWQ9IjE2NjhjZTUyLTIzY2ItNDcwYS04ZTZkLTU1OTc0ZDQ5NmQ3MiI+NTM8

L2tleT48a2V5IGFwcD0iRU5XZWIiIGRiLWlkPSIiPjA8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVm

LXR5cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48

YXV0aG9ycz48YXV0aG9yPkJhcmQsIEFsbGVuIEouPC9hdXRob3I+PGF1dGhvcj5aaG91LCBIb25n

anVuPC9hdXRob3I+PGF1dGhvcj5Ld29uLCBTZW9uZyBKdW5nPC9hdXRob3I+PC9hdXRob3JzPjwv

Y29udHJpYnV0b3JzPjx0aXRsZXM+PHRpdGxlPkVsZWN0cm9jaGVtaXN0cnkgb2YgU2luZ2xlIE5h

bm9wYXJ0aWNsZXMgdmlhIEVsZWN0cm9jYXRhbHl0aWMgQW1wbGlmaWNhdGlvbjwvdGl0bGU+PHNl

Y29uZGFyeS10aXRsZT5Jc3JhZWwgSm91cm5hbCBvZiBDaGVtaXN0cnk8L3NlY29uZGFyeS10aXRs

ZT48L3RpdGxlcz48cGVyaW9kaWNhbD48ZnVsbC10aXRsZT5Jc3JhZWwgSm91cm5hbCBvZiBDaGVt

aXN0cnk8L2Z1bGwtdGl0bGU+PC9wZXJpb2RpY2FsPjxwYWdlcz4yNjctMjc2PC9wYWdlcz48dm9s

dW1lPjUwPC92b2x1bWU+PG51bWJlcj4zPC9udW1iZXI+PHNlY3Rpb24+MjY3PC9zZWN0aW9uPjxk

YXRlcz48eWVhcj4yMDEwPC95ZWFyPjwvZGF0ZXM+PGlzYm4+MDAyMTIxNDg8L2lzYm4+PHVybHM+

PC91cmxzPjxlbGVjdHJvbmljLXJlc291cmNlLW51bT4xMC4xMDAyL2lqY2guMjAxMDAwMDE0PC9l

bGVjdHJvbmljLXJlc291cmNlLW51bT48L3JlY29yZD48L0NpdGU+PC9FbmROb3RlPn==

ADDIN EN.CITE.DATA 13-17 Electrochemical measurements can be used to identify various analyte characteristics, such as diffusion coefficient, analyte concentration, and the number of electrons transferred, following the general reduction of a species O to a species R through the addition of n electrons and assuming reactants and products are freely-diffusing species: O+ne-?R Eq. S1right2450827Figure S1 – Reaction scheme and cyclic voltammogram for ferrocene methanol oxidation to ferrocenium methanol. Starting point was 0 V vs. Ag/AgCl, plotted in classical convention. Working and counter electrodes were a 1.5 mm glassy carbon disk and glassy carbon rod, respectively. Scan rate was 50 mV/s.00Figure S1 – Reaction scheme and cyclic voltammogram for ferrocene methanol oxidation to ferrocenium methanol. Starting point was 0 V vs. Ag/AgCl, plotted in classical convention. Working and counter electrodes were a 1.5 mm glassy carbon disk and glassy carbon rod, respectively. Scan rate was 50 mV/s.The ability to accurately measure the signal generated from such a reaction depends on the electrochemical instrumentation employed. Modern electrochemical measurements are generally conducted using three-electrode potentiostats, which employ a working electrode (WE), a counter electrode (CE), and a reference electrode (RE) to monitor the current or potential produced from an electrochemical reaction. ADDIN EN.CITE <EndNote><Cite><Author>Elgrishi</Author><Year>2018</Year><RecNum>109</RecNum><DisplayText><style face="superscript">18</style></DisplayText><record><rec-number>109</rec-number><foreign-keys><key app="EN" db-id="f2w5pdsdvdww2berxd3vzp96wwdpex9s2swx" timestamp="1543875429">109</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Elgrishi, Noémie</author><author>Rountree, Kelley J.</author><author>McCarthy, Brian D.</author><author>Rountree, Eric S.</author><author>Eisenhart, Thomas T.</author><author>Dempsey, Jillian L.</author></authors></contributors><titles><title>A Practical Beginner’s Guide to Cyclic Voltammetry</title><secondary-title>Journal of Chemical Education</secondary-title></titles><periodical><full-title>Journal of Chemical Education</full-title></periodical><pages>197-206</pages><volume>95</volume><number>2</number><dates><year>2018</year><pub-dates><date>2018/02/13</date></pub-dates></dates><publisher>American Chemical Society</publisher><isbn>0021-9584</isbn><urls><related-urls><url> Of particular interest is a technique known as cyclic voltammetry (CV), where the current (i) is measured while scanning the potential (E) from E1 E2 E1. In this manuscript, we also use CV interchangeably with cyclic voltammogram, which is the output of a cyclic voltammetry experiment, demonstrated in Figure S1. Characteristic peak position and CV shape allow for characterization of both single and multi-analyte solutions. The example CV in Figure S1 shows the oxidation of ferrocene methanol to ferrocenium methanol and subsequent reduction back to ferrocene methanol in an aqueous solution. The interested reader is referred to prior educational literature describing the CV shape.PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5FbGdyaXNoaTwvQXV0aG9yPjxZZWFyPjIwMTg8L1llYXI+

PFJlY051bT40PC9SZWNOdW0+PERpc3BsYXlUZXh0PjxzdHlsZSBmYWNlPSJzdXBlcnNjcmlwdCI+

MTgsIDE5PC9zdHlsZT48L0Rpc3BsYXlUZXh0PjxyZWNvcmQ+PHJlYy1udW1iZXI+NDwvcmVjLW51

bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9Ind4eHJ3YWEyZ3N4eHh6ZXdk

YXdwdHMyOWEwcHZ2cHZzYXQyZSIgdGltZXN0YW1wPSIxNTYxNTYyMzU3Ij40PC9rZXk+PC9mb3Jl

aWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBlPjxj

b250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5FbGdyaXNoaSwgTm/DqW1pZTwvYXV0aG9yPjxh

dXRob3I+Um91bnRyZWUsIEtlbGxleSBKLjwvYXV0aG9yPjxhdXRob3I+TWNDYXJ0aHksIEJyaWFu

IEQuPC9hdXRob3I+PGF1dGhvcj5Sb3VudHJlZSwgRXJpYyBTLjwvYXV0aG9yPjxhdXRob3I+RWlz

ZW5oYXJ0LCBUaG9tYXMgVC48L2F1dGhvcj48YXV0aG9yPkRlbXBzZXksIEppbGxpYW4gTC48L2F1

dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PHRpdGxlcz48dGl0bGU+QSBQcmFjdGljYWwg

QmVnaW5uZXLigJlzIEd1aWRlIHRvIEN5Y2xpYyBWb2x0YW1tZXRyeTwvdGl0bGU+PHNlY29uZGFy

eS10aXRsZT5Kb3VybmFsIG9mIENoZW1pY2FsIEVkdWNhdGlvbjwvc2Vjb25kYXJ5LXRpdGxlPjwv

dGl0bGVzPjxwYWdlcz4xOTctMjA2PC9wYWdlcz48dm9sdW1lPjk1PC92b2x1bWU+PG51bWJlcj4y

PC9udW1iZXI+PGRhdGVzPjx5ZWFyPjIwMTg8L3llYXI+PHB1Yi1kYXRlcz48ZGF0ZT4yMDE4LzAy

LzEzPC9kYXRlPjwvcHViLWRhdGVzPjwvZGF0ZXM+PHB1Ymxpc2hlcj5BbWVyaWNhbiBDaGVtaWNh

bCBTb2NpZXR5PC9wdWJsaXNoZXI+PGlzYm4+MDAyMS05NTg0PC9pc2JuPjx1cmxzPjxyZWxhdGVk

LXVybHM+PHVybD5odHRwczovL2RvaS5vcmcvMTAuMTAyMS9hY3MuamNoZW1lZC43YjAwMzYxPC91

cmw+PC9yZWxhdGVkLXVybHM+PC91cmxzPjxlbGVjdHJvbmljLXJlc291cmNlLW51bT4xMC4xMDIx

L2Fjcy5qY2hlbWVkLjdiMDAzNjE8L2VsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjwvcmVjb3JkPjwv

Q2l0ZT48Q2l0ZT48QXV0aG9yPktpc3NpbmdlcjwvQXV0aG9yPjxZZWFyPjE5ODM8L1llYXI+PFJl

Y051bT4yMDMyPC9SZWNOdW0+PHJlY29yZD48cmVjLW51bWJlcj4yMDMyPC9yZWMtbnVtYmVyPjxm

b3JlaWduLWtleXM+PGtleSBhcHA9IkVOIiBkYi1pZD0iNTl3end2cnQxc3Myd2NlOXYyM3h2cjB5

ZDl3ZWUyenZ6c2EyIiB0aW1lc3RhbXA9IjE1NjE1NjIzOTIiPjIwMzI8L2tleT48L2ZvcmVpZ24t

a2V5cz48cmVmLXR5cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwvcmVmLXR5cGU+PGNvbnRy

aWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPktpc3NpbmdlciwgUGV0ZXIgVC48L2F1dGhvcj48YXV0

aG9yPkhlaW5lbWFuLCBXaWxsaWFtIFIuPC9hdXRob3I+PC9hdXRob3JzPjwvY29udHJpYnV0b3Jz

Pjx0aXRsZXM+PHRpdGxlPkN5Y2xpYyB2b2x0YW1tZXRyeTwvdGl0bGU+PHNlY29uZGFyeS10aXRs

ZT5Kb3VybmFsIG9mIENoZW1pY2FsIEVkdWNhdGlvbjwvc2Vjb25kYXJ5LXRpdGxlPjwvdGl0bGVz

PjxwZXJpb2RpY2FsPjxmdWxsLXRpdGxlPkpvdXJuYWwgb2YgQ2hlbWljYWwgRWR1Y2F0aW9uPC9m

dWxsLXRpdGxlPjxhYmJyLTE+Si4gQ2hlbS4gRWR1Yy48L2FiYnItMT48YWJici0yPkogQ2hlbSBF

ZHVjPC9hYmJyLTI+PC9wZXJpb2RpY2FsPjxwYWdlcz43MDI8L3BhZ2VzPjx2b2x1bWU+NjA8L3Zv

bHVtZT48bnVtYmVyPjk8L251bWJlcj48ZGF0ZXM+PHllYXI+MTk4MzwveWVhcj48cHViLWRhdGVz

PjxkYXRlPjE5ODMvMDkvMDE8L2RhdGU+PC9wdWItZGF0ZXM+PC9kYXRlcz48cHVibGlzaGVyPkFt

ZXJpY2FuIENoZW1pY2FsIFNvY2lldHk8L3B1Ymxpc2hlcj48aXNibj4wMDIxLTk1ODQ8L2lzYm4+

PHVybHM+PHJlbGF0ZWQtdXJscz48dXJsPmh0dHBzOi8vZG9pLm9yZy8xMC4xMDIxL2VkMDYwcDcw

MjwvdXJsPjwvcmVsYXRlZC11cmxzPjwvdXJscz48ZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+MTAu

MTAyMS9lZDA2MHA3MDI8L2VsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjwvcmVjb3JkPjwvQ2l0ZT48

L0VuZE5vdGU+AG==

ADDIN EN.CITE PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5FbGdyaXNoaTwvQXV0aG9yPjxZZWFyPjIwMTg8L1llYXI+

PFJlY051bT40PC9SZWNOdW0+PERpc3BsYXlUZXh0PjxzdHlsZSBmYWNlPSJzdXBlcnNjcmlwdCI+

MTgsIDE5PC9zdHlsZT48L0Rpc3BsYXlUZXh0PjxyZWNvcmQ+PHJlYy1udW1iZXI+NDwvcmVjLW51

bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9Ind4eHJ3YWEyZ3N4eHh6ZXdk

YXdwdHMyOWEwcHZ2cHZzYXQyZSIgdGltZXN0YW1wPSIxNTYxNTYyMzU3Ij40PC9rZXk+PC9mb3Jl

aWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBlPjxj

b250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5FbGdyaXNoaSwgTm/DqW1pZTwvYXV0aG9yPjxh

dXRob3I+Um91bnRyZWUsIEtlbGxleSBKLjwvYXV0aG9yPjxhdXRob3I+TWNDYXJ0aHksIEJyaWFu

IEQuPC9hdXRob3I+PGF1dGhvcj5Sb3VudHJlZSwgRXJpYyBTLjwvYXV0aG9yPjxhdXRob3I+RWlz

ZW5oYXJ0LCBUaG9tYXMgVC48L2F1dGhvcj48YXV0aG9yPkRlbXBzZXksIEppbGxpYW4gTC48L2F1

dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PHRpdGxlcz48dGl0bGU+QSBQcmFjdGljYWwg

QmVnaW5uZXLigJlzIEd1aWRlIHRvIEN5Y2xpYyBWb2x0YW1tZXRyeTwvdGl0bGU+PHNlY29uZGFy

eS10aXRsZT5Kb3VybmFsIG9mIENoZW1pY2FsIEVkdWNhdGlvbjwvc2Vjb25kYXJ5LXRpdGxlPjwv

dGl0bGVzPjxwYWdlcz4xOTctMjA2PC9wYWdlcz48dm9sdW1lPjk1PC92b2x1bWU+PG51bWJlcj4y

PC9udW1iZXI+PGRhdGVzPjx5ZWFyPjIwMTg8L3llYXI+PHB1Yi1kYXRlcz48ZGF0ZT4yMDE4LzAy

LzEzPC9kYXRlPjwvcHViLWRhdGVzPjwvZGF0ZXM+PHB1Ymxpc2hlcj5BbWVyaWNhbiBDaGVtaWNh

bCBTb2NpZXR5PC9wdWJsaXNoZXI+PGlzYm4+MDAyMS05NTg0PC9pc2JuPjx1cmxzPjxyZWxhdGVk

LXVybHM+PHVybD5odHRwczovL2RvaS5vcmcvMTAuMTAyMS9hY3MuamNoZW1lZC43YjAwMzYxPC91

cmw+PC9yZWxhdGVkLXVybHM+PC91cmxzPjxlbGVjdHJvbmljLXJlc291cmNlLW51bT4xMC4xMDIx

L2Fjcy5qY2hlbWVkLjdiMDAzNjE8L2VsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjwvcmVjb3JkPjwv

Q2l0ZT48Q2l0ZT48QXV0aG9yPktpc3NpbmdlcjwvQXV0aG9yPjxZZWFyPjE5ODM8L1llYXI+PFJl

Y051bT4yMDMyPC9SZWNOdW0+PHJlY29yZD48cmVjLW51bWJlcj4yMDMyPC9yZWMtbnVtYmVyPjxm

b3JlaWduLWtleXM+PGtleSBhcHA9IkVOIiBkYi1pZD0iNTl3end2cnQxc3Myd2NlOXYyM3h2cjB5

ZDl3ZWUyenZ6c2EyIiB0aW1lc3RhbXA9IjE1NjE1NjIzOTIiPjIwMzI8L2tleT48L2ZvcmVpZ24t

a2V5cz48cmVmLXR5cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwvcmVmLXR5cGU+PGNvbnRy

aWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPktpc3NpbmdlciwgUGV0ZXIgVC48L2F1dGhvcj48YXV0

aG9yPkhlaW5lbWFuLCBXaWxsaWFtIFIuPC9hdXRob3I+PC9hdXRob3JzPjwvY29udHJpYnV0b3Jz

Pjx0aXRsZXM+PHRpdGxlPkN5Y2xpYyB2b2x0YW1tZXRyeTwvdGl0bGU+PHNlY29uZGFyeS10aXRs

ZT5Kb3VybmFsIG9mIENoZW1pY2FsIEVkdWNhdGlvbjwvc2Vjb25kYXJ5LXRpdGxlPjwvdGl0bGVz

PjxwZXJpb2RpY2FsPjxmdWxsLXRpdGxlPkpvdXJuYWwgb2YgQ2hlbWljYWwgRWR1Y2F0aW9uPC9m

dWxsLXRpdGxlPjxhYmJyLTE+Si4gQ2hlbS4gRWR1Yy48L2FiYnItMT48YWJici0yPkogQ2hlbSBF

ZHVjPC9hYmJyLTI+PC9wZXJpb2RpY2FsPjxwYWdlcz43MDI8L3BhZ2VzPjx2b2x1bWU+NjA8L3Zv

bHVtZT48bnVtYmVyPjk8L251bWJlcj48ZGF0ZXM+PHllYXI+MTk4MzwveWVhcj48cHViLWRhdGVz

PjxkYXRlPjE5ODMvMDkvMDE8L2RhdGU+PC9wdWItZGF0ZXM+PC9kYXRlcz48cHVibGlzaGVyPkFt

ZXJpY2FuIENoZW1pY2FsIFNvY2lldHk8L3B1Ymxpc2hlcj48aXNibj4wMDIxLTk1ODQ8L2lzYm4+

PHVybHM+PHJlbGF0ZWQtdXJscz48dXJsPmh0dHBzOi8vZG9pLm9yZy8xMC4xMDIxL2VkMDYwcDcw

MjwvdXJsPjwvcmVsYXRlZC11cmxzPjwvdXJscz48ZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+MTAu

MTAyMS9lZDA2MHA3MDI8L2VsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjwvcmVjb3JkPjwvQ2l0ZT48

L0VuZE5vdGU+AG==

ADDIN EN.CITE.DATA 18, 19 Before moving forward, it is necessary to comment on the sign convention in electrochemistry. While the IUPAC convention is to plot anodic (positive) potentials to the right, cathodic (negative) potentials to the left, the opposite convention also persists in the literature. This convention comes from the Heyrovsky days of polarography. In polarography, the hanging mercury drop electrode was most frequently used, and this electrode itself can be easily oxidized. As a result, only cathodic (negative potentials, negative current) electrochemistry could be physically observed, requiring data to be plotted in the third quadrant. Therefore, the previously discussed convention was established to conserve space by reversing the signs and plotting cathodic data in the first quadrant. In the case of voltammetry with a three-electrode cell, the potential applied at the WE, which drives the redox reaction of interest, is compared to a known redox chemistry at the RE (e.g., normal hydrogen electrode (NHE), saturated calomel electrode (SCE), or silver/silver chloride (Ag/AgCl) electrode). This comparison establishes a reference point in the voltammogram against which measurements can be reproduced. The CE completes the circuit in this configuration, allowing current to flow from the WE to the CE or vice versa. While this conventional setup is adequate for many experiments, the circuitry required is complex. Furthermore, optimizing the sensitivity of these instruments for applications such as neurological analysis through fast scan cyclic voltammetry (FSCV), ADDIN EN.CITE <EndNote><Cite><Author>Robinson</Author><Year>2003</Year><RecNum>112</RecNum><DisplayText><style face="superscript">20</style></DisplayText><record><rec-number>112</rec-number><foreign-keys><key app="EN" db-id="f2w5pdsdvdww2berxd3vzp96wwdpex9s2swx" timestamp="1543875543">112</key></foreign-keys><ref-type name="Book">6</ref-type><contributors><authors><author>Robinson, Donita</author><author>Venton, B.</author><author>L A V Heien, Michael</author><author>Mark Wightman, R.</author></authors></contributors><titles><title>Detecting subsecond dopamine release with fast-scan cyclic voltammetry in vivo</title><alt-title>Clinical chemistry</alt-title></titles><pages>1763-73</pages><volume>49</volume><dates><year>2003</year></dates><urls></urls></record></Cite></EndNote>20 or single atom measurements through nanoelectrochemistry,PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5EaWNrPC9BdXRob3I+PFllYXI+MjAxNTwvWWVhcj48UmVj

TnVtPjc2PC9SZWNOdW0+PERpc3BsYXlUZXh0PjxzdHlsZSBmYWNlPSJzdXBlcnNjcmlwdCI+MjQt

MjY8L3N0eWxlPjwvRGlzcGxheVRleHQ+PHJlY29yZD48cmVjLW51bWJlcj43NjwvcmVjLW51bWJl

cj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9ImYydzVwZHNkdmR3dzJiZXJ4ZDN2

enA5Nnd3ZHBleDlzMnN3eCIgdGltZXN0YW1wPSIxNTQxNjMzNDY0IiBndWlkPSI3OTg5N2QwYi1m

YzUwLTRhYjktOWQ4MC04NTk2MzQ1ODE1MTIiPjc2PC9rZXk+PC9mb3JlaWduLWtleXM+PHJlZi10

eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBlPjxjb250cmlidXRvcnM+PGF1

dGhvcnM+PGF1dGhvcj5EaWNrLCBKZWZmcmV5IEUuPC9hdXRob3I+PGF1dGhvcj5CYXJkLCBBbGxl

biBKLjwvYXV0aG9yPjwvYXV0aG9ycz48L2NvbnRyaWJ1dG9ycz48dGl0bGVzPjx0aXRsZT5SZWNv

Z25pemluZyBTaW5nbGUgQ29sbGlzaW9ucyBvZiBQdENsNiAy4oiSIGF0IEZlbXRvbW9sYXIgQ29u

Y2VudHJhdGlvbnMgb24gVWx0cmFtaWNyb2VsZWN0cm9kZXMgYnkgTnVjbGVhdGluZyBFbGVjdHJv

Y2F0YWx5dGljIENsdXN0ZXJzPC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPkpvdXJuYWwgb2YgdGhl

IEFtZXJpY2FuIENoZW1pY2FsIFNvY2lldHk8L3NlY29uZGFyeS10aXRsZT48L3RpdGxlcz48cGVy

aW9kaWNhbD48ZnVsbC10aXRsZT5Kb3VybmFsIG9mIHRoZSBBbWVyaWNhbiBDaGVtaWNhbCBTb2Np

ZXR5PC9mdWxsLXRpdGxlPjwvcGVyaW9kaWNhbD48cGFnZXM+MTM3NTItMTM3NTU8L3BhZ2VzPjx2

b2x1bWU+MTM3PC92b2x1bWU+PGRhdGVzPjx5ZWFyPjIwMTU8L3llYXI+PHB1Yi1kYXRlcz48ZGF0

ZT4yMDE1LzEwLzE1PC9kYXRlPjwvcHViLWRhdGVzPjwvZGF0ZXM+PHB1Ymxpc2hlcj5BbWVyaWNh

biBDaGVtaWNhbCBTb2NpZXR5PC9wdWJsaXNoZXI+PHVybHM+PHJlbGF0ZWQtdXJscz48dXJsPmh0

dHBzOi8vZG9pLm9yZy8xMC4xMDIxL2phY3MuNWIwODYyODwvdXJsPjwvcmVsYXRlZC11cmxzPjwv

dXJscz48ZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+MTAuMTAyMS9qYWNzLjViMDg2Mjg8L2VsZWN0

cm9uaWMtcmVzb3VyY2UtbnVtPjwvcmVjb3JkPjwvQ2l0ZT48Q2l0ZT48QXV0aG9yPlpob3U8L0F1

dGhvcj48WWVhcj4yMDE3PC9ZZWFyPjxSZWNOdW0+NzQ8L1JlY051bT48cmVjb3JkPjxyZWMtbnVt

YmVyPjc0PC9yZWMtbnVtYmVyPjxmb3JlaWduLWtleXM+PGtleSBhcHA9IkVOIiBkYi1pZD0iZjJ3

NXBkc2R2ZHd3MmJlcnhkM3Z6cDk2d3dkcGV4OXMyc3d4IiB0aW1lc3RhbXA9IjE1NDE2MzMyMzEi

IGd1aWQ9ImQ5OWI3YjU1LTIwMmItNGFhOC1hMTJlLTU5ZTJjYTI5ZDNiYyI+NzQ8L2tleT48L2Zv

cmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iQm9vayI+NjwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9y

cz48YXV0aG9ycz48YXV0aG9yPlpob3UsIE1pbjwvYXV0aG9yPjxhdXRob3I+RS4gRGljaywgSmVm

ZnJleTwvYXV0aG9yPjxhdXRob3I+Si4gQmFyZCwgQWxsZW48L2F1dGhvcj48L2F1dGhvcnM+PC9j

b250cmlidXRvcnM+PHRpdGxlcz48dGl0bGU+RWxlY3Ryb2RlcG9zaXRpb24gb2YgSXNvbGF0ZWQg

UGxhdGludW0gQXRvbXMgYW5kIENsdXN0ZXJzIG9uIEJpc211dGgg4oCTIENoYXJhY3Rlcml6YXRp

b24gYW5kIEVsZWN0cm9jYXRhbHlzaXM8L3RpdGxlPjxhbHQtdGl0bGU+Sm91cm5hbCBvZiB0aGUg

QW1lcmljYW4gQ2hlbWljYWwgU29jaWV0eTwvYWx0LXRpdGxlPjwvdGl0bGVzPjxhbHQtcGVyaW9k

aWNhbD48ZnVsbC10aXRsZT5Kb3VybmFsIG9mIHRoZSBBbWVyaWNhbiBDaGVtaWNhbCBTb2NpZXR5

PC9mdWxsLXRpdGxlPjwvYWx0LXBlcmlvZGljYWw+PHZvbHVtZT4xMzk8L3ZvbHVtZT48ZGF0ZXM+

PHllYXI+MjAxNzwveWVhcj48L2RhdGVzPjx1cmxzPjwvdXJscz48ZWxlY3Ryb25pYy1yZXNvdXJj

ZS1udW0+MTAuMTAyMS9qYWNzLjdiMTA2NDY8L2VsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjwvcmVj

b3JkPjwvQ2l0ZT48Q2l0ZT48QXV0aG9yPkdsYXNzY290dDwvQXV0aG9yPjxZZWFyPjIwMTg8L1ll

YXI+PFJlY051bT4yMDQyPC9SZWNOdW0+PHJlY29yZD48cmVjLW51bWJlcj4yMDQyPC9yZWMtbnVt

YmVyPjxmb3JlaWduLWtleXM+PGtleSBhcHA9IkVOIiBkYi1pZD0iNTl3end2cnQxc3Myd2NlOXYy

M3h2cjB5ZDl3ZWUyenZ6c2EyIiB0aW1lc3RhbXA9IjE1NjU5NTY2MDkiPjIwNDI8L2tleT48L2Zv

cmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwvcmVmLXR5cGU+

PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPkdsYXNzY290dCwgTWF0dGhldyBXLjwvYXV0

aG9yPjxhdXRob3I+RGljaywgSmVmZnJleSBFLjwvYXV0aG9yPjwvYXV0aG9ycz48L2NvbnRyaWJ1

dG9ycz48dGl0bGVzPjx0aXRsZT5EaXJlY3QgRWxlY3Ryb2NoZW1pY2FsIE9ic2VydmF0aW9uIG9m

IFNpbmdsZSBQbGF0aW51bSBDbHVzdGVyIEVsZWN0cm9jYXRhbHlzaXMgb24gVWx0cmFtaWNyb2Vs

ZWN0cm9kZXM8L3RpdGxlPjxzZWNvbmRhcnktdGl0bGU+QW5hbHl0aWNhbCBDaGVtaXN0cnk8L3Nl

Y29uZGFyeS10aXRsZT48L3RpdGxlcz48cGVyaW9kaWNhbD48ZnVsbC10aXRsZT5BbmFseXRpY2Fs

IENoZW1pc3RyeTwvZnVsbC10aXRsZT48YWJici0xPkFuYWwuIENoZW0uPC9hYmJyLTE+PGFiYnIt

Mj5BbmFsIENoZW08L2FiYnItMj48L3BlcmlvZGljYWw+PHBhZ2VzPjc4MDQtNzgwODwvcGFnZXM+

PHZvbHVtZT45MDwvdm9sdW1lPjxudW1iZXI+MTM8L251bWJlcj48ZGF0ZXM+PHllYXI+MjAxODwv

eWVhcj48cHViLWRhdGVzPjxkYXRlPjIwMTgvMDcvMDM8L2RhdGU+PC9wdWItZGF0ZXM+PC9kYXRl

cz48cHVibGlzaGVyPkFtZXJpY2FuIENoZW1pY2FsIFNvY2lldHk8L3B1Ymxpc2hlcj48aXNibj4w

MDAzLTI3MDA8L2lzYm4+PHVybHM+PHJlbGF0ZWQtdXJscz48dXJsPmh0dHBzOi8vZG9pLm9yZy8x

MC4xMDIxL2Fjcy5hbmFsY2hlbS44YjAyMjE5PC91cmw+PC9yZWxhdGVkLXVybHM+PC91cmxzPjxl

bGVjdHJvbmljLXJlc291cmNlLW51bT4xMC4xMDIxL2Fjcy5hbmFsY2hlbS44YjAyMjE5PC9lbGVj

dHJvbmljLXJlc291cmNlLW51bT48L3JlY29yZD48L0NpdGU+PC9FbmROb3RlPgB=

ADDIN EN.CITE PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5EaWNrPC9BdXRob3I+PFllYXI+MjAxNTwvWWVhcj48UmVj

TnVtPjc2PC9SZWNOdW0+PERpc3BsYXlUZXh0PjxzdHlsZSBmYWNlPSJzdXBlcnNjcmlwdCI+MjQt

MjY8L3N0eWxlPjwvRGlzcGxheVRleHQ+PHJlY29yZD48cmVjLW51bWJlcj43NjwvcmVjLW51bWJl

cj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9ImYydzVwZHNkdmR3dzJiZXJ4ZDN2

enA5Nnd3ZHBleDlzMnN3eCIgdGltZXN0YW1wPSIxNTQxNjMzNDY0IiBndWlkPSI3OTg5N2QwYi1m

YzUwLTRhYjktOWQ4MC04NTk2MzQ1ODE1MTIiPjc2PC9rZXk+PC9mb3JlaWduLWtleXM+PHJlZi10

eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBlPjxjb250cmlidXRvcnM+PGF1

dGhvcnM+PGF1dGhvcj5EaWNrLCBKZWZmcmV5IEUuPC9hdXRob3I+PGF1dGhvcj5CYXJkLCBBbGxl

biBKLjwvYXV0aG9yPjwvYXV0aG9ycz48L2NvbnRyaWJ1dG9ycz48dGl0bGVzPjx0aXRsZT5SZWNv

Z25pemluZyBTaW5nbGUgQ29sbGlzaW9ucyBvZiBQdENsNiAy4oiSIGF0IEZlbXRvbW9sYXIgQ29u

Y2VudHJhdGlvbnMgb24gVWx0cmFtaWNyb2VsZWN0cm9kZXMgYnkgTnVjbGVhdGluZyBFbGVjdHJv

Y2F0YWx5dGljIENsdXN0ZXJzPC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPkpvdXJuYWwgb2YgdGhl

IEFtZXJpY2FuIENoZW1pY2FsIFNvY2lldHk8L3NlY29uZGFyeS10aXRsZT48L3RpdGxlcz48cGVy

aW9kaWNhbD48ZnVsbC10aXRsZT5Kb3VybmFsIG9mIHRoZSBBbWVyaWNhbiBDaGVtaWNhbCBTb2Np

ZXR5PC9mdWxsLXRpdGxlPjwvcGVyaW9kaWNhbD48cGFnZXM+MTM3NTItMTM3NTU8L3BhZ2VzPjx2

b2x1bWU+MTM3PC92b2x1bWU+PGRhdGVzPjx5ZWFyPjIwMTU8L3llYXI+PHB1Yi1kYXRlcz48ZGF0

ZT4yMDE1LzEwLzE1PC9kYXRlPjwvcHViLWRhdGVzPjwvZGF0ZXM+PHB1Ymxpc2hlcj5BbWVyaWNh

biBDaGVtaWNhbCBTb2NpZXR5PC9wdWJsaXNoZXI+PHVybHM+PHJlbGF0ZWQtdXJscz48dXJsPmh0

dHBzOi8vZG9pLm9yZy8xMC4xMDIxL2phY3MuNWIwODYyODwvdXJsPjwvcmVsYXRlZC11cmxzPjwv

dXJscz48ZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+MTAuMTAyMS9qYWNzLjViMDg2Mjg8L2VsZWN0

cm9uaWMtcmVzb3VyY2UtbnVtPjwvcmVjb3JkPjwvQ2l0ZT48Q2l0ZT48QXV0aG9yPlpob3U8L0F1

dGhvcj48WWVhcj4yMDE3PC9ZZWFyPjxSZWNOdW0+NzQ8L1JlY051bT48cmVjb3JkPjxyZWMtbnVt

YmVyPjc0PC9yZWMtbnVtYmVyPjxmb3JlaWduLWtleXM+PGtleSBhcHA9IkVOIiBkYi1pZD0iZjJ3

NXBkc2R2ZHd3MmJlcnhkM3Z6cDk2d3dkcGV4OXMyc3d4IiB0aW1lc3RhbXA9IjE1NDE2MzMyMzEi

IGd1aWQ9ImQ5OWI3YjU1LTIwMmItNGFhOC1hMTJlLTU5ZTJjYTI5ZDNiYyI+NzQ8L2tleT48L2Zv

cmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iQm9vayI+NjwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9y

cz48YXV0aG9ycz48YXV0aG9yPlpob3UsIE1pbjwvYXV0aG9yPjxhdXRob3I+RS4gRGljaywgSmVm

ZnJleTwvYXV0aG9yPjxhdXRob3I+Si4gQmFyZCwgQWxsZW48L2F1dGhvcj48L2F1dGhvcnM+PC9j

b250cmlidXRvcnM+PHRpdGxlcz48dGl0bGU+RWxlY3Ryb2RlcG9zaXRpb24gb2YgSXNvbGF0ZWQg

UGxhdGludW0gQXRvbXMgYW5kIENsdXN0ZXJzIG9uIEJpc211dGgg4oCTIENoYXJhY3Rlcml6YXRp

b24gYW5kIEVsZWN0cm9jYXRhbHlzaXM8L3RpdGxlPjxhbHQtdGl0bGU+Sm91cm5hbCBvZiB0aGUg

QW1lcmljYW4gQ2hlbWljYWwgU29jaWV0eTwvYWx0LXRpdGxlPjwvdGl0bGVzPjxhbHQtcGVyaW9k

aWNhbD48ZnVsbC10aXRsZT5Kb3VybmFsIG9mIHRoZSBBbWVyaWNhbiBDaGVtaWNhbCBTb2NpZXR5

PC9mdWxsLXRpdGxlPjwvYWx0LXBlcmlvZGljYWw+PHZvbHVtZT4xMzk8L3ZvbHVtZT48ZGF0ZXM+

PHllYXI+MjAxNzwveWVhcj48L2RhdGVzPjx1cmxzPjwvdXJscz48ZWxlY3Ryb25pYy1yZXNvdXJj

ZS1udW0+MTAuMTAyMS9qYWNzLjdiMTA2NDY8L2VsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjwvcmVj

b3JkPjwvQ2l0ZT48Q2l0ZT48QXV0aG9yPkdsYXNzY290dDwvQXV0aG9yPjxZZWFyPjIwMTg8L1ll

YXI+PFJlY051bT4yMDQyPC9SZWNOdW0+PHJlY29yZD48cmVjLW51bWJlcj4yMDQyPC9yZWMtbnVt

YmVyPjxmb3JlaWduLWtleXM+PGtleSBhcHA9IkVOIiBkYi1pZD0iNTl3end2cnQxc3Myd2NlOXYy

M3h2cjB5ZDl3ZWUyenZ6c2EyIiB0aW1lc3RhbXA9IjE1NjU5NTY2MDkiPjIwNDI8L2tleT48L2Zv

cmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwvcmVmLXR5cGU+

PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPkdsYXNzY290dCwgTWF0dGhldyBXLjwvYXV0

aG9yPjxhdXRob3I+RGljaywgSmVmZnJleSBFLjwvYXV0aG9yPjwvYXV0aG9ycz48L2NvbnRyaWJ1

dG9ycz48dGl0bGVzPjx0aXRsZT5EaXJlY3QgRWxlY3Ryb2NoZW1pY2FsIE9ic2VydmF0aW9uIG9m

IFNpbmdsZSBQbGF0aW51bSBDbHVzdGVyIEVsZWN0cm9jYXRhbHlzaXMgb24gVWx0cmFtaWNyb2Vs

ZWN0cm9kZXM8L3RpdGxlPjxzZWNvbmRhcnktdGl0bGU+QW5hbHl0aWNhbCBDaGVtaXN0cnk8L3Nl

Y29uZGFyeS10aXRsZT48L3RpdGxlcz48cGVyaW9kaWNhbD48ZnVsbC10aXRsZT5BbmFseXRpY2Fs

IENoZW1pc3RyeTwvZnVsbC10aXRsZT48YWJici0xPkFuYWwuIENoZW0uPC9hYmJyLTE+PGFiYnIt

Mj5BbmFsIENoZW08L2FiYnItMj48L3BlcmlvZGljYWw+PHBhZ2VzPjc4MDQtNzgwODwvcGFnZXM+

PHZvbHVtZT45MDwvdm9sdW1lPjxudW1iZXI+MTM8L251bWJlcj48ZGF0ZXM+PHllYXI+MjAxODwv

eWVhcj48cHViLWRhdGVzPjxkYXRlPjIwMTgvMDcvMDM8L2RhdGU+PC9wdWItZGF0ZXM+PC9kYXRl

cz48cHVibGlzaGVyPkFtZXJpY2FuIENoZW1pY2FsIFNvY2lldHk8L3B1Ymxpc2hlcj48aXNibj4w

MDAzLTI3MDA8L2lzYm4+PHVybHM+PHJlbGF0ZWQtdXJscz48dXJsPmh0dHBzOi8vZG9pLm9yZy8x

MC4xMDIxL2Fjcy5hbmFsY2hlbS44YjAyMjE5PC91cmw+PC9yZWxhdGVkLXVybHM+PC91cmxzPjxl

bGVjdHJvbmljLXJlc291cmNlLW51bT4xMC4xMDIxL2Fjcy5hbmFsY2hlbS44YjAyMjE5PC9lbGVj

dHJvbmljLXJlc291cmNlLW51bT48L3JlY29yZD48L0NpdGU+PC9FbmROb3RlPgB=

ADDIN EN.CITE.DATA 24-26 elevates the instrument cost to between $4,000 and $40,000 USD. This high price point hinders the universal incorporation of electrochemistry as an undergraduate or secondary education instructive experience. Thus, reducing the cost of such instrumentation may facilitate experimental opportunities at these levels of education and ensure electrochemistry can reach every student.Historically, the topology for a potentiostat used to perform CVs is similar to that shown in Figure S2a. This circuit is the basis for performing CV experiments using a three-electrode cell. A Randles Cell model is used in this circuit, which only accounts for electrochemical activity at the WE. In this case, Rs represents the sum of the solution resistance, which depends on the conductivity of the solution and the distance between the WE and RE, and the resistance due to electrode size and conductivity, Zelectrode. ADDIN EN.CITE <EndNote><Cite><Author>Newman</Author><Year>1966</Year><RecNum>369</RecNum><DisplayText><style face="superscript">27</style></DisplayText><record><rec-number>369</rec-number><foreign-keys><key app="EN" db-id="p9z0eddfnz9ssre0te5p0r0s2wpzprtae9t9" timestamp="1524615798">369</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Newman, J.</author></authors></contributors><titles><title>RESISTANCE FOR FLOW OF CURRENT TO A DISK</title><secondary-title>Journal of the Electrochemical Society</secondary-title></titles><periodical><full-title>Journal of the Electrochemical Society</full-title><abbr-1>J. Electrochem. Soc.</abbr-1></periodical><pages>501-&amp;</pages><volume>113</volume><number>5</number><dates><year>1966</year></dates><isbn>0013-4651</isbn><accession-num>WOS:A19667648900021</accession-num><urls><related-urls><url>&lt;Go to ISI&gt;://WOS:A19667648900021</url></related-urls></urls><electronic-resource-num>10.1149/1.2424003</electronic-resource-num></record></Cite></EndNote>27 It is important to minimize Zelectrode for the CE with respect to the WE by using a CE that is significantly larger than the WE and made of a material which allows free transfer of electrons from the electrode to the ionic solution. The charge transfer resistance resulting from the heterogeneous electron transfer process at the WE is represented as Rct, while Cdl denotes the double-layer capacitance of the electrode. Although the Randles Cell model is likely an oversimplification of experimental reality, it serves a pedagogical purpose in demonstrating which components contribute to resistance and capacitance within an electrochemical cell. This understanding ultimately allows one to design an effective electrochemical cell. Unfortunately, using a RE, as depicted in Figure S2a, has several disadvantages:Feedback in combination with the CE and WE electrode impedances alters the frequency response of the potentiostat. This can result in signal instability at high scan rates.right634274Figure S2 – (a) Electronic schematic of a three-electrode potentiostat system with working electrode (WE), counter electrode (CE), and reference electrode (RE) employed to measure the response of a Randles Cell solution model. (b) Electronic schematic of a two-electrode potentiostat system where the voltage ramp is driven through the op-amp’s virtual connection. 00Figure S2 – (a) Electronic schematic of a three-electrode potentiostat system with working electrode (WE), counter electrode (CE), and reference electrode (RE) employed to measure the response of a Randles Cell solution model. (b) Electronic schematic of a two-electrode potentiostat system where the voltage ramp is driven through the op-amp’s virtual connection. Circuit complexity increases with the use of a reference electrode. The circuit diagrams in Figure S2 are simplified versions. Actual circuitry must include additional elements to compensate for frequency response changes and to prevent oscillation. The curious reader is referred to the first edition of Electrochemical Methods: Fundamentals and Applications by Bard and Faulkner for complete circuitry. ADDIN EN.CITE <EndNote><Cite><Author>Faulkner</Author><Year>2001</Year><RecNum>1134</RecNum><DisplayText><style face="superscript">28</style></DisplayText><record><rec-number>1134</rec-number><foreign-keys><key app="EN" db-id="59wzwvrt1ss2wce9v23xvr0yd9wee2zvzsa2" timestamp="0">1134</key></foreign-keys><ref-type name="Book">6</ref-type><contributors><authors><author>Allen J. Bard and Larry R. Faulkner</author></authors></contributors><titles><title>Electrochemical Methods: Fundamentals and Applications</title></titles><edition>1</edition><dates><year>2001</year></dates><pub-location>New York, New York</pub-location><publisher>John Wiley &amp; Sons</publisher><urls></urls></record></Cite></EndNote>28In Figure S2a of the main text, the potentiostat circuitry consists of a voltage source, Vin, which is applied to amplifier A1. When this circuit is used for CVs, amplifier A1 is used to apply the voltage ramp to the electrochemical cell through the CE. This results in a current (i), which flows through the cell from CE through WE and into the virtual ground of A2, where it is converted to a voltage (Vout) that is proportional to current i. The circuit of Figure S2a is governed by the following equations:ZElectrode=RCT||CDBL=RCT * XCDBLRCT + XCDBL Eq. S2VWE=Vramp-i*(RS+ZElectrode) Eq. S3i=VrampZElectrode+RSEq. S4Vout=-i*REq. S5Equation S2 defines the electrode impedance, ZElectrode, to be the parallel combination of Rct, and Cdl. The application of the voltage, Vin, to the cell causes current to flow from the CE to the WE and into the virtual ground of A2. From equation S3 above, it is apparent that VWE is less than Vin due to the iR voltage drop (often referred to as Ohmic drop) across RS. CV experiments aim to measure the change in i resulting from changes in ZElectrode as a function of VRamp as seen in equation S4. It is important to be able to accurately identify redox potentials by knowing the exact voltage at the WE. In the case where the solution resistance and/or the electrode resistance is large in comparison with the impedance of Rct||Cdl, the iR drop through Rs causes significant error in the potential measured at WE. Compensation for Rs can be accomplished by using a third “reference electrode” in very close physical proximity to the WE. The voltage difference between VRamp and VRef is measured and used to increase VRamp to make up for the iR drop across Rs. This is performed in a feedback operation around A1 which can correct for changes in Rs in real time. Equation S5 describes the transformation of the current into a voltage, Vout. Using a third electrode to compensate for iR drop is important in the following situations:If Rs is large enough in comparison to ZElectrode to cause a significant shift in the redox potential. This manifests in low-conductivity solutions, such as non-aqueous solvents, especially in the absence of supporting electrolyte. If the CE is smaller than the WE causing non-linear iR drops in series with RS that must be eliminated. Using a reference electrode allows for real-time correction of iR drops across RS and an imperfect CE.The primary design goals of the SweepStat included low cost, reduced circuit complexity, and robust operation (i.e., lack of instability such as circuit oscillation). With these goals in mind, and the limitations stated above, a two-electrode system was pursued instead of the more complex three-electrode potentiostat. In order to minimize the effects of Rs on measurements, the SweepStat educational experiments have been designed around classical electrochemical reactions using highly conductive ionic solutions, low impedance WEs, and employing a large CE. These precautions eliminate iR drop in the electrochemical cell and its associated errors. While a general reference electrode such as Ag/AgCl may be used in the UME experiments as a counter/reference electrode, using larger electrodes in these schemes may pass too much current through the reference such that its equilibrium is disturbed, and its reference potential drifts. Therefore, for referenced experiments, a redox standard (i.e. a molecule with a known E0’) may be introduced into the solution to “calibrate” the output. In this scheme, inert conducting materials such as glassy carbon or platinum may be used as a counter electrode to facilitate the passage of large amounts of current. For pedagogical purposes, the concepts of electroactive analyte flux to the electrode surface may still be demonstrated without the use of a reference electrode or redox standard. It is important to realize that without a defined chemical equilibrium against which to reference the reaction, the potential response (i.e. the x-axis of the CV) is relative to the experiment and cannot be related to the electrochemical series. In this case, the term quasi-reference electrode (QR) is used to indicate a reference electrode without a defined equilibrium. We elected to simplify the circuitry further by employing a voltage-follower concept combined with the current to voltage converter, eliminating the need for a feedback Op-Amp (A1) and reducing the entire circuit to a single Op-Amp as shown in Figure S2b. In this case, Vramp is applied to the non-inverting input of the left454Figure S3 – (a) Autodesk Fusion 360 3D rendering of customized SweepStat enclosure box. Total print time <10 hours. (b) Printed enclosure containing SweepStat circuitry highlighting two-electrode interface, where the red and black wires correspond to the working and counter electrodes, respectively. (c) Enclosure top removed to reveal internal circuitry.00Figure S3 – (a) Autodesk Fusion 360 3D rendering of customized SweepStat enclosure box. Total print time <10 hours. (b) Printed enclosure containing SweepStat circuitry highlighting two-electrode interface, where the red and black wires correspond to the working and counter electrodes, respectively. (c) Enclosure top removed to reveal internal circuitry.current to voltage converter (A). As such, the Op-Amp will drive Vout to a value which induces the voltage at the non-inverting input to equal the voltage at the inverting input, thus forcing the WE to exactly follow Vramp (hence “voltage-follower”). When the WE is raised to Vramp, i flows from the WE to the CE which is grounded and Vout follows equation S6:Vout=Vramp-(i*Rf)Eq. S6Therefore, to directly plot the resulting i-V or i-t curve, Vramp must be subtracted from Vout, which is accomplished in the circuitry (Figure S6).SweepStat Enclosure DesignThe SweepStat instrumentation box was designed and fabricated using commercial CAD software and 3D-printers (Ultimaker S3 with CPE filament). A simple enclosure was created in Autodesk Fusion 360 as presented in Figure S4a, however, a similar design could be generated using numerous open-source software packages for 3D modelling (e.g. openSCAD). A completed SweepStat device is shown in Figure S4b, highlighting the electrode leads, on/off switch, and USB port for connection to the LabView interface. A labeled device is also included in the Supporting Information. Within this two-electrode framework, the red and black leads represent the WE and combined QCE/RE, respectively. Figure S4c shows the device with the top half of the enclosure removed to reveal the completed SweepStat PCB. Materials for Electrochemical ExperimentsPotassium hexacyanoferrate (II) trihydrate (98.5%), potassium hexacyanoferrate (III) (>99.0%), and potassium chloride (>99.0%) were purchased from Sigma-Aldrich and used without further purification. Hydroxymethylferrocene (97%) was purchased from Alfa Aesar and used without further purification. All solutions were prepared with nanopure water (18.2 mΩ?cm). Macrodisk experiments were conducted with 1.5 mm radius glassy carbon electrodes and UME experiments were conducted with 5.0 ?m radius Pt electrodes purchased from CH Instruments. In all experiments, the combined reference/counter electrode was a glassy carbon rod. SweepStat electrochemical measurements were verified with a Model 601E CH Instruments Electrochemical Workstation with a Ag/AgCl aqueous RE and a glassy carbon CE. Pedagogical Overview of Macro and Microelectrochemical Measurementsleft12791Figure S4 – Schematic representation comparing the diffusion profiles about macro and ultramicroelectrodes. From this representation, a semi-infinite linear diffusion profile will result in a colloquial duck shape voltammogram, whilst an ultramicroelectrode’s radial diffusion profile will result in a sigmoidal voltammogram.00Figure S4 – Schematic representation comparing the diffusion profiles about macro and ultramicroelectrodes. From this representation, a semi-infinite linear diffusion profile will result in a colloquial duck shape voltammogram, whilst an ultramicroelectrode’s radial diffusion profile will result in a sigmoidal voltammogram.Electrochemistry at the interface of large metal electrodes has been investigated for centuries. ADDIN EN.CITE <EndNote><Cite><Author>Faulkner</Author><Year>2001</Year><RecNum>1134</RecNum><DisplayText><style face="superscript">28</style></DisplayText><record><rec-number>1134</rec-number><foreign-keys><key app="EN" db-id="59wzwvrt1ss2wce9v23xvr0yd9wee2zvzsa2" timestamp="0">1134</key></foreign-keys><ref-type name="Book">6</ref-type><contributors><authors><author>Allen J. Bard and Larry R. Faulkner</author></authors></contributors><titles><title>Electrochemical Methods: Fundamentals and Applications</title></titles><edition>1</edition><dates><year>2001</year></dates><pub-location>New York, New York</pub-location><publisher>John Wiley &amp; Sons</publisher><urls></urls></record></Cite></EndNote>28 When used for CV experiments, these macroelectrodes produce a colloquial duck shape in the resultant plot of current as a function of applied potential, which results from the changing concentration profiles of analyte at the electrode surface. For instance, when a potential sufficient to drive the reduction of a freely diffusing analyte O is applied to the electrode, the surface concentration of O decrease as it is converted to R. At the same time, O is continuously diffusing to the electrode surface from the bulk solution. Due to the large, planar area of the electrode, the diffusion path of O is essentially perpendicular to the electrode surface at any given point. This concept is termed semi-infinite linear diffusion, where semi-infinite represents the idea that the electrode extends infinitely in all directions from a molecular perspective as O diffuses to the surface (except when that molecule approaches the very edge of the electrode, hence semi-infinite), and linear indicates the two-dimensional perpendicular diffusion path of O. The concentration profiles about the electrode surface generated by semi-infinite linear diffusion behavior are changing with time (i.e., the exhaustion layer for O is expanding outward from the electrode), giving rise to the oxidation and reduction peak shape in classical voltammograms. As the electrode is made smaller, the fraction of O diffusing to the edge of the electrode increases. Eventually, a new diffusion profile is generated where O may diffuse to the electrode surface radially, greatly accelerating the rate of replenishment for O at the surface following reduction to R. Thus, the concentration profiles adjacent to the electrode surface do not change with time at commonly used scan rates (i.e. 50-100 mV/s), simplifying the mathematical treatment. This new diffusion profile manifests in the voltammogram as a sigmoidal curve, where the final current magnitude is termed the diffusion-limited current. It should be noted that steady-state behavior is not solely dependent on electrode size but also the scan rate of the experiment. At sufficiently fast scan rates, the steady-state voltammogram for a microelectrode will develop “peaks” characteristic of macro electrodes. This is due to the dependence on diffusion layer thickness on scan rate. At sufficiently small diffusion layers, mass transfer resembles semi-infinite linear diffusion. Similarly, at a macro electrode, scanning sufficiently slow may produce steady-state voltammograms as the potential changes so slowly that the reaction becomes diffusion controlled. These essential electrochemical concepts, further illustrated in Figure S4, are readily demonstrated using the SweepStat’s low and high gain capabilities, providing experimental context to the abstract principle of analyte diffusion.Finite-Element Simulation and Commercial Potentiostat Comparison While the SweepStat offers a facile method to perform classical electrochemistry experiments and extract chemical and physical properties with good agreement to literature values, it is imperative that the observed electrochemical measurements agree with industry standard workstations and simulation packages. The CH Instruments 601e electrochemical workstation offers an excellent commercially available instrumentation package for voltammetry and amperometry using a three-electrode cell at a cost of >$5,000 USD. In Figure S5a, an overlay of macrodisk voltammetry of 75 ?M ferrocenemethanol, as discussed in Section 3.1, is presented corresponding to the SweepStat data (green) and the CHI data (blue), demonstrating similar CVs and validating the measurement capabilities of the SweepStat. Additionally, a 1-dimensional COMSOL 5.3a finite element simulation was conducted with the resultant CV plotted in Figure left363Figure S5 – (a) CV of 75 ?M ferrocenemethanol on a 1.5 mm glassy carbon disk using a SweepStat (green) and CHI E600 Workstation (blue) demonstrating good agreement that can be modelled with COMSOL (red). CHI results are shifted -150 mV to account for reference variation. (b) CV of 7.5 mM potassium ferrocyanide on a 5 μm platinum UME on the two potentiostats and with COMSOL. Sweep rate was 50 mV/s. CHI results are shifted -60 mV to account for reference variation.Figure S5 – (a) CV of 75 ?M ferrocenemethanol on a 1.5 mm glassy carbon disk using a SweepStat (green) and CHI E600 Workstation (blue) demonstrating good agreement that can be modelled with COMSOL (red). CHI results are shifted -150 mV to account for reference variation. (b) CV of 7.5 mM potassium ferrocyanide on a 5 μm platinum UME on the two potentiostats and with COMSOL. Sweep rate was 50 mV/s. CHI results are shifted -60 mV to account for reference variation.S5a (red). The parameters used for these simulations are presented in Table S2. It is important to note that due to the lack of a separate reference electrode in the SweepStat design and thus the use of a glassy carbon QCE/RE, the E1/2 values for the SweepStat and CHI CV scans were separated by 150 mV, and Figure S5a demonstrates a -150 mV correction to the potential at the CHI workstation. A similar comparison with the UME was performed between the SweepStat, CHI workstation, and finite element modeling for the reversible oxidation of 7.5 mM potassium ferrocyanide (Figure S5b). A simple 2-D axis symmetric COMSOL 5.3a finite element model was prepared with good agreement to the SweepStat and CHI scans. Similar simulations could be prepared for any number of electrochemical experiments including nano-impact voltammetry, amperometry, and nanodroplet-mediated electrodeposition to validate the signal resulting from the SweepStat platform.PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5HbGFzc2NvdHQ8L0F1dGhvcj48WWVhcj4yMDE5PC9ZZWFy

PjxSZWNOdW0+MTk0ODwvUmVjTnVtPjxEaXNwbGF5VGV4dD48c3R5bGUgZmFjZT0ic3VwZXJzY3Jp

cHQiPjI5LTMxPC9zdHlsZT48L0Rpc3BsYXlUZXh0PjxyZWNvcmQ+PHJlYy1udW1iZXI+MTk0ODwv

cmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9IjU5d3p3dnJ0MXNz

MndjZTl2MjN4dnIweWQ5d2VlMnp2enNhMiIgdGltZXN0YW1wPSIxNTUxOTAzMjk4Ij4xOTQ4PC9r

ZXk+PC9mb3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3Jl

Zi10eXBlPjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5HbGFzc2NvdHQsIE1hdHRoZXcg

Vy48L2F1dGhvcj48YXV0aG9yPkRpY2ssIEplZmZyZXkgRS48L2F1dGhvcj48L2F1dGhvcnM+PC9j

b250cmlidXRvcnM+PHRpdGxlcz48dGl0bGU+RmluZS1UdW5pbmcgUG9yb3NpdHkgYW5kIFRpbWUt

UmVzb2x2ZWQgT2JzZXJ2YXRpb24gb2YgTnVjbGVhdGlvbiBhbmQgR3Jvd3RoIG9mIFNpbmdsZSBQ

bGF0aW51bSBOYW5vcGFydGljbGVzPC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPkFDUyBOYW5vPC9z

ZWNvbmRhcnktdGl0bGU+PC90aXRsZXM+PHBlcmlvZGljYWw+PGZ1bGwtdGl0bGU+QUNTIE5hbm88

L2Z1bGwtdGl0bGU+PC9wZXJpb2RpY2FsPjxkYXRlcz48eWVhcj4yMDE5PC95ZWFyPjxwdWItZGF0

ZXM+PGRhdGU+MjAxOS8wMi8yMTwvZGF0ZT48L3B1Yi1kYXRlcz48L2RhdGVzPjxwdWJsaXNoZXI+

QW1lcmljYW4gQ2hlbWljYWwgU29jaWV0eTwvcHVibGlzaGVyPjxpc2JuPjE5MzYtMDg1MTwvaXNi

bj48dXJscz48cmVsYXRlZC11cmxzPjx1cmw+aHR0cHM6Ly9kb2kub3JnLzEwLjEwMjEvYWNzbmFu

by45YjAwNTQ2PC91cmw+PC9yZWxhdGVkLXVybHM+PC91cmxzPjxlbGVjdHJvbmljLXJlc291cmNl

LW51bT4xMC4xMDIxL2Fjc25hbm8uOWIwMDU0NjwvZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+PC9y

ZWNvcmQ+PC9DaXRlPjxDaXRlPjxBdXRob3I+R2xhc3Njb3R0PC9BdXRob3I+PFllYXI+MjAxOTwv

WWVhcj48UmVjTnVtPjE5NDc8L1JlY051bT48cmVjb3JkPjxyZWMtbnVtYmVyPjE5NDc8L3JlYy1u

dW1iZXI+PGZvcmVpZ24ta2V5cz48a2V5IGFwcD0iRU4iIGRiLWlkPSI1OXd6d3ZydDFzczJ3Y2U5

djIzeHZyMHlkOXdlZTJ6dnpzYTIiIHRpbWVzdGFtcD0iMTU1MTg5NDMxNyI+MTk0Nzwva2V5Pjwv

Zm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJKb3VybmFsIEFydGljbGUiPjE3PC9yZWYtdHlw

ZT48Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+R2xhc3Njb3R0LCBNYXR0aGV3IFcuPC9h

dXRob3I+PGF1dGhvcj5QZW5kZXJnYXN0LCBBbmRyZXcgRC48L2F1dGhvcj48YXV0aG9yPkNob3Vk

aHVyeSwgTW9pbnVsIEguPC9hdXRob3I+PGF1dGhvcj5EaWNrLCBKZWZmcmV5IEUuPC9hdXRob3I+

PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjx0aXRsZXM+PHRpdGxlPkFkdmFuY2VkIENoYXJhY3Rl

cml6YXRpb24gVGVjaG5pcXVlcyBmb3IgRXZhbHVhdGluZyBQb3Jvc2l0eSwgTmFub3BvcmUgVG9y

dHVvc2l0eSwgYW5kIEVsZWN0cmljYWwgQ29ubmVjdGl2aXR5IGF0IHRoZSBTaW5nbGUtTmFub3Bh

cnRpY2xlIExldmVsPC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPkFDUyBBcHBsaWVkIE5hbm8gTWF0

ZXJpYWxzPC9zZWNvbmRhcnktdGl0bGU+PC90aXRsZXM+PHBlcmlvZGljYWw+PGZ1bGwtdGl0bGU+

QUNTIEFwcGxpZWQgTmFubyBNYXRlcmlhbHM8L2Z1bGwtdGl0bGU+PGFiYnItMT5BQ1MgQXBwbC4g

TmFubyBNYXRlci48L2FiYnItMT48L3BlcmlvZGljYWw+PHBhZ2VzPjgxOS04MzA8L3BhZ2VzPjx2

b2x1bWU+Mjwvdm9sdW1lPjxudW1iZXI+MjwvbnVtYmVyPjxkYXRlcz48eWVhcj4yMDE5PC95ZWFy

PjxwdWItZGF0ZXM+PGRhdGU+MjAxOS8wMi8yMjwvZGF0ZT48L3B1Yi1kYXRlcz48L2RhdGVzPjxw

dWJsaXNoZXI+QW1lcmljYW4gQ2hlbWljYWwgU29jaWV0eTwvcHVibGlzaGVyPjx1cmxzPjxyZWxh

dGVkLXVybHM+PHVybD5odHRwczovL2RvaS5vcmcvMTAuMTAyMS9hY3Nhbm0uOGIwMjA1MTwvdXJs

PjwvcmVsYXRlZC11cmxzPjwvdXJscz48ZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+MTAuMTAyMS9h

Y3Nhbm0uOGIwMjA1MTwvZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+PC9yZWNvcmQ+PC9DaXRlPjxD

aXRlPjxBdXRob3I+R2xhc3Njb3R0PC9BdXRob3I+PFllYXI+MjAxOTwvWWVhcj48UmVjTnVtPjIw

MzE8L1JlY051bT48cmVjb3JkPjxyZWMtbnVtYmVyPjIwMzE8L3JlYy1udW1iZXI+PGZvcmVpZ24t

a2V5cz48a2V5IGFwcD0iRU4iIGRiLWlkPSI1OXd6d3ZydDFzczJ3Y2U5djIzeHZyMHlkOXdlZTJ6

dnpzYTIiIHRpbWVzdGFtcD0iMTU2MTE0MTI5OCI+MjAzMTwva2V5PjwvZm9yZWlnbi1rZXlzPjxy

ZWYtdHlwZSBuYW1lPSJKb3VybmFsIEFydGljbGUiPjE3PC9yZWYtdHlwZT48Y29udHJpYnV0b3Jz

PjxhdXRob3JzPjxhdXRob3I+R2xhc3Njb3R0LCBNYXR0aGV3IFcuPC9hdXRob3I+PGF1dGhvcj5Q

ZW5kZXJnYXN0LCBBbmRyZXcgRC48L2F1dGhvcj48YXV0aG9yPkdvaW5lcywgU29uZHJpY2E8L2F1

dGhvcj48YXV0aG9yPkJpc2hvcCwgQW50aG9ueSBSLjwvYXV0aG9yPjxhdXRob3I+SG9hbmcsIEFu

ZHkgVC48L2F1dGhvcj48YXV0aG9yPlJlbmF1bHQsIENocmlzdG9waGU8L2F1dGhvcj48YXV0aG9y

PkRpY2ssIEplZmZyZXkgRS48L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PHRpdGxl

cz48dGl0bGU+RWxlY3Ryb3N5bnRoZXNpcyBvZiBoaWdoLWVudHJvcHkgbWV0YWxsaWMgZ2xhc3Mg

bmFub3BhcnRpY2xlcyBmb3IgZGVzaWduZXIsIG11bHRpLWZ1bmN0aW9uYWwgZWxlY3Ryb2NhdGFs

eXNpczwvdGl0bGU+PHNlY29uZGFyeS10aXRsZT5OYXR1cmUgQ29tbXVuaWNhdGlvbnM8L3NlY29u

ZGFyeS10aXRsZT48L3RpdGxlcz48cGVyaW9kaWNhbD48ZnVsbC10aXRsZT5OYXR1cmUgQ29tbXVu

aWNhdGlvbnM8L2Z1bGwtdGl0bGU+PGFiYnItMT5OYXQuIENvbW11bi48L2FiYnItMT48L3Blcmlv

ZGljYWw+PHBhZ2VzPjI2NTA8L3BhZ2VzPjx2b2x1bWU+MTA8L3ZvbHVtZT48bnVtYmVyPjE8L251

bWJlcj48ZGF0ZXM+PHllYXI+MjAxOTwveWVhcj48cHViLWRhdGVzPjxkYXRlPjIwMTkvMDYvMTQ8

L2RhdGU+PC9wdWItZGF0ZXM+PC9kYXRlcz48aXNibj4yMDQxLTE3MjM8L2lzYm4+PHVybHM+PHJl

bGF0ZWQtdXJscz48dXJsPmh0dHBzOi8vZG9pLm9yZy8xMC4xMDM4L3M0MTQ2Ny0wMTktMTAzMDMt

ejwvdXJsPjwvcmVsYXRlZC11cmxzPjwvdXJscz48ZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+MTAu

MTAzOC9zNDE0NjctMDE5LTEwMzAzLXo8L2VsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjwvcmVjb3Jk

PjwvQ2l0ZT48L0VuZE5vdGU+

ADDIN EN.CITE PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5HbGFzc2NvdHQ8L0F1dGhvcj48WWVhcj4yMDE5PC9ZZWFy

PjxSZWNOdW0+MTk0ODwvUmVjTnVtPjxEaXNwbGF5VGV4dD48c3R5bGUgZmFjZT0ic3VwZXJzY3Jp

cHQiPjI5LTMxPC9zdHlsZT48L0Rpc3BsYXlUZXh0PjxyZWNvcmQ+PHJlYy1udW1iZXI+MTk0ODwv

cmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9IjU5d3p3dnJ0MXNz

MndjZTl2MjN4dnIweWQ5d2VlMnp2enNhMiIgdGltZXN0YW1wPSIxNTUxOTAzMjk4Ij4xOTQ4PC9r

ZXk+PC9mb3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3Jl

Zi10eXBlPjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5HbGFzc2NvdHQsIE1hdHRoZXcg

Vy48L2F1dGhvcj48YXV0aG9yPkRpY2ssIEplZmZyZXkgRS48L2F1dGhvcj48L2F1dGhvcnM+PC9j

b250cmlidXRvcnM+PHRpdGxlcz48dGl0bGU+RmluZS1UdW5pbmcgUG9yb3NpdHkgYW5kIFRpbWUt

UmVzb2x2ZWQgT2JzZXJ2YXRpb24gb2YgTnVjbGVhdGlvbiBhbmQgR3Jvd3RoIG9mIFNpbmdsZSBQ

bGF0aW51bSBOYW5vcGFydGljbGVzPC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPkFDUyBOYW5vPC9z

ZWNvbmRhcnktdGl0bGU+PC90aXRsZXM+PHBlcmlvZGljYWw+PGZ1bGwtdGl0bGU+QUNTIE5hbm88

L2Z1bGwtdGl0bGU+PC9wZXJpb2RpY2FsPjxkYXRlcz48eWVhcj4yMDE5PC95ZWFyPjxwdWItZGF0

ZXM+PGRhdGU+MjAxOS8wMi8yMTwvZGF0ZT48L3B1Yi1kYXRlcz48L2RhdGVzPjxwdWJsaXNoZXI+

QW1lcmljYW4gQ2hlbWljYWwgU29jaWV0eTwvcHVibGlzaGVyPjxpc2JuPjE5MzYtMDg1MTwvaXNi

bj48dXJscz48cmVsYXRlZC11cmxzPjx1cmw+aHR0cHM6Ly9kb2kub3JnLzEwLjEwMjEvYWNzbmFu

by45YjAwNTQ2PC91cmw+PC9yZWxhdGVkLXVybHM+PC91cmxzPjxlbGVjdHJvbmljLXJlc291cmNl

LW51bT4xMC4xMDIxL2Fjc25hbm8uOWIwMDU0NjwvZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+PC9y

ZWNvcmQ+PC9DaXRlPjxDaXRlPjxBdXRob3I+R2xhc3Njb3R0PC9BdXRob3I+PFllYXI+MjAxOTwv

WWVhcj48UmVjTnVtPjE5NDc8L1JlY051bT48cmVjb3JkPjxyZWMtbnVtYmVyPjE5NDc8L3JlYy1u

dW1iZXI+PGZvcmVpZ24ta2V5cz48a2V5IGFwcD0iRU4iIGRiLWlkPSI1OXd6d3ZydDFzczJ3Y2U5

djIzeHZyMHlkOXdlZTJ6dnpzYTIiIHRpbWVzdGFtcD0iMTU1MTg5NDMxNyI+MTk0Nzwva2V5Pjwv

Zm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJKb3VybmFsIEFydGljbGUiPjE3PC9yZWYtdHlw

ZT48Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+R2xhc3Njb3R0LCBNYXR0aGV3IFcuPC9h

dXRob3I+PGF1dGhvcj5QZW5kZXJnYXN0LCBBbmRyZXcgRC48L2F1dGhvcj48YXV0aG9yPkNob3Vk

aHVyeSwgTW9pbnVsIEguPC9hdXRob3I+PGF1dGhvcj5EaWNrLCBKZWZmcmV5IEUuPC9hdXRob3I+

PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjx0aXRsZXM+PHRpdGxlPkFkdmFuY2VkIENoYXJhY3Rl

cml6YXRpb24gVGVjaG5pcXVlcyBmb3IgRXZhbHVhdGluZyBQb3Jvc2l0eSwgTmFub3BvcmUgVG9y

dHVvc2l0eSwgYW5kIEVsZWN0cmljYWwgQ29ubmVjdGl2aXR5IGF0IHRoZSBTaW5nbGUtTmFub3Bh

cnRpY2xlIExldmVsPC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPkFDUyBBcHBsaWVkIE5hbm8gTWF0

ZXJpYWxzPC9zZWNvbmRhcnktdGl0bGU+PC90aXRsZXM+PHBlcmlvZGljYWw+PGZ1bGwtdGl0bGU+

QUNTIEFwcGxpZWQgTmFubyBNYXRlcmlhbHM8L2Z1bGwtdGl0bGU+PGFiYnItMT5BQ1MgQXBwbC4g

TmFubyBNYXRlci48L2FiYnItMT48L3BlcmlvZGljYWw+PHBhZ2VzPjgxOS04MzA8L3BhZ2VzPjx2

b2x1bWU+Mjwvdm9sdW1lPjxudW1iZXI+MjwvbnVtYmVyPjxkYXRlcz48eWVhcj4yMDE5PC95ZWFy

PjxwdWItZGF0ZXM+PGRhdGU+MjAxOS8wMi8yMjwvZGF0ZT48L3B1Yi1kYXRlcz48L2RhdGVzPjxw

dWJsaXNoZXI+QW1lcmljYW4gQ2hlbWljYWwgU29jaWV0eTwvcHVibGlzaGVyPjx1cmxzPjxyZWxh

dGVkLXVybHM+PHVybD5odHRwczovL2RvaS5vcmcvMTAuMTAyMS9hY3Nhbm0uOGIwMjA1MTwvdXJs

PjwvcmVsYXRlZC11cmxzPjwvdXJscz48ZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+MTAuMTAyMS9h

Y3Nhbm0uOGIwMjA1MTwvZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+PC9yZWNvcmQ+PC9DaXRlPjxD

aXRlPjxBdXRob3I+R2xhc3Njb3R0PC9BdXRob3I+PFllYXI+MjAxOTwvWWVhcj48UmVjTnVtPjIw

MzE8L1JlY051bT48cmVjb3JkPjxyZWMtbnVtYmVyPjIwMzE8L3JlYy1udW1iZXI+PGZvcmVpZ24t

a2V5cz48a2V5IGFwcD0iRU4iIGRiLWlkPSI1OXd6d3ZydDFzczJ3Y2U5djIzeHZyMHlkOXdlZTJ6

dnpzYTIiIHRpbWVzdGFtcD0iMTU2MTE0MTI5OCI+MjAzMTwva2V5PjwvZm9yZWlnbi1rZXlzPjxy

ZWYtdHlwZSBuYW1lPSJKb3VybmFsIEFydGljbGUiPjE3PC9yZWYtdHlwZT48Y29udHJpYnV0b3Jz

PjxhdXRob3JzPjxhdXRob3I+R2xhc3Njb3R0LCBNYXR0aGV3IFcuPC9hdXRob3I+PGF1dGhvcj5Q

ZW5kZXJnYXN0LCBBbmRyZXcgRC48L2F1dGhvcj48YXV0aG9yPkdvaW5lcywgU29uZHJpY2E8L2F1

dGhvcj48YXV0aG9yPkJpc2hvcCwgQW50aG9ueSBSLjwvYXV0aG9yPjxhdXRob3I+SG9hbmcsIEFu

ZHkgVC48L2F1dGhvcj48YXV0aG9yPlJlbmF1bHQsIENocmlzdG9waGU8L2F1dGhvcj48YXV0aG9y

PkRpY2ssIEplZmZyZXkgRS48L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PHRpdGxl

cz48dGl0bGU+RWxlY3Ryb3N5bnRoZXNpcyBvZiBoaWdoLWVudHJvcHkgbWV0YWxsaWMgZ2xhc3Mg

bmFub3BhcnRpY2xlcyBmb3IgZGVzaWduZXIsIG11bHRpLWZ1bmN0aW9uYWwgZWxlY3Ryb2NhdGFs

eXNpczwvdGl0bGU+PHNlY29uZGFyeS10aXRsZT5OYXR1cmUgQ29tbXVuaWNhdGlvbnM8L3NlY29u

ZGFyeS10aXRsZT48L3RpdGxlcz48cGVyaW9kaWNhbD48ZnVsbC10aXRsZT5OYXR1cmUgQ29tbXVu

aWNhdGlvbnM8L2Z1bGwtdGl0bGU+PGFiYnItMT5OYXQuIENvbW11bi48L2FiYnItMT48L3Blcmlv

ZGljYWw+PHBhZ2VzPjI2NTA8L3BhZ2VzPjx2b2x1bWU+MTA8L3ZvbHVtZT48bnVtYmVyPjE8L251

bWJlcj48ZGF0ZXM+PHllYXI+MjAxOTwveWVhcj48cHViLWRhdGVzPjxkYXRlPjIwMTkvMDYvMTQ8

L2RhdGU+PC9wdWItZGF0ZXM+PC9kYXRlcz48aXNibj4yMDQxLTE3MjM8L2lzYm4+PHVybHM+PHJl

bGF0ZWQtdXJscz48dXJsPmh0dHBzOi8vZG9pLm9yZy8xMC4xMDM4L3M0MTQ2Ny0wMTktMTAzMDMt

ejwvdXJsPjwvcmVsYXRlZC11cmxzPjwvdXJscz48ZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+MTAu

MTAzOC9zNDE0NjctMDE5LTEwMzAzLXo8L2VsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjwvcmVjb3Jk

PjwvQ2l0ZT48L0VuZE5vdGU+

ADDIN EN.CITE.DATA 29-31SweepStat Instructional MeritOne unique advantage of the open-source SweepStat compared to other low-cost potentiostats or commercially available industrial potentiostats is the ease of integration into common chemistry curricula coupled with its capability of making measurements on UMEs. While the SweepStat has a number of instrumental limitations including two narrow signal gain ranges, Teensy Firmware integration for interfacing with LabView, and a two-electrode cell leading to floating reference potentials, the underlying instructional value of experimental electrochemical measurements is comparable to high-end commercial instrumentation. By combining low cost (<$55 USD), minimal prerequisite technical skills for assembly, an open-source box design, open-source LabView GUI, and ample classical electrochemical experiments, the SweepStat offers a unique all-in-one electrochemical package that could be integrated into undergraduate chemistry or secondary education courses. Importantly, the open-source nature of the SweepStat lends itself well to future advancement stemming from student innovation. For example, while the current SweepStat design is capable of macro- and micro-electrode experimentation, modifications to the circuitry could allow significantly higher sampling frequencies, enabling FSCV measurements. Furthermore, several classical electrochemical methods are not currently included in the SweepStat circuitry including potentiometry and variable waveform voltammetry. Although simultaneous integration of these techniques would ultimately increase the price of fabrication, a coupled chemical engineering and electrochemistry class could reasonably design circuitry, prepare LabView programs, and conduct experiments with data output competitive with commercial potentiostat packages. Importantly, the current low-cost fabrication of the SweepStat is attractive as an instructional demonstrative tool within a lecture classroom. This may be accomplished by providing experimental validation for electrochemical relationships studied in class, guiding students through problem-solving techniques, and calculating a wide range of chemical and physical properties of freely diffusing molecules. Beyond demonstrative instruction, the SweepStat could reasonably be used as a low-cost alternative for electrochemical workstations in low-resource settings, thereby facilitating research opportunities for all interested parties. Table S1 – List of SweepStat components. All parts are generic and may be purchased in any hardware store unless otherwise noted. Board LabelQtyDescriptionPricePCB1Printed Circuit Board, 1/2Express PCB$19.48U11Dual OpAmp,$3.16 TI LMC6484B1, B22Coin Cell Holder,Keystone #103$1.71Batt2Battery, 3V, CR2032$0.98J1, P11Connector, 2 pin Jack and plug w/ pigtails, All Electronics CON-242$0.85S11DPST Switch$1.62U21Arduino Teensy$19.95JP1, JP222 pin header jumper$0.12JP1, JP222 pin header$0.10U21Pin Strip Socket 29 pins total$1.20C1. C4, C530.1uF capacitor$0.42C211pF capacitor$0.14C3130pF capacitor$0.14R1130k resistor$0.10R2, R3, R6, R7, R10, R13610k resistor$0.60R4, R82100M resistor$2.44R5, R921M resistor$0.20R1113.6k resistor$0.10R1211.2k resistor$0.10R14, R15, R18, R194100k resistor$0.40R16, R1721k resistor$0.2041/4" Aluminum Standoffs$0.3544-40 Nuts$0.054#4 Lockwashers$0.054#4 X 0.25" Bolt$0.052Alligator Clips$0.37U1114 Pin DIP socket$0.75 LINK Excel.Sheet.12 "Book1" "Sheet1!R1C1:R30C8" \a \f 4 \h \* MERGEFORMAT Figure S6 - The SweepStat is designed to run on two 3V C2302 button-cell batteries. Voltage ramping and profiling is controlled by a Teensy 3.2 microcontroller chip (E), which is interfaced with a GUI written in LabView, allowing for easy use of the device with minimal training. The Teensy also acts as a digital to analog converter and vice versa. The op amp labeled (A) in Fig. 2 above shifts up the voltage output of the ramp being supplied by the Teensy. (B) subtracts and inverts the ramp. (C) is a current/voltage amplifier which supplies a variable current to the working electrode (F) which is connected at the inverting input. JP1 and JP2 (G) allow for the user to vary the gain of this feedback circuit by adding an additional connection to change the total resistance of the feedback loop. (D) is another level shift inverter which outputs to the Teensy for analog-digital conversion, the result of which is sent to the LabView GUI. Figure S7 - Graphic of the PCB layout of the SweepStat circuit. All parts listed in Table S1 can be soldered onto the PCB board shown to create the functional SweepStat device. The two jumpers controlling the gain setting are circled in red, and the Teensy reset button is circled in blue.Figure S8 – Faraday cage constructed from Styrofoam box and aluminum foil. (a) A Styrofoam box was chosen as the frame for the Faraday cage, though cardboard and other scaffold materials may be used. The external walls of the box, as well as the lid, were wrapped in aluminum foil to act as the grounded conductor. Separate wrapping of the lid allows the box to be easily opened between measurements. (b) Constructed Faraday cage with internal electrochemical cell set up for experimentation. The SweepStat is insulated from the top of the box and connected to the aluminum foil via an alligator clip. This connection facilitates grounding to reduce the effect of electromagnetic radiation. (c) Closed Faraday cage grounded to the SweepStat permits electrochemical measurements free of EM-induced noise.Figure S9 – Graphical interface image showing the result of the dummy cell experiment in which as resistor is placed across the working and counter electrode leads. This resistance gives rise to a linear i-E curve that follows Ohm’s law.Step-by-Step Assembly and Testing ProcedureAssembly InstructionsObtain SweepStat parts as indicated in Table S1.Obtain SweepStat PCB board by downloading Express PCB from the following url: the file SweepStatPCB.pcb attached in the supporting information and place the order for PCBs directly within the program.Use standard soldering techniques to prepare and solder components to the PCB. The PCB has silk-screened reference designators for each component that match the descriptor in the parts list. This information is used to place the components on the board in the correct positions. The project photos can be used to verify correct placement. Sweepstat Software Initial Set-upInstall the Arduino IDE: Teensyduino: the SweepStat Teensy to the computer with a USB cable.Load Teensy firmware (files attached in supporting information):Start the Arudino IDE.Import the LinxPjrcTeensy31 library (Sketch -> Include Library -> Add .ZIP Library…)Import the LinxSerialListener library (Sketch -> Include Library -> Add .ZIP Library…)Open PJRC_Teensy31_Serial_DAC.inoUpload the sketch (-> button in Arduino IDE). The Teensy programmer will run, uploaded the sketch. You can manually reprogram the firmware by pressing the button on the Teensy.Install the LabVIEW Run-Time Engine (2018 SP1, 32-bit): en-us/support/downloads/software-products/download.labview.html#305508Install NI-VISA: en-us/support/downloads/drivers/download.ni-visa.html#305862Install the SweepStat software (executable file attached in supporting information)Running the SweepStat Software1. Turn SweepStat switch to “ON” position and connect Teensy USB to computer configured as described in “SweepStat Software Initial Setup”.2. Open LabView SweepStat program and verify DAC port in LabView GUI corresponds to Teensy microUSB.Troubleshooting: If not connecting to the computer, check the batteries, make sure correct COM port is selected, or reprogram the firmware (step 4, above) on the Teensy board. If the SweepStat is left in the “ON” position for extended periods of time when not in use, the batteries will be drained. Additionally, if a part needs to be replaced, consult the parts list.Dummy Cell Check (Figure S9)1. Clip a 1 MΩ resistor between the leads to represent a dummy cell.2. In the SweepStat LabView program, input -0.3 V into the initial potential, +0.4 V for the final potential, and 0.001 as the increment. The resulting CV should be linear and double back on itself. If the output is not linear, check the troubleshooting section. Troubleshooting: Set the CV range to -1.5 V to +1.5 V. Using a digital multimeter (DMM), a voltage measurement should be taken at the Teensy’s DAC output (Pin 19) to ground (ground side of R17 resistor is a convenient test point). The resulting potential should sweep from ~0V to ~3.3 V. Subsequently, a DMM measurement at pin 14 on the LMC6484 op-amp should result in a potential from ~ -1.5 V to ~ +1.5 V corresponding to the maximum potential window of the SweepStat. Third, a range of ~ -3 V to ~ +3 V should be observed at pin 7 on the op-amp. Finally, pin 1 and pin 8 on the op-amp should output ~ -1.4 V to ~ +1.4 V and ~ +3 V to ~ +0.2 V, respectively. Macroelectrode CV1. Attach counter electrode (e.g., Pt wire, graphite rod) to the black alligator clip.2. Attach a polished glassy carbon macrodisk working electrode to the red alligator clip. 3. Place the working and counter electrode in a solution of 75 ?M ferrocene methanol in 250 mM KCl. Ensure the electrodes are submerged, but not in contact with the bottom of the container.4. Ensure that the initial potential (-0.3V), the switching potential (+0.4V), and the potential increment in the LabView GUI are correct. The scan rate (mV s-1) is calculated as 50000 * increment. As such, 0.001, 0.0005, and 0.00025 are equal to 50, 25, and 12.5 mV s-1, respectively. Note: Depending on the counter electrode used, the potential window required to collect the complete CV may vary. Initial values provided might need to be altered slightly.5. Select “Run” from the LabView GUI options and allow the CV to run unperturbed until the CV is complete.6. Following scan completion, save the .txt files to a known directory and adjust the scan rate by changing the increment value for subsequent trials.7. Following experiment completion, remove the electrodes from solution and disconnect them from the leads.8. The relationship between peak current and scan rate can be used to calculate the diffusion coefficient as governed by the Randles-Sevcik equation: ip=268,600n3/2CAD1/2v1/2.Macroelectrode Amperometry1. Repeat steps 1-3 in the macroelectrode CV SOP.2. Select the “Amperometry” tab in the LabView GUI and ensure that the initial potential (0V), initial potential hold duration (5s), step potential (+0.6V) and step potential hold duration (25s) are correct.3. Select “Run” from the LabView GUI options and allow the current-time trace to run until completed.4. Save the resultant current-time plot as a .txt file.5. By fitting the Cottrell equation (it= nFAD1/2Cπ-1/2t-1/2) to the exponential decay of the current, the diffusion coefficient of ferrocene methanol can be calculated. Ultramicroelectrode CV1. Remove the two grey jumpers (Figure S7, red) on the SweepStat printed circuit board and return the SweepStat to the enclosure box. This will alter the signal gain and allow for currents produced from ultramicroelectrodes to be measured.2. Attach counter electrode (e.g., Pt wire, graphite rod) to the black alligator clip.3. Attach a polished Pt ultramicroelectrode (5 ?m dia.) working electrode to the red alligator clip. 4. Place the working and counter electrode in a solution of 7.5 mM potassium ferrocyanide in 250 mM KCl. Ensure the electrodes are submerged, but not in contact with the bottom of the container.5. Ensure that the initial potential (-0.3V), the switching potential (+0.4V), and the potential increment (0.001) in the LabView GUI are correct.Note: Depending on the counter electrode used, the potential window required to collect the complete CV may vary. Initial values provided might need to be altered slightly.6. Select “Run” from the LabView GUI options and allow the CV to run unperturbed until completion in a grounded Faraday Cage.Note: While CV characterization on a macrodisk electrode often does not require a grounded Faraday Cage for satisfactory signal-to-noise ratios, it is imperative that UME characterization occur in a grounded Faraday Cage as observed currents can be on the order of nA or hundreds of pA.7. Save the resultant current-potential plot to a known directory. The SweepStat should be returned to the “OFF” position to not drain the batteries and the grey jumpers should be replaced.8. The CV of a ultramicroelectrode produces a steady-state current (iss), which allows for the calculation of the diffusion coefficient for potassium ferrocyanide using iss=SOL Finite Element ModellingFinite element models of cyclic voltammetry at macrodisk electrodes and ultramicroelectrodes were prepared using COMSOL Multiphysics 5.4 with modified open-source and in-house models. Cyclic voltammetry at a macroelectrode was simulated using a model available for download from the COMSOL support website (application ID: 12849, Cyclic Voltammetry). In short, a 1-D model of diffusion perpendicular to a point at the electrode surface was used to calculate the concentration profiles of the redox species R and O given: O+ne-?RWith a local current density calculated from the Butler-Volmer equation where: jlocal=nFk0CRe1-αFηRT-COe-αFηRTWhere n is the number of electrons transferred (note: Butler-Volmer kinetics in COMSOL are only valid for systems in which n = 1), F is the Faraday constant, k0 is the heterogeneous rate constant, η is the overpotential relative potential (E) to the formal potential (Ef,) as η = E - Ef, CR is the surface concentration of species R, α is the cathodic transfer coefficient, CO is the surface concentration of species O, R is the universal gas constant, and T is temperature. As a macroelectrode is modelled to follow semi-infinite linear diffusion, the total current can be calculated by multiplying the local current density jlocal by the electrode area A. The geometry was chosen to be sufficiently long to model semi-infinite linear diffusion at:xmax=6DtscanWhere xmax defines the geometric domain, D is the diffusion coefficient, tscan is the time required for a scan through the potential range, and (Dtscan)1/2 is the distance travelled over the scan, generating a domain large enough to model the bulk concentration of analyte. Cyclic voltammetry at an ultramicroelectrode was simulated using an in-house model under 2D-axis symmetric conditions under similar Butler-Volmer conditions. Importantly, at an UME, radial diffusion from the bulk solution is observed with a steady-state concentration profile. As species O is reduced to R, O is nearly-instantaneously replenished as R diffuses to the bulk solution. A cyclic voltammetry boundary condition at the electrode surface with electroanalytical Butler-Volmer local current density (vide supra) was employed with a controlled potential range and scan rate, generating sigmoid shaped cyclic voltammograms. The double layer capacitance at the UME surface can be ignored due to the small electroactive surface area. In all simulations, a transfer coefficient of α = 0.5 was employed. Table S2 contains the simulation parameters employed to generate the fits presented in the main text. In both the macroelectrode and UME simulations, the COMSOL 5.4 Electrochemistry module with the Electroanalysis module with support for integrated species transport and heterogenous electron transfer. COMSOL 5.4 models are available upon request. 1657352540Table S2 – COMSOL Multiphysics parameters used for CV modeling00Table S2 – COMSOL Multiphysics parameters used for CV modelingMacroelectrodeMicroelectrodeParameterValueParameterValueScan Rate25 mV/sScan Rate10 mV/sBulk Concentration75 μMBulk Concentration7.5 mMDiffusion Coefficient 2.00E-11 m2/sDiffusion Coefficient 6.00E-10 m2/sElectrode Radius1.5 mmElectrode Radius6.25 μmDouble Layer Capacitance 1.82 μF/cm2CV Range -0.6 to 0.8 VCV Range -0.6 to 0.8 VMesh qualityFinerMesh qualityNormalFormal Potential0.01 VFormal Potential0.01 VHeterogenous Rate Constant1 m/sHeterogenous Rate Constant0.1 cm/sNumber of Electrons Transferred1Number of Electrons Transferred1References: ADDIN EN.REFLIST 1.Zhou, M.; Dick, J. E.; Hu, K. K.; Mirkin, M. V.; Bard, A. J., Ultrasensitive Electroanalysis: Femtomolar Determination of Lead, Cobalt, and Nickel. Anal. Chem. 2018, 90 (2), 1142-1146.2.Percival, S. J.; Dick, J. E.; Bard, A. J., Cathodically Dissolved Platinum Resulting from the O-2 and H2O2 Reduction Reactions on Platinum Ultramicroelectrodes. Anal. Chem. 2017, 89 (5), 3087-3092.3.Zhou, M.; Dick, J. E.; Bard, A. J., Electrodeposition of Isolated Platinum Atoms and Clusters on Bismuth-Characterization and Electrocatalysis. J. Am. Chem. Soc. 2017, 139 (48), 17677-17682.4.Kim, J.; Dick, J. E.; Bard, A. J., Advanced Electrochemistry of Individual Metal Clusters Electrodeposited Atom by Atom to Nanometer by Nanometer. Accounts of Chemical Research 2016, 49 (11), 2587-2595.5.Dick, J. E.; Lebegue, E.; Strawsine, L. M.; Bard, A. J., Millisecond Coulometry via Zeptoliter Droplet Collisions on an Ultramicroelectrode. Electroanalysis 2016, 28 (10), 2320-2326.6.Dick, J. E.; Bard, A. J., Toward the Digital Electrochemical Recognition of Cobalt, Iridium, Nickel, and Iron Ion Collisions by Catalytic Amplification. J. Am. Chem. Soc. 2016, 138 (27), 8446-8452.7.Dick, J. E., Electrochemical detection of single cancer and healthy cell collisions on a microelectrode. Chem. Commun. 2016, 52 (72), 10906-10909.8.Lebegue, E.; Anderson, C. M.; Dick, J. E.; Webb, L. J.; Bard, A. J., Electrochemical Detection of Single Phospholipid Vesicle Collisions at a Pt Ultramicroelectrode. Langmuir 2015, 31 (42), 11734-11739.9.Dick, J. E.; Renault, C.; Bard, A. J., Observation of Single-Protein and DNA Macromolecule Collisions on Ultramicroelectrodes. J. Am. Chem. Soc. 2015, 137 (26), 8376-8379.10.Dick, J. E.; Bard, A. J., Recognizing Single Collisions of PtCl62- at Femtomolar Concentrations on Ultramicroelectrodes by Nucleating Electrocatalytic Clusters. J. Am. Chem. Soc. 2015, 137 (43), 13752-13755.11.Dick, J. E.; Renault, C.; Kim, B. K.; Bard, A. J., Electrogenerated Chemiluminescence of Common Organic Luminophores in Water Using an Emulsion System. J. Am. Chem. Soc. 2014, 136 (39), 13546-13549.12.Dick, J. E.; Renault, C.; Kim, B. K.; Bard, A. J., Simultaneous Detection of Single Attoliter Droplet Collisions by Electrochemical and Electrogenerated Chemiluminescent Responses. Angew. Chem. Int. Ed. 2014, 53 (44), 11859-11862.13.Glasscott, M. W.; Pendergast, A. D.; Dick, J. E., A Universal Platform for the Electrodeposition of Ligand-Free Metal Nanoparticles from a Water-in-Oil Emulsion System. ACS Applied Nano Materials 2018.14.Pendergast, A. D.; Glasscott, M. W.; Renault, C.; Dick, J. E., One-step electrodeposition of ligand-free PdPt alloy nanoparticles from water droplets: Controlling size, coverage, and elemental stoichiometry. Electrochem. Commun. 2019, 98, 1-5.15.Bard, A. J. F., Larry R. , Electrochemical Methods: Fundamentals and Applications, 2nd EditionWiley: 2000.16.Xiao, X.; Bard, A. J., Observing Single Nanoparticle Collisions at an Ultramicroelectrode by Electrocatalytic Amplification. Journal of the American Chemical Society 2007, 129 (31), 9610-9612.17.Bard, A. J.; Zhou, H.; Kwon, S. J., Electrochemistry of Single Nanoparticles via Electrocatalytic Amplification. Israel Journal of Chemistry 2010, 50 (3), 267-276.18.Elgrishi, N.; Rountree, K. J.; McCarthy, B. D.; Rountree, E. S.; Eisenhart, T. T.; Dempsey, J. L., A Practical Beginner’s Guide to Cyclic Voltammetry. Journal of Chemical Education 2018, 95 (2), 197-206.19.Kissinger, P. T.; Heineman, W. R., Cyclic voltammetry. J. Chem. Educ. 1983, 60 (9), 702.20.Robinson, D.; Venton, B.; L A V Heien, M.; Mark Wightman, R., Detecting subsecond dopamine release with fast-scan cyclic voltammetry in vivo. 2003; Vol. 49, p 1763-73.21.Cannes, C.; Kanoufi, F.; Bard, A. J., Cyclic voltammetry and scanning electrochemical microscopy of ferrocenemethanol at monolayer and bilayer-modified gold electrodes. Journal of Electroanalytical Chemistry 2003, 547 (1), 83-91.22.Bard, A. J.; Fan, F.-R. F.; Pierce, D. T.; Unwin, P. R.; Wipf, D. O.; Zhou, F., Chemical Imaging of Surfaces with the Scanning Electrochemical Microscope. Science 1991, 254 (5028), 68.23.Barker, A. L.; Macpherson, J. V.; Slevin, C. J.; Unwin, P. R., Scanning Electrochemical Microscopy (SECM) as a Probe of Transfer Processes in Two-Phase Systems:? Theory and Experimental Applications of SECM-Induced Transfer with Arbitrary Partition Coefficients, Diffusion Coefficients, and Interfacial Kinetics. The Journal of Physical Chemistry B 1998, 102 (9), 1586-1598.24.Dick, J. E.; Bard, A. J., Recognizing Single Collisions of PtCl6 2? at Femtomolar Concentrations on Ultramicroelectrodes by Nucleating Electrocatalytic Clusters. Journal of the American Chemical Society 2015, 137, 13752-13755.25.Zhou, M.; E. Dick, J.; J. Bard, A., Electrodeposition of Isolated Platinum Atoms and Clusters on Bismuth – Characterization and Electrocatalysis. 2017; Vol. 139.26.Glasscott, M. W.; Dick, J. E., Direct Electrochemical Observation of Single Platinum Cluster Electrocatalysis on Ultramicroelectrodes. Anal. Chem. 2018, 90 (13), 7804-7808.27.Newman, J., RESISTANCE FOR FLOW OF CURRENT TO A DISK. J. Electrochem. Soc. 1966, 113 (5), 501-&.28.Faulkner, A. J. B. a. L. R., Electrochemical Methods: Fundamentals and Applications. 1 ed.; John Wiley & Sons: New York, New York, 2001.29.Glasscott, M. W.; Dick, J. E., Fine-Tuning Porosity and Time-Resolved Observation of Nucleation and Growth of Single Platinum Nanoparticles. ACS Nano 2019.30.Glasscott, M. W.; Pendergast, A. D.; Choudhury, M. H.; Dick, J. E., Advanced Characterization Techniques for Evaluating Porosity, Nanopore Tortuosity, and Electrical Connectivity at the Single-Nanoparticle Level. ACS Appl. Nano Mater. 2019, 2 (2), 819-830.31.Glasscott, M. W.; Pendergast, A. D.; Goines, S.; Bishop, A. R.; Hoang, A. T.; Renault, C.; Dick, J. E., Electrosynthesis of high-entropy metallic glass nanoparticles for designer, multi-functional electrocatalysis. Nat. Commun. 2019, 10 (1), 2650. ................
................

In order to avoid copyright disputes, this page is only a partial summary.

Google Online Preview   Download