Advancing X-ray Tomography using Deep Generative ...
Advancing X-ray Tomography using Deep Generative Adversarial Networks (TomoGAN)
Zhengchun Liu
Research Scientist at the University of Chicago (now)
Assistant Computer Scientist at Data Science and Learning Division (soon)
July 25, 2019
PSE AI Townhall meeting at Argonne National Laboratory
Collaborators
Tekin Bicer DSL, XSD
Raj Kettimuthu DSL
Doga Gursoy XSD
Francesco De Carlo XSD
Ian Foster DSL
Full text: Liu et al. arXiv: 1902.07582
Motivation
(1) lower X-ray dosage for sensitive sample like bio-sample;
(2) faster experiment to capture dynamic features, like in fast chemical reaction processes;
(3) smaller dataset and less computation for [near] realtime tomography imaging.
On the left, the results of conventional reconstruction, which are highly noisy. On the right, those same results after denoising with TomoGAN.
Model is trained with one shale sample imaged at APS and tested with another shale sample imaged at Swiss Light Source (SLS).
Method
A generative adversarial network (GAN) is a class of machine learning systems in which two neural networks, generator (G) and discriminator (D), contest with each other in a game (in the sense of game theory, often but not always in the form of a zero-sum game).
Low dose projections
Normal dose projections
>tixetal/")llun("=46esab_1ahstixetaltixetal/")llun("=46esab_1ahstixetaltixetal/")llun("=46esab_1ahstixetaltixetal/")llun("=46esab_1ahstixetal< >tixetal/")llun("=46esab_1ahstixetaltixetal/")llun("=46esab_1ahstixetaltixetal/")llun("=46esab_1ahstixetaltixetal/")llun("=46esab_1ahstixetal< >tixetal/")llun("=46esab_1ahstixetaltixetal/")llun("=46esab_1ahstixetaltixetal/")llun("=46esab_1ahstixetaltixetal/")llun("=46esab_1ahstixetal< >tixetal/")llun("=46esab_1ahstixetaltixetal/")llun("=46esab_1ahstixetaltixetal/")llun("=46esab_1ahstixetaltixetal/")llun("=46esab_1ahstixetal<
IL[iD
b
d 2
c,i+b
d 2
c]
Tomographic Reconstruction
Generator
Tomographic INi D Reconstruction
Iteration
back propagation and updating weights
Denoised image
Pixel L2 Loss LMSE Content
Pre-trained
VGG
LV GG
Distance
Adversarial
Loss
G Loss
Discriminator
Wasserstein Distance
D Loss
back propagation and updating weights
In our model, the discriminator's job remains unchanged, but the generator is tasked not only with fooling (indistinguishable) the discriminator but also with being near the ground truth output in an L2 sense.
The discriminator works as a helper to train the generator that we need to denoise images.
Adjacent d d noisy images
8 32 32 Down sampling
Up sampling
64 32 32 16 1 Enhanced image
1x1
C
relu
Legend 1024 x 1024
2x2 Max pooling
2x Bilinear upsampling
3x3
C 3x3 Conv. + ReLU
1x1
C 1x1 Convolution + ReLU
relu 1x1
C 1x1 Convolution + Linear
tanh
10242 10242 10242 10242
3x3 3x3
CC
64 64
3x3 3x3
CC
Copy Copy
3x3 3x3
CC
1x1 1x1
CC
relu tanh
1024 x 1024
10242
m 10242 10242 10242 10242
128 32 32
3x3 3x3
CC
5122 5122 5122
5122 5122 5122
3x3 1283x3 128
CC
Copy
256 3x3 643x364
CC
2562 2562 2562
2562 2562 2562
128 3x3
128
C
1282
1282
Our Generator Architecture
Training
Discriminator
Wasserstein GAN [1] + gradient penalty [2]
L (D)
=
1 m
m
i=1
[D
(G
(ILi D))
-
D
(INi D)]
+
D
1 m
m
i=1
[(
I D (Ii)
2
2 - 1) ],
Generator
Weighted average of Adversarial loss, Perceptual loss, and Pixel-wise MSE
G = gadv + pmse + vvgg
adv (G)
=
-
1 m
m
D (G (ILi D))
i=1
Wf Hf
2
vgg
=
i=1
i=1
(Vvgg
(IND)i,j
-
Vvgg
(GG
(ILD))i,j)
WH
2
mse = (IcN,rD - GG (ILD)c,r)
c=1 r=1
[1] Wasserstein GAN. M. Arjovsky, S. Chintala, L. Bottou. arXiv:1701.07875
[2] Improved Training of Wasserstein GANs. I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, A. Courville. arXiv:1704.00028
................
................
In order to avoid copyright disputes, this page is only a partial summary.
To fulfill the demand for quickly locating and searching documents.
It is intelligent file search solution for home and business.
Related download
- multimodal unsupervised image to image translation
- adf mobile code corner oracle
- advancing x ray tomography using deep generative
- jasper reports embedding images emprise corporation
- real time image processing and analytics using sas event
- probabilistic neural symbolic models for interpretable
- loading images from a database into qlik sense and nprinting
- camera usage and features from ios to windows 8 store