Essential Outcomes Biology



Essential Outcomes Biology I

1) Matter and energy cycle through an ecosystem. (Standard 3)

Learning Goals:

a) Students will describe how matter cycles through an ecosystem. (B 3.4)

b) Students will describe how energy flows in an ecosystem. (B.3.5)

2) The relationships between living and non-living components of an ecosystem are in flux due to natural changes and human action. (Standard 4)

Learning Goals:

a) Students will explain that the amount of life an environment can support is limited. ( B 4.1)

b) Students will describe how human activity and natural phenomenon can change the flow of matter and energy in an ecosystem and how it affects other species. (B.4.2)

c) Students will describe the consequences of introducing non-native species to an ecosystem. (B.4.3)

d) Students will be able to describe the factors that contribute to the long term stability to an ecosystem. (B.4.4)

3) Carbohydrates, lipids, proteins and nucleic acids are essential to cellular function. The functions carried out by these molecules are determined by their shape. (Standard 1)

Learning Goals:

a) Students will describe the structure of the major categories of organic compounds which make up living

organisms. (B.1.1)

b) Students will understand that the shape of a molecule determines its role in many different types of cellular

processes, and the functioning of the molecules is also influenced by factors in the external environment.

(B.1.2, B.1.3)

4) Some features are common to all cells. Different cell types also have distinctive features that allow them to carry out specific functions. (Standard 2)

Learning Goals:

a) Students will describe features common to all cells that are essential for growth and survival. (B.2.1)

b) Students will describe the structure of the cell membrane and explain how it regulates cell transport.

(B.2.2, 1.3)

c) Students will describe the function of the mitochondria and chloroplasts and be able to identify the types of

cells that possess each. (Standard 2.3)

d) Students will explain that all cells contain ribosomes and be able to describe their function in protein synthesis.

(Standard 2.4)

e) Students will explain how cells use proteins to form structures to help them carry out a variety of functions.

(B.2.5)

f) Students will be able to recognize different cells based on the organelles that are present. (B.2.6)

g) Students will relate the proportion of different organelles present in a cell to its function. (B.2.6)

5) The sun’s energy is captured and used to construct sugar molecules which can be used as a form of energy. (Standard 3)

Learning Goals:

a) Students will describe how some organisms capture the sun’s energy through the process of photosynthesis. (B.3.1, B.2.3)

b) Students will describe how cellular respiration allows organisms to combine and re-combine the elements in sugar molecules into a variety of biologically essential compounds. (B.3.2)

c) Students will be able to describe the process of metabolism. (B.3.3)

6) Mitosis and meiosis are the processes by which new cells are formed from existing cells. (Standard 6)

Learning Goals:

a) Students will describe and model the process of mitosis. (B.6.1)

b) Students will understand that most cells of a multi-cellular organism contain the same genes, and that different genes are turned on through cell specialization. (B.6.2, B.6.3)

c) Students will describe and model the process of meiosis. (B.6.4, B.6.5)

7) DNA structure enables DNA to function as the hereditary molecule. (Standard 5)

Learning Goals:

a) Students will describe the relationship between chromosomes and DNA along with their basic structure and function. (B.5.1)

b) Students will describe how hereditary information is passed from parents to offspring by genes. (B.5.2))

c) Students will explain the process by which a cell copies its DNA. (B.7.4)

d) Students will identify possible mutagens and the different types of mutations that can result. (B.7.4, B.7.5)

e) Students will understand that mutations that alter genes are passed to every descending cell and that the results may be beneficial, harmful, or have little to no effect on the organism. (B.7.5)

8) DNA directs the production of RNA and proteins and these proteins largely determine the traits of an organism. (Standard 5)

Learning Goals:

a) Students will describe and model the processes of transcription and translation. (B.5.3)

b) Students will explain how the unique shape and activity of each protein is determined by the sequence of its amino acids. (B.5.4)

c) Students will understand that proteins are responsible for the observable traits of an organism and for most of the functions within an organism. (B.5.5)

d) Students will recognize that traits can be structural, physiological or behavioral and can be observable at the organismal or cellular level. (B.5.6)

9) The genetic information from parents determines unique characteristics of their offspring. (Standard 7)

Learning Goals:

a) Students will explain how a number of cellular processes occur to generate natural genetic variations between parents and offspring. (B.6.5)

b) Students will distinguish between dominant and recessive alleles and be able to determine resulting phenotypes from allele combinations. (B.7.1)

c) Students will be able to describe different modes of inheritance. (B.7.2)

d) Students will determine the probability of specific traits in offspring given the genetic makeup of the parents. (B.7.3)

10) Modern classification systems are based on relationships determined from a number of different supporting evidences. (Standard 8)

Learning Goals:

a) Students will explain how anatomical and molecular similarities among organisms suggest that life on earth began as simple, one-celled organisms and that multicellular organisms evolved later. (B.8.1)

b) Students will explain how organisms are classified and named based on their evolutionary relationships into taxonomic categories. (B.8.2)

c) Students will use anatomical and molecular evidence to establish evolutionary relationships between organisms. (B.8.3)

d) Students will understand that molecular evidence supports anatomical evidence for these evolutionary relationships and provides additional information about the order in which different lines of descent branched. (B.8.4)

11) Modern evolutionary theory provides an explanation of the history of life on earth and the similarities between organisms that exist today. (Standard 8)

a) Students will describe why organisms with beneficial traits survive and how they pass these traits to their offspring. (B.8.5)

b) Students will explain how genetic variation within a population can be attributed to mutations as well as a random assortment of existing genes. (B.8.6)

c) Students will be able to describe the modern scientific theory of the origins and history of life on earth and evaluate the evidence that supports it. (B.8.7)

BIOLOGY BENCHMARKS #1 – Matter and Energy Flow

|Standard Indicator: Standard 3 |

|B.3.4 Describe how matter cycles through an ecosystem by way of food chains and food webs and how organisms convert that matter into a variety of organic molecules to be used in part in their own cellular |

|structures. |

|B.3.5 Describe how energy from the sun flows through an ecosystem by way of food chains and food webs and only a small portion of that energy is used by individual organisms while the majority of energy is |

|lost as heat. |

|Essential Outcome: |

|Matter and energy cycle through an ecosystem. |

|Learning Goals: |

|Students will describe how matter cycles through an ecosystem. (B 3.4) |

|Students will describe how energy flows in an ecosystem. (B.3.5) |

|Declarative Knowledge |Procedural Knowledge |

|Concepts |Ecology studies interactions between organisms and their environment. |Processes | Scientific Method |

| |Energy flow and organisms relationships can be traced in an ecosystem. | |Reading Process |

|Organizing |Students will understand that organisms are affected by biotic and abiotic factors. | | |

|Ideas |Students will understand that the environment is organized into levels. | | |

| |Students will understand that organisms have close relationships with each other. | | |

| |Students will understand that energy flows through an ecosystem. | | |

| |Students will understand that organic materials are recycled through the ecosystem. | | |

|Details |Abiotic vs biotic factors |Skills | Analyze food chains |

| |Autotrophs are producers. | |and food webs. |

| |Heterotrophs are consumers. | |Map reading |

| |Food chains and webs show energy flow. | |Cycle reading |

| |Nitrogen Cycle | |Categorize Abiotic |

| |Carbon Cycle | |and Biotic organisms. |

| |Water Cycle | |Distinguish similarities |

| | | |and differences of |

| | | |organisms. |

|Vocabulary |Food web Consumer Abiotic | | |

| |Heterotroph Decomposer Food chain | | |

| |Prey Producer Autotroph | | |

| |Biotic Predator Trophic Level Cycles | | |

| | | | |

BIOLOGY BENCHMARKS #2 – Ecology

|Standard Indicator: Ecology |

|B.4.1 Explain that the amount of life an environment can support is limited by the available energy, water, oxygen, and minerals, and by the ability of ecosystems to recycle the remains of dead organisms. |

|B.4.2 Describe how human activities and natural phenomena can change the flow and of matter and energy in an ecosystem and how those changes impact other species. |

|B.4.3 Describe the consequences of introducing non-native species into an ecosystem and identify the impact it may have on that ecosystem. |

|B.4.4 Describe how climate, the pattern of matter and energy flow, the birth and death of new organisms, and the interaction between those organisms contribute to the long term stability of an ecosystem. |

|Essential Outcome: |

|The relationships between living and non-living components of an ecosystem are in flux due to natural changes and human action. |

|Learning Goals; |

|a) Students will explain that the amount of life an environment can support is limited. (B.4.1) |

|b) Students will describe how human activity and natural phenomenon can change the flow of matter and energy in an ecosystem and how it affects other species. (B.4.2) |

|c) Students will describe the consequences of introducing non-native species to an ecosystem. (B.4.3) |

|d) Students will be able to describe the factors that contribute to the long term stability of an ecosystem. (B.4.4) |

|Declarative Knowledge |Procedural Knowledge |

|Concepts |1. Ecosystems recover from disasters in stages. |Processes |Scientific Method |

| |2. Limiting and interactions in an environment determine how many organisms can survive in an ecosystem. | |Reading Process |

| |3. Exotic species can disrupt an ecosystem organisms have close relationships with each other. | |Writing Process |

| |4. Human impact can negatively impact ecosystems and the development of organisms. | | |

| |5. The Earth has limited resources. | | |

|Organizing |1. Organisms have different niches. | | |

|Ideas |2. Students will understand the biomes of the world. | | |

| |3. Three different types of survival relationships. | | |

| |4. Organisms are adapted to their specific biome. | | |

| |5. Similar biomes are spread throughout the world. | | |

| |6. Students will understand that ecosystems disrupted by a disaster recover in stages. | | |

| |7. Endangered and Extinct Species. | | |

|Details |1. Primary succession builds on barren land. |Skills |Analyze steps of succession. |

| |2. Secondary succession rebuilds an ecosystem that has been damaged. | |Compare populations and |

| |3. Identify stages of succession. | |communities. |

| |4. Populations build communities. | |Classify organisms by niche. |

| |5. Communities build ecosystems. | |4. Compare Biomes. |

| |6. Organisms have different niches. | | |

| |7. Organisms are adapted to their specific biome. | | |

| |8. Similar biomes are spread throughout the world. | | |

| |9. Limiting factors determine how many organisms can survive in an ecosystem. | | |

|Vocabulary |Ecology Biome Terrestrial | | |

| |Species Symbiosis Limiting factor | | |

| |Succession Biodiversity Diversity | | |

| |Ecosystem Community Biosphere | | |

| |Environment Habitat Nich | | |

| |Mutualism Population Commensalism | | |

| |Parasitism Carrying Capacity | | |

BIOLOGY BENCHMARKS #3 – Cellular Chemistry

|Standard Indicator: Cellular Chemistry |

|B.1.1 Describe the structure of the major categories of organic compounds which make up living organisms in terms of their building blocks and the small number of chemical elements (carbon, hydrogen, |

|nitrogen, oxygen, phosphorous, and sulfur) from which they are composed. |

|B.1.2 Understand that the shape of a molecule determines its role in the many different types of cellular processes including metabolism, homeostasis, growth and development, and heredity, and understand that|

|the majority of these processes involve proteins that act as enzymes. |

|B.1.3 Explain and give examples of how the function and differentiation of cells is influenced by their external environment, including temperature, acidity and the concentration of certain molecules, and |

|that changes in these conditions may affect how a cell functions. |

|Essential Outcomes: |

|Carbohydrates, lipids, proteins and nucleic acids are essential to cellular function. The functions carried out by these molecules are determined by their shape. |

|Learning Goals: |

|a) Students will describe the structure of the major categories of organic compounds which make up living organisms. (B.1.1) |

|b) Students will understand that the shape of a molecule determines its role in many different types of cellular processes, and the functioning of the molecules is also influenced by factors in the external |

|environment. (B.1.2, B.1.3) |

|Declarative Knowledge |Procedural Knowledge |

|Concepts |Work of a cell is carried out by four major molecules. |Processes | Scientific Method |

| |Elements are the building blocks of nonliving and living things. | |Reading Process |

| |Metabolism is required for maintaining stability of life. | |Writing Process |

|Organizing |Students will understand that proteins, lipids, carbohydrates, and nucleic acids are | | |

|Ideas |the compounds of life. | | |

| |Students will understand that elements combine into compounds that form all | | |

| |things. | | |

|Details |Proteins carry out chemical reactions. |Skills |Chart Reading. |

| |Lipids are fats and oils. | |Classify elements by |

| |Carbohydrates such as sugars provide energy. | |characteristics. |

| |Nucleic acids provide instructions for life. | |Classifying macromolecules. |

| |There are naturally occurring elements that make up all living and nonliving things. | | |

| |Organisms have levels of organization. | | |

|Vocabulary |Protein Monosaccharide | | |

| |Lipid Nucleotide | | |

| |Carbohydrate Fatty Acids | | |

| |Nucleic Acid Peptide | | |

| |Amino Acid | | |

| |Enzyme | | |

| |Glucose | | |

| |Homeostasis | | |

BIOLOGY BENCHMARKS #4 – Cellular Structure and Function

|Standard Indicator: Cellular Structure |

|B.2.1 Describe features common to all cells that are essential for growth and survival, and explain their functions. |

|B.2.2 Describe the structure of a cell membrane and explain how it regulates the transport of materials into and out of the cell and prevents harmful materials from entering the cell. |

|B.2.3 Explain that most cells contain mitochondria, the key sites of cellular respiration, where stored chemical energy is converted into useable energy for the cell and some cells, including many plant |

|cells, contain chloroplasts, the key sites of photosynthesis, where the energy of light is captured for use in chemical work. |

|B.2.4 Explain that all cells contain ribosomes, the key sites for protein synthesis, where genetic material is decoded in order to form unique proteins. |

|B.2.5 Explain that cells use proteins to form structures, including cilia, flagella, which allow them to carry out specific functions, including movement, adhesion, and absorption. |

|B.2.6 Investigate a variety of different cell types and relate the proportion of different organelles within these cells to their functions. |

|Essential Outcomes: |

|Some features are common to all cells. Different cell types also have distinctive features that allow them to carry out specific functions. |

|Learning Goals: |

|a) Students will describe features common to all cells that are essential for growth and survival. (B.2.1) |

|b) Students will describe the structure of the cell membrane and explain how it regulates cell transport. (B.2.2, 1.3) |

|c) Students will describe the function of the mitochondria and chloroplasts and be able to identify the types of cells that possess each. (Standard 2.3) |

|d) Students will explain that all cells contain ribosomes and be able to describe their function in protein synthesis. (Standard 2.4) |

|e) Students will explain how cells use proteins to form structures to help them carry out a variety of functions. (B.2.5) |

|f) Students will be able to recognize different cells based on the organelles that are present. (B.2.6) |

|g) Students will relate the proportion of different organelles present in a cell to its function. (B.2.6) |

|Declarative Knowledge |Procedural Knowledge |

|Concepts |The cell membrane controls what enters and leaves the cell. |Processes |Scientific Method |

| |Organelles in cells carry out specialized functions. | |Reading Process |

| | | |Writing Process |

|Organizing |Students will understand the difference between prokaryotic and eukaryotic cells. | | |

|Ideas |Students will understand that proteins in the cell membrane control what enters and | | |

| |leaves the cell. | | |

| |Students will understand that each organelle provides an essential function to | | |

| |maintaining the cell. | | |

|Details |Prokaryotic cells do not have a nucleus, while eukaryotic cells do. |Skills |Use Microscope. |

| |Cellular transport | |Analyze cell structure. |

| |Cell theory | | |

| |Energy organelles include mitochondria and chloroplasts. | | |

| |Waste disposal organelles include lysosomes. | | |

| |Transport organelles include golgi apparatus, and endoplasmic reticulum. | | |

| |The nucleus controls information feedback. | | |

| |Cilia and flagella provide movement in some cells. | | |

| |Identify parts of a microscope. | | |

|Vocabulary |Organism Nucleic acid Vacuole Tissue | | |

| |Cell theory Organelle Osmosis Organ | | |

| |Lipid Selectively permeable Phospholipid Organ System | | |

| |Cell Flagella Lysosome Development | | |

| |Nucleolus Prokaryote Passive transport Fluid Mosaic | | |

| |Chloroplast Golgi apparatus Energy | | |

| |Exocytosis Cytoskelton Metabolism | | |

| |Ribosome Homeostasis Enzyme | | |

| |Cilia Molecule Plasma/Cell membrane | | |

| |Growth Endoplasmic reticulum Diffusion | | |

| |Nucleus Eukaryote Active transport | | |

| |Cell wall Mitochondria Endocytosis | | |

BIOLOGY BENCHMARKS #5 – Cellular Energy

|Standard Indicator: Matter Cycles and Energy Transfer |

|B.2.3 Explain that most cells contain mitochondria, the key sites of cellular respiration, where stored chemical energy is converted into useable energy for the cell and some cells, including many plant |

|cells, contain chloroplasts, the key sites of photosynthesis, where the energy of light is captured for use in chemical work. |

|B.3.1 Describe how some organisms capture the sun’s energy through the process of photosynthesis by converting carbon dioxide and water into high energy compounds and releasing oxygen. |

|B.3.2 Describe how most organisms can combine and recombine the elements contained in sugar molecules into a variety of biologically essential compounds by utilizing the energy from cellular respiration. |

|B.3.3 Recognize and describe that metabolism consists of all of the biochemical reactions that occur inside cells, including the production, modification, transport, and exchange of materials that are required|

|for the maintenance of life. |

|Essential Outcome: |

|The sun’s energy is captured and used to construct sugar molecules which can be used as a form of energy. |

|Learning Goals: |

|a) Students will describe how some organisms capture the sun’s energy through the process of photosynthesis. (B.3.1, B.2.3) |

|b) Students will describe how cellular respiration allows organisms to combine and re-combine the elements in sugar molecules into a variety of biologically essential compounds. (B.3.2) |

|c) Students will be able to describe the process of metabolism. (B.3.3) |

|Declarative Knowledge |Procedural Knowledge |

|Concepts |1. Mitochondria and chloroplasts are the energy transforming organelles for cells. |Processes |1. Writing processes |

| |2. Photosynthesis is used by some cells to obtain energy. | | |

| |3. Cellular respiration provides energy from sugar molecules. | | |

| |4. Metabolism is all biochemical reactions occurring within cells. | | |

|Organizing |1. Photosynthesis takes place in cells with chloroplasts. | | |

|Ideas |2. Cellular respiration takes place in all cells with mitochondria. | | |

| |3. Photosynthesis and cellular respiration are opposite chemical reactions. | | |

| |4. Metabolism includes all chemical reactions inside cells. | | |

|Details |1. Photosynthesis requires carbon dioxide, sunlight, and water. |Skills | |

| |2. Cellular respiration requires oxygen and glucose. | | |

| |3. Photosynthesis and Cellular respiration are opposite processes in plant and animals. | | |

|Vocabulary |ATP Energy Anaerobic | | |

| |ADP Metabolism Mitochondria | | |

| |Photosynthesis Glucose Chloroplast | | |

| |Cellular Respiration Aerobic Fermentation | | |

| | | | |

| |Teach Misconceptions: Cell Respiration in both cells, Mitochondria in both cells, Photosynthesis is plant | | |

BIOLOGY BENCHMARKS #6 Cellular Reproduction

|Standard Indicator: |

|B.6.1 Describe the process of mitosis and explain that this process ordinarily results in daughter cells with a genetic make-up identical to the parent cells. |

|B.6.2 Understand that most cells of a multicellular organism contain the same genes, but develop from a single cell (e.g., a fertilized egg) in different ways due to differential gene expression. |

|B.6.3 Explain that in multicellular organisms the zygote produced during fertilization undergoes a series of cell divisions that lead to clusters of cells that go on to specialize and become the organism’s |

|tissues and organs. |

|B.6.4 Describe and model the process of meiosis and explain the relationship between the genetic make-up of the parent cell and the daughter cells (gametes). |

|B.6.5 Explain how, in sexual reproduction, crossing over, independent assortment, and random fertilization, result in offspring that are genetically different from the parents. |

|Essential Outcomes: |

|Mitosis and meiosis are the processes by which new cells are formed from existing cells. |

|Learning Goals: |

|a) Students will describe and model the process of mitosis. (B.6.1) |

|b) Students will understand that most cells of a multi-cellular organism contain the same genes, and that different genes are turned on through cell specialization. (B.6.2, B.6.3) |

|c) Students will describe and model the process of meiosis. (B.6.4, B.6.5) |

|Declarative Knowledge |Procedural Knowledge |

|Concepts |Mitosis and meiosis are different forms of cell division. |Processes |Scientific Method |

| |Cells of a multicellular organism develop from a single zygote. | |Reading Process |

| |Gametes combine to produce an offspring in sexual reproduction. | | |

|Organizing |Students will understand the difference between mitosis and meiosis. | | |

|Ideas |Students will understand that cells specialize. | | |

|Details | Mitosis produces identical body cells. |Skills |Evaluate the steps of mitosis and meiosis |

| |Meiosis produces genetically unique sex cells with half the genetic information of | |by the function of each phase. |

| |the original cell. | | |

| |Identify steps of mitosis. | | |

|Vocabulary |Cell cycle Homeostasis Metaphase | | |

| |Anaphase Chromosome Diploid | | |

| |Meiosis Organ Telophase | | |

| |Homologous chromosomes Nucleus Mitosis | | |

| |Cytokinesis Haploid Crossing over | | |

| |Prophase X & Y Chromosomes Cell | | |

| |Tissue Organ System Organism | | |

| |Gamete/Sex Zygote Cyclins | | |

| |Cancer Autosome | | |

BIOLOGY BENCHMARK #7 – Molecular Basis of Heredity

| |

|Standard Indicator: Genetics |

|B.5.1 Describe the relationship between chromosomes and DNA along with their basic structure and function. |

|B.5.2 Describe how hereditary information passed from parents to offspring is encoded in regions of DNA molecules called genes. |

|B.7.4 Explain the process by which a cell copies its DNA and identify factors that can damage DNA and cause changes in its nucleotide sequence. |

|B.7.5 Explain and demonstrate how inserting, substituting or deleting segments of a DNA molecule can alter a gene, which is then passed to every cell that develops from it and that the results may be |

|beneficial, harmful or have little or no effect on the organism. |

|Essential Outcome: |

|DNA structure enables DNA to function as the hereditary molecule. |

|Learning Goals: |

|a) Students will describe the relationship between chromosomes and DNA along with their basic structure and function. (B.5.1) |

|b) Students will describe how hereditary information is passed from parents to offspring by genes. (B.5.2)) |

|c) Students will explain the process by which a cell copies its DNA (B.7.4) |

|d) Students will identify possible mutagens and the different types of mutations that can result. (B.7.4, B.7.5) |

|e) Students will understand that mutations that alter genes are passed to every descending cell and that the results may be beneficial, harmful, or have little to no effect on the organism. (B.7.5) |

|Declarative Knowledge |Procedural Knowledge |

|Concepts |DNA is in every living organism and passed on to offspring. |Processes |Scientific Method |

| |DNA determines how an organism looks and behaves. | |Reading Process |

| |A cell must copy all of its’ DNA prior to cell division. | | |

| |Mutations in DNA alter DNA sequences. | | |

|Organizing |Students will understand the structure of DNA. | | |

|Ideas |Students will understand DNA replication. | | |

| |Students will understand different types of mutations. | | |

|Details |DNA made up of |Skills | |

| |Phosphate group | |Build DNA models. |

| |Nitrogenous Base | |2. Transcribing and translating DNA |

| |Simple sugar | |code. |

| |Watson & Crick Model | | |

| |DNA Sequencing | | |

| |Adenine Pairs with Thymine. | | |

| |Cytosine pairs with Guanine. | | |

| |Mutations alter how DNA functions. | | |

|Vocabulary |DNA Gene insertion | | |

| |Substitution Phosphate group | | |

| |Replication DNA sequencing | | |

| |Proteins Deletion | | |

| |Mutations Double helix | | |

| |Frameshift Nucleotide | | |

| |Hydrogen bond DNA/Genetic Sequencing | | |

| |Deoxyribose | | |

BIOLOGY BENCHMARKS #8 – Molecular Basis of Heredity

|Standard Indicator: |

|B.5.3 Describe the process by which DNA directs the production of protein within a cell. |

|B.5.4 Explain how the unique shape and activity of each protein is determined by the sequence of its amino acids. |

|B.5.5 Understand that proteins are responsible for the observable traits of an organism and for most of the functions within an organism. |

|B.5.6 Recognize that traits can be structural, physiological or behavioral and can include readily observable characteristics at the organismal level or less recognizable features at the molecular and |

|cellular level. |

|Essential Outcomes: |

|DNA directs the production of RNA and proteins and these proteins largely determine the traits of an organism. |

|Learning Goals: |

|a) Students will describe and model the processes of transcription and translation. (B.5.3) |

|b) Students will explain how the unique shape and activity of each protein is determined by the sequence of its amino acids. (B.5.4) |

|c) Students will understand that proteins are responsible for the observable traits of an organism and for most of the functions within an organism. (B.5.5) |

|d) Students will recognize that traits can be structural, physiological or behavioral and can be observable at the organismal or cellular level. (B.5.6) |

|Declarative Knowledge |Procedural Knowledge |

|Concepts |Transcription is the process by which DNA is copied into RNA |Processes |Scientific Method |

| |Translation is the process by which RNA is read to produce an amino acid chain. | |Reading Process |

| |Amino acid chains twist into functional proteins. | |Writing Process |

|Organizing |Students will understand the steps of transcription and that it occurs in the nucleus. | | |

|Ideas |Students will understand the steps of translation and that it occurs at a ribosome. | | |

|Details |Transcription = DNA into RNA |Skills | 1. Transcribe a gene. |

| |Translation = RNA into amino acid chain | |2. Translate a mRNA |

| |Amino acid chain twisted = protein | |sequence. |

| |Adenine pairs with Uracil in RNA instead of Thymine | | |

|Vocabulary |Nucleus Codon Peptide Bond | | |

| |Gene Anticodon Nitrogenous bases | | |

| |Ribosome mRNA Uracil | | |

| |DNA tRNA Ribose | | |

| |RNA rRNA Nucleotide | | |

| |Transcription/RNA Synthesis Amino Acid | | |

| |Transcription/Protein Synthesis Amino Acid Chain | | |

BIOLOGY BENCHMARKS #9 – Genetics

|Standard Indicator: |

|B.6.5 Explain how, in sexual reproduction, crossing over, independent assortment, and random fertilization, result in offspring that are genetically different from the parents. |

|B.7.1 Distinguish between dominant and recessive alleles and determine the phenotype that would result from the different possible combinations of alleles in an offspring. |

|B.7.2 Describe dominant, recessive, codominant, sex-linked, incompletely dominant, multiply allelic, and polygenic traits and illustrate their inheritance patterns over multiple generations. |

|B.7.3 Determine the likelihood of the appearance of a specific trait in an offspring given the genetic make-up of the parents. |

|Essential Outcomes: |

|The genetic information from parents determines unique characteristics of their offspring. |

|Learning Goals: |

|a) Students will explain how a number of cellular processes occur to generate natural genetic variations between parents and offspring. (B.6.5) |

|b) Students will distinguish between dominant and recessive alleles and be able to determine resulting phenotypes from allele combinations (B.7.1) |

|c) Students will be able to describe different modes of inheritance. (B.7.2) |

|d) Students will determine the probability of specific traits in offspring given the genetic makeup of the parents. (B.7.3) |

|Declarative Knowledge |Procedural Knowledge |

|Concepts |Mendel’s Law’s determine inheritance. |Processes | Scientific Method |

| |Meiosis produces sex cells which lead to genetic variation. | |Reading Process |

| |Genetic disorders are produced from mistakes on chromosomes. | |Writing Process |

|Organizing |Students will understand that alleles, genes and chromosomes determine heredity. | | |

|Ideas |Students will understand that Punnett squares show probability of inheriting alleles. | | |

| |Students will understand that the inheritance of chromosomes in sex cells determines how | | |

| |an organism looks and acts. | | |

| |Students will understand that the consequence of mutations or chromosomes not | | |

| |separating during meiosis produces genetic disorders. | | |

|Details |Mendel’s Laws Environmental influences |Skills | Probability |

| |Genes inherited from parents Sickle cell | |2. Use Punnett Squares to predict |

| |Meiosis produces sex cells ABO blood group | |what alleles are inherited. |

| |Genetic combinations X and Y chromosomes | | |

| |Red/green color blindness Hemophilia | | |

| |Punnett squares Skin color | | |

| |Pedigrees Down Syndrome | | |

|Vocabulary |Genetics Multiple alleles Pedigree | | |

| |Alleles Mendel Genes | | |

| |Homozygous Dominant Autosomes | | |

| |Duplication Cross over Incomplete dominance | | |

| |Codominance Disorder | | |

| |Heredity Sex chromosomes | | |

| |Heterozygous Chromosomes | | |

| |Meiosis Recessive | | |

| |Probability Deletion | | |

BIOLOGY BENCHMARKS #10 – Evolution

| |

|Standard Indicator: Evolution |

|B.8.1 Explain how anatomical and molecular similarities among organisms suggests that life on earth began as simple, one-celled organisms about 4 billion years ago and multicellular organisms evolved later. |

| |

|B.8.2 Explain how organisms are classified and named based on their evolutionary relationships into taxonomic categories. |

|B.8.3 Use anatomical and molecular evidence to establish evolutionary relationships between organisms. |

|B.8.4 Understand that molecular evidence supports the anatomical evidence for these evolutionary relationships and provides additional information about the order in which different lines of descent branched.|

|Essential Outcome: |

|Modern classification systems are based on relationships determined from a number of different supporting evidences. |

|Learning Goals: |

|a) Students will explain how anatomical and molecular similarities among organisms suggest that life on earth began as simple, one-celled organisms and that multicellular organisms evolved later. (B.8.1) |

|b) Students will explain how organisms are classified and named based on their evolutionary relationships into taxonomic categories. (B.8.2) |

|c) Students will use anatomical and molecular evidence to establish evolutionary relationships between organisms. (B.8.3) |

|d) Students will understand that molecular evidence supports anatomical evidence for these evolutionary relationships and provides additional information about the order in which different lines of descent |

|branched. (B.8.4) |

|Declarative Knowledge |Procedural Knowledge |

|Concepts |Evolution is the change of species over time. |Processes |Scientific Method |

| |Fossils provide clues to evolution of species. | |Reading Process |

| |Eukaryotic cells probably evolved from prokaryotic cells. | |Writing Process |

| |Organisms are named and classified based on evolutionary relationships. | | |

|Organizing |Students will understand that evolution can be traced through fossils back to | | |

|Ideas |early earth. | | |

| |2. Students will understand that spontaneous generation and biogenesis have | | |

| |been dispelled as species origin theories. | | |

| |3. Students will understand that prokaryotic cells probably evolved into complex | | |

| |Eukaryotic cells. | | |

| |Students will understand that mitochondria and chloroplasts may have evolved | | |

| |Evol from ingested bacteria. | | |

| |5. Students will understand how organisms are classified. | | |

|Details |Fossils show past living organisms. |Skills |1. Use cladograms. |

| |Early ideas of how life originated were incorrect. | | |

| |Protocells may have been formed in pools of warm water. | | |

| |Archaebacteria are the most primitive cells and probably evolved into | | |

| |eukaryotic cells. | | |

| |Endosymbiant Theory | | |

| |Understand molecular evidence to support taxonomic classifications. | | |

|Vocabulary |Fossil Endosymbiont Theory | | |

| |Protocell Archaebacteria | | |

| |Spontaneous generation Cladistics | | |

| |Fossil record Genus | | |

| |Biogenesis Species | | |

| |Taxonomy Kingdom | | |

| |Phylum Class | | |

| |Order Family | | |

| |Aerobic Anaerobic | | |

BIOLOGY BENCHMARKS #11 - Darwinian Evolution

|Standard Indicators: Evolution |

|B.8.5 Describe how due to genetic variations, environmental forces, and reproductive pressures, organisms with beneficial traits are more likely to survive, reproduce, and pass on their genetic information. |

| |

|B.8.6 Explain how genetic variation within a population (a species) can be attributed to mutations as well as a random assortment of existing genes. |

|B.8.7 Describe the modern scientific theory of the origins and history of life on earth, and evaluate the evidence that supports it. |

|Essential Outcome: |

|Modern evolutionary theory provides an explanation of the history of life on earth and the similarities between organisms that exist today. |

|Learning Goals: |

|a) Students will describe why organisms with beneficial traits survive and how they pass these traits to their offspring. (B.8.5) |

|b) Students will explain how genetic variation within a population can be attributed to mutations as well as a random assortment of existing genes. (B.8.6) |

|c) Students will be able to describe the modern scientific theory of the origins and history of life on earth and evaluate the evidence that supports it. (B.8.7) |

|Declarative Knowledge |Procedural Knowledge |

|Concepts |Natural selection and the evidence for evolution. |Processes |Scientific Method |

| | | |Reading Process |

| | | |Writing Process |

|Organizing |Students will understand Charles Darwin & His Theory. | | |

|Ideas |Students will understand that natural selection leads to evolution. | | |

| |Students will understand the similarities in DNA between related organisms | | |

| |and species. | | |

| |Students will understand that advantageous adaptations will be passed onto future | | |

| |generations. | | |

|Details |Anatomical Similarities |Skills |1. 1. Map reading |

| |DNA Similarities | | |

| |Adaptations | | |

| |Embryological Similarities | | |

|Vocabulary |Natural Selection Analogous selection | | |

| |Artificial Selection /Selective Breeding Gene pool | | |

| |Evolution Isolation | | |

| |Adaptation Population | | |

| |Variation Vestigial | | |

| |Genetic Drift Structure | | |

| |Homologous Structures Species | | |

| |Convergent Evolution Divergent Evolution | | |

| |Adaptive Radiation | | |

Revised 1/23/13

................
................

In order to avoid copyright disputes, this page is only a partial summary.

Google Online Preview   Download

To fulfill the demand for quickly locating and searching documents.

It is intelligent file search solution for home and business.

Literature Lottery

Related searches