COURSE PORTFOLIO - kau



Part II: Course Syllabus

Table of Contents

Item Page

Instructor Information 2-1

Course Information 2-2

Course Objectives 2-4

Learning Resources 2-22

Course Requirements & Grading 2-28

Instructor Information

DR. ESSAM HUSAIN JIFFRI (Course Co-ordinator)

Telephone: Office: 6401000 Ex. 21137

Mobile: 0505613915

E-mail: ejiffri@kaau.edu.sa

Office Location: 1st floor, Room No. 542/1

Office Hour: Sat: 10:00 – 12:00 PM

Wed:10:00 – 12:00 PM

DR. HAMED KHOUJA

- Telephone: Office: 6401000 Ex. 22079 /20209

Mobile: 0504605257

- E-mail: hkhoja@kaau.edu.sa

- Office Location: 2nd floor, Room No. 512/2

- Office Hour: Sun 9:00 – 11:00 AM

Tue 9:00 – 11:00 AM

DR. ADEEL G. CHAUDARY

Telephone: Office: 64O1000 Ex. 22135

Mobile: 0505689076

E-mail: adeel_c@

Office Location: 2nd, Room No.552/2

Office Hour: Sat: 12:00 – 2:00 PM

Mon: 12:00 – 2:00 PM

Course Information

COURSE NAME: Clinical Chemistry-1

COURSE NUMBER: MLT 301

COURSE MEETING TIMES:

Lecture hours: 3 hours/week for 14 weeks (Total 42 hours)

Practical hours: 2 hours/week for 14 weeks (Total 28 hours)

Tutorial hours: 1 hour/week for 14 weeks (Total 14 hours)

| | |PRACTICALS |TUTORIALS |

| |LECTURE |Two/Week |One/Week |

| |Three/Week | | |

|MALE |Sat 08:00-09:00 a.m |Sat 02:00–04:00 p.m (Group A) | Sat 01:00 – 02:00p.m |

| | | |(Group A) |

| |Tue 01:00-02:00 p.m | | |

| |Wed 08:00–09:0 a.m |Wed 02:00–04:00 p.m (Group B) |Wed 01:00–02:00 p.m |

| | | |(Group B) |

|FEMALE |Sun 08:00 – 09:00 a.m |Sat 10:00–12:00 a.m (Group A) |Sat 01:00 – 02:00 p.m |

| | | |(Group A) |

| |Mon 01:00 – 02:00 p.m |Mon 10:00–12:00 a.m (Group B) |Sun 01:00 – 02:00 p.m |

| | | |(Group B) |

| |Wed 09:00 – 10:00 a.m | | |

COURSE MEETING PLACES:

Male students: 3rd year classroom in the medical center,

Building number 5,

First floor,

Faculty of applied medical sciences,

Male section

Female students: 3rd year classroom in the medical center,

Building number 4,

Ground floor,

Faculty of applied medical sciences,

Female section

COURSE WEBSITE ADDRESS:

COURSE PREREQUISITES AND REQUIREMENTS:

A successful completion of Biochemistry (MLT 201) with a final cumulative grade of above 60% is the pre-requisite for Clinical Chemistry-1 (MLT 301).

ENTRY LEVEL SKILLS:

The student should display basic reading, writing, and mathematical skills

DESCRIPTION OF THE COURSE:

This course will be a detailed study of the chemical and instrumental analyses of human biological material of clinical significance. The student will be introduced to commonly used clinical chemistry techniques. This course discusses the clinical aspects of Lab Math, Sources of errors, carbohydrates, Amino-acidopathes, proteins, Vitamins, Trace Elements, enzymes, electrolytes. This course will integrate the following topics into the laboratory and lecture sessions: laboratory mathematics, quality assurance, specimen collection and processing, sources of biological variation, and evaluation techniques.

Course Objectives

GENERAL OBJECTIVES:

Upon completion of this course the student will be able to:

Achieve the objectives designated by a bullet under each lecture, group of lectures or practical sessions.

OBJECTIVES OF LECTURE TOPICS:

The course consists of lectures, practical classes, demonstrations and tutorials. The following is a listing of lecture topics and number of lectures for each topic:

|LECTURE TOPICS |NUMBER OF LECTURES |

|1- Course Scope |3 |

|2- Basic & Lab Math |3 |

|3- Source & Types of Errors & QC |3 |

|4- Carbohydrates |6 |

|5- Proteins |6 |

|6- Trace Elements |3 |

|7- Vitamins |3 |

|8- Enzymology |6 |

|9- Electrolytes & Ca, Mg, P |9 |

| | |

|TOTAL |42 |

| | |

1. BASIC SCOPE &LAB MATH

(Six lectures)

Objectives:

To make sure that the student is able to:

1. realize, understand and deal with numerical values in the clinical lab in the best possible way to reflect accuracy and precision of the given value (significant figures, decimals, scientific notation, rounding off numbers)

2. recognize, understand and interpret SI units as applies to mass, volume, lengths, area & concentrations

3. carry out conversions of single units within the SI system

4. carry out conversions of combined units within the SI system

5. recognize, understand and interpret commonly used conventional units such as mg/dL; ng/mL, pg/mL

6. knowing the formula weight of substances, or appropriate conversion factor, be able to convert from conventional to SI units.

7. knowing the formula weight of substances, or appropriate conversion factor, be able to convert from SI units to conventional units

8. calculate the concentration of solutions in various terms such as g/L; mol/L, mg/L.

9. calculate molarity and normality of solutions.

10. express the amount of substances in terms of respective percentages (i.e; % w/v; % v/v, % w/w).

11. work out single, multiple, serial and parallel dilutions.

12. calculate the concentration of analytes in the neat sample which was diluted by a specific dilution factor.

13. calculate the final concentration of solution which was diluted by a specific dilution factor.

14. work out how to prepare various solutions from stock solutions

15. work out how to prepare various reagents from various compounds and substances

16. knowing the specific gravity and % acids; work out how to prepare weaker concentrations of acids from concentrated stock solutions

17. calculates the mean, SD & cv

18. calculates % deviation

2. SOURCES & TYPES OF ERRORS

(Six lectures)

Objectives

The student must be able to;

1- describe the discipline of clinical chemistry.

2- explain the importance of clinical chemistry in lab medicine.

3- describe the function of the clinical chemistry lab.

4- describe the type of results obtained in the clinical labs.

5- describe the characteristics of quantitative results.

6- describe and perform calibration of pipettes used in the lab by gravimetric procedures.

7- describes the basic quality control and quality assurance requirements for the lab.

8- describe reliability, accuracy and precision of results.

9- describe sensitivity and specificity of procedures.

10- describe the types of analytical errors in the lab.

11- describe the effects of these errors on the result of tests.

12- describe the three stages of quality assurance in the lab.

13- explain the preanalytical factors that may lead to errors in the analysis.

14- explain the analytical factors that may lead to errors in the analysis.

15- explain the postanalytical factors that may lead to errors in the reported results.

16- describe limits of accuracy of the reported result in terms of ;

a. reported values

b. decimal places

c. procedure limitations

d. instrument limitations

e. clinical significance

f. assay range

g. clinical range

h. extent of linearity

i. reagents

j. calibrators

k. temperature

l. humidity

m. vibration

n. air current

o. interference

p. cross-reactivity

q. sensitivity limits

r. specificity

s. reagent blank

17- describe how to spot errors in the lab.

18- describe how to eliminate or minimize the size and frequency of errors.

19- outline ways to improve accuracy, precision of results.

20- outline possible steps to improve the sensitivity and specificity of methods in the lab.

21- recognize the need for continuous development and modifications of existing systems in the lab and outside the lab.

22- describe the major precautions that must be observed in the lab to ensure the reliability of the reported results.

3. CARBOHYDRATE METABOLISM

(Six lectures)

Objectives

Upon completion of this chapter, the student will be able to:

1- Identify the primary biological function of carbohydrate in humans.

2- Describe, in general terms, the metabolism of carbohydrates in humans.

3- Compare and contrast the four types of utilization of glucose: glycogenesis, gluconeogenesis, glycolysis, glycogenolysis.

4- Outline the formation of other constituents, such as glycogen, galactose, fructose, pyruvic acid, lactic acid, from glucose.

5- Discuss the importance of the anaerobic and aerobic pathways and the pentose phosphate shunt in the metabolism of glucose.

6- Identify and explain the role of the following hormones in glucose metabolism;

a. Insulin

b. Glucagone

c. Epinephrine

d. Thyroxine

e. Adrenocorticotropic,

f. Cortisol

g. Hormones (ACTH)

h. Growth hormone

7- Discus the symptomatology of hypo- and hyperglycemia in humans.

8- Characterized the following types of diabetes mellitus: type 1, type 2, and gestational diabetes mellitus.

9- Discuss the major acute and chronic complications associated with diabetes mellitus.

10-Differentiate diabetic ketoacidosis (DKA); hyperglycemic, hyperosmolar, nonketotic coma (HHNC); and lactic acidosis using arterial pH and PCO2 values with blood ketone (acetoacetic acid) results.

11-Describe the action of insulin.

12- Describe how the following laboratory tests are used

the evaluation of hypo- or hyperglycemia;

a. Blood glucose

b. Glycated hemoglobin (hemoglobin A1c)

c. Ketones

13-Discuss the role of self-monitoring devices for diabetes in the measurement of blood glucose.

14- For Oral Glucose Tolerance and two Hour Post Prandial Testing;

a. describe proper patient preparation, including dose and administration of glucose.

b. describe specimen collection procedures, including time

of collection.

15- describe actual patterns of serum glucose levels in the

following conditions:

normal

malabsorption

diabetmellitus

hypoglycemia

hyperinsulinism

16- Outline the current classification scheme for diabetes, including

possible etiologies.

17- Compare and contrast anticoagulants/preservatives for blood

specimens for glucose analysis.

18- For each test listed below describe the rationale,

clinical usefulness, specimen requirements, patient

preparation, procedure, principle(s), measurement used to

calculate activity, limitations, and reference range(s):

a - Glucose Enzymatic: glucose oxidase

b - Galactose

c - Glycosylated Hemoglobin = Hemoglobin A1c

19- Compare methods for glycated hemoglobin analysis in regard

to product measured and frequency of use in the

clinical laboratories.

20- Discus laboratory tests used to evaluate the presence

of ketoacidosis and microalbuminurea.

4. AMINO ACIDOPATHIES

(Three lectures)

Objectives:

Students are given the fundamental concepts of metabolic disorders and their pathways. Accumulation and subsequent overflow of precursors due to the deficiency or inactivity of a certain metabolite (amino-acid containing protein or enzyme) are considered the basis of these disorders. Detection of these metabolites in blood and their overflow into the urine is clinically significant.

Discuss the metabolic disorders are rare however some of them are more common than others and these include:

• Phenylketonuria: Inherited autosomal recessive disorder where early detection of accumulating metabolite is crucial for better prognosis

• Alkaptonuria

• Tyrosinuria: TypeI and Type II

• Maple Syrup Urine Disease

• Homocystineuria

• Cystinuria

The topics covered include various methods of detection, screening tests and reference methods. Also criteria for blood and urine sample collection is discussed

5. PROTEINS

(Three lectures)

Objectives:

The students are required to know the clinical significance of proteins and to differentiate between various fractions of proteins depending upon their functions. As laboratory technologists the students must know different methods of detection and their underlying principles.

The topics covered include:

• Structures of proteins, amphoteric property, concepts of catabolism and anabolism

• General functions of proteins

• Hyperproteinemia and hypoproteinemia

• Methods of detecting total serum proteins

• Protein electrophoresis and densitometery

Protein sub fractions covered in detail in this chapter include:

a. Pre-albumin

b. Albumin

c. Alpha-1 globulins

d. Alpha-2 globulins

e. Beta globulins

f. Gamma globulins

Sub fractions are also covered in details including alpha-1 acid glycoproteins, alpha-1 antitrypsis, alpha feto proteins, hepatoglobins, ceruloplasmin etc along with their functions, clinical significance, methods of detection, pathophysiology.

Specific methods of detection for protein sub fractions include: radial immunodiffusion, immuno electrophoresis, ELISA, nephlometry.

Clinical significance of Albumin and globulin ratio is covered along with it’s affect on total hyper and hypoproteinemia.

Other diseases that have profound affect upon specific protein sub-fractions are analyzed along with their densitometric patterns e.g. liver cirrhosis, inflammation, alpha-1 antitrypsin deficiency, monoclonal increase.

Certain globulinemias are clinically significant and have direct affect on serum and urinary proteins and some of the disorders covered are Multiple Myeloma, Franklin’s disease, Waldenstorms’ macroglobulinemia.

6. VITAMINS

(Three lectures)

Objectives:

Students are made aware of the importance of vitamins as essential component of daily nutrition. Important vitamins are covered that includes: Vitamin-A, C, D, K and B complex. Their trivial names, reference ranges, dietary source and functions are covered.

Topics including clinical symptoms due to their deficiency or overdose are also explained followed by various methods of detection which include:

• In-vivo and in-vitro bioassays

• Microbiological assays

• Vitamin loading tests

• Flourometric and Colorimetric analysis

• HPLC

• RIA & ELISA

• Amperometry

• Erythrocyte fragility test

• Prothrombin and partial thrombin test

• Activity coefficient test

To understand the advantages and disadvantages of each of the above method is describes and the students are made well aware of the reference methods and screening methods used.

7. TRACE ELEMENTS

(Three lectures)

Objectives:

To understand what these trace elements are? And to appreciate their presence in the human body.

To understand the nutritional value and functional importance of essential, moderately essential and non-essential trace elements.

To understand the nutritional value and functional importance of ultra-tracelements

Trace elements covered in this chapter include:

• Iron: normal ranges, proteins carriers, clinical significance, methods of detection, transferring and ferritin, Iron saturation and binding capacity. Iron picture in various types of anemias

• Copper: clinical significance, functions and transporting enzyme (ceruloplamsin), method of detection, types of sample and interfering substances

• Zinc: function, clinical significance, method of detection, types of sample and interfering substances

Ultra-trace elements covered in this chapter include:

• Selenium: Function in association with vitamin-E and glutathione peroxidase, clinical significance, methods of detection, types of sample and normal range

• Manganese: function and clinical deficiency, type of sample required

• Cobalt: absorption in relation to vitamin B12 and intrinsic factor.

8. ENZYMOLOGY

(Six lectures)

Objectives:

Upon completion of this chapter, the student will be able to:

1- Explain the different factors affecting serum enzyme:

• Rate of entry of enzymes into blood

• Enzyme inhibitors

• Clearance of enzyme

2- Explain specificity of serum enzyme measurements:

• Test results and clinical features

• Test pattern recognition

• Isoenzymes

3- Give examples of substances that act as inhibitors of enzyme activity.

4- Identify and discus isoenzymes of clinical importance.

5- Discuss the clinical utility for the measurement of the following

major enzymes of diagnostic interest:

a. Phosphatases (ALP & ACP)

b. Transaminases (ALT & AST)

c. Amylase and Lipase

d. Cholinsterase

e. Creatin Kinase

f. Lactate dehydrogenase

g. Gamma-glutamyltransferase

6- Discuss the serum enzymes in diseases:

a. Myocardial infarction

b. Muscle Diseases:

1. Muscular Dystrophy

2. Toxic Myopathies

3. Malignant Hyperpyrexia

4. Traumatic Myopathies

c. Liver disease

d. Bone Disease

e. Haematological disorders;

1. G6PD

2. Haemolytic anaemia

3. Megaloplastic anaemia

4. Leukaemia

7- Explain the general consideration in enzyme assay in the clinical laboratory.

8- Discuss the different methods for the determination in serum and urine.

9- Assess specimen integrity for enzyme analysis based on samples;

a. collection

b. precessing, and

c. storage conditions

9. ELECTROLYTES (Na, K, Cl,) & Ca, Mg, Pi

( Nine lectures)

Objectives:

The student must be able to;

1- describe the physiological roles of Na, K, Cl, Ca, Mg & Pi

2- describe the major factors that influence the concentration of these substance in the body and blood.

3- describe the clinical significance and correlations in the measurements of Na, K, Cl, Ca, Mg & Pi.

4- describe the specimen requirements for the determination of Na, K, Cl, Ca, Mg & Pi.

5- describe the possible sources of errors in the determination of Na, K, Cl, Ca, Mg & Pi.

6- describe the effects of such errors on the results obtained for each of the analytes (i.e; false increase or false decrease).

7- describe major interfering factors that may affect the results.

8- describe how to eliminate interferences.

9- describe the ways to minimize or eliminate the various sources of errors.

10-describe the reference methods for determination of Na, K, Cl, Ca,

Mg & Pi.

11-describe the most commonly used methods for the determination of

Na, K, Cl, Ca, Mg & Pi which are used in the clinical lab.

12-explain how to use lab results to differentiate between various types

of hyponatremia.

13-explain the term "panic values".

14-list the panic values for Na & K.

15-explain the relationship between acid base disturbances and Na, K,

Cl, Ca & Mg.

16-write the MacLean-Hastings Formula for the calculation of ionized

Ca (Ca2+).

17-calculate the Ca2+ concentration using the MacLean-Hastings Formula.

18-list the conditions for the use of the MacLean-Hastings Formula

for the calculation of Ca2+.

19-describe the common methods used to measure Ca2+ .

20-write the formula used to calculate the anion gap (AG) in blood.

21-write the formula used to calculate the AG in urine.

22-calculate AG values in blood and in urine.

23-describe the clinical significance for the calculation of AG in blood;

a. increased AG

b. decreased AG

c. apparently normal AG

24-describe the clinical significance for the calculation of AG in urine.

25-explain the effect of combined errors on the considerations of the

AG values in clinical situations of metabolic acidosis.

26-explain how AG is used in the clinical lab.

LEARNING RESOURCES

TEXT BOOKS & READING MATERIALS:

Assigned Textbook :

Clinical Chemistry, Principles, Procedures, and Correlations, 3rd Ed.

By Michael Bishop, Edward Foddy, and Janet Duben

J.B. Lippincott , Philadelphia, 2005or latest edition.

Recommended References :

1- Clinical Diagnosis and Management, by John Bernard Henry,ed.

W.B. Saudners, Philadelphia.latest edition.

2- Fundamentals of Clinical Chemistry Tietz, latest edition., W.B. Saunders Kaplan & Pesce. latest edition.

3- Clinical Chemistrv Theory Analysis Correlation, latest ed. C.V. Mosby

Clinical Chemistry in Diagnosis and Treatment, Zilva & Pannell,

latest edition.

WEBSITE ADDRESSES:



of Clinical

2) Instructor’s handouts

LABORATORY MATERIALS / MANUAL / ATLAS TEXTBOOK:

-During each laboratory sessions practical procedure sheet will

be distributed to all students

LABORATORY LOCATIONS:

Male students: Teaching laboratory in the medical center,

Building number 5,

Second floor,

Faculty of applied medical sciences,

Male section

Female students: Teaching laboratory in the medical center,

Building number 13,

Second floor,

Faculty of applied medical sciences,

Female section

LABORATORY HOURS:

| |PRACTICALS |

| |Two/Week |

|MALE |Sat 02:00 – 04:00 (Group A) |

| |Wed 02:00 – 04:00 (Group B) |

|FEMALE |Sat 10:00 – 12:00 (Group A) |

| |Mon 10:00 – 12:00 (Group B) |

LABORATORY SAFETY PRECAUTIONS:

1) There will be no smoking and no eating or drinking

2) Use proper universal precautions and infection control

3) Handle all glassware, equipment and specimens with care

4) Follow the guidelines for waste disposal and avoid excess

biohazardous waste

5) Do not leave until you have cleaned up your work area and returned supplies and equipment to the appropriate areas

REQUIRED PURCHASES:

- Laboratory coats and gloves

- Text book, atlas textbook and laboratory manual

- Calculator

PRACTICAL LABORATORY OBJECTIVES

Having attended all of the practical lab sessions, listened to and understood the explanation of the procedure done, watched a demonstration by the instructor (or the lab technologist in charge), and read all the materials assigned, the student must be able to perform all of the experiments (tests, procedures, etc.) explained and taught. The student must be able to exhibit a satisfactory competence level by achieving no less than 60% of any given practical exam performed within a suitably assigned time.

General Laboratory Objectives:

1. Describe the types, preparation, use and storage of chemicals used in

a chemistry laboratory.

2. Discuss the composition, use, and limitations of laboratory glassware, plastic ware and tubing.

3. Identify the various types of volumetric equipment in common usage in the chemistry laboratory.

4. Describe protocols for the calibration of volumetric equipment, it's use and maintenance.

5. Explain the theories of operation of centrifuges and balances.

6. Discuss calibration; maintenance requirements, and environmental factors involved in the use of centrifuges and balances.

7. Describe the principles of procedures used to prepare samples and solutions for analysis.

8. Discuss the components, preparation, sources of error and expressions of concentration of solutions.

9. Define the components of buffer systems and its role in the maintenance of pH.

10. Describe the types of safety hazards found in the chemistry laboratory.

11. Identify specific precautions and safety equipment used to minimize or prevent laboratory hazards.

Laboratory Topics:

Clin. Chem. Lab Function

Sources of Errors Exercise

Lab Math Exercise

Glucose oxidase method

Oral Glucose Tolerance Teas

Glucose & Ketone Bodies in urine

Determination of Total Protein (Biuret)

Determination of Albumin (Dye Binding)

Protein electrophoresis

Determination of : ALP, ALT, AST, CK, and LD activities (Kinetic

and end point Assay)

Na & K (Flame Photometry)

Determination of C & ionized Ca2+

At the completion of the practical course the student should be able to:

1. Construct a frequency histogram.

2. Calculate the mean, standard deviation, and coefficient of variation from

a list of data.

3. When given absorptivity constant and concentration, calculate

the absorbance.

4. Assess albumin using the BCG dye method with results within 5%

of measured value.

5. Compare and contrast one-point calibration with that of a standard curve.

6. Perform electrophoresis and identify a normal pattern.

7. When given a list of absorbance values calculate the change in absorbance.

8. When given absorbance values, length of light path and molar

absorptivity of a substance, calculate the U value.

9. Compare and contrast endpoint and kinetic enzyme assays.

10. Adjust the aspirati6n rate of the atomizer on the flame photometer.

11. Set the standards of the flame photometer.

12. Analyze controls and patient samples on the flame photometer;

Perform the chloride determination and calculate the concentration of

the control and patient samples using the chloride meter.

Perform within 5% and with acceptable technique the various glucose

test methods.

Perform the following assays with acceptable technique, precision,

and accuracy:

Accession specimens and evaluate them as to their suitability for

the determination requested.

17. Prepare aliquots of specimens and distribute them for analysis.

18. Maintain record keeping for specimens.

19. Prepare reagents according to prescribed directions.

20. Demonstrate efficient operation of laboratory instruments to

acceptable levels for the instructor.

21. Perform and interpret analyses on patient specimens and controls

according to protocol.

22. Evaluate test results with results acceptable to the instructor.

Course Requirements & Grading

COURSE REQUIREMENTS:

- In order to successfully complete MLT 301 the following requirements must be met:

- Attend lectures and practical sessions consistently

- Take and pass two written tests, final written and the

practical examinations

ATTENDANCE:

- Learning in this class is an active, ongoing process. Information will be presented in class that can not be effectively communicated by reading another student's notes. You need to experience each class yourself. Your performance in class depends a great deal on your attendance. It is important that you are on time, have few or no absences, and remain in class the full period. Attendance is taken at the beginning of class.

- Sometimes in-class quizzes or other graded activities occur. These may be individual or in groups, as determined by the instructor. If you miss a class in which one of these take place, you have a zero for that quiz/activity

WITHDRAWALS:

- If a student wishes to withdraw from the course, it is his or her responsibility to inform the instructor. Appropriate withdrawal procedures will be followed. When a student accumulates unofficial absences in excess of two lectures or two labs, the instructor may, but is not obligated to file a withdrawal.

EVALUATION STRATEGIES/GRADING

|CONTINUOUS ASSESSMENT (35%) |

|Test 1 |15% |

|Test 2 |15% |

|Practical Reports & Assignments |5% |

|FINAL EXAMINATION (65%) |

|Final Practical Exam |20% |

|Final Written Exam |45% |

Note: If a student must be absent on the day of a test, he/she must notify the instructor prior to test time in order to be allowed to take a make-up test. A grade of zero (0) will be assigned if the instructor is not notified. If the student exceeds the maximum absences of 10%, this will result in his/her being dropped from the course and from the MLT program.

GRADING SCALE:

The following grade scale applies throughout the course:

Excellent = 90.0% - 100.0%

Very good = 80.0% - 89.0%

Good = 70.0% - 79.0%

Satisfactory = 60.0% - 69.0%

Fail = less than 64.0%

................
................

In order to avoid copyright disputes, this page is only a partial summary.

Google Online Preview   Download