03 - Chain Rule
Kuta Software - Infinite Calculus
Name___________________________________
Differentiation - Chain Rule
Date________________ Period____
Differentiate each function with respect to x.
1) y = ( x 3 + 3)
5
3) y = (?5 x 3 ? 3)
2) y = (?3 x 5 + 1)
3
4) y = (5 x 2 + 3)
4
5) f ( x) =
4
?3 x 4 ? 2
6) f ( x) =
7) f ( x) =
3
?2 x 4 + 5
8) y = (? x 4 ? 3)
?Z A280m1W3z EKjuhtmaZ NSloMf1tEwjaXrXem rL6LwCT.G R QAXldlL prFiVgAhItCsH UrreksaehruvueOdH.f w sMeaUdie8 Ew3iVtkhf aIrntfpiGngi1tEe5 2CJaGlQcTuelKuhsh.x
-1-
3
?2 x 2 + 1
?2
Worksheet by Kuta Software LLC
9) y = (3 x 3 + 1)(?4 x 2 ? 3) 4
10) y =
( x 3 + 4) 5
3x4 ? 2
11) y = (( x + 5) ? 1)
5
12) y = (5 x 3 ? 3) 5
4
4
?4 x 5 ? 3
Critical thinking question:
13) Give a function that requires three applications of the chain rule to differentiate. Then differentiate the
function.
?F f2h021D34 0KmuFtHaQ DSBocfDtEwXaErXe2 BLRLYC7.c r TAklrl4 Irxiog3hDt1sc lrmeAsOesrJvsewda.V R MMtaOdJeL KwQiIt2hG DINnYfGiUn0igtve6 XCtajlQc3uwlfuxs8.6
-2-
Worksheet by Kuta Software LLC
Kuta Software - Infinite Calculus
Name___________________________________
Differentiation - Chain Rule
Date________________ Period____
Differentiate each function with respect to x.
5
1) y = ( x 3 + 3)
dy
4
= 5( x 3 + 3) ? 3 x 2
dx
4
= 15 x 2 ( x 3 + 3)
3) y = (?5 x 3 ? 3)
2) y = (?3 x 5 + 1)
dy
2
= 3(?3 x 5 + 1) ? ?15 x 4
dx
2
= ?45 x 4 (?3 x 5 + 1)
3
4) y = (5 x 2 + 3)
dy
= 3(?5 x 3 ? 3) 2 ? ?15 x 2
dx
2
= ?45 x 2 (?5 x 3 ? 3)
5) f ( x) =
4
3
7) f ( x) =
3
? 2)
?
1
f ' ( x) = (?2 x 2 + 1) 2 ? ?4 x
2
2x
=?
3
4
(?2 x
?2 x 4 + 5
8) y = (? x 4 ? 3)
2
3(?2 x + 5)
2
3
?v G2r0Q1H3O pKnuatEa9 ZSVoGfutQw5a5rXeV RLxLpCW.8 Y hAnlQl0 vrliJgWh3tqsO drRe8s5eYrjvseTdr.h z oMxabdJeg EwriZtahl vIJnqfei1nMi2tLeA TC7a7lqcGuHlruPs9.b
2
+ 1)
1
2
?2
dy
= ?2(? x 4 ? 3) ?3 ? ?4 x 3
dx
8x3
=
(? x 4 ? 3) 3
?
1
f ' ( x) = (?2 x 4 + 5) 3 ? ?8 x 3
3
8x3
=?
4
?2 x 2 + 1
1
?
1
f ' ( x) = (?3 x 4 ? 2) 4 ? ?12 x 3
4
3x3
=?
(?3 x
4
dy
= 4(5 x 2 + 3) 3 ? 10 x
dx
3
= 40 x(5 x 2 + 3)
6) f ( x) =
?3 x 4 ? 2
4
3
-1-
Worksheet by Kuta Software LLC
9) y = (3 x 3 + 1)(?4 x 2 ? 3) 4
dy
3
4
= (3 x 3 + 1) ? 4(?4 x 2 ? 3) ? ?8 x + (?4 x 2 ? 3) ? 9 x 2
dx
3
= x(?4 x 2 ? 3) (?132 x 3 ? 32 ? 27 x)
10) y =
( x 3 + 4) 5
3x4 ? 2
4
5
dy (3 x 4 ? 2) ? 5( x 3 + 4) ? 3 x 2 ? ( x 3 + 4) ? 12 x 3
=
dx
(3 x 4 ? 2) 2
4
3 x 2 ( x 3 + 4) (11 x 4 ? 10 ? 16 x)
=
(3 x 4 ? 2) 2
11) y = (( x + 5) ? 1)
5
4
3
dy
5
4
= 4(( x + 5) ? 1) ? 5( x + 5)
dx
3
= 20(( x + 5) ? 1) ? ( x + 5)
5
12) y = (5 x 3 ? 3) 5
4
4
?4 x 5 ? 3
3
1
?
1
dy
= (5 x 3 ? 3) 5 ? (?4 x 5 ? 3) 4 ? ?20 x 4 + (?4 x 5 ? 3) 4 ? 5(5 x 3 ? 3) 4 ? 15 x 2
dx
4
2
3
5 x (5 x ? 3) 4 (?65 x 5 ? 45 + 3 x 2 )
=
(?4 x
5
? 3)
3
4
Critical thinking question:
13) Give a function that requires three applications of the chain rule to differentiate. Then differentiate the
function.
(
6
)
7
Many answers: Ex y = ((2 x + 1) + 2) + 3
6
6
5
dy
5
5
4
= 7 ((2 x + 1) + 2) + 3 ? 6((2 x + 1) + 2) ? 5(2 x + 1) ? 2
dx
(
5
)
Create your own worksheets like this one with Infinite Calculus. Free trial available at
?F 32D0S1B3F 8Kgurt6ay oScoifAt3w6a1rieK iLcLVCS.X r aAhlQlE VrnisgehVtTsf erWeLsJe1rWvpejdV.D K SMWaNdPeK QwPiatuhg DIhnXfYilnQiGtdek 1CZarlycAudlNuWsZ.0
-2-
Worksheet by Kuta Software LLC
................
................
In order to avoid copyright disputes, this page is only a partial summary.
To fulfill the demand for quickly locating and searching documents.
It is intelligent file search solution for home and business.
Related download
Related searches
- chain rule derivative
- calculus 3 chain rule calculator
- chain rule calculus examples
- partial chain rule calculator
- multivariable chain rule calculator
- chain rule of integration
- chain rule derivative calculator with steps
- chain rule calculator
- calc 3 chain rule calculator
- chain rule partial derivative calculator
- chain rule calculator derivative
- multivariable calculus chain rule calculator