SRI VENKATESWARA COLLEGE OF ENGINEERING AND …



SRI VENKATESWARA COLLEGE OF ENGINEERING AND TECHNOLOGY

DEPT. OF ECE

IV B.Tech ECE I Sem – Microwave & Optical Communication Lab

List of Experiments Cycle Wise

Cycle – 1

1. Characteristics of Reflex Klystron Oscillator.

2. Attenuation Measurements.

3. VSWR Measurements.

4. Frequency& wavelenth Measurements.

5. Characteristics of LED.

6. Characteristics of LASER diode.

Cycle – 2

7. Directional Coupler Characteristics.

8. Wave guide Parameters & Measurements.

9. Scattering Parameters of Circulators.

10. Scattering Parameters of Magic -Tee.

11. Design of Fibre Optic Digital Link.

12. Gunn diode Characteristics.

Design Based Experiments:

1. Intensity Modulation of LASER output through an Optical Fibre.

2. Magic – Tee as a Mixer.

3. Circulator as a Duplexer.

Lab – Incharge HOD, ECE

SRI VENKATESWARA COLLEGE OF ENGINEERING AND TECHNOLOGY

DEPT. OF ECE

REFLEX KLYSTRON OSCILLATOR

AIM:

To study the characteristics of reflex klystron oscillator.

COMPONENTS REQUIRED:

1. Klystron Power Supply

2. Klystron Mount

3. Isolator

4. Variable Attenuator

5. Frequency meter

6. Power Detector

PROCEDURE:

1. Arrange the bench setup as shown in figure.

2. Keep the beam voltage around the value of 300 volts.

3. Vary the repeller voltage in steps of 5 volts and measure the corresponding beam current by switching into current mode using in built ammeter.

4. For various values of repeller voltage find the repeller current.

5. To measure the frequency adjust the frequency meter (rolling in either up or down direction) until minimum dip is obtained in the detector.

6. At this value of dip measure the frequency of incoming signal.

RESULT:

Thus the characteristics of reflex klystron was found and verified and the graph is plotted for Repeller Voltage versus Output Power.

TABULAR COLUMN:

|S.No. |REPELLER VOLTAGE in Volts |OUTPUT POWER |

| | |in m Watts |

| | | |

| | | |

| | | |

| | | |

| | | |

| | | |

| | | |

| | | |

| | | |

MODEL GRAPH:

Output

Power

in mWatts

O Repeller Voltage in Volts

BENCH SETUP DIAGRAM OF REFLEX KLYSTRON OSCILLATOR:

SRI VENKATESWARA COLLEGE OF ENGINEERING AND TECHNOLOGY

DEPT. OF ECE

ATTENUATION MEASUREMENT

AIM:

To measure the attenuation introduced by the given wave guide.

COMPONENTS REQUIRED:

1. Microwave source (klystron power supply)

2. Klystron Mount

3. Isolator

4. Variable Attenuator

5. Frequency meter

6. DUT (Fixed Attenuator)

7. Power Detector

FORMULA:

Attenuation = 20 log (V1 / V2) db

PROCEDURE:

1. Arrange the bench setup as shown in figure 1 and measure the input power entering into the wave guide (P1).

2. Reconnect the circuit as shown in the figure 2 and find the power (P2) at the output of the given wave guide.

3. Using formula find the attenuation introduced by the wave guide.

RESULT:

Thus the attenuation introduced by the given wave guide was found and verified.

BENCH SETUP DIAGRAM OF ATTENUATION MEASUREMENT:

V1

FIGURE – 1 (Without DUT)

V1 V2

FIGURE – 2 (With DUT)

SRI VENKATESWARA COLLEGE OF ENGINEERING AND TECHNOLOGY

DEPT. OF ECE

VSWR MEASUREMENT

AIM:

To measure VSWR introduced by the wave guide in dominant mode of propagation.

COMPONENTS REQUIRED:

1. Microwave source (klystron power supply)

2. Klystron Mount

3. Isolator

4. Variable Attenuator

5. Slotted section

6. Matched Termination

7. VSWR meter (or) CRO

FORMULA:

VSWR = V max / V min

PROCEDURE:

1. Arrange the bench setup as shown in figure.

2. Adjust the probe carriage to measure V max and note the readings.

3. Adjust the probe carriage to measure V min and note the readings.

4. Use the formula to find VSWR.

RESULT:

Thus the VSWR introduced by the wave guide in dominant mode of propagation was determined and verified.

BENCH SETUP DIAGRAM OF VSWR MEASUREMENT:

SRI VENKATESWARA COLLEGE OF ENGINEERING AND TECHNOLOGY

DEPT. OF ECE

WAVELENGTH & FREQUENCY MEASUREMENT

AIM:

To determine the guide wavelength of rectangular wave guide in a dominant mode propagation.

COMPONENTS REQUIRED:

1. Microwave source (klystron power supply)

2. Klystron Mount

3. Isolator

4. Variable Attenuator

5. Frequency meter

6. Slotted section

6. Matched Termination

7. VSWR meter (or) CRO

FORMULA:

1. Guide wavelength λg = 2(d2 – d1)

Where (d2 – d1) is the difference between two successive minimums

(or) maximum.

_1_ 2 _1_ 2

2. The operating frequency of the wave is f = c λg + 2a

Where a = 2 . 3 cms for X band.

3. The guide wavelength (λg) is related to free space wavelength (λo) by

λo 2

λg = Where λc =

_λo_ 2 _m 2 _n_ 2

1 - λc a + b

PROCEDURE:

1. Arrange the bench setup as shown in figure.

2. Switch on the microwave source and adjust the attenuator, frequency meter, etc to get maximum power.

3. Move the carriage probe in the slotted section in particular direction until there is a minimum deflection in the indicating meter is obtained note this distance as d1.

4. Once again move the carriage probe from its position d1 in particular direction in order to get minimum deflection on the indication meter. Note this distance as d2.

5. Calculate the guide wave length using formula 1, also find frequency of the wave using formula 2 and verify it with frequency meter.

RESULT:

Thus the wavelength & frequency of the wave is determined.

BENCH SETUP DIAGRAM OF WAVELENGTH & FREQUENCY MEASUREMENT:

SRI VENKATESWARA COLLEGE OF ENGINEERING AND TECHNOLOGY

DEPT. OF ECE

LED CHARACTERISTICS

AIM:

To find the VI characteristics of given LED.

COMPONENTS REQUIRED:

1. Optical trainer kit

2. Ammeter

3. Voltmeter

PROCEDURE:

1. Make the jumper settings as shown in figure.

2. Insert the sockets to connect the jumpers JP17 & JP16 as

shown in figure.

3. Keep the potentiometer Pr 10 to its minimum position.

4. By varying slowly Pr 10 to clock wise direction note down the readings between voltage and current.

5. Plot the graph VF Vs IF.

RESULT:

Thus the VI characteristics of LED were found and graph was plotted.

SEP UP DIAGRAM OF LED CHARACTERISTICS:

[pic]

Jp 16 Jp 17

TABULAR COLUMN:

|S.No. |FORWARD VOLTAGE |FORWARD CURRENT |

| |(VF in Volts) |(IF in mA) |

| | | |

MODEL GRAPH:

IF in mA

O VF in Volts

SRI VENKATESWARA COLLEGE OF ENGINEERING AND TECHNOLOGY

DEPT. OF ECE

CHARACTERISTICS OF LASER DIODE

AIM:

To find the output power (Po) versus forward current (IF) characteristics of LASER diode.

COMPONENTS REQUIRED:

1. Laser diode set

2. Fibre optic cable

3. PIN photo detector

4. Power supply for laser diode set

5. Digital multi meter (DMM) ----- 2Nos.

PROCEDURE:

1. Connect the fibre optic cable to TX unit and couple the laser light to the power meter on the RX unit. Select ACC mode of operation in the TX unit.

2. Set DMM to the 20V DC range and connect the DMM probes to the Vout and ground points on the RX unit. Now power meter is ready for use Po = (reading)/10dBm.

3. Set DMM to the 20V DC range and connect the DMM probes to the Vin and ground points on the TX unit. On the Tx unit. IF = Vo/(50).

4. Adjust the SET 1 of the TX knob to the extreme anti-clock wise position to reduce IF to zero.

5. Slowly turn the SET 1 knob clockwise to increase IF and Po readings. Take closer readings prior to and above the laser Threshold.

6. Plot the graph Po Vs IF on a semi log graph

RESULT:

Thus the characteristics of LASER diode was found and graph was plotted.

SEP UP DIAGRAM LASER DIODE CHARACTERISTICS:

[pic]

SET UP FOR ACC MODE

TABULAR COLUMN:

|S.No. |Vi |IF = Vi / 50 |Vo |IP = Vo / 50 |Po (dbm) = 10 log IP |

| | | | | | |

MODEL GRAPH:

Output

Power (Po)

O

Forward Current (IF)

SRI VENKATESWARA COLLEGE OF ENGINEERING AND TECHNOLOGY

DEPT. OF ECE

DIRECTIONAL COUPLER CHARACTERISTICS

AIM:

To find the characteristics of given directional coupler.

COMPONENTS REQUIRED:

1. Micro wave source

2. Klystron Mount

3. Isolator

4. Variable Attenuator

5. Directional coupler

6. Power Detector

7. Matched termination ----- 1 No

FORMULA:

1. Coupling factor of directional coupler C = 10 log (V1 / V3)

2. Directivity of directional coupler D = 10 log (V3 / V4)

3. Isolation of directional coupler I = 10 log (V1 / V4)

PROCEDURE:

1. Arrange the bench setup with out connecting directional coupler and measure the input power.

2. Now connect the directional coupler and note down the output power at port 2, port 3 & port 4.

3. Using the measured value find the characteristics of given directional coupler.

SCATTERING MATRIX:

0 S12 0 S14

S12 0 S23 0

S = 0 S23 0 S34

S14 0 S34 0

RESULT:

Thus the characteristics of given directional coupler was found and verified.

BENCH SETUP DIAGRAM OF DIRECTIONAL COUPLER CHARACTERISTICS:

3

4

1 DIRECTIONAL 2

COUPLER

SRI VENKATESWARA COLLEGE OF ENGINEERING AND TECHNOLOGY

DEPT. OF ECE

WAVE GUIDE PARAMETERS MEASUREMENT

AIM:

To measure the Q – factor of the given wave guide.

COMPONENTS REQUIRED:

1. Microwave source (klystron power supply)

2. Klystron Mount

3. Isolator

4. Variable Attenuator

5. Frequency meter

6. DUT

7. Power Detector

PROCEDURE:

1. Arrange the bench setup as shown in figure.

2. Vary the signal frequency in such a way that the maximum output is obtained in the detector.

3. This is due to the fact that DUT is having resonant frequency fo.

4. Now vary the frequency to obtain to obtain the half power frequency by varying the frequency of the signal.

5. In the similar way find other frequency end.

6. Using lower and upper cut – off frequencies calculate the bandwidth and Q – factor using the below equation.

Q = fo / bandwidth

RESULT:

Thus the Q – factor of the given cavity was determined and verified.

BENCH SETUP DIAGRAM OF WAVE GUIDE PARAMETERS MEASUREMENT:

SRI VENKATESWARA COLLEGE OF ENGINEERING AND TECHNOLOGY

DEPT. OF ECE

FERRITE DEVICES

AIM:

To find the characteristics of ferrite device – circulator.

COMPONENTS REQUIRED:

1. Microwave source (klystron power supply)

2. Klystron Mount

3. Isolator

4. Variable Attenuator

5. Frequency meter

6. Circulator

7. Power Detector

8. Matched termination ----- 1 No

FORMULA:

1. The S – matrix of 3 – port circulator is

0 0 1

S = 1 0 0

0 1 0

Where

S11 = s22 = s33 = 0

S12 = s23 = s31 = 0

S21 = 20log (V2 / V1)

S13 = 20log (V1 / V3)

2. Insertion loss = 10 log (p1/p2)

3. Isolation = 10 log (p1/p3)

PROCEDURE:

1. Arrange the bench setup with out connecting circulator and measure the input power.

2. Now connect the circulator and note down the output power at port 2 & port 3.

3. Substitute the values to estimate the S – matrix of circulator.

RESULT:

Thus the characteristics of given 3 – port circulator was obtained and verified.

BENCH SETUP DIAGRAM OF FERRITE DEVICES:

1 2

3

SRI VENKATESWARA COLLEGE OF ENGINEERING AND TECHNOLOGY

DEPT. OF ECE

MAGIC – TEE CHARACTERISTICS

AIM:

To find the characteristics of given Magic – Tee.

COMPONENTS REQUIRED:

1. Micro wave source(klystron power supply)

2. Klystron Mount

3. Isolator

4. Variable Attenuator

5. Frequency meter

6. Magic – Tee

7. Power Detector

8. Matched termination ----- 2 No’s

FORMULA:

0 0 1 1

0 0 1 -1

The S – matrix of the magic – tee is S =1/√ 2 1 1 0 0

1 -1 0 0

Where S13 = √ V1/V3

S14 = √ V1/V4

S23 = √ V2/V3

S24 = √ V2/V4

PROCEDURE:

1. Arrange the bench setup with out connecting magic – tee and

measure the input power.

2. Now connect the magic – tee and note down the output power

at port 2, port 3 & port 4.

3. Substitute the value of the port currents to obtain the scattering parameters of given magic – tee.

4. For various values of input power find the scattering matrix.

RESULT:

Thus the characteristics of given Magic – Tee was found and verified.

BENCH SETUP DIAGRAM OF MAGIC – TEE CHARACTERISTICS:

3

1 2

4

SRI VENKATESWARA COLLEGE OF ENGINEERING AND TECHNOLOGY

DEPT. OF ECE

INTENSITY MODULATION OF LASER OUTPUT THROUGH OPTICAL FIBRE

AIM:

To study the following characteristics of an intensity modulation of LASER output through optical fibre.

COMPONENTS REQUIRED:

1. Laser diode set

2. Fibre optic cable

3. Power supply for laser diode set

4. Function Generator

5. C R O

PROCEDURE:

1. Connect the fibre optic cable to TX unit and couple the laser light to the power meter on the RX unit. Select ACC mode of operation.

2. Take output from Function Generator (FG) and connect to the input of TX unit as well as to CH 2 of CRO.

3. Connect the output from RX unit to CH 1 of CRO.

4. Both the TX & RX knobs are kept in maximum position and vary the frequency from FG .

5. Take outputs from both CH’S of Amplitudes i.e. Vi & Vo.

6. Plot the graph between Vi & Vo.

RESULT:

Thus the characteristics of an intensity modulation of LASER output through optical fibre was found and graph was plotted.

SEP UP DIAGRAM OF INTENSITY MODULATION OF LASER OUTPUT THROUGH OPTICAL FIBER:

[pic]

SET UP FOR ACC MODE

TABULAR COLUMN:

|S.No. |INPUT VOLTAGE |OUTPUT VOLTAGE |

| |Vi in Volts |Vo in Volts |

| | | |

MODEL GRAPH:

Vo in

Volts

0 Vi in Volts

SRI VENKATESWARA COLLEGE OF ENGINEERING AND TECHNOLOGY

DEPT. OF ECE

GUNN DIODE CHARACTERISTICS

AIM:

To study the characteristics of Gunn Diode.

COMPONENTS REQUIRED:

1. Gunn Diode Power Supply

2. Gunn Diode

3. Pin Modulator

4. Isolator

5. Variable Attenuator

6. Frequency meter

7. Power Detector

PROCEDURE:

1. Arrange the bench setup as shown in figure.

2. Switch on the gunn power supply.

3. Initially give some gunn bias voltage, fix the attenuation and adjust the frequency meter to give maximum output.

4. Now keep the gunn bias in minimum position around 0.5V and increase it slowly.

5. For difference values of voltage measure the gunn diode current.

6. From the tabulation observed, plot the V-I characteristics.

RESULT:

Thus the characteristics of Gunn diode was found and verified and graph was plotted.

TABULAR COLUMN:

|S.No. |GUNN BIAS VOLTAGE (V in Volts) |OUTPUT CURRENT |

| | |(I in mA) |

| | | |

| | | |

| | | |

| | | |

| | | |

| | | |

| | | |

| | | |

| | | |

MODEL GRAPH:

I in mA

O V in Volts

BENCH SETUP DIAGRAM OF GUNN DIODE CHARACTERISTICS:

SRI VENKATESWARA COLLEGE OF ENGINEERING AND TECHNOLOGY

DEPT. OF ECE

FIBRE OPTIC DIGITAL LINK

AIM:

To study the fibre optic digital link.

COMPONENTS REQUIRED:

1. Digital trainer kit

2. Fibre cable

3. Dual trace CRO

4. Function Generator

PROCEDURE:

1. Make the jumper settings as shown in figure.

2. Insert the fibre into IR LED SRH 450v loop.

3. Now short the jumpers JP15, JP16, JP17 & JP20.

4. Connect the power cord to the kit and switch on the power supply.

5. Feed the power end to function generator to connector labeled as

Ext – TTL using connecting cables provided with kit.

6. Connect the circuit and observe the received signal.

7. Vary the frequency of the signal and observe the output.

RESULT:

Thus the fibre optic digital link was studied.

BLOCK DIAGRAM FOR DIGITAL FIBRE CABLE:

OPTICAL FIBRE

CABLE

LASER AVALANCHE

DIODE PHOTE DIODE

SEP UP DIAGRAM OF FIBRE OPTIC DIGITAL LINK:

Pr 10 Emitter Ground

Terminal of Q2 Amp Base Digital

Output of Q1 buffer output

JP 18 JP 20

SRI VENKATESWARA COLLEGE OF ENGINEERING AND TECHNOLOGY

DEPT. OF ECE

MAGIC – TEE AS MIXER

AIM:

To construct a Mixer using Magic - Tee.

COMPONENTS REQUIRED:

1. Micro wave source ------ 2 No’s

2. Klystron Mount ---------- 2 No’s

3. Isolator -------------------- 2 No’s

4. Variable Attenuator ----- 2 No’s

5. Magic – Tee -------------- 1 No

6. Matched termination ----- 1 No

PROCEDURE:

1. Arrange the bench setup as shown in fig.

2. Apply the signal 1 at port 4, signal 2 at port 3 of the

Magic – Tee.

3. Measure the output signal at port 2.

4. From the output verify the Mixer operation.

RESULT:

Thus Mixer using Magic – Tee was constructed and verified.

BENCH SETUP DIAGRAM OF MIXER:

Signal 1

S1 4

E – ARM

1 2 MIXED

OUTPUT

SIGNAL

H – ARM

S2 3

Signal 2

SRI VENKATESWARA COLLEGE OF ENGINEERING AND TECHNOLOGY

DEPT. OF ECE

CIRCULATOR AS MIXER

AIM:

To construct a Mixer using Circulator.

COMPONENTS REQUIRED:

1. Micro wave source ------ 2 No’s

2. Klystron Mount ---------- 2 No’s

3. Isolator -------------------- 2 No’s

4. Variable Attenuator ----- 2 No’s

5. Circulator ----------------- 1 No

6. Power Detector ---------- 1 No’s

PROCEDURE:

1. Arrange the bench setup as shown in fig.

2. Apply the signal 1 at port 1 and signal 2 at port 3 of the

circulator.

3. Measure the output signal at port 2.

4. From the output verify the Mixer operation.

RESULT:

Thus Mixer using Circulator was constructed and verified.

BENCH SETUP DIAGRAM OF CIRCULATOR AS DUPLEXER:

Signal 1 1 2 3 Signal 2

-----------------------

ISOLATOR

KLYSTRON MOUNT

KLYSTRON POWER SUPPLY

VARIABLE

ATTENUATOR

POWER DETECTOR

FREQUENCY METER

VARIABLE

ATTENUATOR

ISOLATOR

MICRO WAVE SOURCE

FREQUENCY

METER

DETECTOR

DETECTOR

DUT

(FIXED ATTENUATOR)

VARIABLE

ATTENUATOR

ISOLATOR

MICRO WAVE SOURCE

MICRO WAVE SOURCE

ISOLATOR

VARIABLE

ATTENUATOR

FREQUENCY

METER

SLOTTED

SECTION

MATCHED

TERMINATION

MATCHED

TERMINATION

SLOTTED

SECTION

FREQUENCY

METER

VARIABLE

ATTENUATOR

ISOLATOR

MICRO WAVE SOURCE

VSWR

METER

. 1

. 2

. 3

. 4

1 .

2 .

3 .

V

A

TX UNIT

ACC MODE

APC MODE

DMM

RX

UNIT

OFC

CABLE

DMM

MATCHED TERMINATION

(or)

DETECTOR

VARIABLE

ATTENUATOR

ISOLATOR

MICRO WAVE SOURCE

DETECTOR

(or)

MATCHED TERMINATION

VARIABLE

ATTENUATOR

ISOLATOR

MICRO WAVE SOURCE

FREQUENCY

METER

DUT

DETECTOR

VARIABLE

ATTENUATOR

FREQUENCY

METER

DETECTOR

(or)

MATCHED TERMINATION

CIRCULATOR

ISOLATOR

MICRO WAVE SOURCE

MATCHED TERMINATION

(or)

DETECTOR

MATCHED TERMINATION

(or)

DETECTOR

FREQUENCY

METER

MAGIC

TEE

VARIABLE

[pic][?]9FGHio¬­°±ÄÓÞ

! k u ™ š › Ý Þ

KLefƒ£úõíáÎż³¼ª¼ª¢š’š¢š¢š¼šŠšŠ‚ŠzŠzŠrªf^z

hª|ÞCJaJhª|Þhž( 5?CJaJ

hI[?]wCJaJ

h¬C^CJaJ

hyk’CJaJ

hž( CJaJ

hV«CJaJ

hMk¸CJaJ

h/¥CJaJATTENUATOR

ISOLATOR

MICRO WAVE SOURCE

DETECTOR

(or)

MATCHED TERMINATION

MATCHED TERMINATION

(or)

DETECTOR

TX UNIT

ACC MODE

APC MODE

CRO

RX

UNIT

OFC

CABLE

FG

PIN

MODULATOR

VARIABLE

ATTENUATOR

ISOLATOR

GUNN

DIODE

FREQUENCY METER

POWER DETECTOR

GUNN POWER SUPPLY

VARIABLE

ATTENUATOR

ISOLATOR

MICRO WAVE SOURCE – 1

VARIABLE

ATTENUATOR

ISOLATOR

MICRO WAVE SOURCE – 2

MATCHED TERMINATION

MAGIC TEE

MICRO WAVE SOURCE – 1

VARIABLE

ATTENUATOR 2

ISOLATOR 1

DETECTOR

MICRO WAVE SOURCE – 2

ISOLATOR 2

VARIABLE

ATTENUATOR 1

CIRCULATOR

FREQUENCY

METER

VSWR

METER

ENCODER

DIGITAL

INFORMATION

SOURCE

LASER DRIVE

CIRCUIT

AMPLIFIER

DECODER

ORIGINAL

DIGITAL

FORM

................
................

In order to avoid copyright disputes, this page is only a partial summary.

Google Online Preview   Download

To fulfill the demand for quickly locating and searching documents.

It is intelligent file search solution for home and business.

Literature Lottery

Related searches