SCORE JEE (A) JEE-Maacs - ALLEN
[Pages:22]SCORE JEE (Advanced) JEE-Mathematics
HOME ASSIGNMENT # 05
SOLUTION
1. Ans. (B)
Case-I :
Two rows contain 2 letters each and one row
has 1 letter.
Possible ways = 4 ? 3c2 + 4c2 ? 3c1 + 4c2 ? 3c2 ? 2 = 12 + 18 + 36 = 66
Case-II :
One row has 3 letters and two others have 1
letter each.
Possible ways = 4c3 ? 3c1 ? 2c1 + 4c1 ? 2c1
5.
= 4 ? 3 ? 2 + 4 ? 2 = 24 + 8 = 32
Hence total arrangements = (66 + 32)5! = 5880
2!
2. Ans. (D)
Suppose we consider {Ace, 2, 3, 4, 5} for each
card we have 4 possible suits. So, total ways of
such a straight = (4)5 = 210.
But in this we have counted those cases when
all are of same suit = 4.
6.
So total ways of such a straight = 210 ? 4
But we have 10 such straights - {Ace, 2, 3, 4, 5},
{2, 3, 4, 5, 6} ........ {10, J, Q, K, Ace}
So, total ways = 10 . (210 ? 4) = 10200.
3. Ans. (B)
Case-I :
a, b, c having exactly one 5 with : (i) 2 even digits (different or same) :
4
C2.3!
+4
C1.
3! 2!
=
48
(ii) one digit divisible by 4 and one odd :
2 C1.4 C1. 3! = 48
Case-II :
a, b, c having exactly two 5 with :
(i) one digit divisible by 4 : 2 . 3! = 6
2!
Hence number of ways = 102
4. Ans. (A) By the graph it is clear that
NODE6\E_NODE6 (E)\DATA\2013\IIT-JEE\TARGET\MATHS\HOME ASSIGNMENT (Q.BANK)\SOLUTION\HOME ASSIGNMENT # 05
HS
1
MATHEMATICS
cos2 < sin3 < cos1< sin1 \ sin1 is greatest
sin1
cos1 sin3 ?1
cos2
(3, sin3)
p/2
p
1
23
Ans. (A) tan q = k
3 tan q - tan3 q
3
3= k
1 - 3 tan2 q
3
tan3 q - 3k tan2 q - 3 tan q + k = 0
3
3
3
?
tan
a 3
tan
b 3
=
?3.
Ans. (B)
R
=
log2
sin
? ??
p 5
? ??
+
log2
sin
? ??
2p 5
? ??
+
log2
sin
? ??
3p 5
? ??
+
log2
sin
? ??
4p? 5 ??
? log25
R
=
log2
? ??
sin
p 5
.sin
2p 5
.sin
3p 5
.sin
4p ? 5 ??
? log25
= log2
? ??
sin2
p 5
.sin2
2p ? 5 ??
? log25
= log2
1 4
??? 2
sin2
p 5
.2
sin2
2p ? 5 ??
? log25
1
= log2 4 {(1 ? cos 72?) (1 ? cos144?)} ? log25
1
= log2 4 {(1 ? sin18?)(1 + cos 36?)}?log25
=
log2
1 4
????????1 ?
5? 4
1? ??
? ??1
+
5 + 1? ??
4
??
? ??
?
log25
= log2
1 4
?5?? 4
5? ??
?5+
? ?
4
5? ? ?
? log25
= log2
1 4
? ??
20 ? 4 ? 4??
?
log25
=
log2
? 5? ?? 16??
? log25
= log25 ? log216 ? log25 = ? 4.
JEE-Mathematics
7. Ans. (D)
11. Ans. (B)
6cos5q ? 6cos4q ? 5cos3q + 5cos2q + cosq ? 1 = 0
q1 + q2 + q3 = 2p
A
? 6cos4q(cosq ? 1) ? 5cos2q(cosq ? 1)
+ (cosq ? 1) = 0 ? (cosq ? 1){6cos4q ? 5cos2q +1} = 0 ? (cosq ? 1)(3cos2q ? 1)(2cos2q ? 1) = 0
cos q = 1; cos q = ? 1 ; cos q = ? 1
3
2
?
?
?
q1 + q2 + q3 = p 222
q1 P q2
q3
B
C
tan q1 + tan q2 + tan q3 = tan q1 tan q2 tan q3
2
2
2
222
rx
=
s tan q1 ; 2
ry
=
s tan q2 ; 22
rz
=
s tan q3 32
0
4
4
? 8 solutions
rx s
+ 2ry s
+ 3rz s
=
6rx ry rz s3
8. Ans. (D) 3sin2x ? sinx + ln (sgn(cot?1x)) = 0 Q cot?1 x ? (0, p) \ sgn(cot?1x) = 1 ? ln (sgn(cot?1x) = 0 Now, 3sin2x ? sinx = 0
1
sinx = 0 or 3 sinx = 0 at x = ? p, 0, p
rx 6
+ ry + rz 32
=
rx ry rz s2
12. Ans. (B)
sinx ? 3sin 2x + sin3x = cosx ? 3cos2x + cos3x
? 2sin2xcosx ? 3sin2x = 2cos2x cosx ? 3cos2x
? sin2x(2cosx ? 3) = cos2x(2cosx ? 3)
? (2cosx ? 3)(sin2x ? cos2x) = 0
1
sinx = at x = a, b; a ? (0, p/2)
\
cosx
=
3 2
or tan2x = 1 with cos2x ? 0
3
& b ? (p/2,p)
? 2x = np + p with 2x ? (2k + 1) p
\ Number of solutions in [?p, p] is 5
4
2
9. Ans. (A)
\
x =
np + p 28
Let the boxes be B1, B2, B3, B4. Let us assume 13. Ans. (B)
that two specific balls have been put in box Bi
(i = 1,2,3,4). It means in box Bi we have to put 3 balls from
1
y+ y ?2?
y+1 ? 2 y
the remaining 18 balls. Thus the probability that the two specific balls
sinx + cosx = 2 is only possible case. When y = 1
have been put in the particular box
P(Bi ) =
18 C3 20 C5
= 5?4 20 ?19
1 =
19
10. Ans. (A)
1
1
? cosx 2 +sinx 2 =1
?
cos
? ??
x
-
p 4
? ??
= cos0
NODE6\E_NODE6 (E)\DATA\2013\IIT-JEE\TARGET\MATHS\HOME ASSIGNMENT (Q.BANK)\SOLUTION\HOME ASSIGNMENT # 05
sin A = sin B and cos A = cos B
?
2sin???
A
2
B
???cos???
A
+ 2
B
???
=
0
&
2sin???
A
+ 2
B
???sin???
B
2
A
???
=
0
?
sin???
A
2
B
???
=
0
?
x - p = 2np 4
?
x = 2np +
p 4
\
at
n = 0,
x
=
p 4
,
y = 1
14. Ans. (A) AH2 + BC2 = 4R2 cos2 A + 4R cos2 A = 4R2
?
1 64
(AH2 + BC2) (BH2 + AC2) (CH2 + AB2)
as sin A + B & cos A + B cannot be zero
2
2
= 64R6 = R6 = 64.
64
simultaneously.
HS
2
15. Ans. (D) tan A + tanB + tanC = (tanA tanB)tanC
tanA + tanB + tanC =
3 4
tanC
given that
tanA tanB =
3 4
?
tan
B =
3 4 tan A
tanA +
3 4 tan A
+ tanC =
3 4
tanC
Let tanA = t
t +
3 4t
+
1 4
tanC
=0
4t2 + (tanC)t + 3 = 0
t is real ? D ? 0
tan2C ? 4 (3)(4) ? 0
tan2C ? 48 Possible only for D option because
tan2 750 = (2+ 3 )2 = 7+2 3
16. Ans. (C)
l = tan x - cot y
l2 = tan2 x + cot2 y - 2 tan x cot y
2 tan x cot y = tan2 x + cot2 y - l2
tan4 x + cot4 y + 8 = 4 tan2 x + 4 cot2 y - 4l2
(tan2 x - 2)2 + (cot2 y - 2)2 + 4l2 = 0
possible if 17. Ans. (B)
tan x = 2 ; cot y = 2 ; l = 0
Total ? (Dearrangement)
4! ? (Dearrangement of 4 objects)
24 ? 9 = 15 18. Ans. (B)
NODE6\E_NODE6 (E)\DATA\2013\IIT-JEE\TARGET\MATHS\HOME ASSIGNMENT (Q.BANK)\SOLUTION\HOME ASSIGNMENT # 05
No. of digits 2 3 3 3 3 3
Single digit number = 2 Two digit number = 2 ? 3 Three digit number = 2 ? 3 ? 3 Four digit number = 2 ? 3 ? 3 ? 3 Five digit number = 2 ? 3 ? 3 ? 3 ? 3 Six digit number = 2 ? 3 ? 3 ? 3 ? 3 ? 3
HS
JEE-Mathematics
\ Total numbers
= 2 + 6 + 18 + 54 + 162 + 486 = 728 19. Ans. (D)
P(atleast two digit same) = 1 ? P(All digits different)
=
1
-
9.9.8 900
=
7 25
20. Ans. (D)
2(2cos2x -1) + 3 - 4cos2x + (2cos2 2x -1) = 2
or 2(2 cos 2x - 1) + 2(1 - cos 2x)2 = 2 ? 2 cos 2x - 1 + 1 - cos2x = 1 or cos2x = 1 \ 2x = 2np, n ? I orx = np
21. Ans. (A)
A A D H I K R words starting from A = 6! = 720
words starting from
D,
H,
I,
K=
? ? ?
6! 2!
??.4 ?
= (360)4 =1440
words starting from RAA = 4! = 24
RADA = 3! = 6
RADHA = 2! = 2
RADHIAK = 1
\ Number of words before RADHIKA = 2193
22. Ans. (B)
Each of the N persons from a pair with (N ? 3) person (i.e. excluding the person himself and the adjacent two)
So total number of pairs that can be formed
=
N(N - 3) 2
Total
time
they
sing =
N(N - 3) ? 2 2
= 28
? on solving N = 7 or ? 4
? N=7 23. Ans. (D)
x = np ? tan?13
(as N > 0) ? tanx = ?3
2 tan x 3
Now, tan2x = 1 - tan2 x = 4 and
1
1
cosx = ?
=? 1 + tan2 x
10
on substituting these values in the given
equation, we find only cosx = ? 1 satisfies
10
3
JEE-Mathematics
the equation, so equation holds true for tanx 28. Ans. (D)
1
= ?3 and cosx = ?
10
9! = 27 ? 34 ? 5 ? 7 odd factors of the form 3m + 2 are neither
which is possible if x lies in II quadrant.
multiple of 2 nor multiple of 3. So the factors
So, n must be odd integer. 24. Ans. (C)
may be 1, 5, 7, 35 of which 5 and 35 are of the
x + y ? 5
x, y ? 1
form 3m + 2, their sum is 40.
x + y ? 3 x + y + z = 3
x, y ? 0 x, y, z ? 0
29. Ans. (A)
-p ? psin x ? p
? -1 ? cos (psin x) ? 1
number of non-negative integral solutions of
the above equation is 3+3?1C3?1 = 5C2 = 10 number of integral points which lies inside or
?
-1
?
sin
? ??
p 2
(cos
p
sin
x
)
? ??
?
1
?
-p
?
p
sin
? ??
p 2
cos
(p
sin
x
) ???
?
p
on the square is 8.
? ?1 ? y ? 1
i.e (1,1) (1,2) (1,3) (2,1) (2,2) (2,3) (3,1) (3,2) 30. Ans. (C)
\
Required probability
is
=
2 10
=
1 5
1
sinx ? 5 + 1
25. Ans. (A) (q) = 3 + 2sin2q ? 3sin2q = 3 + 1 ? cos2q ? 3sin2q
? sin x ? 5 - 1 ? sin x ? sin p
4
10
= 4 ? (cos2q + 3sin2q)
- 10 ? cos2q + 3 sin 2q ? 10 -(cos2q + 3sin2q) ? 10
p
9p
10 10
( 5 - 1) 4
NODE6\E_NODE6 (E)\DATA\2013\IIT-JEE\TARGET\MATHS\HOME ASSIGNMENT (Q.BANK)\SOLUTION\HOME ASSIGNMENT # 05
4 - (cos 2q + 3sin2q) ? 4 + 10
log(4+ 10) (q) ? 1
26. Ans. (A)
tan 1+
500? + 2 tan 500?
tan tan
470? 490?
=
tan140? + 2 tan110? 1 + tan140? tan130?
- tan 40? - 2cot20?
= 1 + (- tan 40?)(- cot 40?)
=
-
1 2
? ??
2 tan 20? 1 - tan2 20?
+
2 tan 20?
? ??
=
-
1 2
? ??
1
2t - t2
+
2 t
? ??
1
= t(t2 -1) 27. Ans. (C)
A > B 3sinx ? 4sin3x = k ? sin3x = k
A & B are roots of sin3x = k ? 3B = sin?1 k, 3A = p ? sin?1 k Now C = p ? (A + B)
=
p
-
? ??
p 3
-
1 3
sin-1
k
+
1 3
sin-1
k
? ??
=
2p 3
x
?
???1p0,
9p? 10 ??
general solution
???2kp
+
p, 10
2kp
+
9p? 10??
31. Ans. (A)
3 + 3 = 28 sin2x+2 cos2 x
1-sin 2x +2 sin2 x
1? sin2x + 2sin2x
= 1 ? (sin2x ? 2sin2x)
= 3 ? (sin2x + 2cos2x)
\
( ) 3 + 3 .3 sin2x+2cos2 x
3 - sin 2 x+2 cos2 x
= 28
Put 3 = t sin2x+2cos2 x
t + 27 = 28 t
t2 ? 28t + 27 = 0
t = 1, 27 \ sin2x + 2cos2x = 0, 3 ? 2sinx cosx + 2cos2x = 0, 3
Case-I : 2cosx(sinx + cosx) = 0 ? cosx = 0, tanx = ?1
Case-II : 2cosx(sinx + cosx) = 3 ? cos2x + sin2x = 2 which is not possible
HS
4
JEE-Mathematics
NODE6\E_NODE6 (E)\DATA\2013\IIT-JEE\TARGET\MATHS\HOME ASSIGNMENT (Q.BANK)\SOLUTION\HOME ASSIGNMENT # 05
32. 33.
34. 35.
HS
from case-I general solution is
x = (2K + 1) p , Kp - p , K ? I
2
4
Ans. (C)
2079000 = 23 ? 33 ? 53 ? 7 ? 11
For the divisors to be even and divisible by
15; 2, 3 and 5 must occur atleast once.
Therefore the total number of required divisors
are 3 ? 3 ? 3 ? 2 ? 2 = 108
Ans. (D)
A
36.
2A A 33
B
D
C
Using sine rule in DABD
sin 2A 3
=
sin B
BD AD
.......... (i)
Using sine rule in DADC
sin C AD
=
sin A 3
CD
.......... (ii)
37.
from (i) & (ii)
BD sin B CD sin C
sin 2A = sin A
38.
3
3
?
sin B sin C
=
CD BD
sin 2A 3
sin A
=
2 cos
A 3
3
Ans. (C)
Given set of numbers is {1, 2, ........ 9} is which
4 are even and 5 are odd, so in the given product
it is not possible to arrange to substract only even number from odd number. There must be 39.
atleast one factor involving substraction of an
odd number from another odd number. So
atleast one of the factor is even. Hence product
is always even.
\ Required probability = 1.
Ans. (D)
cos6x + sin4x ? 1 + 2x4
5
(x) = (1 ? sin2x)3 + (sin2x)2 Let sin2x = t g(t) = (1 ? t)3 + t2, where 0 ? t ? 1 g'(t) = 2t ? 3(1 ? t)2 = ?{3t2 ? 8t + 3}
=
?
? ??? t -
43
7
? ???
? ???
t
?
4+ 3
7? ???
? g(t) ? g(0) ? g(t) ? 1
? (x) ? 1 & 1 + 2x4 ? 1
? Inequality holds only for x = 0.
Ans. (A)
We have tan(A + B) tan(A ? B) = 1
?
2A = p or A = p
2
4
Also
tan
? ??
p 4
+
B
? ??
+
tan
? ??
p 4
-
B
? ??
=
4
?
1 + tan B + 1 - tan B = 4 1 - tan B 1 + tan B
?
1 - tan2 B 1 1 + tan2 B = 2
or
cos2B = 1 2
Ans. (C)
\ B=p
6
abc(a + b + c) = 1 4RD.2s
D
D
= 8Rs = 8R ? 8.2 = 4
D
r
(Q R ? 2r)
Ans. (D)
Number must be divisible by 3 & 5 as the sum
is 48 so every number will be divisible by 3.
For divisibility of 5, unit digit must be '5'.
(i) 99988 5 ? 5! = 10
2! 3!
(ii) 99997 5
? 5! = 5 4!
-------- 15
Ans. (D)
Case
(i) x1x2x3x4x5 (ii) x1x1x2x3x4 (iii) x1x1x1x2x3 (iv) x1x1x2x2x3 (v) x1x1x1x2x2
Number of ways
6C5
= 6
3C1.5C3 = 30
2C1 .5C2 = 20
3C2 .4C1 = 12
2C1.2C1 = 4 ------
JEE-Mathematics
Total 72 40. Ans. (C)
cos2 (px) - sin2 (py) = 1 2 1
? cosp(x + y) cosp(x ? y) = 2
In each way x1 & x3 can be interchanged
\ Number of required triplets are
2 ? 20 = 40
Case-II : When numbers are equal x1 = x2 = x3 then number of triplets = 10
p1
1
? cosp(x + y) cos 3 = 2 (Q x ? y = 3 )
Hence number of vectors ar are 40 + 10 = 50
? cosp(x + y) = 1 ? x + y = 2n, n ? I 44. Ans. (C)
1
\ x + y = 2n & x ? y = 3
Without any loss of generality assume the wts to be 1, 2, 3, 4, 5, 6
1
1
? x=n+ 6, y=n? 6, n?I
It is obvious that 1 should be at the top of pyramid. If 2, 3 make second row then
for n = ?1,
(x,
y)
=
? ??
-
5, 6
-
7 6
? ??
41. Ans. (D)
First of all select 1 + 2 + 3 + 4 = 10 pens out of
25 identical pens and distribute them as desired.
2 4
1 3-------2!
5 6-------3!
? 12 ways
If 2, 4 make second row
It can happen only in one way. Now let x1, x2, x3 and x4 pens are given to them respectively (here x1, x2, x3, x4 ? 0). As now any one can get any number of pens.
1
2
4-------2
? 4 ways
3
5 6-------2
Total number of ways = 16
\ non-negative integral solution of
45. Ans. (B)
x1 + x2 + x3 + x4 = 15 will be the number of ways so 15 + 4 ? 1C4 ? 1 = 18C3. 42. Ans. (B)
The prime digits are 2, 3, 5, 7.
x, y, z, w = k p ? [0, 10]
2
Q ? 120 2 3 4 5 sin2 x cos2 y sin2 z cos2 w
If we fix 2 at first place, then other eleven places
? ? 2. 3. 4. 5 2 3 4 5 sin2 x cos2 y sin2 z cos2 w
NODE6\E_NODE6 (E)\DATA\2013\IIT-JEE\TARGET\MATHS\HOME ASSIGNMENT (Q.BANK)\SOLUTION\HOME ASSIGNMENT # 05
are filled by all four digits. So, total number of ways = 411. Now sum of 2 consecutive digits is prime when consecutive digits are (2,3) or (2, 5), then 2 will be fixed at all alternate places.
222222
So, favourable cases = 26
26 1
\ Required probability = 222 = 216 43. Ans. (C)
ar .br = 0
Taking logarithm both sides we have ? sin2 x log 2 + cos2 y log 3 + sin2 z log 4
+ cos2 w log5 ? log2 + log3 + log4 + log5 ? cos2 x log 2 + sin2 y log 3 + cos2 z log 4
+ sin2 w log 5 ? 0 which is possible only when
cos2 x = 0 ? x = mp + p ,m ? I
2
sin2 y = 0 ? y = np, n ? I
cos2 z = 0 ? z = rp + p , r ? I
2
? x1 ? 2x2 + x3 = 0 ? x1 + x3 = 2x2 x1, x2, x3 are selected from the set {1, 2, 3,.....,10},
Case-I : 1, 3, 5, 7, 9 = 5 numbers
2, 4, 6, 8, 10 = 5 numbers
3 numbers in A.P. can be selected by 5C2 + 5C2 = 20 ways.
6
sin2 w = 0 ? w = pp , p ? I
Q
x, y, z, w ? [0, 10]
?
x =
p , 3p 22
, 5p 2
? y = 0, p, 2p, 3p
(three solutions) (four solutions)
HS
JEE-Mathematics
NODE6\E_NODE6 (E)\DATA\2013\IIT-JEE\TARGET\MATHS\HOME ASSIGNMENT (Q.BANK)\SOLUTION\HOME ASSIGNMENT # 05
46. 47. 48.
49.
HS
?
z
=
p 2
,
3p 2
,
5p 2
(three solutions)
? w = 0, p, 2p, 3p (four solutions)
Hence the number of ordered 4-tuple (x, y, z,
w) is 3 . 4 . 3 . 4 = 144
And
probability
=
144 74
Ans. (D)
Area OALKO
Probability = Area OABC
C (0,4)
B(4,4) KL
4
? xdx
= 0
4?4
x
O
A(4,0)
=
2 3
??
x3
/
2
??
=
16 3
=
1
16 16 3
50.
Ans. (B)
1324 2143 3142 4132
1432 2413 3214 4113
51.
.
2431 3241 4321
Total 11 numbers
Ans. (C)
(i) For two digit number = 9 ? (11, 22,....99) (ii) For three digit number all same = 9
(111, 222, ......)
(iii) For 3 digit when 2 digit same and 1 different.
(a) ? ? 0 or ? 0 ? = 9 + 9 = 18
(b) without zero 3C . 9 . 8 = 216 1
Total 216 + 18 + 9 + 9 = 252
p =
252 999
=
28 111
Ans. (B)
C
p/2
B
D
A O p/2
?1
F
E
p
3p/2 2p
(x) = max(cosx, cos?1(cosx))
A1 = Area of ABCDEFA = 2 . area of trapezium ABCFA
7
= 2 . 1 . (AB + CF).AF = 3p2
2
4
p/2
O -p/2
A
B
C
p
|||||||||||||
|||||||||||||2p
D
g(x) = min(sinx, sin?1(sinx))
A2 = Area of triangle ABCDA
1
=2
.
AC . BD = 1
2
.
p
.
p 2
= p2
4
?
A2 = 1 A1 3
Ans. (A,B,C)
Ec = F; E ? Ec = Q; P(E) + P(not E) = 1; E
and Ec can always be equally likely
Ans. (A,B)
B1 = Journey by car B2 = Journey by motor cycle B3 = Journey on foot
1 P (B1) = 2 ;
1 P (B2) = 6 ;
1 P (B3) = 3 Let A = accident occurs
P (A
B1
)
=
1 5
;
P (A
B2 )
=
2 ; P (A
5
B3 )
1 =
10
P (A) = P(A ? B1) + P(A ? B2) + P(A ? B3)
= P(B1) ? P (A B1)+ P(B2) ? P (A B2 )
+ P(B3) ? P (A B3 )
= 1?1 + 1?2 + 1? 1 2 5 6 5 3 10
3 2 1 61 = 30 + 30 + 30 = 30 = 5 ? (A) is correct
P (B1
A) =
1 ?1 25 1
=
1 ?5 10 1
=
1 2
5 ? (B) is correct
JEE-Mathematics
1 2
P (B2
A) =
? 65
1
=
2 ?5 30 1
=
1 3
5
? (C) is incorrect
P
(B3
A) =
1? 1 3 10
1
=
1 ?5 30 1
=
1 6
5
? (D) is incorrect
52. Ans. (A,B,C,D)
54. Ans. (C,D)
2sinx ? 2cos2x ? sin2x ? 2sinx sin2x + 2cosx = 0
2sinx ? 2cosx ? sin2x ? cosx + cos3x + 2cosx = 0 2sinx(1 ? cosx) + 4cos3x ? 3cosx
? 2(2cos2x ? 1) + cosx = 0 2sinx(1 ? cosx) + 4cos3x ? 4cos2x ? 2cosx + 2 = 0 2sinx(1? cosx)+ 4cos2x(cosx?1) ?2(cosx ?1) = 0 (1?cosx){2sinx +2 ?4 (1?sin2x)} =0 (1?cosx){4sin2x + 2 sinx?2} = 0
P(A) + P(B) ? P(A ? B) = 0.8
(1?cosx)(sinx + 1)(2sinx ? 1) = 0
\ P(A ? B) = 0.5 + 0.4 ? 0.8 = 0.1
P(A ? B) = P(B) ? P(A ? B)
= 0.5 ? 0.1 = 0.4 ? (A) is correct
( ) P(B ? A)
0.4
0.4 2
P B A = P(A) = 1- P(A) = 0.6 = 3
? (B) is correct P(A) ? P(B) = 0.2
? P(A ? B) < P(A) ? P(B)
? (C) is correct
x = 0,
2p
,
3p 2
,
p 6
,
5p 6
55. Ans. (A,B,C,D)
(2n) !
Total number of permutations =
(n !)2
= 2nc n
Also 2nc = 2n n ! [1 . 3 . ...... (2 n - 1) ]
n
(n !)2
2n [1 . 3 . ...... (2 n - 1) ]
=
n!
P(A or B but not both) = 0.9 ? 2 ? 0.1 = 0.7
Similarly (B), (D) follows .
53. Ans. (A,B,C)
Hence (A), (B), (C), (D).
cos2x ? sin2x = (cosx ? sinx) (1+sinx cosx) 56. Ans. (A,D) cos x ? sinx =0 or cos x + sinx= 1+ sinx cosx
cosx = sinx
(cos x + sin x)2 - 1
or (cosx+ sinx) = 1+
2
tanx = 1
Let cosx + sinx = t
(A) C 6+4 4 -1 C 10 +4-1 4 -1
=
9 C3 13 C3
= 42 143
(D)
P(A ? B) P(B)
=
9 C3 13 C3
x = np + p ,n ? I 4
t =1 + t2 - 1
2
t2 ?2 t+1 = 0 t =1 sinx + cosx =1
1
11
cosx . + sinx. =
2
22
57. Ans. (A,B,C,D)
P(A) = 9 ; P(B) = P(A ? B) = 9 ? 9 = 81
10
10 10 100
P
? ??
A B
? ??
=
P(A ? B) P(B)
=
9?1 10 10 1 - 81
100
NODE6\E_NODE6 (E)\DATA\2013\IIT-JEE\TARGET\MATHS\HOME ASSIGNMENT (Q.BANK)\SOLUTION\HOME ASSIGNMENT # 05
cos
? ??
x
-
p? 4 ??
=cos
p 4
x?
p 4
=
2np
?
p 4
x=2np
+
p 2
x= 2np
P(A ? B) = P(A) + P(B) - P(A ? B) = 9 10
58. Ans. (A,D) (A) Digits at unit places of 4m are 4 or 6 Digits at unit places of 3n are 3, 9, 7, 1 For divisibility by 5 ; select (4, 1) or (6, 9) at unit places
HS
8
................
................
In order to avoid copyright disputes, this page is only a partial summary.
To fulfill the demand for quickly locating and searching documents.
It is intelligent file search solution for home and business.
Related download
- techniques of integration whitman college
- double angle power reducing and half angle formulas
- Лекция 7 Тригонометричнифункции
- trigonometric identities miami
- transformaciones trigonomÉtricas de producto
- trigonometry identities i introduction math plane
- practice problems trig integrals solutions
- 3 5 doubleangleidentities all in one high school
- score jee a jee maacs allen
- double angle identity practice weebly
Related searches
- credit score to get a loan
- credit score needed to buy a car
- what is a good fico score 2019
- credit score needed to lease a car
- what is a good credit score 2019
- credit score to get a mortgage
- what is a good credit score 2020
- find the z score of a number
- how to use a z score table
- how to read a z score chart
- what is a good sat score 2018
- what is a good sat score 2017