Section 6.2--Trigonometric Integrals and Substitutions
[Pages:20]Section 6.2 Trigonometric Integrals and Substitutions
Trigonometric Integrals and Substitutions
2010 Kiryl Tsishchanka
This section consists of two parts: Part I: Trigonometric Integrals. We will distinguish three main cases:
Case A: Integrals of type
sinm x cosn xdx
where m and n are nonnegative integers.
METHOD OF INTEGRATION: (i) If m is odd, then u = cos x. (ii) If n is odd, then u = sin x. (iii) If both m and n are even, then use the identities
sin2
x
=
1 (1
-
cos 2x),
cos2 x
=
1 (1 +
cos 2x)
2
2
or(and) sometimes
sin x cos x
=
1 2
sin 2x
EXAMPLE 1: Find sin3 xdx.
Solution: We have
cos x = u
sin3 xdx =
sin2 x ? sin xdx =
(1
-
cos2
x)
sin
xdx
=
d cos x = du
- sin xdx = du
sin xdx = -du
= - (1 - u2)du = -u + 1u3 + C = - cos x + 1 cos3 x + C
3
3
EXAMPLE 2: Find sin5 xdx.
1
Section 6.2 Trigonometric Integrals and Substitutions
EXAMPLE 2: Find sin5 xdx.
2010 Kiryl Tsishchanka
Solution: We have
sin5 xdx = sin4 x ? sin xdx = (sin2 x)2 sin xdx = (1 - cos2 x)2 sin xdx
cos x = u
=
d cos x = du
=
-
(1 - u2)2du = -
(1 - 2u2 + u4)du
- sin xdx = du
sin xdx = -du
= -u + 2u3 - 1 u5 + C = - cos x + 2 cos3 x - 1 cos5 x + C
35
3
5
EXAMPLE 3: Find sin2 x cos3 xdx. Solution: We have
sin2 x cos3 xdx = sin2 x cos2 x ? cos xdx = sin2 x(1 - sin2 x) cos xdx
sin x = u
= d sin x = du =
cos xdx = du
u2(1 - u2)du =
(u2 - u4)du = 1u3 - 1 u5 + C = 1 sin3 x - 1 sin5 x + C
35
3
5
EXAMPLE 4: Find 3 sin x cos5 xdx.
2
Section 6.2 Trigonometric Integrals and Substitutions
EXAMPLE 4: Find 3 sin x cos5 xdx.
2010 Kiryl Tsishchanka
Solution: We have 3 sin x cos5 xdx =
=
3 sin x cos4 x ? cos xdx = 3 sin x(cos2 x)2 ? cos xdx
sin x = u
3 sin x(1 - sin2 x)2 ? cos xdx = d sin x = du =
cos xdx = du
3 u(1
-
u2)2
du
= u1/3(1 - 2u2 + u4)du = (u1/3 - 2u2+1/3 + u4+1/3)du
= (u1/3 - 2u7/3 + u13/3)du = u1/3+1 - 2 u7/3+1 + u13/3+1 + C 1/3 + 1 7/3 + 1 13/3 + 1
= u4/3 - 2 u10/3 + u16/3 + C 4/3 10/3 16/3
=
3 4
u4/3
-
3 5
u10/3
+
3 16
u16/3
+C
= 3 sin4/3 x - 3 sin10/3 x + 3 sin16/3 x + C
4
5
16
EXAMPLE 5: Find sin2 x cos2 xdx.
Solution: We have
sin2 x cos2 xdx = (sin x cos x)2dx =
1
2
1
sin 2x dx =
sin2 2xdx = 1
1(1 - cos 4x)dx
2
4
42
4x = u
=
1 8
(1
-
cos 4x)dx
=
d(4x) = du 4dx = du
=
1 32
(1
-
cos u)du
=
1 32
(u
-
sin u)
+
C
=
1 32
(4x
-
sin
4x)
+
C
dx
=
1 4
du
EXAMPLE 6: Find cos4 xdx.
3
Section 6.2 Trigonometric Integrals and Substitutions
EXAMPLE 6: Find cos4 xdx.
2010 Kiryl Tsishchanka
Solution: We have cos4 xdx = (cos2 x)2dx =
1 + cos 2x 2 dx = 1 (1 + cos 2x)2dx
2
4
= 1 (1 + 2 cos 2x + cos2 2x)dx = 1
4
4
1 + 2 cos 2x + 1 (1 + cos 4x) dx 2
=
1 4
3 2
+
2
cos
2x
+
1 2
cos
4x
dx
=
1 4
?
3 2
x
+
1 4
?
2
?
1 2
sin
2x
+
1 4
?
1 2
?
1 4
sin
4x
+
C
=
3 8
x
+
1 4
sin
2x
+
1 32
sin
4x
+
C
Case B: Integrals of type
tanm x secn xdx
Midterms where m and n are nonnegative integers.
METHOD OF INTEGRATION: (i) If m is odd, then u = sec x. (ii) If n is even, then u = tan x. (iii) In other cases the guidelines are not as clear-cut.
EXAMPLE 7: Find tan xdx.
Solution 1: We have
cos x = u
tan xdx =
sin cos
x x
dx
=
1 cos x
? sin xdx
=
d cos x = du - sin xdx = du
=
-
1 u
du
sin xdx = -du
= - ln |u| + C = - ln | cos x| + C = ln | cos x|-1 + C = ln | sec x| + C
Solution 2: We have
tan xdx =
sec x = u
tan x sec sec x
x
dx
=
d sec x = du
=
sec x tan xdx = du
1 u
du
=
ln
|u|
+
C
=
ln
|
sec
x|
+
C
4
Section 6.2 Trigonometric Integrals and Substitutions
EXAMPLE 8: Find (a) csc xdx
(b) sec xdx
2010 Kiryl Tsishchanka
Solution 1: (a) We have
csc xdx =
=
dx = sin x
dx
sin
2
?
x 2
sec2 udu sec2 u sin u cos u
=
x 2
=
u
d
=
x 2
= du
=
1
2dx = du
2du = sin (2u)
2du = 2 sin u cos u
du sin u cos u
dx = 2du
tan u = v
sec2 udu
sec2 udu
sec2 udu
dv
sin u cos u =
cos2 u
sin u =
cos u
= d tan u = dv =
tan u
v
sec2 udu = dv
= ln |v| + C = ln | tan u| + C = ln tan
x 2
+C
In short,
csc xdx =
dx sin x
=
dx
sin
2
?
x 2
=
2 sin
dx
x 2
cos
x 2
=
sec2 x dx
2
2 sec2 x sin x cos x
2
2
2
=
sec2 x dx 2 x
2 tan 2
=
tan
x 2x
=v
d tan = dv
2
1 sec2 x dx = dv
2 sec2
x 2
2
dx
=
2dv
=
dv = ln |v| + C = ln tan x + C
v
2
This can be rewritten as ln |csc x - cot x| + C (see Appendix II).
(b) We have
sec xdx =
dx cos x
=
dx
sin
x
+
2
x
+
2
=
u
=
d
x
+
2
=
du
=
du sin u
dx = du
which is ln tan u + C by (a). Substituting x + for u, we get
2
2
x +
sec xdx = ln tan
2
2
+C
= ln
tan
x 2+4
+C
This can be rewritten as ln |sec x + tan x| + C (see Appendix II).
5
Section 6.2 Trigonometric Integrals and Substitutions
2010 Kiryl Tsishchanka
Solution 2: (a) We have
csc xdx =
1 sin
x
dx
=
sin x sin2 x
dx
=
=-
(1
-
1 u)(1
+
u) du
=
-
cos x = u
1
sin x - cos2
x
dx
=
d cos x = du - sin xdx = du
=
-
sin xdx = -du
1
1 -
u2
du
1 2
1
1 -
u
+
1
1 +
u
du
=
-
1 2
1
1 -
u du
-
1 2
1
1 +
u
du
=
1 2
ln |1
-
u|
-
1 2
ln |1
+
u|
+
C
=
1 2
ln
1-u 1+u
+
C
=
1 2
ln
1 - cos x 1 + cos x
+C
This can be rewritten as ln |csc x - cot x| + C (see Appendix II).
(b) We have sec xdx =
1 cos
x
dx
=
cos x cos2 x
dx
=
sin x = u
1
cos x - sin2
dx x
=
d sin x = du
=
cos xdx = du
1
1 -
u2
du
=
(1
-
1 u)(1
+
u)
du
=
1 2
1
1 -
u
+
1
1 +
u
du
=
1 2
1
1 -
u
du
+
1 2
1
1 +
u
du
= -1 ln |1 - u| + 1 ln |1 + u| + C = 1 ln
2
2
2
1+u 1-u
+ C = 1 ln 2
1 + sin x 1 - sin x
+C
This can be rewritten as ln |sec x + tan x| + C (see Appendix II).
Solution 3: (a) We have
csc xdx =
csc
x
csc csc
x x
- -
cot cot
x dx x
=
csc2 x csc
- x
csc x cot - cot x
x
dx
= 1 du = ln |u| + C = ln | csc x - cot x| + C u
csc x - cot x = u
= d(csc x - cot x) = du
(- csc x cot x + csc2 x)dx = du
(b) We have
sec x + tan x = u
sec xdx =
sec x sec x + tan xdx = sec x + tan x
sec2 x + sec x tan xdx = d(sec x + tan x) = du
sec x + tan x
(sec x tan x + sec2 x)dx = du
= 1 du = ln |u| + C = ln | sec x + tan x| + C u
EXAMPLE 9: Find tan8 x sec4 xdx.
6
Section 6.2 Trigonometric Integrals and Substitutions
2010 Kiryl Tsishchanka
EXAMPLE 9: Find tan8 x sec4 xdx.
Solution: We have tan8 x sec4 xdx =
= u8(1 + u2)du =
tan x = u
tan8 x sec2 x ? sec2 xdx = tan8 x(1 + tan2 x) sec2 xdx = d tan x = du
sec2 xdx = du
(u8 + u10)du = 1 u9 + 1 u11 + C = 1 tan9 x + 1 tan11 x + C
9 11
9
11
EXAMPLE 10: Find tan3 xdx.
Solution 1: We have tan3 xdx = tan2 x ? tan xdx = (sec2 x - 1) ? tan xdx
sec x = u
(sec2 x - 1) ? sec x tan xdx
=
=
d sec x = du
(u2 - 1)du =
sec x
u
sec x tan xdx = du
=
u
-
1 u
du
=
u2 2
-
ln |u|
+
C
=
1 2
sec2
x
-
ln | sec
x|
+
C
Solution 2: We have tan3 xdx = tan2 x ? tan xdx = (sec2 x - 1) ? tan xdx = (sec2 x tan x - tan x)dx
= sec2 x tan xdx - tan xdx = [by Example 7] = sec2 x tan xdx - ln | sec x|
To evaluate sec2 x tan xdx, we either
sec2 x tan xdx =
sec x = u
sec x ? sec x tan xdx = d sec x = du =
sec x tan xdx = du
udu = u2 + C = 1 sec2 x + C
2
2
or
tan x = u
sec2 x tan xdx = d tan x = du = udu = u2 + C = 1 tan2 x + C
2
2
sec2 xdx = du
Therefore
tan3 xdx = 1 sec2 x - ln | sec x| + C or 1 tan2 x - ln | sec x| + C
2
2
Other possible answers are
tan3 xdx = 1 sec2 x + ln | cos x| + C or 1 tan2 x + ln | cos x| + C
2
2
7
Section 6.2 Trigonometric Integrals and Substitutions
EXAMPLE 11: Find sec3 xdx.
2010 Kiryl Tsishchanka
Solution: We have
sec3 xdx =
sec x = u
sec2 xdx = dv
sec x ? sec2 xdx = d(sec x) = du
tan x = v = sec x tan x -
sec x tan xdx = du
sec x tan2 xdx
= sec x tan x - sec x(sec2 x - 1)dx = sec x tan x - (sec3 x - sec x)dx
= sec x tan x - sec3 xdx + sec xdx
It follows that
2 sec3 xdx = sec x tan x + sec xdx
so
sec3 xdx = 1 sec x tan x + sec xdx = [by Example 8] = 1(sec x tan x + ln | sec x + tan x|) + C
2
2
Case C: Integrals of type sin x sin xdx, sin x cos xdx or cos x cos xdx
METHOD OF INTEGRATION: Use the identities
sin A sin B = 1 [cos(A - B) - cos(A + B)] 2
cos
A
cos
B
=
1 2
[cos(A
+
B)
+
cos(A
-
B)]
sin A cos B
=
1 2
[sin(A
+
B)
+
sin(A
-
B)]
EXAMPLE 12: Find cos 3x cos 2xdx.
8
................
................
In order to avoid copyright disputes, this page is only a partial summary.
To fulfill the demand for quickly locating and searching documents.
It is intelligent file search solution for home and business.
Related download
- 5 2 double angle power reduction identities
- trigonometric integrals
- 5 2 double angle and power reduction slides 4 to 1
- products of powers of sines and cosines
- ecuaciones trigonométricas resueltas blogosferasek
- ĐẠo hÀm cẤp cao
- a brief guide to calculus ii university of minnesota
- trigonometric integrals trinity university
- trigonometry and complex numbers youth conway
- assignment 4
Related searches
- 6.8 v10 vs 6.2 v8
- 6.2 ford vs 6.8 ford
- 6 8 v10 vs 6 2 v8
- 6 2 ford vs 6 8 ford
- step up for writing section 6 narratives
- common integrals and derivatives
- trigonometric integrals table
- trig integrals and derivatives list
- trigonometric integrals pdf
- integrals and derivatives kahn
- common integrals and derivatives list
- article 1 section 6 constitution