ĐẠO HÀM CẤP CAO
[Pages:4] - T?I LIU HC TP MIN PH?
O H?M CP CAO
A.T?M TT GI?O KHOA.
1. Cho h?m s y f x c? o h?m f 'x . H?m s f 'x c?n gi l? o h?m cp 1 ca h?m s f x . Nu h?m s f 'x c? o h?m th? o h?m ? c gi l? o h?m cp 2 ca h?m s f x , k? hiu l? y'' hay f ''x . o h?m ca o h?m cp 2 c gi l? o h?m cp 3 ca h?m s f x , k? hiu l? y''' hay f''' x . Tng t, ta gi o h?m ca o h?m cp n 1 l? o h?m cp n ca h?m s f x , k? hiu l? yn hay fn x , tc l? ta c?:
yn yn1 ' n N, n 1 .
2.o h?m cp 2 ca h?m s f(t) l? gia tc tc thi ca chuyn ng s=f(t) ti thi im t. B.PHNG PH?P GII TO?N. DNG 1: T?nh o h?m cp cao ca h?m s. 1.PHNG PH?P
?p dng trc tip nh ngha: yn yn1 ' t?nh o h?m n cp m? b?i y?u cu.
V? d: T?nh o h?m n cp ? ch ra ca c?c h?m s sau:
a). y x sin 2x,y'''
b). y cos2 x,y'''
c). y x4 4x3 3x2 1, y(n)
d). y x4 sin 2x, y(4) e). y sin2 2x, y(5)
f).
y
3x 1 ,
y(4)
x 2
LI GII
a). C? y' x' sin 2x x.(sin 2x)' sin 2x 2x cos 2x
y '' (sin 2x)' (2x)'cos 2x 2x(cos 2x)' 4 cos 2x 4x sin 2x
y''' 4(cos 2 x)' (4 x)'sin 2 x 4 x(sin 2 x)' 8 sin 2 x 4 sin 2 x 8 cos 2 x
12 sin 2 x 8 cos 2 x .
b). Ta c? y cos2 x 1 1 cos 2x y ' sin 2x 2 y '' 2 cos 2x y''' 4 sin 2x
c). y x4 4x3 3x2 1
y ' 4x3 12x2 6x y'' 12x2 24x 6 y''' 24x 24
Group:
- T?I LIU HC TP MIN PH?
y(4) 24 y(5) 0 ... y(n) 0 . d). y x4 sin 2x
y ' 4x3 2 cos 2x y'' 12x2 4 sin 2x
y ''' 24x 8 cos 2x y(4) 24 16 sin 2x
e). y sin2 2x 1 1 cos 4x 2 y ' 2 sin 4x y '' 8 cos 4x y ''' 32 sin 4x y(4) 128 cos 4x y(5) 512 sin 4x
f).
3x 1
y
,
y( 4)
x 2
/
y'
7
y ''
7
x
22
14
(x 2)2
x 24 x 23
/
/
y '''
14
x2
3
42
y(4)
42
x2
4
168
x 26 x 24
x 28
x 25
DNG 2: T?m o h?m cp n ca mt h?m s
PHNG PH?P Bc 1: T?nh y', y'', y''' . Da v?o c?c o h?m va t?nh, d o?n c?ng thc t?nh y(n) .
Bc 2: Chng minh c?ng thc va d o?n l? ?ng bng phng ph?p quy np.
Ch? ?: Cn ph?n t?ch k c?c kt qu ca o h?m y',y'', y''' t?m ra quy lut d o?n c?ng thc y(n) ch?nh x?c.
V? d 1: T?m o h?m cp n ca h?m s y sin x n N*
LI GII
Bc
1:
Ta
c?:
y
'
cos
x
sin
x
1.
2
;
y
''
sin
x
sin
x
2
2
D o?n:
yn
sin x n
1 ,n N*
2
Bc 2: Chng minh 1 bng quy np:
Group:
- T?I LIU HC TP MIN PH?
n 1 : 1 hin nhi?n ?ng.
Gi s
1
?ng vi
n k 1
ngha l? ta c?:
yk
sin x k
ta phi chng minh
1
c?ng
2
?ng vi n k 1 ngha l? ta phi chng minh
yk1
sin x
k1
2
2
/
Tht
vy
:
v
tr?i
2
yk1
yk /
sin
x
k
2
cos
x
k
2
sin
x
k
1
2
=v
phi
2
2 ?ng, ngha l? 1 ?ng vi n k 1.
Bc
3:
theo nguy?n
l?
quy
np
suy
ra
yn
sin
x
n
,
n
N*
.
2
V? d 2: T?m o h?m cp n ca h?m s y 1 n N* x 3
LI GII
Ta c?:
y' 1/
1
x 32
1/
1!
x 32
;
y'' 12 . 1.2 3 12 .
2! .
3
x 3
x 3
D o?n: yn 1n n!
1 ,n N* .
n1
x 3
Chng minh 1 bng phng ph?p quy np:
n 1 : 1 hin nhi?n ?ng.
Gi s 1
?ng
vi
n k 1
,
ngha
l?
ta
c?:
yk
1k
k!
k1
x 3
ta phi chng minh 1
c?ng
?ng vi n k 1 , ngha l? ta phi chng minh:
yk1
k1
1
k1 !
2
k2
x 3
Tht vy: v tr?i
/
2
yk1
yk /
1
k
k!
x3
k1
1
k1
.
k!
x3
k1 2
.
x3
k1 /
Group:
- T?I LIU HC TP MIN PH?
k1
1 .
k!k 1
k1
1 .
k 1!
vt 2
k2
x3
k2
x 3
Vy 2 ?ng ngha l? 1 ?ng vi n k 1.
Theo
nguy?n
l?
quy
np
ta
suy
ra
yn
1n
.
x
n!
3n
1
,n N* .
DNG 3: Chng minh ng thc:
B?i 11:
a). Cho h?m s y x sin x . Chng minh x.y'' 2y' sin x xy 0
b). Cho h?m s : y 2x x2 chng minh: y3.y'' 1 0
c). Cho h?m s: y x tan x chng minh: x2.y'' 2 x2 y2 1 y 0
d). Cho h?m s: y x 3 chng minh: 2y'2 y 1.y''
x 4
LI GII
a). Cho h?m s y x sin x . Chng minh x.y'' 2y' sin x xy 0 Ta c? y ' x sin x/ y' x'.sin x x.sin x/ y' sin x x cos x
y'' sin x x cos x/ sin x/ x cos x/ cos x x'.cos x x.cos x/ 2 cos x x sin x
1 x 2 cos x x sin x 2sin x x cos x sin x x2 sin x 0
2x cos x x2 sin x 2x cos x x2 sin x 0 0 0 (pcm).
b). Cho h?m s : y 2x x2 chng minh: y3.y'' 1 0
/
Ta c?: y ' 2x x2 y '
1
.
2x x2
/
1x
.
2 2x x2
2x x2
1 x/ . 2x x2
y''
/
2x x2 . 1 x
2x x2
1 x .1 x
2x x2
2
2
2x x2
2x x2
2x x2 1 x2
1
.
2
3
2x x2 . 2x x2
2x x2
Group:
................
................
In order to avoid copyright disputes, this page is only a partial summary.
To fulfill the demand for quickly locating and searching documents.
It is intelligent file search solution for home and business.
Related download
- 5 2 double angle power reduction identities
- trigonometric integrals
- 5 2 double angle and power reduction slides 4 to 1
- products of powers of sines and cosines
- ecuaciones trigonométricas resueltas blogosferasek
- ĐẠo hÀm cẤp cao
- a brief guide to calculus ii university of minnesota
- trigonometric integrals trinity university
- trigonometry and complex numbers youth conway
- assignment 4