Practice Final - Ohio State University
Math 161.01 - Accelerated Calculus I 108 min
Practice Final
December 7, 2010
? Calculators are allowed as long as they have no symbolic integration capbility (TI-84 and comparable are ok)
? Remember to CIRCLE YOUR FINAL ANSWER.
Useful facts:
?
Volume of a sphere V
=
4 3
r3
?
Volume of a cone V
=
1 3
r2h
? F = ma (force is mass times acceleration)
? m = V d (mass is volume times density)
? acceleration of gravity is -9.8 m/s2
?
sin A sin B
=
1 2
[cos(A
-
B)
-
cos(A
+
B)]
?
sin A cos B
=
1 2
[sin(A
-
B)
+
sin(A
+
B)]
?
cos A cos B =
1 2
[cos(A
-
B
)
+
cos(A
+
B)]
?
sin2 x =
1 2
(1
-
cos
2x)
?
cos2 x =
1 2
(1
+
cos
2x)
1
1. (10 points) The derivative of a continuous function h is pictured below.
-5 -4 -3 -2 -1 0 1 2 3 4 5
h
Sketch a continuous function h whose derivative could be the given graph for h .
-5 -4 -3 -2 -1 0
h
1 23 4 5
2
2. Evaluate the following limits using any technique you like.
(a) lim x + 2 - x
x
x+2+ x
lim x + 2 - x = lim ( x + 2 - x) ?
x
x
x+2+ x
x+2-x
= lim
x x + 2 + x
2
= lim
x x + 2 + x
=0
(ln x)2 (b) lim
x ln(ln x)
(ln x)2
2(ln x)x-1
lim
x
ln(ln x)
=
lim
x
(ln x)-1x-1
= lim 2(ln x)2 x
=
1
(c) lim 1 + e-x x x
lim
x
1 + e-x
1 x
=
lim
ex-1 ln(1+e-x)
x
= elimx x-1 (ln 1+e-x)
= e0?ln 1
=1
3. Evaluate the following derivatives.
(a) d ex + xe + arctan(3 - 84) dx d ex + xe + arctan(3 - 84) = ex + ex(e-1) dx
(b) d ex sin(x2) dx
d ex sin(x2) = ex sin(x2) + 2xex cos(x2) dx
dx (c)
dx x + 1
dx
x+1-x
1
=
=
dx x + 1
(x + 1)2 (x + 1)2
3
d
xx
(d)
dx (x + 1)3 sin x
Let
y
=
. xx
(x+1)3 sin x
Then
ln y = x ln x - 3 ln(x + 1) - ln(sin x)
Hence, Hence,
y
3 cos x
= ln x - 1 -
-.
y
x + 1 sin x
xx
3
y=
ln x - 1 -
- cot x .
(x + 1)3 sin x
x+1
4. Evaluate the following indefinite integrals.
(a) x arctan x dx
u=arctan x,
du=
dx x2 +1
,
dv=x dx,
v=
x2 2
x2 arctan x 1
x2
x arctan x dx =
-
dx
2
2 x2 + 1
x2 arctan x 1
1
=
- 1-
dx
2
2
x2 + 1
x2 arctan x x arctan x
=
-+
+C
2
2
2
(b) sin17 x cos3 x dx
u=sin x, du=cos x dx
sin17 x cos3 x dx = sin17 x(1 - sin2 x) cos x dx
= u17(1 - u2) du
= u17 - u19 du
u18 u20 = - +C
18 20
sin18 x sin20 x
=
-
+C
18
20
4
sec3 x
(c)
dx
tan x
sec3 x dx =
tan x = =
sec x(1 + tan2 x) dx
tan x
sec x
sec x tan2 x
dx +
dx
tan x
tan x
csc x dx + sec x tan x dx
= ln | csc x - cot x| + sec x + C
(d) sin4 x dx
sin4 x dx =
(1 - cos 2x)2
22
dx
1 =
1 - 2 cos 2x + cos2 2x dx
4
1
1 + cos 4x
= 1 - 2 cos 2x +
dx
4
2
13
cos 4x
=
- 2 cos 2x +
dx
42
2
1 3x
sin 4x
=
- sin 2x +
+C
42
8
3x sin 2x sin 4x
=-
+
+C
8
4
32
(e) cos 2x cos 9x dx
1 cos 2x cos 9x dx =
2 1 = 2 1 = 2
cos(2x - 9x) + cos(2x + 9x) dx
cos(-7x) + cos(11x) dx
sin(-7x) sin(11x)
+
+C
-7
11
sin(-7x) sin(11x)
=-
+
+C
14
22
2x
(f)
dx
x2 - 9
u=x2-9, du=2x dx
5
................
................
In order to avoid copyright disputes, this page is only a partial summary.
To fulfill the demand for quickly locating and searching documents.
It is intelligent file search solution for home and business.
Related download
- 5 2 double angle power reduction identities
- trigonometric integrals
- 5 2 double angle and power reduction slides 4 to 1
- products of powers of sines and cosines
- ecuaciones trigonométricas resueltas blogosferasek
- ĐẠo hÀm cẤp cao
- a brief guide to calculus ii university of minnesota
- trigonometric integrals trinity university
- trigonometry and complex numbers youth conway
- assignment 4
Related searches
- ohio state university degrees
- ohio state university medical center
- ohio state university holiday
- ohio state university calendar
- ohio state university academic calendar 2018
- ohio state university academic calendar
- ohio state university jobs
- ohio state university campus jobs
- ohio state university holiday calendar
- ohio state university financial statements
- the ohio state university wexner medical center
- ohio state university calendar 2020