PLEASANT VALLEY SCHOOL DISTRICT
PLEASANT VALLEY SCHOOL DISTRICT
PLANNED COURSE CURRICULUM GUIDE
CALCULUS (AB/BC) - AP
Grade 12
I. COURSE DESCRIPTION AND INTENT:
AP Calculus is designed for mathematically well-prepared students as a formal introduction to calculus. Topics include differentiation and integration of transcendental and non-transcendental functions as well as their applications. The students who successfully complete this course will have a thorough knowledge of first-semester and second-semester college level calculus and will be prepared for the Advanced Placement Examination in Calculus. The AP Calculus examination is not a course requirement.
II. INSTRUCTIONAL TIME:
Class Periods: 6 per 6-day cycle
Length of Class Periods (minutes): 56
Length of Course: One (1) Year
Unit of Credit: 1.00
Updated: May 2012
|COURSE: Calculus (AB/BC) AP |GRADE(S): 12 |
|STRAND: 2.2 (Part 1) |TIME FRAME: One (1) Year |
|PA COMMON CORE STANDARDS |
|CC.2.2.HS.C.2 |
|ASSESSMENT ANCHORS |
| |
|RESOURCES |
| |
|Calculus of a Single Variable - Swokowski |
|Previous AP exam problems |
|College textbooks |
|Graphing calculators |
|Access computer software package |
|TestGen Worksheets |
|CBL (Calculator Based Lab) |
|OBJECTIVES |
| |
|The learner will identify the concept of a limit and apply limit theorems to solve problems. |
|ESSENTIAL CONTENT |
| |
|Find the value of a limit by examining the behavior of algebraic functions at various values – especially values at which they are |
|undefined. |
|Find limits graphically, numerically, and algebraically. |
|Define a limit mathematically and use the definition to demonstrate why limits exist or fail to exist. |
|Explore properties of limits. |
|Use limits involving infinity to connect the concept of horizontal and/or vertical asymptotes of rational functions. |
|Apply the properties of limits and limit theorems to solve problems. |
|Define the concept of a one-sided limit. |
|Define continuity. |
| |
|Apply the definition of continuity to determine the continuity of a function at a given value and/or on an interval. |
|Discuss the Intermediate Value Theorem and use it to solve problems. |
|Use L’Hopital’s Rule to evaluate limits. |
|Use limits to determine the relative rates of growth of various functions. |
|INSTRUCTIONAL STRATEGIES |
| |
|Use graphing calculators to enhance the visualization of a limit. |
|Use graphing calculator to calculate limits that cannot be solved using limit theorems. |
|Math journal entry describing the definition of limit. |
|Warm-up problems from previous AP exams. |
|ASSESSMENTS |
| |
|Teacher designed tests and quizzes |
|Worksheets designed to demonstrate knowledge of the concepts taught |
|Portfolio assessment |
|Written or oral presentation of projects and/or homework |
|Homework assessment |
|Cooperative group assessments/competitions |
|CORRECTIVES/EXTENSIONS |
| |
|Correctives: |
|Math tutoring lab. |
|After school teacher help. |
|Computer generated worksheets. |
| |
|Extensions: |
|Bonus problems. |
|Student generated proofs. |
|Student generated problems applying limits to real-world situations. |
|Assign student projects to be presented to class. |
|COURSE: Calculus (AB/BC) AP |GRADE(S): 12 |
|STRAND: 2.2 (Part 2) |TIME FRAME: One (1) Year |
|PA COMMON CORE STANDARDS |
|CC.2.1.HS.F.4 |
|CC.2.2.HS.C.2 |
|CC.2.2.HS.C.6 |
|CC.2.2.HS.C.8 |
|CC.2.2.HS.D.9 |
|CC.2.2.HS.D.10 |
|ASSESSMENT ANCHORS |
| |
|RESOURCES |
| |
|Calculus of a Single Variable - Swokowski |
|Previous AP exam problems |
|College textbooks |
|Graphing calculators |
|Access computer software package |
|TestGen Worksheets |
|CBL (Calculator Based Lab) |
|OBJECTIVES |
| |
|The learner will define the derivative, calculate derivatives, and apply the derivative to solve a variety of computational |
|problems and application problems. |
|ESSENTIAL CONTENT |
| |
|Define the derivative in terms of the limit of a difference quotient. |
|Discuss the importance of the derivative as a measurement of rate of change. |
|Explore values at which a derivative does not exist. |
|Apply the derivative to instantaneous velocity by exploring average velocity on very small time intervals. |
|Connect the idea of one-sided limits to the definition of right handed and left handed derivatives at a value. |
|Discover the connection between differentiability and continuity. |
|Apply the power rule, product rule, quotient rule, and chain rule. |
|Apply the above to functions which require more than one of these rules. |
|Define the differential. |
|Apply differentials to application problems. |
|Define absolute error, percentage error, and relative error. |
|Apply the rules of differentiation to algebraic functions. |
|Apply the theorems for differentiation of natural exponential functions and natural logarithmic functions. |
|Extend the theorems for differentiation of natural exponential functions and natural logarithmic functions to common exponential |
|and logarithmic functions. |
|Define higher order derivatives. |
|Calculate first, second, and third derivatives of functions where they exist. |
|Establish the intervals on which a function is increasing or decreasing. |
|Utilize the concepts of increasing and decreasing to establish relative maximum and minimum points of a function. |
|Prove Rolle's Theorem and the Mean Value Theorem. |
|Use higher order derivatives to determine the concavity of the graph of a function. |
|Find the points of inflection, if they exist, of the graph of a function. |
|Develop a strategy for applying the idea of extreme values to practical applied max/min problems. |
|Find the velocity and acceleration of a particle moving along a line. |
|Apply the rules of differentiation to physical problems involving related rates. |
|Introduce the concept of an antiderivative. |
|Use vectors to find the velocity and/or the acceleration of an object. |
|Find the slope of a curve defined parametrically. |
|Find the slope of a curve defined using polar coordinates. |
| |
|INSTRUCTIONAL STRATEGIES |
| |
|Use graphing calculator to have students discover the derivatives of trig functions and exponential functions. |
|Use graphing calculator to enhance understanding of relative max and min values. |
|Use calculus "match game" to have students identify a graph based on its derivative and vice-versa. |
|Guided discovery. |
|Cooperative learning activities. |
|Warm-up problems from previous AP exams |
|ASSESSMENTS |
| |
|Teacher designed tests and quizzes |
|Worksheets designed to demonstrate knowledge of the concepts taught |
|Portfolio assessment |
|Written or oral presentation of projects and/or homework |
|Homework assessment |
|Cooperative group assessments/competitions |
|CORRECTIVES/EXTENSIONS |
| |
|Correctives: |
|Math tutoring lab. |
|After school teacher help. |
|Computer generated worksheets. |
| |
|Extensions: |
|Bonus problems. |
|Student generated proofs. |
|Student generated problems applying the derivative to real-world situations. |
|Assign student projects to be presented to class. |
|COURSE: Calculus (AB/BC) AP |GRADE(S): 12 |
|STRAND: 2.2 (Part 3) |TIME FRAME: One (1) Year |
|PA COMMON CORE STANDARDS |
|CC.2.1.HS.F.4 |
|CC.2.2.HS.C.2 |
|CC.2.2.HS.C.6 |
|CC.2.2.HS.D.6 |
|CC.2.2.HS.D.9 |
|CC.2.3.HS.A.14 |
|ASSESSMENT ANCHORS |
| |
|RESOURCES |
| |
|Calculus of a Single Variable - Swokowski |
|Previous AP exam problems |
|College textbooks |
|Graphing calculators |
|Access computer software package |
|TestGen Worksheets |
|CBL (Calculator Based Lab) |
|OBJECTIVES |
| |
|The learner will define the definite integral, calculate definite and indefinite integrals, and apply the definite integral to |
|solve a variety of computational problems and application problems. |
|ESSENTIAL CONTENT |
| |
|Express a series using summation notation. |
|Use the concept of a limit along with simple geometry to calculate the area under a curve. |
|Define the definite integral as a limit of a Riemann Sum. |
|Use the concept of “signed area” to relate the area under a curve to the value of a definite integral. |
|Make the connection between the properties of a definite integral and the properties of a limit. |
|Prove the Mean Value Theorem for definite integrals. |
|Discover/Prove the Fundamental Theorem of Calculus. |
|Apply the theorems for integration of natural exponential functions and natural logarithmic functions. |
|Extend the theorems for integration of natural exponential functions and natural logarithmic functions to common exponential and |
|logarithmic functions. |
|Define indefinite integrals. |
|Use the power rule for indefinite integration. |
|Prove the change in variable theorem and use substitution to evaluate integrals. |
|Define the Trapezoidal Rule and the Error Estimate for same. |
|Define Simpson's rule and Error Estimate for same. |
|Solve separable differential equations. |
|Apply differential equations to problems involving growth and decay. |
|Use the Trapezoidal Rule and Simpson's rule to approximate the definite integrals for stated values. |
|Apply the idea of integrals to find the area between two curves. |
|Find the volume of a solid of revolution by washers and discs, cylindrical shells, and by slicing. |
|Define Hooke's Law. |
|Use Hooke's Law to solve work problems. |
|Apply the definite integral to solve force problems. |
|Apply the definite integral to find the length of irregular arcs. |
|Use the definite integral as an accumulation function. |
|Approximate function values using Euler’s Method. |
|Evaluate integrals using integration by parts. |
|Evaluate integrals using integration by partial fractions. |
|Identify and evaluate improper integrals. |
|Use logistic growth models to solve application problems. |
|Find the length of a curve defined parametrically. |
|Use the integral along with vectors to find the distance travelled and/or the displacement of an object. |
|Find areas bounded by polar curves. |
| |
|INSTRUCTIONAL STRATEGIES |
| |
|Use graphing calculator to enhance student visualization of calculating area under a curve by use of inscribed and circumscribed |
|polygons. |
|Use graphing calculator programs to do various techniques of numeric integration. |
|Guided discovery. |
|Cooperative learning activities. |
|Warm-up problems from previous AP exams. |
|ASSESSMENTS |
| |
|Teacher designed tests and quizzes |
|Worksheets designed to demonstrate knowledge of the concepts taught |
|Portfolio assessment |
|Written or oral presentation of projects and/or homework |
|Homework assessment |
|Cooperative group assessments/competitions |
|CORRECTIVES/EXTENSIONS |
|Correctives: |
|Math tutoring lab. |
|After school teacher help. |
|Computer generated worksheets. |
| |
|Extensions: |
|Bonus problems. |
|Integration by Trig Substitutions (alternate topic) |
|Student generated proofs. |
|Student generated problems applying the definite integral to real-world situations. |
|Assign student projects to be presented to class. |
|COURSE: Calculus (BC) AP |GRADE(S): 12 |
|STRAND: 2.2 (Part 4) |TIME FRAME: One (1) Year |
|PA ACADEMIC STANDARDS |
|CC.2.2.HS.C.2 |
|CC.2.2.HS.C.3 |
|ASSESSMENT ANCHORS |
| |
|RESOURCES |
| |
|Calculus of a Single Variable - Swokowski |
|Previous AP exam problems |
|College textbooks |
|Graphing calculators |
|Access computer software package |
|TestGen Worksheets |
|CBL (Calculator Based Lab) |
|OBJECTIVES |
| |
|The learner will define infinite series, use various methods to determine the convergence of these series, and construct |
|polynomials to converge to various rational, trigonometric, or transcendental functions. |
|ESSENTIAL CONTENT |
| |
|Identify geometric series and power series. |
|Establish the convergence or divergence of geometric series. |
|Extend the convergence of geometric series to the idea of a power series and the function it converges to on its interval of |
|convergence. |
|Represent various functions using infinite series. |
|Create convergent series using integration & differentiation of known convergent series. |
|Construct a Taylor Polynomial for various functions including sine, cosine, exponential functions, and logarithmic functions. |
| |
|Use common Maclaurin Series to generate other more complicated Maclaurin Series. |
|Apply the Remainder Estimation Theorem |
|Discover and prove the divergence of the harmonic series. |
|Determine if a series is convergent or divergent using a variety of tests including ratio test, direct comparison test, limit |
|comparison test, integral test, p-series test, alternating series test, nth term test, nth root test, and others. |
|Find radius of convergence for a series |
|Discover the difference between absolute and conditional convergence. |
|Test for convergence of a series at the endpoints of the interval of convergence. |
|INSTRUCTIONAL STRATEGIES |
| |
|Use graphing calculators to enhance student comprehension of Taylor Polynomials. |
|Guided discovery. |
|Cooperative learning activities to enhance curriculum. |
|Warm-up problems from previous AP exams. |
|ASSESSMENTS |
| |
|Teacher designed tests and quizzes |
|Worksheets designed to demonstrate knowledge of the concepts taught |
|Portfolio assessment |
|Written or oral presentation of projects and/or homework |
|Homework assessment |
|Cooperative group assessments/competitions |
|CORRECTIVES/EXTENSIONS |
| |
|Correctives: |
|Math tutoring lab. |
|After school teacher help. |
|Computer generated worksheets. |
| |
|Extensions: |
|Bonus problems. |
|Student generated proofs. |
|Student generated problems applying the infinite series and/or Taylor Polynomials to real-world situations especially in the |
|realm of computer science. |
|Assign student projects to be presented to class. |
................
................
In order to avoid copyright disputes, this page is only a partial summary.
To fulfill the demand for quickly locating and searching documents.
It is intelligent file search solution for home and business.
Related searches
- parkway school district school calendar
- davis school district school calendar
- pleasant valley high school chico
- scranton school district school board meeting
- pleasant valley high school chico ca
- pleasant valley high school ca
- great valley school district employment
- grain valley mo school district employment
- great valley school district jobs
- central valley school district spokane jobs
- great valley school district pa
- great valley school district superintendent