Spiral: Home



Hydrogen/manganese hybrid redox flow batteryJavier Rubio-Garcia 1, Anthony Kucernak *1, Dong Zhao 1, Danlei Li1, Kieran Fahy, 1 Vladimir Yufit 2, Nigel Brandon 2 and Miguel Gomez-Gonzalez 3 1 Department of Chemistry, Imperial College London, SW7 2AZ, UK.2. Department of Earth Science and Engineering, Imperial College London, London SW7 2AZ, UK.3. Department of Materials, Imperial College London, SW7 2AZ, UK.E-mail: anthony@imperial.ac.ukReceived xxxxxxAccepted for publication xxxxxxPublished xxxxxxAbstractElectrochemical energy storage is a key enabling technology for further integration of renewables sources. Redox flow batteries are promising candidates for such applications as a result of their durability, efficiency and fast response. However, deployment of existing redox flow batteries is hindered by the relatively high cost of the (typically vanadium-based) electrolyte. Manganese is an earth-abundant and inexpensive element that is widely used in disposable alkaline batteries. However it has hitherto been little explored for redox flow batteries due to the instability of Mn(III) leading to precipitation of MnO2 via a disproportionation reaction. Here we show that by combining the facile hydrogen negative electrode reaction with electrolytes that suppress Mn(III) disproportionation, it is possible to construct a hydrogen/manganese hybrid redox flow battery with high round trip energy efficiency (82%), and high power and energy density (1410 mW cm-2, 33 Wh L-1), at an estimated 70% cost reduction compared to vanadium redox flow batteries.Keywords: Redox Flow Battery, Hydrogen, Energy Storage1. IntroductionPhotovoltaic and wind generation are fluctuating and intermittent energy sources. This poses serious difficulties for the management of electricity grids in terms of frequency and power quality. To avoid these issues, further penetration of clean energy sources into the energy mix require the implementation of highly efficient, short response time and low cost energy storage technologies. Among the potential candidates, Redox Flow Batteries (RFBs) are a promising solution for medium to large scale energy storage applications due to their easy scalability, superior longevity, fast response and low maintenance cost. ADDIN EN.CITE <EndNote><Cite><Author>Weber</Author><Year>2011</Year><RecNum>1</RecNum><DisplayText>[1]</DisplayText><record><rec-number>1</rec-number><foreign-keys><key app="EN" db-id="2a2z5pfxcfw9saewp9gxz92j00v2rw5awwfd" timestamp="1484213135">1</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Weber, A. Z.</author><author>Mench, M. M.</author><author>Meyers, J. P.</author><author>Ross, P. N.</author><author>Gostick, J. T.</author><author>Liu, Q. H.</author></authors></contributors><titles><title>Redox flow batteries: a review</title><secondary-title>Journal of Applied Electrochemistry</secondary-title></titles><periodical><full-title>Journal of Applied Electrochemistry</full-title></periodical><pages>1137-1164</pages><volume>41</volume><number>10</number><dates><year>2011</year></dates><urls></urls></record></Cite></EndNote>[1] In these systems, energy is stored within a fluid contained in reservoirs (gas or liquid) and pumped towards the electrodes where redox reactions occur, generating power. Such an architecture allows independent scaling of power and energy capacity, enabling flexibility in engineering systems and reducing the manufacturing cost of the device for given applications. Different redox chemistries have been used, and new ones are still being developed, with the vanadium redox couple being the most successful to date. ADDIN EN.CITE <EndNote><Cite><Author>Alotto</Author><Year>2014</Year><RecNum>2</RecNum><DisplayText>[2, 3]</DisplayText><record><rec-number>2</rec-number><foreign-keys><key app="EN" db-id="2a2z5pfxcfw9saewp9gxz92j00v2rw5awwfd" timestamp="1484213135">2</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Alotto, P.</author><author>Guarnieri, M.</author><author>Moro, F.</author></authors></contributors><titles><title>Redox flow batteries for the storage of renewable energy: A review</title><secondary-title>Renewable &amp; Sustainable Energy Reviews</secondary-title></titles><periodical><full-title>Renewable &amp; Sustainable Energy Reviews</full-title></periodical><pages>325-335</pages><volume>29</volume><dates><year>2014</year><pub-dates><date>Jan</date></pub-dates></dates><urls></urls></record></Cite><Cite><Author>Wang</Author><Year>2013</Year><RecNum>3</RecNum><record><rec-number>3</rec-number><foreign-keys><key app="EN" db-id="2a2z5pfxcfw9saewp9gxz92j00v2rw5awwfd" timestamp="1484213139">3</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Wang, W.</author><author>Luo, Q. T.</author><author>Li, B.</author><author>Wei, X. L.</author><author>Li, L. Y.</author><author>Yang, Z. G.</author></authors></contributors><titles><title>Recent Progress in Redox Flow Battery Research and Development</title><secondary-title>Advanced Functional Materials</secondary-title></titles><periodical><full-title>Advanced Functional Materials</full-title></periodical><pages>970-986</pages><volume>23</volume><number>8</number><dates><year>2013</year><pub-dates><date>Feb</date></pub-dates></dates><urls></urls></record></Cite></EndNote>[2, 3] Vanadium RFBs provide an extremely large cycle-life (above 10000 cycles in deep discharge) with low capacity decay over deep charge and discharge cycles. However, the wide deployment of vanadium RFBs is constrained by the high capital cost of the vanadium electrolyte which represents more than 54% of system cost for a 10 hour storage system. ADDIN EN.CITE <EndNote><Cite><Author>Joerissen</Author><Year>2004</Year><RecNum>4</RecNum><DisplayText>[4]</DisplayText><record><rec-number>4</rec-number><foreign-keys><key app="EN" db-id="2a2z5pfxcfw9saewp9gxz92j00v2rw5awwfd" timestamp="1484213139">4</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Joerissen, L.</author><author>Garche, J.</author><author>Fabjan, C.</author><author>Tomazic, G.</author></authors></contributors><titles><title>Possible use of vanadium redox-flow batteries for energy storage in small grids and stand-alone photovoltaic systems</title><secondary-title>Journal of Power Sources</secondary-title></titles><periodical><full-title>Journal of Power Sources</full-title></periodical><pages>98-104</pages><volume>127</volume><number>1-2</number><dates><year>2004</year></dates><urls></urls></record></Cite></EndNote>[4] Volatile vanadium pricing and future resource limitations (the known vanadium worldwide reserves are 14 million tonnes) are likely to limit the ability of vanadium RFBs to store no more than a small percentage of global daily energy consumption in a future world. ADDIN EN.CITE <EndNote><Cite><Author>Wadia</Author><Year>2011</Year><RecNum>44</RecNum><DisplayText>[5]</DisplayText><record><rec-number>44</rec-number><foreign-keys><key app="EN" db-id="t0xsdaswxtvt2defz9mvxz0ftftexsppt2d5" timestamp="1484301114">44</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Wadia, C.</author><author>Albertus, P.</author><author>Srinivasan, V.</author></authors></contributors><titles><title>Resource constraints on the battery energy storage potential for grid and transportation applications</title><secondary-title>Journal of Power Sources</secondary-title></titles><periodical><full-title>Journal of Power Sources</full-title></periodical><pages>1593-1598</pages><volume>196</volume><number>3</number><dates><year>2011</year></dates><urls></urls></record></Cite></EndNote>[5] More recently, significant efforts have been devoted to the exploration of lower cost actives species such as metal-free redox couples. Fast and reversible redox couples including quinones, ADDIN EN.CITE <EndNote><Cite><Author>Huskinson</Author><Year>2014</Year><RecNum>5</RecNum><DisplayText>[6, 7]</DisplayText><record><rec-number>5</rec-number><foreign-keys><key app="EN" db-id="2a2z5pfxcfw9saewp9gxz92j00v2rw5awwfd" timestamp="1484213140">5</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Huskinson, B.</author><author>Marshak, M. P.</author><author>Suh, C.</author><author>Er, S.</author><author>Gerhardt, M. R.</author><author>Galvin, C. J.</author><author>Chen, X. D.</author><author>Aspuru-Guzik, A.</author><author>Gordon, R. G.</author><author>Aziz, M. J.</author></authors></contributors><titles><title>A metal-free organic-inorganic aqueous flow battery</title><secondary-title>Nature</secondary-title></titles><periodical><full-title>Nature</full-title></periodical><volume>505</volume><number>7482</number><dates><year>2014</year></dates><urls></urls></record></Cite><Cite><Author>Lin</Author><Year>2015</Year><RecNum>6</RecNum><record><rec-number>6</rec-number><foreign-keys><key app="EN" db-id="2a2z5pfxcfw9saewp9gxz92j00v2rw5awwfd" timestamp="1484213140">6</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Lin, K. X.</author><author>Chen, Q.</author><author>Gerhardt, M. R.</author><author>Tong, L. C.</author><author>Kim, S. B.</author><author>Eisenach, L.</author><author>Valle, A. W.</author><author>Hardee, D.</author><author>Gordon, R. G.</author><author>Aziz, M. J.</author><author>Marshak, M. P.</author></authors></contributors><titles><title>Alkaline quinone flow battery</title><secondary-title>Science</secondary-title></titles><periodical><full-title>Science</full-title></periodical><pages>1529-1532</pages><volume>349</volume><number>6255</number><dates><year>2015</year></dates><urls><related-urls><url>;[6, 7] oxazolines ADDIN EN.CITE <EndNote><Cite><Author>Carino</Author><Year>2016</Year><RecNum>7</RecNum><DisplayText>[8, 9]</DisplayText><record><rec-number>7</rec-number><foreign-keys><key app="EN" db-id="2a2z5pfxcfw9saewp9gxz92j00v2rw5awwfd" timestamp="1484213140">7</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Carino, E. V.</author><author>Staszak-Jirkovsky, J.</author><author>Assary, R. S.</author><author>Curtiss, L. A.</author><author>Markovic, N. M.</author><author>Brushett, F. R.</author></authors></contributors><titles><title>Tuning the Stability of Organic Active Materials for Nonaqueous Redox Flow Batteries via Reversible, Electrochemically Mediated Li+ Coordination</title><secondary-title>Chemistry of Materials</secondary-title></titles><periodical><full-title>Chemistry of Materials</full-title></periodical><pages>2529-2539</pages><volume>28</volume><number>8</number><dates><year>2016</year></dates><urls></urls></record></Cite><Cite><Author>Milshtein</Author><Year>2015</Year><RecNum>8</RecNum><record><rec-number>8</rec-number><foreign-keys><key app="EN" db-id="2a2z5pfxcfw9saewp9gxz92j00v2rw5awwfd" timestamp="1484213140">8</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Milshtein, J. D.</author><author>Su, L.</author><author>Liou, C.</author><author>Badel, A. F.</author><author>Brushett, F. R.</author></authors></contributors><titles><title>Voltammetry study of quinoxaline in aqueous electrolytes</title><secondary-title>Electrochimica Acta</secondary-title></titles><periodical><full-title>Electrochimica Acta</full-title></periodical><pages>695-704</pages><volume>180</volume><dates><year>2015</year></dates><urls></urls></record></Cite></EndNote>[8, 9] or redox active polymers ADDIN EN.CITE <EndNote><Cite><Author>Janoschka</Author><Year>2015</Year><RecNum>9</RecNum><DisplayText>[10]</DisplayText><record><rec-number>9</rec-number><foreign-keys><key app="EN" db-id="2a2z5pfxcfw9saewp9gxz92j00v2rw5awwfd" timestamp="1484213140">9</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Janoschka, T.</author><author>Martin, N.</author><author>Martin, U.</author><author>Friebe, C.</author><author>Morgenstern, S.</author><author>Hiller, H.</author><author>Hager, M. D.</author><author>Schubert, U. S.</author></authors></contributors><titles><title>An aqueous, polymer-based redox-flow battery using non-corrosive, safe, and low-cost materials</title><secondary-title>Nature</secondary-title></titles><periodical><full-title>Nature</full-title></periodical><pages>78-81</pages><volume>527</volume><number>7576</number><dates><year>2015</year></dates><urls><related-urls><url>;[10] have shown some promise in RFB applications and are not resource constrained. However, most current metal-free RFBs utilize toxic (e.g. bromine) ADDIN EN.CITE <EndNote><Cite><Author>Yuita</Author><Year>1994</Year><RecNum>10</RecNum><DisplayText>[11]</DisplayText><record><rec-number>10</rec-number><foreign-keys><key app="EN" db-id="2a2z5pfxcfw9saewp9gxz92j00v2rw5awwfd" timestamp="1484213140">10</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Yuita, K.</author></authors></contributors><titles><title>Overview and dynamics of Iodine and Bromine in the environment.2. Iodine and Bronine toxicity and environmental hazards</title><secondary-title>Japan Agricultural Research Quarterly</secondary-title></titles><periodical><full-title>Japan Agricultural Research Quarterly</full-title></periodical><pages>100-111</pages><volume>28</volume><number>2</number><dates><year>1994</year><pub-dates><date>Apr</date></pub-dates></dates><isbn>0021-3551</isbn><accession-num>WOS:A1994NW33800003</accession-num><urls><related-urls><url>&lt;Go to ISI&gt;://WOS:A1994NW33800003</url></related-urls></urls></record></Cite></EndNote>[11] or carcinogenic (e.g. viologen derivatives) ADDIN EN.CITE <EndNote><Cite><Author>Moran</Author><Year>2010</Year><RecNum>11</RecNum><DisplayText>[12]</DisplayText><record><rec-number>11</rec-number><foreign-keys><key app="EN" db-id="2a2z5pfxcfw9saewp9gxz92j00v2rw5awwfd" timestamp="1484213140">11</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Moran, J. M.</author><author>Ortiz-Ortiz, M. A.</author><author>Ruiz-Mesa, L. M.</author><author>Fuentes, J. M.</author></authors></contributors><titles><title>Nitric Oxide in Paraquat-Mediated Toxicity: A Review</title><secondary-title>Journal of Biochemical and Molecular Toxicology</secondary-title></titles><periodical><full-title>Journal of Biochemical and Molecular Toxicology</full-title></periodical><pages>402-409</pages><volume>24</volume><number>6</number><dates><year>2010</year></dates><urls><related-urls><url>;[12] species to achieve acceptable cell voltages which may constrain their applicability. Moreover, the longevity of these systems is yet to be explored.In this context, manganese is the 12th most abundant element in the earth’s crust (worldwide known reserves of several billion tonnes ADDIN EN.CITE <EndNote><Cite><Author>Wadia</Author><Year>2011</Year><RecNum>44</RecNum><DisplayText>[5]</DisplayText><record><rec-number>44</rec-number><foreign-keys><key app="EN" db-id="t0xsdaswxtvt2defz9mvxz0ftftexsppt2d5" timestamp="1484301114">44</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Wadia, C.</author><author>Albertus, P.</author><author>Srinivasan, V.</author></authors></contributors><titles><title>Resource constraints on the battery energy storage potential for grid and transportation applications</title><secondary-title>Journal of Power Sources</secondary-title></titles><periodical><full-title>Journal of Power Sources</full-title></periodical><pages>1593-1598</pages><volume>196</volume><number>3</number><dates><year>2011</year></dates><urls></urls></record></Cite></EndNote>[5]) and is available without significant geographic restrictions. It is already used in the ubiquitous disposable alkaline battery, composing about 1/3 the weight of a typical alkaline zinc battery. The Mn(III)/Mn(II) redox couple offers a high standard redox potential (E0 = 1.51V), low cost and high solubility which encourages the development of Mn-based energy storage technologies for large scale applications. Very few studies dealing with soluble aqueous manganese formulations for RFB applications have been reported to date.PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5YdWU8L0F1dGhvcj48WWVhcj4yMDA4PC9ZZWFyPjxSZWNO

dW0+MTU8L1JlY051bT48RGlzcGxheVRleHQ+WzEzLTE1XTwvRGlzcGxheVRleHQ+PHJlY29yZD48

cmVjLW51bWJlcj4xNTwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGIt

aWQ9IjJhMno1cGZ4Y2Z3OXNhZXdwOWd4ejkyajAwdjJydzVhd3dmZCIgdGltZXN0YW1wPSIxNDg0

MjEzMTQ2Ij4xNTwva2V5PjwvZm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJKb3VybmFsIEFy

dGljbGUiPjE3PC9yZWYtdHlwZT48Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+WHVlLCBG

LiBRLjwvYXV0aG9yPjxhdXRob3I+V2FuZywgWS4gTC48L2F1dGhvcj48YXV0aG9yPldhbmcsIFcu

IEguPC9hdXRob3I+PGF1dGhvcj5XYW5nLCBYLiBELjwvYXV0aG9yPjwvYXV0aG9ycz48L2NvbnRy

aWJ1dG9ycz48dGl0bGVzPjx0aXRsZT5JbnZlc3RpZ2F0aW9uIG9uIHRoZSBlbGVjdHJvZGUgcHJv

Y2VzcyBvZiB0aGUgTW4oSUkpL01uKElJSSkgY291cGxlIGluIHJlZG94IGZsb3cgYmF0dGVyeTwv

dGl0bGU+PHNlY29uZGFyeS10aXRsZT5FbGVjdHJvY2hpbWljYSBBY3RhPC9zZWNvbmRhcnktdGl0

bGU+PC90aXRsZXM+PHBlcmlvZGljYWw+PGZ1bGwtdGl0bGU+RWxlY3Ryb2NoaW1pY2EgQWN0YTwv

ZnVsbC10aXRsZT48L3BlcmlvZGljYWw+PHBhZ2VzPjY2MzYtNjY0MjwvcGFnZXM+PHZvbHVtZT41

Mzwvdm9sdW1lPjxudW1iZXI+MjI8L251bWJlcj48ZGF0ZXM+PHllYXI+MjAwODwveWVhcj48L2Rh

dGVzPjx1cmxzPjwvdXJscz48L3JlY29yZD48L0NpdGU+PENpdGU+PEF1dGhvcj5Eb25nPC9BdXRo

b3I+PFllYXI+MjAxNTwvWWVhcj48UmVjTnVtPjQ1PC9SZWNOdW0+PHJlY29yZD48cmVjLW51bWJl

cj40NTwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9InQweHNk

YXN3eHR2dDJkZWZ6OW12eHowZnRmdGV4c3BwdDJkNSIgdGltZXN0YW1wPSIxNDkxOTAxMDk3Ij40

NTwva2V5PjwvZm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJKb3VybmFsIEFydGljbGUiPjE3

PC9yZWYtdHlwZT48Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+WS4gUi4gRG9uZzwvYXV0

aG9yPjxhdXRob3I+WS4gS2F3YWdvZTwvYXV0aG9yPjxhdXRob3I+IEsuIEl0b3U8L2F1dGhvcj48

YXV0aG9yPkguIEtha3U8L2F1dGhvcj48YXV0aG9yPksuIEhhbmFmdXNhPC9hdXRob3I+PGF1dGhv

cj5LLiBNb3JpdWNoaSA8L2F1dGhvcj48YXV0aG9yPlQuIFNoaWdlbWF0c3U8L2F1dGhvcj48L2F1

dGhvcnM+PC9jb250cmlidXRvcnM+PHRpdGxlcz48dGl0bGU+QSBOb3ZlbCBUaXRhbml1bS9NYW5n

YW5lc2UgUmVkb3ggRmxvdyBCYXR0ZXJ5PC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPkVDUyBUcmFu

c2FjdGlvbnM8L3NlY29uZGFyeS10aXRsZT48L3RpdGxlcz48cGVyaW9kaWNhbD48ZnVsbC10aXRs

ZT5FQ1MgVHJhbnNhY3Rpb25zPC9mdWxsLXRpdGxlPjwvcGVyaW9kaWNhbD48cGFnZXM+NTktNjcg

PC9wYWdlcz48dm9sdW1lPiA2OTwvdm9sdW1lPjxudW1iZXI+MTg8L251bWJlcj48ZGF0ZXM+PHll

YXI+MjAxNTwveWVhcj48L2RhdGVzPjx1cmxzPjwvdXJscz48L3JlY29yZD48L0NpdGU+PENpdGU+

PEF1dGhvcj5Eb25nPC9BdXRob3I+PFllYXI+MjAxNzwvWWVhcj48UmVjTnVtPjQ2PC9SZWNOdW0+

PHJlY29yZD48cmVjLW51bWJlcj40NjwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBw

PSJFTiIgZGItaWQ9InQweHNkYXN3eHR2dDJkZWZ6OW12eHowZnRmdGV4c3BwdDJkNSIgdGltZXN0

YW1wPSIxNDkxOTAxMzUwIj40Njwva2V5PjwvZm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJK

b3VybmFsIEFydGljbGUiPjE3PC9yZWYtdHlwZT48Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRo

b3I+WS4gUi4gRG9uZzwvYXV0aG9yPjxhdXRob3I+WS4gS2F3YWdvZSA8L2F1dGhvcj48YXV0aG9y

PksuIEl0b3UgPC9hdXRob3I+PGF1dGhvcj5ILiBLYWt1PC9hdXRob3I+PGF1dGhvcj5LLiBIYW5h

ZnVzYTwvYXV0aG9yPjxhdXRob3I+Sy4gTW9yaXVjaGkgPC9hdXRob3I+PGF1dGhvcj5ULlNoaWdl

bWF0c3U8L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PHRpdGxlcz48dGl0bGU+SW1w

cm92ZWQgUGVyZm9ybWFuY2Ugb2YgVGkvTW4gUmVkb3ggRmxvdyBCYXR0ZXJ5IGJ5IFRoZXJtYWxs

eSBUcmVhdGVkIENhcmJvbiBQYXBlciBFbGVjdHJvZGVzPC90aXRsZT48c2Vjb25kYXJ5LXRpdGxl

PkVDUyBUcmFuc2FjdGlvbnM8L3NlY29uZGFyeS10aXRsZT48L3RpdGxlcz48cGVyaW9kaWNhbD48

ZnVsbC10aXRsZT5FQ1MgVHJhbnNhY3Rpb25zPC9mdWxsLXRpdGxlPjwvcGVyaW9kaWNhbD48cGFn

ZXM+MjctMzU8L3BhZ2VzPjx2b2x1bWU+NzU8L3ZvbHVtZT48bnVtYmVyPjE4PC9udW1iZXI+PGRh

dGVzPjx5ZWFyPjIwMTc8L3llYXI+PC9kYXRlcz48dXJscz48L3VybHM+PC9yZWNvcmQ+PC9DaXRl

PjwvRW5kTm90ZT4A

ADDIN EN.CITE PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5YdWU8L0F1dGhvcj48WWVhcj4yMDA4PC9ZZWFyPjxSZWNO

dW0+MTU8L1JlY051bT48RGlzcGxheVRleHQ+WzEzLTE1XTwvRGlzcGxheVRleHQ+PHJlY29yZD48

cmVjLW51bWJlcj4xNTwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGIt

aWQ9IjJhMno1cGZ4Y2Z3OXNhZXdwOWd4ejkyajAwdjJydzVhd3dmZCIgdGltZXN0YW1wPSIxNDg0

MjEzMTQ2Ij4xNTwva2V5PjwvZm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJKb3VybmFsIEFy

dGljbGUiPjE3PC9yZWYtdHlwZT48Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+WHVlLCBG

LiBRLjwvYXV0aG9yPjxhdXRob3I+V2FuZywgWS4gTC48L2F1dGhvcj48YXV0aG9yPldhbmcsIFcu

IEguPC9hdXRob3I+PGF1dGhvcj5XYW5nLCBYLiBELjwvYXV0aG9yPjwvYXV0aG9ycz48L2NvbnRy

aWJ1dG9ycz48dGl0bGVzPjx0aXRsZT5JbnZlc3RpZ2F0aW9uIG9uIHRoZSBlbGVjdHJvZGUgcHJv

Y2VzcyBvZiB0aGUgTW4oSUkpL01uKElJSSkgY291cGxlIGluIHJlZG94IGZsb3cgYmF0dGVyeTwv

dGl0bGU+PHNlY29uZGFyeS10aXRsZT5FbGVjdHJvY2hpbWljYSBBY3RhPC9zZWNvbmRhcnktdGl0

bGU+PC90aXRsZXM+PHBlcmlvZGljYWw+PGZ1bGwtdGl0bGU+RWxlY3Ryb2NoaW1pY2EgQWN0YTwv

ZnVsbC10aXRsZT48L3BlcmlvZGljYWw+PHBhZ2VzPjY2MzYtNjY0MjwvcGFnZXM+PHZvbHVtZT41

Mzwvdm9sdW1lPjxudW1iZXI+MjI8L251bWJlcj48ZGF0ZXM+PHllYXI+MjAwODwveWVhcj48L2Rh

dGVzPjx1cmxzPjwvdXJscz48L3JlY29yZD48L0NpdGU+PENpdGU+PEF1dGhvcj5Eb25nPC9BdXRo

b3I+PFllYXI+MjAxNTwvWWVhcj48UmVjTnVtPjQ1PC9SZWNOdW0+PHJlY29yZD48cmVjLW51bWJl

cj40NTwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9InQweHNk

YXN3eHR2dDJkZWZ6OW12eHowZnRmdGV4c3BwdDJkNSIgdGltZXN0YW1wPSIxNDkxOTAxMDk3Ij40

NTwva2V5PjwvZm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJKb3VybmFsIEFydGljbGUiPjE3

PC9yZWYtdHlwZT48Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+WS4gUi4gRG9uZzwvYXV0

aG9yPjxhdXRob3I+WS4gS2F3YWdvZTwvYXV0aG9yPjxhdXRob3I+IEsuIEl0b3U8L2F1dGhvcj48

YXV0aG9yPkguIEtha3U8L2F1dGhvcj48YXV0aG9yPksuIEhhbmFmdXNhPC9hdXRob3I+PGF1dGhv

cj5LLiBNb3JpdWNoaSA8L2F1dGhvcj48YXV0aG9yPlQuIFNoaWdlbWF0c3U8L2F1dGhvcj48L2F1

dGhvcnM+PC9jb250cmlidXRvcnM+PHRpdGxlcz48dGl0bGU+QSBOb3ZlbCBUaXRhbml1bS9NYW5n

YW5lc2UgUmVkb3ggRmxvdyBCYXR0ZXJ5PC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPkVDUyBUcmFu

c2FjdGlvbnM8L3NlY29uZGFyeS10aXRsZT48L3RpdGxlcz48cGVyaW9kaWNhbD48ZnVsbC10aXRs

ZT5FQ1MgVHJhbnNhY3Rpb25zPC9mdWxsLXRpdGxlPjwvcGVyaW9kaWNhbD48cGFnZXM+NTktNjcg

PC9wYWdlcz48dm9sdW1lPiA2OTwvdm9sdW1lPjxudW1iZXI+MTg8L251bWJlcj48ZGF0ZXM+PHll

YXI+MjAxNTwveWVhcj48L2RhdGVzPjx1cmxzPjwvdXJscz48L3JlY29yZD48L0NpdGU+PENpdGU+

PEF1dGhvcj5Eb25nPC9BdXRob3I+PFllYXI+MjAxNzwvWWVhcj48UmVjTnVtPjQ2PC9SZWNOdW0+

PHJlY29yZD48cmVjLW51bWJlcj40NjwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBw

PSJFTiIgZGItaWQ9InQweHNkYXN3eHR2dDJkZWZ6OW12eHowZnRmdGV4c3BwdDJkNSIgdGltZXN0

YW1wPSIxNDkxOTAxMzUwIj40Njwva2V5PjwvZm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJK

b3VybmFsIEFydGljbGUiPjE3PC9yZWYtdHlwZT48Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRo

b3I+WS4gUi4gRG9uZzwvYXV0aG9yPjxhdXRob3I+WS4gS2F3YWdvZSA8L2F1dGhvcj48YXV0aG9y

PksuIEl0b3UgPC9hdXRob3I+PGF1dGhvcj5ILiBLYWt1PC9hdXRob3I+PGF1dGhvcj5LLiBIYW5h

ZnVzYTwvYXV0aG9yPjxhdXRob3I+Sy4gTW9yaXVjaGkgPC9hdXRob3I+PGF1dGhvcj5ULlNoaWdl

bWF0c3U8L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PHRpdGxlcz48dGl0bGU+SW1w

cm92ZWQgUGVyZm9ybWFuY2Ugb2YgVGkvTW4gUmVkb3ggRmxvdyBCYXR0ZXJ5IGJ5IFRoZXJtYWxs

eSBUcmVhdGVkIENhcmJvbiBQYXBlciBFbGVjdHJvZGVzPC90aXRsZT48c2Vjb25kYXJ5LXRpdGxl

PkVDUyBUcmFuc2FjdGlvbnM8L3NlY29uZGFyeS10aXRsZT48L3RpdGxlcz48cGVyaW9kaWNhbD48

ZnVsbC10aXRsZT5FQ1MgVHJhbnNhY3Rpb25zPC9mdWxsLXRpdGxlPjwvcGVyaW9kaWNhbD48cGFn

ZXM+MjctMzU8L3BhZ2VzPjx2b2x1bWU+NzU8L3ZvbHVtZT48bnVtYmVyPjE4PC9udW1iZXI+PGRh

dGVzPjx5ZWFyPjIwMTc8L3llYXI+PC9kYXRlcz48dXJscz48L3VybHM+PC9yZWNvcmQ+PC9DaXRl

PjwvRW5kTm90ZT4A

ADDIN EN.CITE.DATA [13-15] During battery charging, Mn(III) is produced and in an aqueous environment this species quickly undergoes a disproportionation reaction to yield soluble Mn(II) and MnO2 as a precipitate (Equation 1). ADDIN EN.CITE <EndNote><Cite><Author>Kao</Author><Year>1992</Year><RecNum>16</RecNum><DisplayText>[16]</DisplayText><record><rec-number>16</rec-number><foreign-keys><key app="EN" db-id="2a2z5pfxcfw9saewp9gxz92j00v2rw5awwfd" timestamp="1484213146">16</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Kao, W. H.</author><author>Weibel, V. J.</author></authors></contributors><titles><title>Electrochemical oxidation of Manganese (II) at a Platinum-electrode</title><secondary-title>Journal of Applied Electrochemistry</secondary-title></titles><periodical><full-title>Journal of Applied Electrochemistry</full-title></periodical><pages>21-27</pages><volume>22</volume><number>1</number><dates><year>1992</year></dates><urls></urls></record></Cite></EndNote>[16].2Mn3+ + 2H2O MnO2 + Mn2+ + 4H+Eq 1The formation of solid, insoluble MnO2 particles in a RFB would lead to a larger flow pressure drop and reduced mass transport due to electrode and flow field blocking. Moreover, MnO2 formation will decrease the concentration of the active species in solution and cause an irreversible decay in RFB capacity and power. Such a process also occurs in vanadium RFBs under certain conditions of pH, temperature, concentration and oxidation state. ADDIN EN.CITE <EndNote><Cite><Author>Sadoc</Author><Year>2007</Year><RecNum>17</RecNum><DisplayText>[17]</DisplayText><record><rec-number>17</rec-number><foreign-keys><key app="EN" db-id="2a2z5pfxcfw9saewp9gxz92j00v2rw5awwfd" timestamp="1484213146">17</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Sadoc, A.</author><author>Messaoudi, S.</author><author>Furet, E.</author><author>Gautier, R.</author><author>Le Fur, E.</author><author>Le Polles, L.</author><author>Pivan, J. Y.</author></authors></contributors><titles><title>Structure and stability of VO2+ in aqueous solution: A car-parrinello and static ab initio study</title><secondary-title>Inorganic Chemistry</secondary-title></titles><periodical><full-title>Inorganic Chemistry</full-title></periodical><pages>4835-4843</pages><volume>46</volume><number>12</number><dates><year>2007</year></dates><urls></urls></record></Cite></EndNote>[17] The implementation of additives such as polymers, ADDIN EN.CITE <EndNote><Cite><Author>Flox</Author><Year>2015</Year><RecNum>18</RecNum><DisplayText>[18]</DisplayText><record><rec-number>18</rec-number><foreign-keys><key app="EN" db-id="2a2z5pfxcfw9saewp9gxz92j00v2rw5awwfd" timestamp="1484213146">18</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Flox, C.</author><author>Rubio-Garcia, J.</author><author>Skoumal, M.</author><author>Vazquez-Galvan, J.</author><author>Ventosa, E.</author><author>Morante, J. R.</author></authors></contributors><titles><title>Thermally Stable Positive Electrolytes with a Superior Performance in All-Vanadium Redox Flow Batteries</title><secondary-title>Chempluschem</secondary-title></titles><periodical><full-title>Chempluschem</full-title></periodical><pages>354-358</pages><volume>80</volume><number>2</number><dates><year>2015</year><pub-dates><date>Feb</date></pub-dates></dates><urls></urls></record></Cite></EndNote>[18] halides ADDIN EN.CITE <EndNote><Cite><Author>Li</Author><Year>2011</Year><RecNum>19</RecNum><DisplayText>[19]</DisplayText><record><rec-number>19</rec-number><foreign-keys><key app="EN" db-id="2a2z5pfxcfw9saewp9gxz92j00v2rw5awwfd" timestamp="1484213146">19</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Li, L. Y.</author><author>Kim, S.</author><author>Wang, W.</author><author>Vijayakumar, M.</author><author>Nie, Z. M.</author><author>Chen, B. W.</author><author>Zhang, J. L.</author><author>Xia, G. G.</author><author>Hu, J. Z.</author><author>Graff, G.</author><author>Liu, J.</author><author>Yang, Z. G.</author></authors></contributors><titles><title>A Stable Vanadium Redox-Flow Battery with High Energy Density for Large-Scale Energy Storage</title><secondary-title>Advanced Energy Materials</secondary-title></titles><periodical><full-title>Advanced Energy Materials</full-title></periodical><pages>394-400</pages><volume>1</volume><number>3</number><dates><year>2011</year></dates><urls></urls></record></Cite></EndNote>[19] or phosphates ADDIN EN.CITE <EndNote><Cite><Author>Rahman</Author><Year>2017</Year><RecNum>20</RecNum><DisplayText>[20]</DisplayText><record><rec-number>20</rec-number><foreign-keys><key app="EN" db-id="2a2z5pfxcfw9saewp9gxz92j00v2rw5awwfd" timestamp="1484213148">20</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Rahman, Faizur</author><author>Skyllas-Kazacos, M.</author></authors></contributors><titles><title>Evaluation of additive formulations to inhibit precipitation of positive electrolyte in vanadium battery</title><secondary-title>Journal of Power Sources</secondary-title></titles><periodical><full-title>Journal of Power Sources</full-title></periodical><pages>139 - 149</pages><volume>340</volume><number>-</number><dates><year>2017</year></dates><urls><related-urls><url>- ;[20] have been found to inhibit this undesired reaction in vanadium RFBs.In the case of manganese, examples of limited kinetic stabilization of Mn(III) in water using ligands including fluoride ADDIN EN.CITE <EndNote><Cite><Author>Bhattacharjee</Author><Year>1989</Year><RecNum>21</RecNum><DisplayText>[21]</DisplayText><record><rec-number>21</rec-number><foreign-keys><key app="EN" db-id="2a2z5pfxcfw9saewp9gxz92j00v2rw5awwfd" timestamp="1484213148">21</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Bhattacharjee, M. N.</author><author>Chaudhuri, M. K.</author><author>Purkayastha, R. N. D.</author></authors></contributors><titles><title>Fluoride-assisted stabilization of Manganese(III) in aqueous-medium - A general approach to the synthesis of mixed-ligand fluoro complexes of Manganese(III)</title><secondary-title>Inorganic Chemistry</secondary-title></titles><periodical><full-title>Inorganic Chemistry</full-title></periodical><pages>3747-3752</pages><volume>28</volume><number>19</number><dates><year>1989</year></dates><urls></urls></record></Cite></EndNote>[21] or pyrophosphate ADDIN EN.CITE <EndNote><Cite><Author>Klewicki</Author><Year>1998</Year><RecNum>22</RecNum><DisplayText>[22]</DisplayText><record><rec-number>22</rec-number><foreign-keys><key app="EN" db-id="2a2z5pfxcfw9saewp9gxz92j00v2rw5awwfd" timestamp="1484213148">22</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Klewicki, J. K.</author><author>Morgan, J. J.</author></authors></contributors><titles><title>Kinetic behavior of Mn(III) complexes of pyrophosphate, EDTA, and citrate</title><secondary-title>Environmental Science &amp; Technology</secondary-title></titles><periodical><full-title>Environmental Science &amp; Technology</full-title></periodical><pages>2916-2922</pages><volume>32</volume><number>19</number><dates><year>1998</year></dates><urls></urls></record></Cite></EndNote>[22] have been reported. Use of or metal additives ADDIN EN.CITE <EndNote><Cite><Author>Huber</Author><Year>1976</Year><RecNum>23</RecNum><DisplayText>[14, 23]</DisplayText><record><rec-number>23</rec-number><foreign-keys><key app="EN" db-id="2a2z5pfxcfw9saewp9gxz92j00v2rw5awwfd" timestamp="1484213148">23</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Huber, Charles F.</author><author>Haight, G. P.</author></authors></contributors><titles><title>The oxidation of manganese(II) by chromium(VI) in the presence of oxalate ion</title><secondary-title>J. Am. Chem. Soc.</secondary-title><translated-title>- 1976/07/01</translated-title></titles><periodical><full-title>J. Am. Chem. Soc.</full-title></periodical><pages>4128- 4131</pages><volume>98</volume><number>14</number><dates><year>1976</year></dates><urls></urls></record></Cite><Cite><Author>Dong</Author><Year>2015</Year><RecNum>45</RecNum><record><rec-number>45</rec-number><foreign-keys><key app="EN" db-id="t0xsdaswxtvt2defz9mvxz0ftftexsppt2d5" timestamp="1491901097">45</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Y. R. Dong</author><author>Y. Kawagoe</author><author> K. Itou</author><author>H. Kaku</author><author>K. Hanafusa</author><author>K. Moriuchi </author><author>T. Shigematsu</author></authors></contributors><titles><title>A Novel Titanium/Manganese Redox Flow Battery</title><secondary-title>ECS Transactions</secondary-title></titles><periodical><full-title>ECS Transactions</full-title></periodical><pages>59-67 </pages><volume> 69</volume><number>18</number><dates><year>2015</year></dates><urls></urls></record></Cite></EndNote>[14, 23] has shown some promise as well. This paper demonstrates the benefits of merging a hybrid redox flow battery architecture (which utilizes H2 as negative electrolyte) and the use of earth-abundant redox couples (stable Mn(III) complexes in acidic conditions). A hybrid design, in which liquid and gas are easily separated, significantly mitigates issues associated with the crossover of redox species in the cell during operation. For a liquid-liquid RFB configuration, the crossover of active species leads to either: irreversible degradation of the system; or to the necessity of frequent electrolyte rebalancing which increases operation costs. The rebalancing of the electrolyte in hydrogen/manganese RFB would be as simple as pumping the liquid back to the gas side and/or H2 top up from a cylinder, which has an obvious advantage over current RFBs. Moreover, the use of manganese liquid electrolytes, allows us to preserve the activity of the metal catalyst at the gas side which is an advancement when compared to previous hydrogen/bromine hybrid systems. The combination of excellent system longevity, impressive power output and high round-trip efficiency, confirms the hydrogen/manganese hybrid RFB here reported as a relatively inexpensive technology especially well suited large scale energy storage applications.2. Methods2.1 Electrolyte preparation The electrolyte is an equimolar solution of manganese (II) and titanium (IV) in 3 M sulphuric acid solution. To achieve such a composition, sulphuric acid is first added to a Ti(SO4)2 solution (15 wt%, Fisher Scientific). Then the solution is heated to boiling to promote water evaporation and increase the metal concentration. Once the desired concentration is achieved the solution is cooled to room temperature and MnCO3 (99.99 %, Sigma-Aldrich) is slowly added (with consequent formation of CO2 bubbles).2.2 Electrochemical testingA Nafion? 212 membrane (nominal thickness 52 m) was placed on top of the catalyst layer of a Hydrogen electrode (Fuel Cell Store, 0.4 mgPt cm-2 loading on Carbon Paper, 0.22 mm thick). The membrane side was directly exposed to the electrolyte solution while the back of the electrode was electrically contacted with a Pt ring/wire current collector. As shown in supplementary Figure 6, the working electrode faces a Luggin capillary which was equipped with a leak-free Ag/AgCl (sat) reference electrode (Harvard Instruments, UK). Hydrogen Oxygen Reaction (HOR) and Hydrogen Evolution Reaction (HER) at 100 mA cm-2 were studied using a SIGRACET graphite felt counter electrode (SGL, Germany) using a potentiostat (Autolab, model PGSTAT20). 2.3 RFB operationThe RFB fixture was purchased from Scribner Associates. The cell consisted of two POCO graphite bipolar plates with a machined flow field in contact with gold-plated copper current collectors that are held together utilizing anodized aluminium end plates. Active area of the electrodes was 5 cm2. Commercially available 0.32 mm thick untreated carbon paper (SGL group, Germany, Sigracet SGL 10AA, typically 3 layers) or 4.6 mm thick untreated graphite felt (SGL group, Germany, Sigracell GFD4,6 EA) was used as the positive electrode. The Hydrogen negative electrode was obtained from Fuel Cell Store, 0.4 mgPt cm-2 loading on Carbon Paper or 0.03 mgPt cm-2 loading on Carbon Cloth). The membrane was Nafion 212 (nominal thickness 52 m). A peristaltic pump (Masterflex easy-load, Cole-Palmer) and Masterflex platinum-cured silicone tubing (L/S 14, 25 ft) were used to pump the manganese electrolyte through the cell at flow rate of 25-100 mL min-1. Hydrogen was provided by a fuel cell test station (850e, Scribner Associates), passing through the negative side at a flow rate of 35-150 mL/min. Due to the current range, polarization curves were recorded using a fuel cell test station (850e, Scribner Associates) whereas galvanostatic charge and charge experiments were conducted with a Gamry potentiostat 3000.Discharge at different SoC was achieved by taking a fully charged electrolyte and then running the cell a defined time to achieve 75% or 50% SOC. This assumes a high CE which has been shown for this system, Figure 3A.The polarization curves at different SoC were measured using the Scribner 850e Fuel cell test station with 20 mA/cm2 steps which were held for 20 seconds. The electrolyte was 300 mL of 1M MnSO4, 1M Ti(SO4)2 in 3M H2SO4 with a liquid flow rate of 50mL/min. For the gas side, a H2 flow rate of 100 mL/min was used.. 2.4 XANES experiments and analyses Manganese and titanium K-edge X-ray absorption spectroscopy (XAS) spectra were recorded at the B18 beamline at Diamond Lightsource (Daresbury, United Kingdom) (3 GeV, 300 mA, Si(111) monochromator crystals) at room temperature (RT) using a 9-element Ge solid state detector. The beam energy was calibrated by setting the first inflection point in the K absorption edge of a metallic Mn foil to 6.539 keV or a metallic Ti foil to 4.9664 keV. The sample spectra were acquired in fluorescence mode, starting at 6350 eV (Mn) or 4800 eV (Ti). The pre-edge step size was set to 5 eV, and the edge step size along the edge was set to 0.5 eV.For a summary of the composition of the measured samples please see supplementary Table 3. Manganese: Mn(acac)3, Mn3O4 and MnO2 were measured as powders. In addition, measurements were performed on liquid samples of similar composition to those used within the experiments and labelled as sample 1 (0.2M MnSO4 + 0.2M Ti(SO4)2 + 5M H2SO4), sample 2 (0.2M MnSO4 + 5M H2SO4) and sample 8 (0.1M MnSO4 + 0.1M TiOSO4 + 5M H2SO4). These samples were used as standards for samples electrochemically treated (3 and 4). Titanium: the electrochemically treated sample 4 was compared with sample 1 (0.2M MnSO4 + 0.2M Ti(SO4)2 + 5M H2SO4), sample 5 (0.2M Ti(SO4)2), sample 6 (0.2M Ti2(SO4)3 in 5M H2SO4), sample 7 (0.1M TiOSO4 in 5M H2SO4) and sample 8 (0.1M MnSO4 + 0.1M TiOSO4 + 5M H2SO4). Sample 5 was additionally analyzed as an electrochemically treated sample to examine the oxidation of Ti2(SO4)3 to Ti(SO4)2.All reference and standards (six spectra for Mn, five spectra for Ti) were screened to determine combinations of reference spectra that best matched the data. Subsequently, samples were analysed by linear least-squares combination fittings (LCF) over the range – 20 eV and + 40 eV for both elements using the software code Athena. ADDIN EN.CITE <EndNote><Cite><Author>Ravel</Author><Year>2005</Year><RecNum>24</RecNum><DisplayText>[24]</DisplayText><record><rec-number>24</rec-number><foreign-keys><key app="EN" db-id="2a2z5pfxcfw9saewp9gxz92j00v2rw5awwfd" timestamp="1484213148">24</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Ravel, B.</author><author>Newville, M.</author></authors></contributors><titles><title>ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT</title><secondary-title>Journal of Synchrotron Radiation</secondary-title></titles><periodical><full-title>Journal of Synchrotron Radiation</full-title></periodical><pages>537-541</pages><volume>12</volume><number>4</number><dates><year>2005</year></dates><urls></urls></record></Cite></EndNote>[24] The E0 was fixed at 6550 eV for Mn and 4980 eV for Ti. The background was subtracted using a linear fit through the pre-edge region and the Autobk routine in Athena for the spline fit through the XANES region (Rbkg = 1, k-weight = 3, spline k-range = 0.5 – 10.5 ?-1). Starting from the best fit with one component, the number of components n was increased as long as the normalized sum of the squared residuals (NSSR = ∑(datai – fiti)2/∑(datai)2) of best n + 1-component fit was at least 10% lower than the NSSR of the best n-component fit and if no component account for less than 5% of total. Linear combination fittings were not constrained to sum 100% (Figure 1B, supplementary Figure 3 and supplementary Table 2).3. Results and DiscussionSolutions of MnSO4 in H2SO4 in the absence and presence of aluminium or titanium metal salt additives were prepared and electrochemically oxidized within a bulk electrolysis cell (in-situ formation of Mn(III) complexes). In the absence of additives, a brown precipitate identified as MnO2 was clearly seen after less than 10 minutes of electrochemical oxidation. In the solutions containing metal additives Mn(III) was stabilised and no solid precipitates were seen, even after one hour of polarisation. Visual observation of the stability of electrochemically generated Mn3+ in the presence of different metal ion species showed increasing stability in the order Al3+< TiO22+< Ti4+. This results are well aligned with recent development of electrolytes for liquid-liquid RFB architectures. ADDIN EN.CITE <EndNote><Cite><Author>Dong</Author><Year>2015</Year><RecNum>45</RecNum><DisplayText>[14, 15]</DisplayText><record><rec-number>45</rec-number><foreign-keys><key app="EN" db-id="t0xsdaswxtvt2defz9mvxz0ftftexsppt2d5" timestamp="1491901097">45</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Y. R. Dong</author><author>Y. Kawagoe</author><author> K. Itou</author><author>H. Kaku</author><author>K. Hanafusa</author><author>K. Moriuchi </author><author>T. Shigematsu</author></authors></contributors><titles><title>A Novel Titanium/Manganese Redox Flow Battery</title><secondary-title>ECS Transactions</secondary-title></titles><periodical><full-title>ECS Transactions</full-title></periodical><pages>59-67 </pages><volume> 69</volume><number>18</number><dates><year>2015</year></dates><urls></urls></record></Cite><Cite><Author>Dong</Author><Year>2017</Year><RecNum>46</RecNum><record><rec-number>46</rec-number><foreign-keys><key app="EN" db-id="t0xsdaswxtvt2defz9mvxz0ftftexsppt2d5" timestamp="1491901350">46</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Y. R. Dong</author><author>Y. Kawagoe </author><author>K. Itou </author><author>H. Kaku</author><author>K. Hanafusa</author><author>K. Moriuchi </author><author>T.Shigematsu</author></authors></contributors><titles><title>Improved Performance of Ti/Mn Redox Flow Battery by Thermally Treated Carbon Paper Electrodes</title><secondary-title>ECS Transactions</secondary-title></titles><periodical><full-title>ECS Transactions</full-title></periodical><pages>27-35</pages><volume>75</volume><number>18</number><dates><year>2017</year></dates><urls></urls></record></Cite></EndNote>[14, 15] Electrochemical measurement of voltammetry of solutions of MnSO4 in H2SO4 in the presence and absence of Ti(SO4)2 showed increased electrochemical reversibility and the absence of a “nucleation loop” (indicative of nucleation and growth of a solid phase ADDIN EN.CITE <EndNote><Cite><Author>Fletcher</Author><Year>1983</Year><RecNum>54</RecNum><DisplayText>[25]</DisplayText><record><rec-number>54</rec-number><foreign-keys><key app="EN" db-id="2a2z5pfxcfw9saewp9gxz92j00v2rw5awwfd" timestamp="1541073645">54</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Fletcher, S.</author><author>Halliday, C. S.</author><author>Gates, D.</author><author>Westcott, M.</author><author>Lwin, T.</author><author>Nelson, G.</author></authors></contributors><titles><title>THE RESPONSE OF SOME NUCLEATION GROWTH-PROCESSES TO TRIANGULAR SCANS OF POTENTIAL</title><secondary-title>Journal of Electroanalytical Chemistry</secondary-title></titles><periodical><full-title>Journal of Electroanalytical Chemistry</full-title></periodical><pages>267-285</pages><volume>159</volume><number>2</number><dates><year>1983</year></dates><isbn>0022-0728</isbn><accession-num>WOS:A1983RY69600003</accession-num><urls><related-urls><url>&lt;Go to ISI&gt;://WOS:A1983RY69600003</url><url>(83)80627-5</electronic-resource-num></record></Cite></EndNote>[25]) when the titanium species was present in solution (see supplementary figure 2). We subsequently focussed our attention on investigating the stability of an electrolyte consisting of 1M MnSO4 and 3M H2SO4 with or without 1M Ti(SO4)2. Manganese and titanium content was monitored using Inductively Coupled Plasma Spectrometry (ICP) from aliquots periodically taken from the liquid phase after bulk electrolysis. The evolution of the Mn(III) concentration with time is shown in Figure 1A. The disproportionation reaction involves the degradation of two Mn(III) atoms with one Mn(II) atom remaining in solution (equation 1, see supplementary note 2 for calculation method). Figure 1A shows the evolution of Mn(III) concentration in a charged electrolyte over time. Error values associated with concentration determination are provided in supplementary Table 1, and are smaller than the symbols used in the diagram. Without the Ti additive the electrolyte becomes turbid over the course of the electrolysis process due to the simultaneous occurrence of the disproportionation reaction (see supplementary Figure 1A). Once the cell reaches the cut off voltage (1.7V), a brown precipitate is observable at the bottom of the vial and the liquid phase showed an Mn(III) content of only 0.15M (Figure 1A, blue). Over a short period of time the solution keeps evolving as the precipitation reaction progresses and the Mn(III) concentration drops to 0.03M after one hour and reaches a negligible value after 20 hours. In contrast, significantly enhanced stability is obtained with a 1:1 (Mn:Ti) solution. The electrolyte remains transparent (although optically dense) during the whole electrolytic process and no turbidity was observed (see supplementary Figure 1B). The concentration of Mn(III) remains constant for more than 72 hours, Figure 1A (black). Little formation of solid is observed after 100 hours and even after 120 hours only a decrease of manganese concentration to 0.9M is seen. After 5 months the solution maintains a Mn(III) concentration of 0.84M. Hence it can be concluded that the addition of Ti4+ has a noticeable role in suppressing the disproportionation reaction. Suppression of MnO2 formation has an important impact in utilising Mn(II)/Mn(III) in RFBs under real conditions.We carried out X-ray absorption near edge structure (XANES) analyses at the Ti and Mn K-edges as an attempt to investigate the nature of the Mn(III)-stabilization mechanism. Figure 1B shows a comparison of freshly produced Mn(III) electrolytes with and without Ti4+ additive compared with standard samples selected to investigate the metal signature as a function of oxidation states. A linear combination fit of the XANES spectra leads to the red dashed lines in Figure 1B and revealed a decrease of Mn(IV) contribution to the experimental result in the presence of titanium (see supplementary note 3). Moreover, Ti K-edge XANES data analysis of samples containing TiOSO4 instead of Ti(SO4)2 showed similar curve fitting in the presence of Mn(III). This could be attributed to Ti4+ coordination with oxo-ligands, which would lead to a metal environment closer to TiO2+ (see supplementary note 4&5 and supplementary Figure 3). A full paper analysing the factors affecting the stability of the electrolyte and speciation of the reacting species tracked using X-Ray and electrochemical methods is currently being developed.Huber et al. observed an enhancement of Mn(III) stability upon oxidation of Mn(II) by Cr(VI) in the presence of oxalate ligands. It was hypothesised that the ligands promoted a change in the spatial arrangement of the metallic centre. ADDIN EN.CITE <EndNote><Cite><Author>Huber</Author><Year>1976</Year><RecNum>23</RecNum><DisplayText>[23]</DisplayText><record><rec-number>23</rec-number><foreign-keys><key app="EN" db-id="2a2z5pfxcfw9saewp9gxz92j00v2rw5awwfd" timestamp="1484213148">23</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Huber, Charles F.</author><author>Haight, G. P.</author></authors></contributors><titles><title>The oxidation of manganese(II) by chromium(VI) in the presence of oxalate ion</title><secondary-title>J. Am. Chem. Soc.</secondary-title><translated-title>- 1976/07/01</translated-title></titles><periodical><full-title>J. Am. Chem. Soc.</full-title></periodical><pages>4128- 4131</pages><volume>98</volume><number>14</number><dates><year>1976</year></dates><urls></urls></record></Cite></EndNote>[23] A change in Mn(III) conformation modifies the energy levels of the molecular orbitals (Jahn-Teller effect) which may enable the stabilization of the metallic complex. Based on these early reports and on the results here discussed, we hypothesize the occurrence of a weak interaction between Mn(III) and Ti(IV) through oxo-bridge ligands as a plausible mechanism to promote enhanced Mn(III) stability in acid (see Methods and supplementary Table 3). However, further analysis will be necessary to fully understand the stabilization mechanism.Encouraged by the stability of an electrolyte formulation containing 1M MnSO4, and 1M Ti(SO4)2 in 3M H2SO4, we decided to investigate the performance of a hybrid H2-Mn RFB cell in which the cell reactions areMn2+charge?dischargeMn3++e-Eq. 2with simultaneous H+ transport across the membrane and HER at the negative electrode. 2H++2e-charge?dischargeH2Eq 3The opposite processes occurs during cell discharge with oxidation of H2 to H+ and reduction of Mn(III) to Mn(II). Utilising hydrogen as the negative electrode reaction has a number of benefits (see supplementary note 1 for advantages and discussion).Several liquid electrolytes have been previously studied in a hybrid RFB configurationPEVuZE5vdGU+PENpdGU+PEF1dGhvcj5EZXdhZ2U8L0F1dGhvcj48WWVhcj4yMDE1PC9ZZWFyPjxS

ZWNOdW0+MzA8L1JlY051bT48RGlzcGxheVRleHQ+WzI2LTI4XTwvRGlzcGxheVRleHQ+PHJlY29y

ZD48cmVjLW51bWJlcj4zMDwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIg

ZGItaWQ9IjJhMno1cGZ4Y2Z3OXNhZXdwOWd4ejkyajAwdjJydzVhd3dmZCIgdGltZXN0YW1wPSIx

NDg0MjEzMTUxIj4zMDwva2V5PjwvZm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJKb3VybmFs

IEFydGljbGUiPjE3PC9yZWYtdHlwZT48Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+RGV3

YWdlLCBILiBILjwvYXV0aG9yPjxhdXRob3I+V3UsIEIuPC9hdXRob3I+PGF1dGhvcj5Uc29pLCBB

LjwvYXV0aG9yPjxhdXRob3I+WXVmaXQsIFYuPC9hdXRob3I+PGF1dGhvcj5PZmZlciwgRy48L2F1

dGhvcj48YXV0aG9yPkJyYW5kb24sIE4uPC9hdXRob3I+PC9hdXRob3JzPjwvY29udHJpYnV0b3Jz

Pjx0aXRsZXM+PHRpdGxlPkEgbm92ZWwgcmVnZW5lcmF0aXZlIGh5ZHJvZ2VuIGNlcml1bSBmdWVs

IGNlbGwgZm9yIGVuZXJneSBzdG9yYWdlIGFwcGxpY2F0aW9uczwvdGl0bGU+PHNlY29uZGFyeS10

aXRsZT5Kb3VybmFsIG9mIE1hdGVyaWFscyBDaGVtaXN0cnkgQTwvc2Vjb25kYXJ5LXRpdGxlPjwv

dGl0bGVzPjxwZXJpb2RpY2FsPjxmdWxsLXRpdGxlPkpvdXJuYWwgb2YgTWF0ZXJpYWxzIENoZW1p

c3RyeSBBPC9mdWxsLXRpdGxlPjwvcGVyaW9kaWNhbD48cGFnZXM+OTQ0Ni05NDUwPC9wYWdlcz48

dm9sdW1lPjM8L3ZvbHVtZT48bnVtYmVyPjE4PC9udW1iZXI+PGRhdGVzPjx5ZWFyPjIwMTU8L3ll

YXI+PC9kYXRlcz48dXJscz48L3VybHM+PC9yZWNvcmQ+PC9DaXRlPjxDaXRlPjxBdXRob3I+WXVm

aXQ8L0F1dGhvcj48WWVhcj4yMDEzPC9ZZWFyPjxSZWNOdW0+Mjk8L1JlY051bT48cmVjb3JkPjxy

ZWMtbnVtYmVyPjI5PC9yZWMtbnVtYmVyPjxmb3JlaWduLWtleXM+PGtleSBhcHA9IkVOIiBkYi1p

ZD0iMmEyejVwZnhjZnc5c2Fld3A5Z3h6OTJqMDB2MnJ3NWF3d2ZkIiB0aW1lc3RhbXA9IjE0ODQy

MTMxNTAiPjI5PC9rZXk+PC9mb3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0

aWNsZSI+MTc8L3JlZi10eXBlPjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5ZdWZpdCwg

Vi48L2F1dGhvcj48YXV0aG9yPkhhbGUsIEIuPC9hdXRob3I+PGF1dGhvcj5NYXRpYW4sIE0uPC9h

dXRob3I+PGF1dGhvcj5NYXp1ciwgUC48L2F1dGhvcj48YXV0aG9yPkJyYW5kb24sIE4uIFAuPC9h

dXRob3I+PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjx0aXRsZXM+PHRpdGxlPkRldmVsb3BtZW50

IG9mIGEgUmVnZW5lcmF0aXZlIEh5ZHJvZ2VuLVZhbmFkaXVtIEZ1ZWwgQ2VsbCBmb3IgRW5lcmd5

IFN0b3JhZ2UgQXBwbGljYXRpb25zPC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPkpvdXJuYWwgb2Yg

dGhlIEVsZWN0cm9jaGVtaWNhbCBTb2NpZXR5PC9zZWNvbmRhcnktdGl0bGU+PC90aXRsZXM+PHBl

cmlvZGljYWw+PGZ1bGwtdGl0bGU+Sm91cm5hbCBvZiB0aGUgRWxlY3Ryb2NoZW1pY2FsIFNvY2ll

dHk8L2Z1bGwtdGl0bGU+PC9wZXJpb2RpY2FsPjxwYWdlcz5BODU2LUE4NjE8L3BhZ2VzPjx2b2x1

bWU+MTYwPC92b2x1bWU+PG51bWJlcj42PC9udW1iZXI+PGRhdGVzPjx5ZWFyPjIwMTM8L3llYXI+

PC9kYXRlcz48dXJscz48L3VybHM+PC9yZWNvcmQ+PC9DaXRlPjxDaXRlPjxBdXRob3I+QWxvbjwv

QXV0aG9yPjxZZWFyPjIwMTM8L1llYXI+PFJlY051bT4yODwvUmVjTnVtPjxyZWNvcmQ+PHJlYy1u

dW1iZXI+Mjg8L3JlYy1udW1iZXI+PGZvcmVpZ24ta2V5cz48a2V5IGFwcD0iRU4iIGRiLWlkPSIy

YTJ6NXBmeGNmdzlzYWV3cDlneHo5MmowMHYycnc1YXd3ZmQiIHRpbWVzdGFtcD0iMTQ4NDIxMzE1

MCI+Mjg8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xl

Ij4xNzwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPkFsb24sIE0uPC9h

dXRob3I+PGF1dGhvcj5CbHVtLCBBLjwvYXV0aG9yPjxhdXRob3I+UGVsZWQsIEUuPC9hdXRob3I+

PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjx0aXRsZXM+PHRpdGxlPkZlYXNpYmlsaXR5IHN0dWR5

IG9mIGh5ZHJvZ2VuL2lyb24gcmVkb3ggZmxvdyBjZWxsIGZvciBncmlkLXN0b3JhZ2UgYXBwbGlj

YXRpb25zPC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPkpvdXJuYWwgb2YgUG93ZXIgU291cmNlczwv

c2Vjb25kYXJ5LXRpdGxlPjwvdGl0bGVzPjxwZXJpb2RpY2FsPjxmdWxsLXRpdGxlPkpvdXJuYWwg

b2YgUG93ZXIgU291cmNlczwvZnVsbC10aXRsZT48L3BlcmlvZGljYWw+PHBhZ2VzPjQxNy00MjA8

L3BhZ2VzPjx2b2x1bWU+MjQwPC92b2x1bWU+PGRhdGVzPjx5ZWFyPjIwMTM8L3llYXI+PHB1Yi1k

YXRlcz48ZGF0ZT5PY3Q8L2RhdGU+PC9wdWItZGF0ZXM+PC9kYXRlcz48dXJscz48L3VybHM+PC9y

ZWNvcmQ+PC9DaXRlPjwvRW5kTm90ZT4A

ADDIN EN.CITE PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5EZXdhZ2U8L0F1dGhvcj48WWVhcj4yMDE1PC9ZZWFyPjxS

ZWNOdW0+MzA8L1JlY051bT48RGlzcGxheVRleHQ+WzI2LTI4XTwvRGlzcGxheVRleHQ+PHJlY29y

ZD48cmVjLW51bWJlcj4zMDwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIg

ZGItaWQ9IjJhMno1cGZ4Y2Z3OXNhZXdwOWd4ejkyajAwdjJydzVhd3dmZCIgdGltZXN0YW1wPSIx

NDg0MjEzMTUxIj4zMDwva2V5PjwvZm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJKb3VybmFs

IEFydGljbGUiPjE3PC9yZWYtdHlwZT48Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+RGV3

YWdlLCBILiBILjwvYXV0aG9yPjxhdXRob3I+V3UsIEIuPC9hdXRob3I+PGF1dGhvcj5Uc29pLCBB

LjwvYXV0aG9yPjxhdXRob3I+WXVmaXQsIFYuPC9hdXRob3I+PGF1dGhvcj5PZmZlciwgRy48L2F1

dGhvcj48YXV0aG9yPkJyYW5kb24sIE4uPC9hdXRob3I+PC9hdXRob3JzPjwvY29udHJpYnV0b3Jz

Pjx0aXRsZXM+PHRpdGxlPkEgbm92ZWwgcmVnZW5lcmF0aXZlIGh5ZHJvZ2VuIGNlcml1bSBmdWVs

IGNlbGwgZm9yIGVuZXJneSBzdG9yYWdlIGFwcGxpY2F0aW9uczwvdGl0bGU+PHNlY29uZGFyeS10

aXRsZT5Kb3VybmFsIG9mIE1hdGVyaWFscyBDaGVtaXN0cnkgQTwvc2Vjb25kYXJ5LXRpdGxlPjwv

dGl0bGVzPjxwZXJpb2RpY2FsPjxmdWxsLXRpdGxlPkpvdXJuYWwgb2YgTWF0ZXJpYWxzIENoZW1p

c3RyeSBBPC9mdWxsLXRpdGxlPjwvcGVyaW9kaWNhbD48cGFnZXM+OTQ0Ni05NDUwPC9wYWdlcz48

dm9sdW1lPjM8L3ZvbHVtZT48bnVtYmVyPjE4PC9udW1iZXI+PGRhdGVzPjx5ZWFyPjIwMTU8L3ll

YXI+PC9kYXRlcz48dXJscz48L3VybHM+PC9yZWNvcmQ+PC9DaXRlPjxDaXRlPjxBdXRob3I+WXVm

aXQ8L0F1dGhvcj48WWVhcj4yMDEzPC9ZZWFyPjxSZWNOdW0+Mjk8L1JlY051bT48cmVjb3JkPjxy

ZWMtbnVtYmVyPjI5PC9yZWMtbnVtYmVyPjxmb3JlaWduLWtleXM+PGtleSBhcHA9IkVOIiBkYi1p

ZD0iMmEyejVwZnhjZnc5c2Fld3A5Z3h6OTJqMDB2MnJ3NWF3d2ZkIiB0aW1lc3RhbXA9IjE0ODQy

MTMxNTAiPjI5PC9rZXk+PC9mb3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0

aWNsZSI+MTc8L3JlZi10eXBlPjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5ZdWZpdCwg

Vi48L2F1dGhvcj48YXV0aG9yPkhhbGUsIEIuPC9hdXRob3I+PGF1dGhvcj5NYXRpYW4sIE0uPC9h

dXRob3I+PGF1dGhvcj5NYXp1ciwgUC48L2F1dGhvcj48YXV0aG9yPkJyYW5kb24sIE4uIFAuPC9h

dXRob3I+PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjx0aXRsZXM+PHRpdGxlPkRldmVsb3BtZW50

IG9mIGEgUmVnZW5lcmF0aXZlIEh5ZHJvZ2VuLVZhbmFkaXVtIEZ1ZWwgQ2VsbCBmb3IgRW5lcmd5

IFN0b3JhZ2UgQXBwbGljYXRpb25zPC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPkpvdXJuYWwgb2Yg

dGhlIEVsZWN0cm9jaGVtaWNhbCBTb2NpZXR5PC9zZWNvbmRhcnktdGl0bGU+PC90aXRsZXM+PHBl

cmlvZGljYWw+PGZ1bGwtdGl0bGU+Sm91cm5hbCBvZiB0aGUgRWxlY3Ryb2NoZW1pY2FsIFNvY2ll

dHk8L2Z1bGwtdGl0bGU+PC9wZXJpb2RpY2FsPjxwYWdlcz5BODU2LUE4NjE8L3BhZ2VzPjx2b2x1

bWU+MTYwPC92b2x1bWU+PG51bWJlcj42PC9udW1iZXI+PGRhdGVzPjx5ZWFyPjIwMTM8L3llYXI+

PC9kYXRlcz48dXJscz48L3VybHM+PC9yZWNvcmQ+PC9DaXRlPjxDaXRlPjxBdXRob3I+QWxvbjwv

QXV0aG9yPjxZZWFyPjIwMTM8L1llYXI+PFJlY051bT4yODwvUmVjTnVtPjxyZWNvcmQ+PHJlYy1u

dW1iZXI+Mjg8L3JlYy1udW1iZXI+PGZvcmVpZ24ta2V5cz48a2V5IGFwcD0iRU4iIGRiLWlkPSIy

YTJ6NXBmeGNmdzlzYWV3cDlneHo5MmowMHYycnc1YXd3ZmQiIHRpbWVzdGFtcD0iMTQ4NDIxMzE1

MCI+Mjg8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xl

Ij4xNzwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPkFsb24sIE0uPC9h

dXRob3I+PGF1dGhvcj5CbHVtLCBBLjwvYXV0aG9yPjxhdXRob3I+UGVsZWQsIEUuPC9hdXRob3I+

PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjx0aXRsZXM+PHRpdGxlPkZlYXNpYmlsaXR5IHN0dWR5

IG9mIGh5ZHJvZ2VuL2lyb24gcmVkb3ggZmxvdyBjZWxsIGZvciBncmlkLXN0b3JhZ2UgYXBwbGlj

YXRpb25zPC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPkpvdXJuYWwgb2YgUG93ZXIgU291cmNlczwv

c2Vjb25kYXJ5LXRpdGxlPjwvdGl0bGVzPjxwZXJpb2RpY2FsPjxmdWxsLXRpdGxlPkpvdXJuYWwg

b2YgUG93ZXIgU291cmNlczwvZnVsbC10aXRsZT48L3BlcmlvZGljYWw+PHBhZ2VzPjQxNy00MjA8

L3BhZ2VzPjx2b2x1bWU+MjQwPC92b2x1bWU+PGRhdGVzPjx5ZWFyPjIwMTM8L3llYXI+PHB1Yi1k

YXRlcz48ZGF0ZT5PY3Q8L2RhdGU+PC9wdWItZGF0ZXM+PC9kYXRlcz48dXJscz48L3VybHM+PC9y

ZWNvcmQ+PC9DaXRlPjwvRW5kTm90ZT4A

ADDIN EN.CITE.DATA [26-28] but the use of Br2-based catholytes has received more attention owing to advantages in terms of cost, efficiency, power output ADDIN EN.CITE <EndNote><Cite><Author>Singh</Author><Year>2015</Year><RecNum>13</RecNum><DisplayText>[29]</DisplayText><record><rec-number>13</rec-number><foreign-keys><key app="EN" db-id="2a2z5pfxcfw9saewp9gxz92j00v2rw5awwfd" timestamp="1484213145">13</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Singh, N.</author><author>McFarland, E. W.</author></authors></contributors><titles><title>Levelized cost of energy and sensitivity analysis for the hydrogen-bromine flow battery</title><secondary-title>Journal of Power Sources</secondary-title></titles><periodical><full-title>Journal of Power Sources</full-title></periodical><pages>187-198</pages><volume>288</volume><dates><year>2015</year></dates><urls></urls></record></Cite></EndNote>[29] and resource availability. ADDIN EN.CITE <EndNote><Cite><Author>Wadia</Author><Year>2011</Year><RecNum>44</RecNum><DisplayText>[5]</DisplayText><record><rec-number>44</rec-number><foreign-keys><key app="EN" db-id="t0xsdaswxtvt2defz9mvxz0ftftexsppt2d5" timestamp="1484301114">44</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Wadia, C.</author><author>Albertus, P.</author><author>Srinivasan, V.</author></authors></contributors><titles><title>Resource constraints on the battery energy storage potential for grid and transportation applications</title><secondary-title>Journal of Power Sources</secondary-title></titles><periodical><full-title>Journal of Power Sources</full-title></periodical><pages>1593-1598</pages><volume>196</volume><number>3</number><dates><year>2011</year></dates><urls></urls></record></Cite></EndNote>[5] However, HBr and Br2 are highly corrosive and toxic compounds and the storage of the electrolyte can be considered a major safety issue. ADDIN EN.CITE <EndNote><Cite><Author>Kreutzer</Author><Year>2012</Year><RecNum>14</RecNum><DisplayText>[30]</DisplayText><record><rec-number>14</rec-number><foreign-keys><key app="EN" db-id="2a2z5pfxcfw9saewp9gxz92j00v2rw5awwfd" timestamp="1484213145">14</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Kreutzer, H.</author><author>Yarlagadda, V.</author><author>Nguyen, T. V.</author></authors></contributors><titles><title>Performance Evaluation of a Regenerative Hydrogen-Bromine Fuel Cell</title><secondary-title>Journal of the Electrochemical Society</secondary-title></titles><periodical><full-title>Journal of the Electrochemical Society</full-title></periodical><pages>F331-F337</pages><volume>159</volume><number>7</number><dates><year>2012</year></dates><urls></urls></record></Cite></EndNote>[30] Moreover, liquid crossover to the gas side leads to irreversible degradation of the HER/HOR catalyst and substantially reduces the durability of the system due to corrosion and poisoning reactions. The replacement of bromine by an environmentally friendly and low cost manganese electrolyte could therefore offer significant advantages in terms of RFB cost, longevity and safety. Manganese is an essential element for mammals, required for bone growth and present in a number of metallo-enzymes and only an exposure to very significant concentrations can lead to toxic effects ADDIN EN.CITE <EndNote><Cite><Author>Gerber</Author><Year>2002</Year><RecNum>48</RecNum><DisplayText>[31]</DisplayText><record><rec-number>48</rec-number><foreign-keys><key app="EN" db-id="t0xsdaswxtvt2defz9mvxz0ftftexsppt2d5" timestamp="1496244483">48</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Gerber, G. B.</author><author>Leonard, A.</author><author>Hantson, P.</author></authors></contributors><titles><title>Carcinogenicity, mutagenicity and teratogenicity of manganese compounds</title><secondary-title>Critical Reviews in Oncology Hematology</secondary-title></titles><periodical><full-title>Critical Reviews in Oncology Hematology</full-title></periodical><pages>25-34</pages><volume>42</volume><number>1</number><dates><year>2002</year></dates><urls></urls></record></Cite></EndNote>[31], leading to acceptance of manganese in the home in the form of alkaline zinc batteries. This emphasizes the interest of manganese electrolytes as a safer alternative for large scale energy storage applications in case of unintentional spillage of liquid.Testing of the RFB utilising the system is described in the methods section. During battery testing there was no observable formation of solids in the electrolyte or electrodes suggesting the absence of direct oxidation of Mn(II) to Mn(IV) as a side reaction. Figure 2A shows charge and discharge performance obtained at different current density (75, 100 and 150 mA cm-2). Discharge capacity values as high as 432 (80%theoretical), 498 (93%theoretical) and 534 mAh (100%theoretical) at 150, 100 and 75 mA cm-2 were obtained. This represents an outstanding electrolyte utilization with values close to theoretical (536 mAh) and exemplifies a highly desirable RFB feature. Figure 2A (inset) shows the average Coulombic Efficiency (CE, ratio of the discharge capacity over the charge capacity), Voltage Efficiency (VE, ratio between the average voltage for charging and discharging) and energy efficiency (EE, product of CE and VE) after 5 cycles. Remarkably high CE values are obtained even when operating at 150 mA cm-2 (98.5%) which strongly suggests that there is little side reaction. A small contribution from the oxygen evolution/oxygen reduction reaction (OER/ORR) catalysed by manganese oxide species cannot be entirely discounted. However, the extent to which this reaction occurs must be very small due to the highly irreversible nature of these reactions and the limited solubility of oxygen in the electrolyte during the ORR (ca. 0.5 mM). Furthermore, if the reaction does occur, it clearly does not hinder the performance and still allows the system to achieve very high coulombic efficiency (>98.5%). The formation of MnO2 would lead to a significant reduction in CE and a gradual decrease in the electrochemical surface area of the electrodes and increased reaction overpotentials. Indeed, such a process occurs without metal additives as turbid solutions and precipitates were rapidly obtained. Degradation of the electrolyte in the absence of added Ti4+ induces a rapid rise of cell voltage during charge to values above the cut-off limit during the first cycle, and the irreversible degradation of the RFB after the second cycle (see supplementary Figure 4). In contrast, the use of Ti(SO4)2 as an additive allowed low overpotential and high VE for the studied current density range, 75 (82.1%), 100 (79.7%) and 150 (69.7%) mA cm-2 respectively. This performance was translated into an EE of 81%, 79% and 69% respectively showing low inter-cycle variability (<1%). This performance is comparable to commercially available all-vanadium RFBs which normally operate below 120 mA cm-2 (commonly 80 mA cm-2) to ensure high energy efficiency (≈85%) and good electrolyte utilization (>75%). ADDIN EN.CITE <EndNote><Cite><Author>Zheng</Author><Year>2014</Year><RecNum>25</RecNum><DisplayText>[32]</DisplayText><record><rec-number>25</rec-number><foreign-keys><key app="EN" db-id="2a2z5pfxcfw9saewp9gxz92j00v2rw5awwfd" timestamp="1484213150">25</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Zheng, Q.</author><author>Xing, F.</author><author>Li, X. F.</author><author>Liu, T.</author><author>Lai, Q. Z.</author><author>Ning, G. L.</author><author>Zhang, H. M.</author></authors></contributors><titles><title>Investigation on the performance evaluation method of flow batteries</title><secondary-title>Journal of Power Sources</secondary-title></titles><periodical><full-title>Journal of Power Sources</full-title></periodical><pages>145-149</pages><volume>266</volume><dates><year>2014</year></dates><urls></urls></record></Cite></EndNote>[32] Surprisingly, the time-dependent cell potential shows an interesting feature during both RFB charge and discharge experiments (Figure 2A) being more prominent as higher current densities were utilized. At the beginning of the charging process, the reaction requires a high overpotential which gradually decreases after around 10% state of charge (SoC) is reached. Likewise, two different discharge voltage plateaus are observable during discharge for instance at 1.38V and 1.25V respectively at 100 mA cm-2. These voltage variations may be attributed to unidentified chemical reactions. However, the same behaviour was found in a hydrogen-vanadium RFB configuration (see supplementary Figure 5) which decouples these voltage anomalies from the chemistry of the liquid redox couple. A three-electrode cell was constructed to independently explore the electrochemistry of the negative electrode systems used in the above RFB (see supplementary Figure 6). In this case HOR/HER experiments were conducted under galvanostatic conditions on the same electrode electrolyte system as used in the RFB. We find a close analogy between the RFB performance and the three electrode electrochemical cell result. Using this set-up, we mimicked RFB charging (i.e. HER) by applying -100 mA cm-2, Figure 2B (blue) which revealed a high initial and a progressive shift of voltage towards more positive values. After one hour of HER, energy-dispersive X-ray spectroscopy (EDX) analysis was carried on the catalyst layer and manganese and titanium were detected, and this is assumed to have occurred due to electrolyte crossover (see supplementary Figure 7). Assuming an RFB charge behaviour dominated by processes taking place at the negative electrode, the HER experiment completely replicates the experimental full cell results. Consequently, the initial high overpotential during charging seen in Figure 2B could be associated with metallic species passing through the membrane from the liquid to the gas side. In the same cell we mimicked the RFB discharging process at 100 mA cm-2 (HOR), Figure 2B black trace. A high initial overpotential with a gradual decrease is observed, however a constant voltage value is reached after approximately 900 seconds. This could be attributed to the transport of Mn/Ti compounds back to the liquid reservoir by electroosmotic drag, removing adsorbed metal ions from the catalyst surface and progressively facilitating the access of H2 to the more reactive Pt sites.The timeframe for the stabilization of HOR voltage is congruent with the position of the RFB discharge voltage transition which is found after 700-1000 seconds. The depletion of active species at the liquid side leads to mass transport limitations which, in conjunction with the stable potential at the negative electrode, can promote a cell voltage transition towards a lower discharge plateau. Analogous voltage anomalies such as the ones here observed are commonly reported for soluble lead RFBs. ADDIN EN.CITE <EndNote><Cite><Author>Nandanwar</Author><Year>2016</Year><RecNum>26</RecNum><DisplayText>[33]</DisplayText><record><rec-number>26</rec-number><foreign-keys><key app="EN" db-id="2a2z5pfxcfw9saewp9gxz92j00v2rw5awwfd" timestamp="1484213150">26</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Mahendra Nandanwar</author><author>Sanjeev Kumar</author></authors></contributors><titles><title>Charge coup de fouet phenomenon in soluble lead redox flow battery</title><secondary-title>Chemical Engineering Science</secondary-title></titles><periodical><full-title>Chemical Engineering Science</full-title></periodical><pages>61–71</pages><volume>154</volume><number>2</number><dates><year>2016</year></dates><urls></urls></record></Cite></EndNote>[33] They are described as the result of the formation of insoluble species at the electrode that subsequently dissolve. This leads to an initial high overpotential that progressively decreases. This mechanism is known as charge and discharge coup de fouet and could be occurring in the hybrid RFB, although in this case it is the HOR/HER which is affected.To put in perspective the future of the hydrogen/manganese hybrid RFB for practical applications, we investigated the efficiency and capacity retention of the system over many cycles utilising a current density of 100 mA cm-2. It is worth mentioning that full charge and discharge cycles were conducted to better understand potential degradation issues and/or undesired reactions, rather than the partial charge/discharge cycles often used to obtain an large (but somewhat artificial) number of cycles. Figure 3A shows the capacity retention and efficiency of the battery over 160 cycles using 0.2M of MnSO4 and 0.2M Ti(SO4)2 in 3M H2SO4 electrolyte. CE values were > 99% which suggest very little side reaction. In contrast, some variability in the VE, EE, and capacity retention was observed as a result of water evaporation and manganese crossover. However, these issues were easily mitigated by establishing an electrolyte rebalancing strategy every 5-7 cycles. An average EE value of 72.3% ± 1.6% with excellent electrolyte utilization (≈81%) and good capacity retention was therefore ensured. No significant decay between the initial and final cycle was seen, which suggests a promising longevity.High manganese concentration within the liquid electrolyte would increase the energy density of the hybrid RFB. However, this could simultaneously lead to the formation of MnO2 during battery operation which would result in cell degradation. We studied operation with higher manganese concentration utilizing a 1M MnSO4 and 1M Ti(SO4)2 in 3M H2SO4 electrolyte and conducting more than 35 full charge and discharge cycles using the same cell configuration, Figure 3B. Lower VE and EE oscillation was observed for each cycle in this case, which is most likely due to the minor impact of Mn crossing to the gas side on the liquid electrolyte composition. An average EE as high as 75% was obtained with no sign of cell degradation, as supported by the high CE value (>99%). An impressive energy density of 33.4 Wh/L liquid electrolyte is achieved (if the volume of gas produced during charge is not considered). Assuming gas formation occurring at 10 bar, which is well within the ability of electrochemical hydrogen compression occurring within the cell, the obtained average energy density across both the liquid and gas phase is 15.0 Wh/Lliquid + gas whereas, operating at 30 bar hydrogen storage pressure the average energy density increases to 24.4 Wh/Lliquid + gas. These values compare favourably with current vanadium RFBs which show typical values of 10-15 Wh/L and illustrates the versatility of a gas-liquid RFB configuration in terms of compact character and lower volume footprint.Polarization and power curves were recorded to estimate the maximum power delivery of the hybrid RFB and highlight a further benefit of the system, Figure 4. The curves were iR-corrected in order to account for the ohmic losses using the high frequency resistance (hfr) values recorded at each current density (hfr shown as an inset in the figure; see Methods for discussion of how curves were collected). Figure 4A shows curves obtained at different SoC using 3 layer of SGL carbon paper as the positive electrode. At 100% SoC, a peak power density of 590 mW cm-2 is obtained at 0.85V. As the SoC decreases, peak power density decreases to 510 mW cm-2 (75% SoC) and 420 mW cm-2 (50% SoC). The use of a graphite felt positive electrode instead of carbon paper leads to an impressive increase in peak power density; above 1410 mW cm-2 at 1V (100% SoC), Figure 4B. This is most likely the consequence of larger electrochemical surface area at the cathode and represents a value that largely surpasses previous hybrid RFBs chemistries including iron, ADDIN EN.CITE <EndNote><Cite><Author>Alon</Author><Year>2013</Year><RecNum>28</RecNum><DisplayText>[28]</DisplayText><record><rec-number>28</rec-number><foreign-keys><key app="EN" db-id="2a2z5pfxcfw9saewp9gxz92j00v2rw5awwfd" timestamp="1484213150">28</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Alon, M.</author><author>Blum, A.</author><author>Peled, E.</author></authors></contributors><titles><title>Feasibility study of hydrogen/iron redox flow cell for grid-storage applications</title><secondary-title>Journal of Power Sources</secondary-title></titles><periodical><full-title>Journal of Power Sources</full-title></periodical><pages>417-420</pages><volume>240</volume><dates><year>2013</year><pub-dates><date>Oct</date></pub-dates></dates><urls></urls></record></Cite></EndNote>[28] vanadium ADDIN EN.CITE <EndNote><Cite><Author>Yufit</Author><Year>2013</Year><RecNum>29</RecNum><DisplayText>[27]</DisplayText><record><rec-number>29</rec-number><foreign-keys><key app="EN" db-id="2a2z5pfxcfw9saewp9gxz92j00v2rw5awwfd" timestamp="1484213150">29</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Yufit, V.</author><author>Hale, B.</author><author>Matian, M.</author><author>Mazur, P.</author><author>Brandon, N. P.</author></authors></contributors><titles><title>Development of a Regenerative Hydrogen-Vanadium Fuel Cell for Energy Storage Applications</title><secondary-title>Journal of the Electrochemical Society</secondary-title></titles><periodical><full-title>Journal of the Electrochemical Society</full-title></periodical><pages>A856-A861</pages><volume>160</volume><number>6</number><dates><year>2013</year></dates><urls></urls></record></Cite></EndNote>[27] or ceriumPEVuZE5vdGU+PENpdGU+PEF1dGhvcj5EZXdhZ2U8L0F1dGhvcj48WWVhcj4yMDE1PC9ZZWFyPjxS

ZWNOdW0+MzA8L1JlY051bT48RGlzcGxheVRleHQ+WzI2LCAzNF08L0Rpc3BsYXlUZXh0PjxyZWNv

cmQ+PHJlYy1udW1iZXI+MzA8L3JlYy1udW1iZXI+PGZvcmVpZ24ta2V5cz48a2V5IGFwcD0iRU4i

IGRiLWlkPSIyYTJ6NXBmeGNmdzlzYWV3cDlneHo5MmowMHYycnc1YXd3ZmQiIHRpbWVzdGFtcD0i

MTQ4NDIxMzE1MSI+MzA8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iSm91cm5h

bCBBcnRpY2xlIj4xNzwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPkRl

d2FnZSwgSC4gSC48L2F1dGhvcj48YXV0aG9yPld1LCBCLjwvYXV0aG9yPjxhdXRob3I+VHNvaSwg

QS48L2F1dGhvcj48YXV0aG9yPll1Zml0LCBWLjwvYXV0aG9yPjxhdXRob3I+T2ZmZXIsIEcuPC9h

dXRob3I+PGF1dGhvcj5CcmFuZG9uLCBOLjwvYXV0aG9yPjwvYXV0aG9ycz48L2NvbnRyaWJ1dG9y

cz48dGl0bGVzPjx0aXRsZT5BIG5vdmVsIHJlZ2VuZXJhdGl2ZSBoeWRyb2dlbiBjZXJpdW0gZnVl

bCBjZWxsIGZvciBlbmVyZ3kgc3RvcmFnZSBhcHBsaWNhdGlvbnM8L3RpdGxlPjxzZWNvbmRhcnkt

dGl0bGU+Sm91cm5hbCBvZiBNYXRlcmlhbHMgQ2hlbWlzdHJ5IEE8L3NlY29uZGFyeS10aXRsZT48

L3RpdGxlcz48cGVyaW9kaWNhbD48ZnVsbC10aXRsZT5Kb3VybmFsIG9mIE1hdGVyaWFscyBDaGVt

aXN0cnkgQTwvZnVsbC10aXRsZT48L3BlcmlvZGljYWw+PHBhZ2VzPjk0NDYtOTQ1MDwvcGFnZXM+

PHZvbHVtZT4zPC92b2x1bWU+PG51bWJlcj4xODwvbnVtYmVyPjxkYXRlcz48eWVhcj4yMDE1PC95

ZWFyPjwvZGF0ZXM+PHVybHM+PC91cmxzPjwvcmVjb3JkPjwvQ2l0ZT48Q2l0ZT48QXV0aG9yPlR1

Y2tlcjwvQXV0aG9yPjxZZWFyPjIwMTY8L1llYXI+PFJlY051bT4zNTwvUmVjTnVtPjxyZWNvcmQ+

PHJlYy1udW1iZXI+MzU8L3JlYy1udW1iZXI+PGZvcmVpZ24ta2V5cz48a2V5IGFwcD0iRU4iIGRi

LWlkPSIyYTJ6NXBmeGNmdzlzYWV3cDlneHo5MmowMHYycnc1YXd3ZmQiIHRpbWVzdGFtcD0iMTQ4

NTQ0MTY0MSI+MzU8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iSm91cm5hbCBB

cnRpY2xlIj4xNzwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPlR1Y2tl

ciwgTWljaGFlbCBDLjwvYXV0aG9yPjxhdXRob3I+V2Vpc3MsIEFsZXhhbmRyYTwvYXV0aG9yPjxh

dXRob3I+V2ViZXIsIEFkYW0gWi48L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PHRp

dGxlcz48dGl0bGU+SW1wcm92ZW1lbnQgYW5kIGFuYWx5c2lzIG9mIHRoZSBoeWRyb2dlbi1jZXJp

dW0gcmVkb3ggZmxvdyBjZWxsPC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPkpvdXJuYWwgb2YgUG93

ZXIgU291cmNlczwvc2Vjb25kYXJ5LXRpdGxlPjwvdGl0bGVzPjxwZXJpb2RpY2FsPjxmdWxsLXRp

dGxlPkpvdXJuYWwgb2YgUG93ZXIgU291cmNlczwvZnVsbC10aXRsZT48L3BlcmlvZGljYWw+PHBh

Z2VzPjU5MS01OTg8L3BhZ2VzPjx2b2x1bWU+MzI3PC92b2x1bWU+PGtleXdvcmRzPjxrZXl3b3Jk

PlJlZG94IGZsb3cgYmF0dGVyeTwva2V5d29yZD48a2V5d29yZD5DZXJpdW08L2tleXdvcmQ+PGtl

eXdvcmQ+SHlkcm9nZW48L2tleXdvcmQ+PGtleXdvcmQ+TWV0aGFuZXN1bGZvbmljIGFjaWQ8L2tl

eXdvcmQ+PC9rZXl3b3Jkcz48ZGF0ZXM+PHllYXI+MjAxNjwveWVhcj48cHViLWRhdGVzPjxkYXRl

PjkvMzAvPC9kYXRlPjwvcHViLWRhdGVzPjwvZGF0ZXM+PGlzYm4+MDM3OC03NzUzPC9pc2JuPjx1

cmxzPjxyZWxhdGVkLXVybHM+PHVybD4vL3d3dy5zY2llbmNlZGlyZWN0LmNvbS9zY2llbmNlL2Fy

dGljbGUvcGlpL1MwMzc4Nzc1MzE2MzA5ODMxPC91cmw+PC9yZWxhdGVkLXVybHM+PC91cmxzPjxl

bGVjdHJvbmljLXJlc291cmNlLW51bT5odHRwOi8vZHguZG9pLm9yZy8xMC4xMDE2L2ouanBvd3Nv

dXIuMjAxNi4wNy4xMDU8L2VsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjwvcmVjb3JkPjwvQ2l0ZT48

L0VuZE5vdGU+AG==

ADDIN EN.CITE PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5EZXdhZ2U8L0F1dGhvcj48WWVhcj4yMDE1PC9ZZWFyPjxS

ZWNOdW0+MzA8L1JlY051bT48RGlzcGxheVRleHQ+WzI2LCAzNF08L0Rpc3BsYXlUZXh0PjxyZWNv

cmQ+PHJlYy1udW1iZXI+MzA8L3JlYy1udW1iZXI+PGZvcmVpZ24ta2V5cz48a2V5IGFwcD0iRU4i

IGRiLWlkPSIyYTJ6NXBmeGNmdzlzYWV3cDlneHo5MmowMHYycnc1YXd3ZmQiIHRpbWVzdGFtcD0i

MTQ4NDIxMzE1MSI+MzA8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iSm91cm5h

bCBBcnRpY2xlIj4xNzwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPkRl

d2FnZSwgSC4gSC48L2F1dGhvcj48YXV0aG9yPld1LCBCLjwvYXV0aG9yPjxhdXRob3I+VHNvaSwg

QS48L2F1dGhvcj48YXV0aG9yPll1Zml0LCBWLjwvYXV0aG9yPjxhdXRob3I+T2ZmZXIsIEcuPC9h

dXRob3I+PGF1dGhvcj5CcmFuZG9uLCBOLjwvYXV0aG9yPjwvYXV0aG9ycz48L2NvbnRyaWJ1dG9y

cz48dGl0bGVzPjx0aXRsZT5BIG5vdmVsIHJlZ2VuZXJhdGl2ZSBoeWRyb2dlbiBjZXJpdW0gZnVl

bCBjZWxsIGZvciBlbmVyZ3kgc3RvcmFnZSBhcHBsaWNhdGlvbnM8L3RpdGxlPjxzZWNvbmRhcnkt

dGl0bGU+Sm91cm5hbCBvZiBNYXRlcmlhbHMgQ2hlbWlzdHJ5IEE8L3NlY29uZGFyeS10aXRsZT48

L3RpdGxlcz48cGVyaW9kaWNhbD48ZnVsbC10aXRsZT5Kb3VybmFsIG9mIE1hdGVyaWFscyBDaGVt

aXN0cnkgQTwvZnVsbC10aXRsZT48L3BlcmlvZGljYWw+PHBhZ2VzPjk0NDYtOTQ1MDwvcGFnZXM+

PHZvbHVtZT4zPC92b2x1bWU+PG51bWJlcj4xODwvbnVtYmVyPjxkYXRlcz48eWVhcj4yMDE1PC95

ZWFyPjwvZGF0ZXM+PHVybHM+PC91cmxzPjwvcmVjb3JkPjwvQ2l0ZT48Q2l0ZT48QXV0aG9yPlR1

Y2tlcjwvQXV0aG9yPjxZZWFyPjIwMTY8L1llYXI+PFJlY051bT4zNTwvUmVjTnVtPjxyZWNvcmQ+

PHJlYy1udW1iZXI+MzU8L3JlYy1udW1iZXI+PGZvcmVpZ24ta2V5cz48a2V5IGFwcD0iRU4iIGRi

LWlkPSIyYTJ6NXBmeGNmdzlzYWV3cDlneHo5MmowMHYycnc1YXd3ZmQiIHRpbWVzdGFtcD0iMTQ4

NTQ0MTY0MSI+MzU8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iSm91cm5hbCBB

cnRpY2xlIj4xNzwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPlR1Y2tl

ciwgTWljaGFlbCBDLjwvYXV0aG9yPjxhdXRob3I+V2Vpc3MsIEFsZXhhbmRyYTwvYXV0aG9yPjxh

dXRob3I+V2ViZXIsIEFkYW0gWi48L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PHRp

dGxlcz48dGl0bGU+SW1wcm92ZW1lbnQgYW5kIGFuYWx5c2lzIG9mIHRoZSBoeWRyb2dlbi1jZXJp

dW0gcmVkb3ggZmxvdyBjZWxsPC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPkpvdXJuYWwgb2YgUG93

ZXIgU291cmNlczwvc2Vjb25kYXJ5LXRpdGxlPjwvdGl0bGVzPjxwZXJpb2RpY2FsPjxmdWxsLXRp

dGxlPkpvdXJuYWwgb2YgUG93ZXIgU291cmNlczwvZnVsbC10aXRsZT48L3BlcmlvZGljYWw+PHBh

Z2VzPjU5MS01OTg8L3BhZ2VzPjx2b2x1bWU+MzI3PC92b2x1bWU+PGtleXdvcmRzPjxrZXl3b3Jk

PlJlZG94IGZsb3cgYmF0dGVyeTwva2V5d29yZD48a2V5d29yZD5DZXJpdW08L2tleXdvcmQ+PGtl

eXdvcmQ+SHlkcm9nZW48L2tleXdvcmQ+PGtleXdvcmQ+TWV0aGFuZXN1bGZvbmljIGFjaWQ8L2tl

eXdvcmQ+PC9rZXl3b3Jkcz48ZGF0ZXM+PHllYXI+MjAxNjwveWVhcj48cHViLWRhdGVzPjxkYXRl

PjkvMzAvPC9kYXRlPjwvcHViLWRhdGVzPjwvZGF0ZXM+PGlzYm4+MDM3OC03NzUzPC9pc2JuPjx1

cmxzPjxyZWxhdGVkLXVybHM+PHVybD4vL3d3dy5zY2llbmNlZGlyZWN0LmNvbS9zY2llbmNlL2Fy

dGljbGUvcGlpL1MwMzc4Nzc1MzE2MzA5ODMxPC91cmw+PC9yZWxhdGVkLXVybHM+PC91cmxzPjxl

bGVjdHJvbmljLXJlc291cmNlLW51bT5odHRwOi8vZHguZG9pLm9yZy8xMC4xMDE2L2ouanBvd3Nv

dXIuMjAxNi4wNy4xMDU8L2VsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjwvcmVjb3JkPjwvQ2l0ZT48

L0VuZE5vdGU+AG==

ADDIN EN.CITE.DATA [26, 34] while being comparable to hydrogen-bromine systems. ADDIN EN.CITE <EndNote><Cite><Author>Cho</Author><Year>2012</Year><RecNum>27</RecNum><DisplayText>[35]</DisplayText><record><rec-number>27</rec-number><foreign-keys><key app="EN" db-id="2a2z5pfxcfw9saewp9gxz92j00v2rw5awwfd" timestamp="1484213150">27</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Cho, K. T.</author><author>Ridgway, P.</author><author>Weber, A. Z.</author><author>Haussener, S.</author><author>Battaglia, V.</author><author>Srinivasan, V.</author></authors></contributors><titles><title>High Performance Hydrogen/Bromine Redox Flow Battery for Grid-Scale Energy Storage</title><secondary-title>Journal of the Electrochemical Society</secondary-title></titles><periodical><full-title>Journal of the Electrochemical Society</full-title></periodical><pages>A1806-A1815</pages><volume>159</volume><number>11</number><dates><year>2012</year></dates><urls></urls></record></Cite></EndNote>[35] Moreover, when compared to bromine-based systems, the use of non-toxic active species such as manganese and titanium is an obvious advantage. Importantly, no signs of Pt corrosion or cell degradation as a result of liquid crossover to the gas side were observed, even after more than one hundred full cycles. As previously mentioned, catalyst degradation is a widely known issue in the case of hydrogen-halogen systems. ADDIN EN.CITE <EndNote><Cite><Author>Cho</Author><Year>2016</Year><RecNum>47</RecNum><DisplayText>[36]</DisplayText><record><rec-number>47</rec-number><foreign-keys><key app="EN" db-id="t0xsdaswxtvt2defz9mvxz0ftftexsppt2d5" timestamp="1496244147">47</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Cho, K. T.</author><author>Tucker, M. C.</author><author>Weber, A. Z.</author></authors></contributors><titles><title>A Review of Hydrogen/Halogen Flow Cells</title><secondary-title>Energy Technology</secondary-title></titles><periodical><full-title>Energy Technology</full-title></periodical><pages>655-678</pages><volume>4</volume><number>6</number><dates><year>2016</year></dates><urls></urls></record></Cite></EndNote>[36]A capital cost estimation considering the construction of 1MW/8MWh systems was conducted to put in perspective the advantages of a manganese-based hybrid RFB in terms of scalability for medium to large scale energy storage applications (see supplementary Figure 8 and note 6 for more information). Our methodology was implemented based on previous literature on the subjectPEVuZE5vdGU+PENpdGU+PEF1dGhvcj5TaW5naDwvQXV0aG9yPjxZZWFyPjIwMTU8L1llYXI+PFJl

Y051bT4zMzwvUmVjTnVtPjxEaXNwbGF5VGV4dD5bMzcsIDM4XTwvRGlzcGxheVRleHQ+PHJlY29y

ZD48cmVjLW51bWJlcj4zMzwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIg

ZGItaWQ9IjJhMno1cGZ4Y2Z3OXNhZXdwOWd4ejkyajAwdjJydzVhd3dmZCIgdGltZXN0YW1wPSIx

NDg1NDQwNjkxIj4zMzwva2V5PjwvZm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJKb3VybmFs

IEFydGljbGUiPjE3PC9yZWYtdHlwZT48Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+U2lu

Z2gsIE5pcmFsYTwvYXV0aG9yPjxhdXRob3I+TWNGYXJsYW5kLCBFcmljIFcuPC9hdXRob3I+PC9h

dXRob3JzPjwvY29udHJpYnV0b3JzPjx0aXRsZXM+PHRpdGxlPkxldmVsaXplZCBjb3N0IG9mIGVu

ZXJneSBhbmQgc2Vuc2l0aXZpdHkgYW5hbHlzaXMgZm9yIHRoZSBoeWRyb2dlbuKAk2Jyb21pbmUg

ZmxvdyBiYXR0ZXJ5PC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPkpvdXJuYWwgb2YgUG93ZXIgU291

cmNlczwvc2Vjb25kYXJ5LXRpdGxlPjwvdGl0bGVzPjxwZXJpb2RpY2FsPjxmdWxsLXRpdGxlPkpv

dXJuYWwgb2YgUG93ZXIgU291cmNlczwvZnVsbC10aXRsZT48L3BlcmlvZGljYWw+PHBhZ2VzPjE4

Ny0xOTg8L3BhZ2VzPjx2b2x1bWU+Mjg4PC92b2x1bWU+PGtleXdvcmRzPjxrZXl3b3JkPlJlZG94

IGZsb3c8L2tleXdvcmQ+PGtleXdvcmQ+RW5lcmd5IHN0b3JhZ2U8L2tleXdvcmQ+PGtleXdvcmQ+

SHlkcm9nZW48L2tleXdvcmQ+PGtleXdvcmQ+TGV2ZWxpemVkIGNvc3Qgb2YgZWxlY3RyaWNpdHk8

L2tleXdvcmQ+PC9rZXl3b3Jkcz48ZGF0ZXM+PHllYXI+MjAxNTwveWVhcj48cHViLWRhdGVzPjxk

YXRlPjgvMTUvPC9kYXRlPjwvcHViLWRhdGVzPjwvZGF0ZXM+PGlzYm4+MDM3OC03NzUzPC9pc2Ju

Pjx1cmxzPjxyZWxhdGVkLXVybHM+PHVybD4vL3d3dy5zY2llbmNlZGlyZWN0LmNvbS9zY2llbmNl

L2FydGljbGUvcGlpL1MwMzc4Nzc1MzE1MDA3NzE1PC91cmw+PC9yZWxhdGVkLXVybHM+PC91cmxz

PjxlbGVjdHJvbmljLXJlc291cmNlLW51bT5odHRwOi8vZHguZG9pLm9yZy8xMC4xMDE2L2ouanBv

d3NvdXIuMjAxNS4wNC4xMTQ8L2VsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjwvcmVjb3JkPjwvQ2l0

ZT48Q2l0ZT48QXV0aG9yPlZpc3dhbmF0aGFuPC9BdXRob3I+PFllYXI+MjAxNDwvWWVhcj48UmVj

TnVtPjM0PC9SZWNOdW0+PHJlY29yZD48cmVjLW51bWJlcj4zNDwvcmVjLW51bWJlcj48Zm9yZWln

bi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9IjJhMno1cGZ4Y2Z3OXNhZXdwOWd4ejkyajAwdjJy

dzVhd3dmZCIgdGltZXN0YW1wPSIxNDg1NDQwNzQ1Ij4zNDwva2V5PjwvZm9yZWlnbi1rZXlzPjxy

ZWYtdHlwZSBuYW1lPSJKb3VybmFsIEFydGljbGUiPjE3PC9yZWYtdHlwZT48Y29udHJpYnV0b3Jz

PjxhdXRob3JzPjxhdXRob3I+Vmlzd2FuYXRoYW4sIFZpbGF5YW51cjwvYXV0aG9yPjxhdXRob3I+

Q3Jhd2ZvcmQsIEFsYXNkYWlyPC9hdXRob3I+PGF1dGhvcj5TdGVwaGVuc29uLCBEYXZpZDwvYXV0

aG9yPjxhdXRob3I+S2ltLCBTb293aGFuPC9hdXRob3I+PGF1dGhvcj5XYW5nLCBXZWk8L2F1dGhv

cj48YXV0aG9yPkxpLCBCaW48L2F1dGhvcj48YXV0aG9yPkNvZmZleSwgR3JlZzwvYXV0aG9yPjxh

dXRob3I+VGhvbXNlbiwgRWQ8L2F1dGhvcj48YXV0aG9yPkdyYWZmLCBHb3Jkb248L2F1dGhvcj48

YXV0aG9yPkJhbGR1Y2NpLCBQYXRyaWNrPC9hdXRob3I+PGF1dGhvcj5LaW50bmVyLU1leWVyLCBN

aWNoYWVsPC9hdXRob3I+PGF1dGhvcj5TcHJlbmtsZSwgVmluY2VudDwvYXV0aG9yPjwvYXV0aG9y

cz48L2NvbnRyaWJ1dG9ycz48dGl0bGVzPjx0aXRsZT5Db3N0IGFuZCBwZXJmb3JtYW5jZSBtb2Rl

bCBmb3IgcmVkb3ggZmxvdyBiYXR0ZXJpZXM8L3RpdGxlPjxzZWNvbmRhcnktdGl0bGU+Sm91cm5h

bCBvZiBQb3dlciBTb3VyY2VzPC9zZWNvbmRhcnktdGl0bGU+PC90aXRsZXM+PHBlcmlvZGljYWw+

PGZ1bGwtdGl0bGU+Sm91cm5hbCBvZiBQb3dlciBTb3VyY2VzPC9mdWxsLXRpdGxlPjwvcGVyaW9k

aWNhbD48cGFnZXM+MTA0MC0xMDUxPC9wYWdlcz48dm9sdW1lPjI0Nzwvdm9sdW1lPjxrZXl3b3Jk

cz48a2V5d29yZD5SZWRveCBmbG93PC9rZXl3b3JkPjxrZXl3b3JkPkVmZmljaWVuY3k8L2tleXdv

cmQ+PGtleXdvcmQ+RmVsdCBlbGVjdHJvZGU8L2tleXdvcmQ+PGtleXdvcmQ+Qmlwb2xhciBwbGF0

ZTwva2V5d29yZD48a2V5d29yZD5TZXBhcmF0b3I8L2tleXdvcmQ+PGtleXdvcmQ+RmxvdyBmcmFt

ZTwva2V5d29yZD48L2tleXdvcmRzPjxkYXRlcz48eWVhcj4yMDE0PC95ZWFyPjxwdWItZGF0ZXM+

PGRhdGU+Mi8xLzwvZGF0ZT48L3B1Yi1kYXRlcz48L2RhdGVzPjxpc2JuPjAzNzgtNzc1MzwvaXNi

bj48dXJscz48cmVsYXRlZC11cmxzPjx1cmw+Ly93d3cuc2NpZW5jZWRpcmVjdC5jb20vc2NpZW5j

ZS9hcnRpY2xlL3BpaS9TMDM3ODc3NTMxMjAxODY5MTwvdXJsPjwvcmVsYXRlZC11cmxzPjwvdXJs

cz48ZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+aHR0cDovL2R4LmRvaS5vcmcvMTAuMTAxNi9qLmpw

b3dzb3VyLjIwMTIuMTIuMDIzPC9lbGVjdHJvbmljLXJlc291cmNlLW51bT48L3JlY29yZD48L0Np

dGU+PC9FbmROb3RlPn==

ADDIN EN.CITE PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5TaW5naDwvQXV0aG9yPjxZZWFyPjIwMTU8L1llYXI+PFJl

Y051bT4zMzwvUmVjTnVtPjxEaXNwbGF5VGV4dD5bMzcsIDM4XTwvRGlzcGxheVRleHQ+PHJlY29y

ZD48cmVjLW51bWJlcj4zMzwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIg

ZGItaWQ9IjJhMno1cGZ4Y2Z3OXNhZXdwOWd4ejkyajAwdjJydzVhd3dmZCIgdGltZXN0YW1wPSIx

NDg1NDQwNjkxIj4zMzwva2V5PjwvZm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJKb3VybmFs

IEFydGljbGUiPjE3PC9yZWYtdHlwZT48Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+U2lu

Z2gsIE5pcmFsYTwvYXV0aG9yPjxhdXRob3I+TWNGYXJsYW5kLCBFcmljIFcuPC9hdXRob3I+PC9h

dXRob3JzPjwvY29udHJpYnV0b3JzPjx0aXRsZXM+PHRpdGxlPkxldmVsaXplZCBjb3N0IG9mIGVu

ZXJneSBhbmQgc2Vuc2l0aXZpdHkgYW5hbHlzaXMgZm9yIHRoZSBoeWRyb2dlbuKAk2Jyb21pbmUg

ZmxvdyBiYXR0ZXJ5PC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPkpvdXJuYWwgb2YgUG93ZXIgU291

cmNlczwvc2Vjb25kYXJ5LXRpdGxlPjwvdGl0bGVzPjxwZXJpb2RpY2FsPjxmdWxsLXRpdGxlPkpv

dXJuYWwgb2YgUG93ZXIgU291cmNlczwvZnVsbC10aXRsZT48L3BlcmlvZGljYWw+PHBhZ2VzPjE4

Ny0xOTg8L3BhZ2VzPjx2b2x1bWU+Mjg4PC92b2x1bWU+PGtleXdvcmRzPjxrZXl3b3JkPlJlZG94

IGZsb3c8L2tleXdvcmQ+PGtleXdvcmQ+RW5lcmd5IHN0b3JhZ2U8L2tleXdvcmQ+PGtleXdvcmQ+

SHlkcm9nZW48L2tleXdvcmQ+PGtleXdvcmQ+TGV2ZWxpemVkIGNvc3Qgb2YgZWxlY3RyaWNpdHk8

L2tleXdvcmQ+PC9rZXl3b3Jkcz48ZGF0ZXM+PHllYXI+MjAxNTwveWVhcj48cHViLWRhdGVzPjxk

YXRlPjgvMTUvPC9kYXRlPjwvcHViLWRhdGVzPjwvZGF0ZXM+PGlzYm4+MDM3OC03NzUzPC9pc2Ju

Pjx1cmxzPjxyZWxhdGVkLXVybHM+PHVybD4vL3d3dy5zY2llbmNlZGlyZWN0LmNvbS9zY2llbmNl

L2FydGljbGUvcGlpL1MwMzc4Nzc1MzE1MDA3NzE1PC91cmw+PC9yZWxhdGVkLXVybHM+PC91cmxz

PjxlbGVjdHJvbmljLXJlc291cmNlLW51bT5odHRwOi8vZHguZG9pLm9yZy8xMC4xMDE2L2ouanBv

d3NvdXIuMjAxNS4wNC4xMTQ8L2VsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjwvcmVjb3JkPjwvQ2l0

ZT48Q2l0ZT48QXV0aG9yPlZpc3dhbmF0aGFuPC9BdXRob3I+PFllYXI+MjAxNDwvWWVhcj48UmVj

TnVtPjM0PC9SZWNOdW0+PHJlY29yZD48cmVjLW51bWJlcj4zNDwvcmVjLW51bWJlcj48Zm9yZWln

bi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9IjJhMno1cGZ4Y2Z3OXNhZXdwOWd4ejkyajAwdjJy

dzVhd3dmZCIgdGltZXN0YW1wPSIxNDg1NDQwNzQ1Ij4zNDwva2V5PjwvZm9yZWlnbi1rZXlzPjxy

ZWYtdHlwZSBuYW1lPSJKb3VybmFsIEFydGljbGUiPjE3PC9yZWYtdHlwZT48Y29udHJpYnV0b3Jz

PjxhdXRob3JzPjxhdXRob3I+Vmlzd2FuYXRoYW4sIFZpbGF5YW51cjwvYXV0aG9yPjxhdXRob3I+

Q3Jhd2ZvcmQsIEFsYXNkYWlyPC9hdXRob3I+PGF1dGhvcj5TdGVwaGVuc29uLCBEYXZpZDwvYXV0

aG9yPjxhdXRob3I+S2ltLCBTb293aGFuPC9hdXRob3I+PGF1dGhvcj5XYW5nLCBXZWk8L2F1dGhv

cj48YXV0aG9yPkxpLCBCaW48L2F1dGhvcj48YXV0aG9yPkNvZmZleSwgR3JlZzwvYXV0aG9yPjxh

dXRob3I+VGhvbXNlbiwgRWQ8L2F1dGhvcj48YXV0aG9yPkdyYWZmLCBHb3Jkb248L2F1dGhvcj48

YXV0aG9yPkJhbGR1Y2NpLCBQYXRyaWNrPC9hdXRob3I+PGF1dGhvcj5LaW50bmVyLU1leWVyLCBN

aWNoYWVsPC9hdXRob3I+PGF1dGhvcj5TcHJlbmtsZSwgVmluY2VudDwvYXV0aG9yPjwvYXV0aG9y

cz48L2NvbnRyaWJ1dG9ycz48dGl0bGVzPjx0aXRsZT5Db3N0IGFuZCBwZXJmb3JtYW5jZSBtb2Rl

bCBmb3IgcmVkb3ggZmxvdyBiYXR0ZXJpZXM8L3RpdGxlPjxzZWNvbmRhcnktdGl0bGU+Sm91cm5h

bCBvZiBQb3dlciBTb3VyY2VzPC9zZWNvbmRhcnktdGl0bGU+PC90aXRsZXM+PHBlcmlvZGljYWw+

PGZ1bGwtdGl0bGU+Sm91cm5hbCBvZiBQb3dlciBTb3VyY2VzPC9mdWxsLXRpdGxlPjwvcGVyaW9k

aWNhbD48cGFnZXM+MTA0MC0xMDUxPC9wYWdlcz48dm9sdW1lPjI0Nzwvdm9sdW1lPjxrZXl3b3Jk

cz48a2V5d29yZD5SZWRveCBmbG93PC9rZXl3b3JkPjxrZXl3b3JkPkVmZmljaWVuY3k8L2tleXdv

cmQ+PGtleXdvcmQ+RmVsdCBlbGVjdHJvZGU8L2tleXdvcmQ+PGtleXdvcmQ+Qmlwb2xhciBwbGF0

ZTwva2V5d29yZD48a2V5d29yZD5TZXBhcmF0b3I8L2tleXdvcmQ+PGtleXdvcmQ+RmxvdyBmcmFt

ZTwva2V5d29yZD48L2tleXdvcmRzPjxkYXRlcz48eWVhcj4yMDE0PC95ZWFyPjxwdWItZGF0ZXM+

PGRhdGU+Mi8xLzwvZGF0ZT48L3B1Yi1kYXRlcz48L2RhdGVzPjxpc2JuPjAzNzgtNzc1MzwvaXNi

bj48dXJscz48cmVsYXRlZC11cmxzPjx1cmw+Ly93d3cuc2NpZW5jZWRpcmVjdC5jb20vc2NpZW5j

ZS9hcnRpY2xlL3BpaS9TMDM3ODc3NTMxMjAxODY5MTwvdXJsPjwvcmVsYXRlZC11cmxzPjwvdXJs

cz48ZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+aHR0cDovL2R4LmRvaS5vcmcvMTAuMTAxNi9qLmpw

b3dzb3VyLjIwMTIuMTIuMDIzPC9lbGVjdHJvbmljLXJlc291cmNlLW51bT48L3JlY29yZD48L0Np

dGU+PC9FbmROb3RlPn==

ADDIN EN.CITE.DATA [37, 38] and shows a 70% cost reduction compared to the all-vanadium RFB for 8 hour storage periods using Mn:Ti electrolyte in a hybrid RFB configuration. It also shows economic benefits when compared to other hybrid RFB chemistries based on bromine and vanadium. Further improvements in performance and cost reduction can be achieved via optimisation of single cell components (bipolar plates, membranes and others). In this context, Pt loading at the negative electrode is a critical component of the stack in terms of cost. We explored the effect of Pt loading on the hybrid RFB performance by decreasing the noble metal content from 0.4 mgPt cm-2 to 0.03 mgPt cm-2, Figure 4B. Even with more than one order of magnitude lower metal content, very high peak power density (1000 mW cm-2 at 1V) is obtained at 100% SoC. This result reinforces the benefits of a gas-liquid hybrid RFB configuration utilising the kinetically fast hydrogen reaction. This also points towards a system with minimized cost for large scale energy storage applications.4. Conclusions By controlling the Mn3+ disproportionation reaction and by using the facile and highly kinetically reversible hydrogen reaction, it is possible to produce a redox flow battery with low cost, high energy density and high power. A technoeconomic evaluation of that system suggests that at large scale, this system would be appreciably cheaper to buy and operate than a similar energy store comprised of lithium ion batteries. The stabilisation of the electrolyte appears to be associated with the coordination of titanium with the manganese in solution. Further work is ongoing to identify the precise structure of this compound and also to assess the long term viability of the redox flow battery.AcknowledgementsThe authors would like to acknowledge support from the Engineering and Physical Sciences Research Council under projects EP/K002252/1, EP/L019469/1, EP/L014289/1 and EP/J016454/1. The data used in the figures in this paper are available to download ADDIN EN.CITE <EndNote><Cite><Author>Rubio-Garcia</Author><Year>2018</Year><RecNum>53</RecNum><DisplayText>[39]</DisplayText><record><rec-number>53</rec-number><foreign-keys><key app="EN" db-id="2a2z5pfxcfw9saewp9gxz92j00v2rw5awwfd" timestamp="1532021340">53</key></foreign-keys><ref-type name="Dataset">59</ref-type><contributors><authors><author>Rubio-Garcia, Javier;</author><author>Kucernak, Anthony;</author><author>Zhao, Dong;</author><author>Gomez-Gonzalez, Miguel;</author><author>Fahy, Kieran </author></authors></contributors><titles><title>Data used in figures in &quot;Hydrogen/manganese hybrid redox flow battery&quot;</title></titles><dates><year>2018</year></dates><urls></urls><electronic-resource-num>Inserted upon acceptance</electronic-resource-num></record></Cite></EndNote>[39]. We thank Diamond Light Source (and in particular Dr Gianantonio Cibin) for access to beamline B18 (SP13918-1) that contributed to the results presented here.References ADDIN EN.REFLIST [1]Weber A Z, Mench M M, Meyers J P, Ross P N, Gostick J T and Liu Q H 2011 Redox flow batteries: a review Journal of Applied Electrochemistry 41 1137-64[2]Alotto P, Guarnieri M and Moro F 2014 Redox flow batteries for the storage of renewable energy: A review Renewable & Sustainable Energy Reviews 29 325-35[3]Wang W, Luo Q T, Li B, Wei X L, Li L Y and Yang Z G 2013 Recent Progress in Redox Flow Battery Research and Development Advanced Functional Materials 23 970-86[4]Joerissen L, Garche J, Fabjan C and Tomazic G 2004 Possible use of vanadium redox-flow batteries for energy storage in small grids and stand-alone photovoltaic systems Journal of Power Sources 127 98-104[5]Wadia C, Albertus P and Srinivasan V 2011 Resource constraints on the battery energy storage potential for grid and transportation applications Journal of Power Sources 196 1593-8[6]Huskinson B, Marshak M P, Suh C, Er S, Gerhardt M R, Galvin C J, Chen X D, Aspuru-Guzik A, Gordon R G and Aziz M J 2014 A metal-free organic-inorganic aqueous flow battery Nature 505[7]Lin K X, Chen Q, Gerhardt M R, Tong L C, Kim S B, Eisenach L, Valle A W, Hardee D, Gordon R G, Aziz M J and Marshak M P 2015 Alkaline quinone flow battery Science 349 1529-32[8]Carino E V, Staszak-Jirkovsky J, Assary R S, Curtiss L A, Markovic N M and Brushett F R 2016 Tuning the Stability of Organic Active Materials for Nonaqueous Redox Flow Batteries via Reversible, Electrochemically Mediated Li+ Coordination Chemistry of Materials 28 2529-39[9]Milshtein J D, Su L, Liou C, Badel A F and Brushett F R 2015 Voltammetry study of quinoxaline in aqueous electrolytes Electrochimica Acta 180 695-704[10]Janoschka T, Martin N, Martin U, Friebe C, Morgenstern S, Hiller H, Hager M D and Schubert U S 2015 An aqueous, polymer-based redox-flow battery using non-corrosive, safe, and low-cost materials Nature 527 78-81[11]Yuita K 1994 Overview and dynamics of Iodine and Bromine in the environment.2. Iodine and Bronine toxicity and environmental hazards Japan Agricultural Research Quarterly 28 100-11[12]Moran J M, Ortiz-Ortiz M A, Ruiz-Mesa L M and Fuentes J M 2010 Nitric Oxide in Paraquat-Mediated Toxicity: A Review Journal of Biochemical and Molecular Toxicology 24 402-9[13]Xue F Q, Wang Y L, Wang W H and Wang X D 2008 Investigation on the electrode process of the Mn(II)/Mn(III) couple in redox flow battery Electrochimica Acta 53 6636-42[14]Dong Y R, Kawagoe Y, Itou K, Kaku H, Hanafusa K, Moriuchi K and Shigematsu T 2015 A Novel Titanium/Manganese Redox Flow Battery ECS Transactions 69 59-67 [15]Dong Y R, Kawagoe Y, Itou K, Kaku H, Hanafusa K, Moriuchi K and T.Shigematsu 2017 Improved Performance of Ti/Mn Redox Flow Battery by Thermally Treated Carbon Paper Electrodes ECS Transactions 75 27-35[16]Kao W H and Weibel V J 1992 Electrochemical oxidation of Manganese (II) at a Platinum-electrode Journal of Applied Electrochemistry 22 21-7[17]Sadoc A, Messaoudi S, Furet E, Gautier R, Le Fur E, Le Polles L and Pivan J Y 2007 Structure and stability of VO2+ in aqueous solution: A car-parrinello and static ab initio study Inorganic Chemistry 46 4835-43[18]Flox C, Rubio-Garcia J, Skoumal M, Vazquez-Galvan J, Ventosa E and Morante J R 2015 Thermally Stable Positive Electrolytes with a Superior Performance in All-Vanadium Redox Flow Batteries Chempluschem 80 354-8[19]Li L Y, Kim S, Wang W, Vijayakumar M, Nie Z M, Chen B W, Zhang J L, Xia G G, Hu J Z, Graff G, Liu J and Yang Z G 2011 A Stable Vanadium Redox-Flow Battery with High Energy Density for Large-Scale Energy Storage Advanced Energy Materials 1 394-400[20]Rahman F and Skyllas-Kazacos M 2017 Evaluation of additive formulations to inhibit precipitation of positive electrolyte in vanadium battery Journal of Power Sources 340 139 - 49[21]Bhattacharjee M N, Chaudhuri M K and Purkayastha R N D 1989 Fluoride-assisted stabilization of Manganese(III) in aqueous-medium - A general approach to the synthesis of mixed-ligand fluoro complexes of Manganese(III) Inorganic Chemistry 28 3747-52[22]Klewicki J K and Morgan J J 1998 Kinetic behavior of Mn(III) complexes of pyrophosphate, EDTA, and citrate Environmental Science & Technology 32 2916-22[23]Huber C F and Haight G P 1976 The oxidation of manganese(II) by chromium(VI) in the presence of oxalate ion J. Am. Chem. Soc. 98 4128- 31[24]Ravel B and Newville M 2005 ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT Journal of Synchrotron Radiation 12 537-41[25]Fletcher S, Halliday C S, Gates D, Westcott M, Lwin T and Nelson G 1983 THE RESPONSE OF SOME NUCLEATION GROWTH-PROCESSES TO TRIANGULAR SCANS OF POTENTIAL Journal of Electroanalytical Chemistry 159 267-85[26]Dewage H H, Wu B, Tsoi A, Yufit V, Offer G and Brandon N 2015 A novel regenerative hydrogen cerium fuel cell for energy storage applications Journal of Materials Chemistry A 3 9446-50[27]Yufit V, Hale B, Matian M, Mazur P and Brandon N P 2013 Development of a Regenerative Hydrogen-Vanadium Fuel Cell for Energy Storage Applications Journal of the Electrochemical Society 160 A856-A61[28]Alon M, Blum A and Peled E 2013 Feasibility study of hydrogen/iron redox flow cell for grid-storage applications Journal of Power Sources 240 417-20[29]Singh N and McFarland E W 2015 Levelized cost of energy and sensitivity analysis for the hydrogen-bromine flow battery Journal of Power Sources 288 187-98[30]Kreutzer H, Yarlagadda V and Nguyen T V 2012 Performance Evaluation of a Regenerative Hydrogen-Bromine Fuel Cell Journal of the Electrochemical Society 159 F331-F7[31]Gerber G B, Leonard A and Hantson P 2002 Carcinogenicity, mutagenicity and teratogenicity of manganese compounds Critical Reviews in Oncology Hematology 42 25-34[32]Zheng Q, Xing F, Li X F, Liu T, Lai Q Z, Ning G L and Zhang H M 2014 Investigation on the performance evaluation method of flow batteries Journal of Power Sources 266 145-9[33]Nandanwar M and Kumar S 2016 Charge coup de fouet phenomenon in soluble lead redox flow battery Chemical Engineering Science 154 61–71[34]Tucker M C, Weiss A and Weber A Z 2016 Improvement and analysis of the hydrogen-cerium redox flow cell Journal of Power Sources 327 591-8[35]Cho K T, Ridgway P, Weber A Z, Haussener S, Battaglia V and Srinivasan V 2012 High Performance Hydrogen/Bromine Redox Flow Battery for Grid-Scale Energy Storage Journal of the Electrochemical Society 159 A1806-A15[36]Cho K T, Tucker M C and Weber A Z 2016 A Review of Hydrogen/Halogen Flow Cells Energy Technology 4 655-78[37]Singh N and McFarland E W 2015 Levelized cost of energy and sensitivity analysis for the hydrogen–bromine flow battery Journal of Power Sources 288 187-98[38]Viswanathan V, Crawford A, Stephenson D, Kim S, Wang W, Li B, Coffey G, Thomsen E, Graff G, Balducci P, Kintner-Meyer M and Sprenkle V 2014 Cost and performance model for redox flow batteries Journal of Power Sources 247 1040-51[39]Rubio-Garcia J, Kucernak A, Zhao D, Gomez-Gonzalez M and Fahy K 2018 Data used in figures in "Hydrogen/manganese hybrid redox flow battery". A) (B)Fig. 1. (A) Mn(III) and Ti(IV) stability over time monitored using ICP (error values in supplementary Table 1, all less than size of symbols). Electrolyte: 20 mL of 1M MnSO4, 1M Ti(SO4)2 and 3M H2SO4 oxidized at 100 mA cm-2 until a termination potential of 1.7 V was reached (approximately 1 hour). (B) Mn K-edge XANES measurements for Mn(III) solutions formed through the electrochemical oxidation of MnSO4 in 3M H2SO4 in the presence and absence of 0.2 M Ti(SO4)2. Red dashed lines correspond to the fitting of the experimental results. Also displayed are the spectra of the standard samples (Mn(acac)3, Mn3O4 and MnO2) measured under the same experimental conditions. (A)(B)Fig. 2. (A) Galvanostatic charge and discharge at different current densities; 75, 100 and 150 mA/cm2. Electrolyte 1M MnSO4, 1M Ti(SO4)2 and 3M H2SO4. Hydrogen 100 mL min-1 and liquid flow rate: 50 mL min-1 (B) HOR and HER galvanostatic experiments using a three-electrode cell configuration with Ag/AgCl (sat) as reference electrode, graphite felt as counter electrode and a anode/Nafion membrane assembly as working electrode. Electrolyte 1M MnSO4, 1M Ti(SO4)2 and 3M H2SO4. See supplementary Figure 6 for configuration.(A)(B)Fig. 3. (A) Battery efficiency over 160 charge and discharge cycles at 100 mA cm-2. Electrolyte: 0.2M MnSO4, 0.2M Ti(SO4)2 and 3M H2SO4 (B) Battery efficiency over 35 charge and discharge cycles at 100 mA cm-2. Electrolyte: 1M MnSO4, 1M Ti(SO4)2 and 3M H2SO4. Hydrogen 100 mL min-1 and liquid flow rate: 50 mL min-1.(A)(B)Fig. 4. Polarisation and power curves for different cell configurations (A) Cathode: 3 layers SGL Sigracet carbon paper, anode loading: 0.4 mgPt cm-2 recorded at different state of charge; 50%, 75% and 100% SoC. (B) Cathode: SGL Sigracell graphite felt recorded at 100% SoC with decreasing loading of Pt. 0.4 mg cm-2 (green) and 0.03 mg cm-2 (violet). Electrolyte: 1M MnSO4, 1M Ti(SO4)2 and 3M H2SO4. Hydrogen 100 mL min-1 and liquid flow rate: 50 mL min-1. ................
................

In order to avoid copyright disputes, this page is only a partial summary.

Google Online Preview   Download