3.2 - ER Publications



UTILIZING ANNUAL WIND SPEED DATA AS A REPRESENTATIVE OF LOCATIONS AND SIZING OUTSTANDING WIND TURBINE OF OPTIMUM POWER DUTY TO RUN A CERTAIN LOAD AROUND THE GLOBEM.A. Alghoul a,b,c*, A.A. Aljaafar d, S.W. Lim d, W.J. Hee d , K. Sopian aa Solar Energy Research Institute, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysiab Energy and Building? Research Center, Kuwait Institute for Scientific Research, ?Safat 13109, Kuwaitc Center of Research Excellence in Renewable Energy (CoRe-RE), Research Institute, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabiad The School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia*Corresponding author e-mail: dr.alghoul@ABSTRACT: Electricity generated by wind is fast becoming one of the most affordable and cheapest forms of energy. Literature on sizing wind power systems are limited to specific wind speed data and load profile for designated locations. Also, case studies employed different brands and power capacities of wind turbines and batteries. Due to these huge discrepancies, it is very hard to generalize the outcomes for other locations. Generalizing the outcome to the world instead of a specific location is a more practical measure for industries, customers, and researchers. In this study, there is no pre-selection of locations; instead, a range of annual wind speeds (3-12 m/s) were used as inputs to be representative of so many locations around the globe. The aim of this study is to size an outstanding wind turbine power for a certain load profile using only annual wind speed data instead of the regular approach of using monthly wind speed data for specific locations. The load profile was selected for many small-scale applications (8kW) with an operating load of 10 hrs. Seven types of wind turbines with different power sizes were implemented: [SW Whisper 500 (3kW), BWC Excel-R (7.5kW), BWC Excel-S (10kW), PGE 20-25 (25kW), Fuhrlander FL30/13 (30kW), PGE 11-35 (35kW), and the Entegrity EW15 (50kW)] under their respective minimum hub heights. The outstanding wind turbine power is determined based on the optimum values of the techno-economic feasibility parameters using HOMER simulation tool. The results showed that the outstanding wind turbine that could power an 8 kW load around the globe using annual wind speed range of 3-12m/s was PGE 20-25 (25kW). Also, the results showed that the different?hub heights of the outstanding wind turbine lead to?slight influence on the techno-economic parameters values at low wind speeds (3-4) m/s and insignificant influence at higher wind speeds (5-12) m/s. This reflects that the power duty of the outstanding wind turbine is at each annual wind speed value. Validation test is performed for (3) locations using their monthly wind speed data. The validation results confirmed that the optimum wind turbine power to run (8 kW) load at the three tested locations is still PGE 20-25 (25kW). Finally it can be concluded that the proposed sizing approach utilizing annual wind speed data (3-12m/s) a representative of locations is accurate to predict the outstanding wind turbine of optimum power duty to run 8kW load around the globe.Keywords: certain load profile, annual wind speed data (3-12m/s) as representative of locations, different wind turbines size, HOMER simulation tool, evaluation parameters of techno-economic feasibility, outstanding wind turbine of optimum power duty, validation testContents outlines1. INTRODUCTION2. MATERIALS AND METHOD Research Design Materials HOMER Simulation Tool3. RESULTS AND DISCUSSION 3.1 determining the outstanding wind turbine power 3.1.1 Effect of wind speed and wind turbine sizes on number of turbines 3.1.2 Effect of wind speed and wind turbine sizes on number of batteries 3.1.3 Effect of wind speed and wind turbine sizes on battery lifetime 3.1.4 Effect of wind speed and wind turbine sizes on initial cost 3.1.5 Effect of wind speed and wind turbine sizes on O&M cost, total NPC and COE 3.1.6 The Outstanding wind turbine size powering under a certain load around the Globe3.2 Effect of Different Hub Heights of the Outstanding Wind Turbine (PGE 20-25) on optimizing the Parameters of Techno-economic feasibility 3.2.1 Effect of hub height on number of turbines 3.2.2 Effect of hub height on number of batteries 3.2.3 Effect of hub height on battery lifetime 3.2.4 Effect of hub height on initial cost 3.2.5 Effect of hub height on O&M cost, total NPC and COE 3.3 Validation of the Outstanding Wind Turbine at Dammam City, Saudi Arabia 3.3.1 Effect of different wind turbine sizes on number of turbines 3.3.2 Effect of different wind turbine sizes on number of batteries 3.3.3 Effect of different wind turbine sizes on battery lifetime 3.3.4 Effect of different wind turbine sizes on cost of energy3.3.5 Determining Wind Turbine Size at other Different Tested Locations Using their Monthly Wind Speed Data4. CONCLUSION1. INTRODUCTIONWind is a renewable source of energy that is freely available, clean, and economical inexpensive (no fuel costs and no price risk). Due to the promising prospect of renewable energy, many researches have been carried out by researchers and companies to evaluate the feasibility of harnessing renewable energy at their respective locations. Some of them have adopted HOMER software (Hybrid Optimization Model for Electric Renewables) as their simulation tool in assisting them in their respective researches. HOMER was developed at National Renewable Energy Laboratory (NREL) and can be considered as global standard for preliminary techno-economic analysis of sustainable micro-grid systems such as remote power, island utilities and micro-grids [1]. Table 1(A, B) shown below summarizes the R&D aspects covered by previous researchers studies on components sizing and techno-economic feasibility of wind power systems done by HOMER simulation tool. Table 1-A: Summary of previous studies on components sizing and techno-economic feasibility of wind power systems done by HOMER simulation toolReferencesLocationWind SpeedWind power system typeLoad profile(kWh/day)ApplicationAshourian et al. 2013[1]Tioman Island, MalaysiaAnnual(3.18 m/s)Standalone: Hybrid PV-Wind-Diesel-Battery-Fuel Cell49630 chaletsSadeghi et al. (2012)[2]Baladeh city, North of IranMonthly (3.0 – 4.0 m/s)Grid-connectedNAResidential buildingsAagreh & Al-Ghzawi (2013) [3]Ajloun city,JordanAnnual4.57 m/s @10 m height6.76 m/s@ 60 m heightGrid-connected: Hybrid Wind-PV-Battery97Small hotelGoodbody et al. (2012)[4]IrelandNAGrid-connected: Hybrid Wind-PV-Diesel-Hydro-Biomass-Battery12-25Apartment, households and retail unitAdaramola (2012)[5]Ondo State, NigeriaAnnual(3.26 m/s)Standalone: Hybrid Wind-PV-Diesel-Battery25HouseholdsOsorio et al. (2012)[6]Madrid (CuatroVientos), Burgos, Alto do Rodicio and PuntaCandelaria, SpainAnnual Madrid (CuatroVientos) (3.92 m/s)Burgos –(5.08 m/s)Alto do Rodicio – (6.18 m/s)PuntaCandelaria – (7.38 m/s)Grid-connected: Hybrid Wind-Diesel-BatteryOct-March (63)Apr-Sept(62)Dairy cattle farmsFahmy et al. (2012)[7]Hurghada, EgyptAnnual (6.93 m/s)Standalone: Hybrid Wind-PV-Battery-Fuel Cell60Small Scale Brackish Reverse Osmosis Desalination Unit and a Tourism MotelMoniruzzaman & Hasan (2012)[8]Bandarban, BangladeshAnnual (4.12 m/s)Grid-connected: Hybrid Wind-PV-Diesel-Battery35Household/small restaurantSadrul Islam et al. (2012) [9]St. Martin Island, BangladeshAnnual(4.71 m/s)Standalone: Hybrid Wind-PV-Diesel-Battery78Households and shopsBadawe et al. (2012) [10]Mulligan, Labrador, Canada.Annual(6.26 m/s)Standalone: Hybrid Wind-PV-Diesel-Battery79Microwave repeaters (telecommunication)Abulqasem et al. (2011)[11]Mrair-Gabis Village, LibyaAnnual(3.7-4.4 m/s)Standalone: Hybrid Wind-PV-Diesel-Battery86Small Scale Seawater Reverse OsmosisDesalination UnitChowdhury & Oo (2012) [12]AustraliaAnnual(2.13–6.11 m/s)Grid-connected:PV-Wind-Battery system1000Electricity generationIbrahim et al. (2010)[13]Kuala Terengganu, MalaysiaMonthly (3.16 m/s)Standalone:PV-Wind-Diesel-Battery-Fuel Cell system20Residential buildingThakur et al. (2012)[14]Jabalpur Engineering College, Jabalpur, IndiaMonthly(4.0 m/s)Standalone:PV-Wind-Diesel-battery system2000CollegeFantidis et al. (2012)[15]Plaka, GreeceAnnual(6.44 m/s)Standalone:Hybrid PV-wind, Wind-diesel15.15-15.460 household electricityNandi & Ghosh (2010) [16]Chittagong, BangladeshMonthly(3.0- 5.0m/s)Standalone:PV-Wind-Battery system160HouseholdsNiazi et al. (2014)[17]Nok kundi &Ormara, PakistanMonthly (4.1- 5.5) & (2.2- 5.1) m/sGrid-connected: Hybrid Wind-PV-Diesel13.1small housesShaahid (2007)[18]Dhahran (East-Coast, KSA)Monthly (3.3- 5.6m/s) Grid-connected: Hybrid Wind-Diesel-Battery351100 of typical residential buildingsAmini (2010) [19] Ghardaia and Djanet, AlgeriaNAPV systems, Wind generators and BatteriesNARural Health ClinicsAmin et al. (2014)[20]St. Martin Island, BangladeshMonthly (3.6- 6.5m/s) Standalone: Hybrid Wind-PV-Diesel-Battery1421650 households.Soe & Zheng (2014) [21]Wetkaik village, MyanmarAnnual(3.7 m/s)Grid-connected: Hybrid Wind-Diesel-Battery1167850 householdsDiab et al. 2015[22](Alexandria, Qena and Aswan), EgyptMonthly (4.8- 6.2m/s)(4.3- 5.6m/s)(4.3- 5.5m/s) Standalone: hybrid PV/wind/diesel /battery19,906tourist villageTable 1-B: Continued summary of previous studies on components sizing and techno-economic feasibility of wind power systems done by HOMER simulation toolReferencesTurbines spec. & no. of turbinesBattery spec. & no of batteriesCosts aspectsAshourian et al. 2013- BWC XL-1- 1kW at 20 m height- 40 turbines-Surrette 6CS25P-540 batteries-Initial - $ 1, 971, 000-COE - $ 1.104/kWhSadeghi et al. (2012)- Enercon E33- 340kW at 50 m height- 3 turbines NA-Initial - $ 294,000-COE - $ 1.28/kWhAagreh & Al-Ghzawi (2013)-Novergy-12kW at 25, 40, 60 m height-Grid-connected: 1 turbine-Stand-alone: 2 - 3 turbines-Surrette 4KS25P-Stand-alone: 24 – 55 batteries-Grid-connected:Initial - $ 24, 000 – 104,000NPC - $ 44, 300 – 162, 600-Stand-alone:Initial - $ 84, 400 – 117, 200NPC - $ 119, 700 – 291, 500Goodbody et al. (2012)NANA-Wind and Grid system: COE - € 0.045 – 0.16/kWh-Wind/Diesel system: COE - € 0.178 - 0.37/kWhAdaramola (2012)-BWC Excel-R/48- 7.5kW at 43m height-1 turbine-Surrette 6CS25P-0 – 36 batteriesInitial - $ 29, 185 – 44, 915COE - $ 0.578 – 0.682/kWhOsorio et al. (2012)-Westwind- 20kW at 18m height-1 turbine-Hoppecke 4 OPzS 200-60 batteries-COE - € 0.472 – 0.731/kWhFahmy et al. (2012)-Generic 3 kW-PV-Wind-Battery system: 2 turbines-Wind-Battery system: 4 turbines-PV-Wind-Fuel Cell system: 40 turbines-Trojan L16P-PV-Wind-Battery system: 10 batteries-Wind-Battery system: 20 batteries-PV-Wind-Battery: Initial - $ 40, 750COE - $ 0.321/kWh-Wind-Battery:Initial - $ 36, 500COE - $ 0.356/kWh -PV-Wind-Fuel Cell: Initial - $ 799, 800COE - $ 4.305/kWhMoniruzzaman & Hasan (2012)-African 3.6 model-1 kW at 10 m-1 turbine-6FM200D-16 batteries-PV-Wind-Diesel:Initial - $ 15, 000COE - $ 0.454/kWh-Wind-Diesel system:Initial - $ 15, 000COE - $ 0.507/kWhSadrul Islam et al. (2012)-Generic 3 kW-2 turbines-Hoppecke 8 OPzS-25 batteries-NPC - $ 136, 427COE - $ 0.34/kWh Badawe et al. (2012)-BWC Excel-R/48- 7.5kW at 30m height-VRLA GNB XL3000-24 batteries-Initial - $ 968, 420-COE - $ 3.39/kWhAbulqasem et al. (2011)-BWC Excel-R- 7.5kW at 20m height-1 turbine-Trojan L16P-0-70 batteries-Initial - $ 123, 950-COE - $ 0.369/kWhChowdhury & Oo (2012)-Fuhrlander FL100-100 kW -1 turbine-S4KS25P-25 batteries-Initial - $ 361, 250-COE - $ 0.183/kWhIbrahim et al. (2010)-BWC Excel-R-7.5 kW-0 – 32 turbines-Surrette 6CS25P-0 – 125 batteries-Grid-PV-Wind-FC:NPC: $ 53, 197COE: $ 0.57/kWhThakur et al. (2012)-Northern Power NW100/19-100 kW-5 turbines-Surrette 6CS25P-0 – 50 batteries-PV-Wind-Diesel-battery:NPC - $ 1, 458, 954 COE – 0.227/kWhFantidis et al. (2012)-Fuhrlander 30-30 kW at 26 m-Trojan T-105-Wind/diesel/battery: COE - $ 0.242/ kWh-Wind/PV/battery: COE - $ 0.252/kWh.Nandi & Ghosh (2010)-WES 5 Tulipo-3 kW-14 – 52 turbines-USB US-250-285 – 300 batteries-PV-Wind-Battery:Initial - $ 231, 255COE - $ 0.47/kWh-Wind-Battery system:Initial - $ 337, 100COE - $ 0.63/kWhNiazi et al. (2014)- Bergey Excel BWXL- 1kW at 25m height- 2 turbineNANok kundi:- NPC of $15,872- COE $0.087/kWhOrmara:- NPC of $14,508- COE $0.078/kWhShaahid (2007)NANA- COE -$0.070/kWhAmini (2010)NA- 10 batteries- Initial $14,600- NPC of $17,323Amin et al. (2014)- Fuhrlander AG(FL30)- 1.5kW at 19m height- 3 turbinesBeacon Smart Energy 25- 500 batteries- Initial $2,140,000- NPC of $3,991,487- COE $0.602/kWhSoe & Zheng (2014)- PGE 20-25- 25kW at 25m height- (8-12) turbines- Trojan L16P- 500 batteries- COE 0.257 $/kWhDiab et al. (2015)NANA- COE 0.172 $/kWh- COE 0.182 $/kWh- COE 0.179 $/kWhIn this section, an overview discussion will be performed based on table 1 (A, B). Throughout the literature survey, the case studies that are done covered locations from different continents such as Asia, Africa, North America, Australia and Europe. The annual average wind speeds ranged from 2.13 to 7.38 m/s. However, all of the annual wind speeds are below 10m/s. There are many simulation studies covering stand-alone or grid-connected system. Some researchers tended to design a hybrid wind power system such as PV-Wind power system or PV-Wind-Diesel power system due to the limited wind resource at their sites and therefore, other power systems are needed in order to sustain the designed load. From Table 1 also, the studied load profiles are ranging from 12kWh/day to 2MWh/day. The applications of the case studies covered residential buildings, small business premises, desalination units and college building. Moreover, different case studies employed different models of wind turbine with different power capacity. The wind turbines’ capacity ranges from 1 to 100 kW depending on the applications. Besides, different brands of batteries are also used for different case studies. For the costs aspect, there is no general trend that can be seen from the case studies; different turbines and batteries (brand, type & power) will definitely affect the techno-economic aspects of wind turbine system. Also, many researchers who conducted studies on wind power system focused on case studies related to their specific wind speed and load data as shown from the literature summary in table 1. So far, there is no research that generalizes the outstanding wind turbine size for a certain load to be applicable many locations around the globe. Also, scientific investigation regarding how the different wind turbine sizes and wind turbine hub heights can affect the wind power system is still limited and not discussed extensively using the parameters of the techno-economic feasibility. This research intends to uncover the effect of different annual wind speed, different wind turbines sizes, as well as different hub heights on the values of the techno-economic feasibility parameters of wind power system. Also in this study, the analysis will reveal the possibility of using annual wind speed data as a sufficient data to predict the outstanding wind turbine size that can power a certain load at locations within annual wind speed range (3-12 m/s) which is more practical for researchers and customers to learn lessons. There are no pre-selections of locations in this research; instead, a range of annual wind speed (3-12 m/s) is taken as inputs into HOMER to represent so many locations around the planet and to generate output. 2. MATERIALS AND METHOD2.1 RESEARCH DESIGN2433955582930001746250196596000- Primary load (8kW)- Batteries type (Trojan L16P) specifications- Converter cost /kW- (7) Types of wind turbines and their specifications - hub heights of the implemented wind turbines - Capacity shortage (0%) is assumed- Annual wind speed range (3-12) m/s as input data to present any location around the globe - Actual monthly wind speed data for some locations i.e. Dammam city as case studies for validation purposes No. of turbineNo. of batteriesBattery lifetimeInitial capital cost ($)Operating cost ($/yr.)Total NPC ($)COE ($/kWh) - To size the outstanding wind turbine power fit around the globe for a certain load using annual wind speed data range (3-12) m/s instead of actual monthly wind speed data of the respective locations. - To validate the outstanding wind turbine using actual monthly wind speed data of some locations. The implemented hub height is the minimum for each turbine.- To determine the effect of the other hub heights of the outstanding wind turbine on the values of techno-economic parameters. Input data/ components/ design scopeSimulation results: Techno-economic feasibility parameters of wind turbine power systemObjectives- Primary load (8kW)- Batteries type (Trojan L16P) specifications- Converter cost /kW- (7) Types of wind turbines and their specifications - hub heights of the implemented wind turbines - Capacity shortage (0%) is assumed- Annual wind speed range (3-12) m/s as input data to present any location around the globe - Actual monthly wind speed data for some locations i.e. Dammam city as case studies for validation purposes No. of turbineNo. of batteriesBattery lifetimeInitial capital cost ($)Operating cost ($/yr.)Total NPC ($)COE ($/kWh) - To size the outstanding wind turbine power fit around the globe for a certain load using annual wind speed data range (3-12) m/s instead of actual monthly wind speed data of the respective locations. - To validate the outstanding wind turbine using actual monthly wind speed data of some locations. The implemented hub height is the minimum for each turbine.- To determine the effect of the other hub heights of the outstanding wind turbine on the values of techno-economic parameters. Input data/ components/ design scopeSimulation results: Techno-economic feasibility parameters of wind turbine power systemObjectives Figure 1: Block diagram of the study evolution methodologyThe studied load is chosen to be a common load for many small-scale applications as learned from literature summarized in Table 1. 8 kW load is assumed to operate for 10 hours from 8 o’clock in the morning till 6 o’clock in the evening. For each hour, the load profile is assumed a full load as shown in Figure 2. On average, the small scale unit will consume 80 kWh of electricity per day.Figure 2: 8kW load profile of a small scale wind power system operating 10 hour dailyIn this work, the real monthly wind speed data that can describe respective location will not be used as input data in the base line of wind speed. Instead of that, only the annual wind speed will be used as input data, and will be directly keyed-in the sensitivity values window of HOMER simulation tool within the range (3-12) m/s, as shown in Figure 3. The annual wind speed values falls within 3-12 m/s is taken as inputs to represent any location around the planet. Wind speeds of 1 and 2 m/s are disregarded in this study, as most of the wind turbines have a minimum cut-in speed of around 3 m/s. Also, the maximum annual wind speed value used in this study is 12 m/s which reflect extreme exceptional case under the index value of wind resource.Figure 3: Annual wind speed data keyed-in the software to represent any location around the globe Because the analysis depended on the annual wind speed data only, the obtained results are regarded as a preliminary indicator for techno-economic feasibility, where the actual feasibility is logically higher than the obtained results. Generally, under this stage of analysis, the results of techno-economic parameters are adequate and appropriate for comparison purposes to predict the outstanding size of wind turbine that can power (8kW) load around the globe. For the validation step of the proposed sizing approach, real monthly wind speed data will be directly keyed-in in the base line of wind speed. Figure 4 illustrates the monthly wind speed data of Dammam city as a case study to predict the outstanding wind turbine size among the seven wind turbines. If the results of this case predict the same wind turbine size to power the load, it can be concluded that proposed sizing approach is fit to predict the outstanding wind turbine around the globe for a certain load profile. Figure 4: monthly wind speed input data for Dammam cityHowever, to confirm the accuracy of the proposed sizing approach under different annual wind speed, the validation will test another two locations besides Dammam city location. The monthly wind speed data (m/s) for the three tested locations is shown in table 2.Table 2: The real monthly wind speed data (m/s) for the three tested locationsMonthDammam / Saudi [23] Ras Monief / Jordan [24]kokhanok, Alaska / USA [25]January4.166.567.73February4.726.7610.01March4.727.178.53April4.726.177.22May55.857.09June5.276.497.84July4.726.957.03August3.886.226.68September3.885.497.33October3.614.836.86November4.166.468.46December4.166.149.32Annual4.416.37.842.2 MaterialsThe wind turbines were selected from the list of wind turbines available in the HOMER software. The most important criteria in selecting these turbines are its expected suitability vis-à-vis the load demand. After series of evaluations, seven types of wind turbine with different sizes were selected to be simulated in this study. These seven wind turbines are: SW Whisper 500, BWC Excel-R, BWC Excel-S, PGE 20-25, Fuhrlander FL 30/13, PGE 11-35, and Entegrity EW15. For each wind turbine, there are recommended hub heights by the manufacturer; hence, the simulation will include the possible hub height of the selected turbines. The rated power of the wind turbines varies from 3 kW to 50 kW. The Capital Cost of each of the wind turbines is taken from the company’s website or latest journals publications that used the wind turbine. As for the Replacement Cost and Operation & Maintenance (O&M) Cost, the values are estimated to be 85% and 2.5% of the Capital Cost, respectively. The specifications of each wind turbine are tabulated in Table 3(A-B).Table 3-A: Specifications of wind turbines Wind TurbineAC/DCRated Power (kW)Rotor Diameter (m)Hub Height (m)No. of BladesSW Whisper 500DC34.59.1, 12.8, 21.32BWC Excel-RDC7.5718, 24, 30, 37, 43, 493BWC Excel-SAC10718, 24, 30, 37, 43, 493PGE 20/25AC252024, 25, 30, 363Fuhrlander?FL 30/13AC301319, 25, 293Entegrity EW15AC501525, 303PGE 11/30AC351119, 243Table 3-B: Continued specifications of wind turbinesWind TurbineCut-In Wind Speed (m/s)Rated Wind Speed (m/s)Cut-Out Wind Speed (m/s)ManufacturerCost ($)SW Whisper 5003.410.525Southwest Windpower, USA8,985BWC Excel-R313.825Bergey Windpower Co., USA26,870BWC Excel-S2.51225Bergey Windpower Co., USA31,770PGE 20/253.5925Energie PGE, Canada70,000Fuhrlander?FL30/1331221Fuhrlander, Germany78,000PGE 11/304.81425Energie PGE, Canada105,000Entegrity EW154.611.322.4Entegrity Wind Systems Inc., Canada160,000The Trojan L16P type battery was selected in this study due to its popularity and corresponding low costs. The valve regulated lead acid battery is rated at 6 V and has a capacity of 360 Ah. Capital Cost for one battery is set at $320. The replacement battery will cost another $320, while the Operation and Maintenance (O&M) cost for a year is fixed at $5. The battery should operate without problems for the next 4 years at least [11]. Table 4 shows the specifications of the L16P battery.Table 4: Battery SpecificationsBattery modelTrojan L16PTypes of batteryValve Regulated Lead Acid (VRLA)Voltage (V)6Capacity rate360 AhDimensions (mm)295 (L) x 178 (W) x 424 (H)Weight (kg)52Quantity considered1 - 100An electronic power converter is included in order to maintain the flow of energy between the AC and the DC bus. The power converter can either be an inverter (if the wind turbine supplies DC current) or a rectifier (if the wind turbine supplies AC current). The size of the convertor that is used in this study varies from 0 to 20 kW. The Capital and Replacement Cost are $1095 with no cost for Operation and Maintenance (O&M).2.3 HOMER simulation toolSoftware, which is the acronym of "Hybrid Optimization Model for Electric Renewables", is employed in this field to simulate the life cycle cost of the system and accounting for the capital, replacement, operation and maintenance, fuel, and interest costs. From the simulation, the cost associated with the wind turbines will be optimized in order to enable us to determine the optimal turbine for the organization. This software is able to model small renewable or non-renewable systems and techno-economically inspect the desired power system. Its important functions are listed below [26]:ing up the lowest cost combination of parts that run into electrical and thermal loadsii.Simulation of thousands of possible system configurations iii.Optimization of the life cycle cost and a sensitivity analysis on most inputs Techno-economics is the combination of technical and economic analysis of a power system. The technical analysis studies the purpose and positioning options for a new wind turbines, grid connection solutions, planning, and environmental matters. In this work, the technical analyses that needs to be accounted for include the number of turbines, the number of batteries, and their corresponding lifetime. On the other hand, the economic analysis involves cost-related aspects in designing the wind power system, which admits the initial price of the system, Operation and Maintenance (O&M) costs, Total Net Present Cost (NPC), and Cost of Energy (COE). Post-simulations, HOMER groups the feasible cases in an ascending order of the net present (or life cycle) cost. This price is the present value of the initial, component replacement, performance, maintenance, and fuel prices. [27].3. RESULTS AND DISCUSSIONIn the first part of the discussion, the minimum hub height required by the wind power system will be used to study the effects of wind speed and wind turbine on each of the techno-economic feasibility parameters.3.1 determining the outstanding wind turbine power The outstanding size of wind turbine will be determined based on the following evaluation parameters: Technically is feasible under each annual wind speed with:Number of turbines with optimal power duty (towards minimum)Number of batteries with optimal power duty (towards minimum)Optimal battery lifetime (towards maximum)Economically is feasible under each annual wind speed with:Initial cost (towards minimum)Total NPC (towards minimum)O&M cost (towards minimum)Levelized cost of energy COE (towards minimum)3.1.1 Effect of Wind Speed and Wind Turbine Sizes on Number of Turbines Figure 5.2 shows the number of turbines vs. the annual wind speed using different wind turbines of different sizes. From Figure 5.2, it is shown that the relationship of annual wind speed and number of turbines that are needed is not an inverse-linear relationship. It can be seen that the number of wind turbines decreases as the annual wind speed increases. This demonstrated that higher annual wind speeds results in higher power outputs, thus the required numbers of turbines to sustain the load becomes less and less. In other words, an increase in the wind speed will help reduce the number of turbines needed by the wind power system.Fig 5: No. of turbines vs. annual wind speed for different wind turbines of different sizesA turbine’s size, with a minimum quantity of turbines, is most crucial when designing a wind power system. Therefore, in this round of evaluation, a turbine’s size with a minimum number of turbines “wins”. Based on Figure 5:At an annual wind speed of 3 m/s, only three turbines, namely PGE 20-25 (25kW), Fuhrlander FL30/13 (30 kW), and PGE 11-35 (35kW), are technically capable of sustaining loads. However, the wind power system needs 4,6,14 turbines to accomplish the aforementioned tasks. This indicates that when the wind resource is limited (low annual wind speed), the technical feasibility of the system requires the support of more turbines. Starting from 4 m/s and up till 12 m/s, all types of wind turbine are technically feasible, with different turbine quantities. Of course, lower power capacity turbines [SW Whisper 500 (3kW)] will require more to satisfy the load requirements as opposed to higher capacity wind turbines.In this round of analysis, it can be concluded that the recommended turbine to power an (8 kW) load at an annual wind speed of 3 m/s is the PGE 20-25 (25kW) with 4 turbines. At an annual wind speed of 4 m/s, the recommended wind turbine is again PGE 20-25 (25kW) with 1 turbine. At an annual wind speed of 5 m/s, the recommended turbines are PGE 20-25 (25kW), Fuhrlander FL30/13 (30 kW), and Entegrity EW15 (50kW) with 1 turbine. At an annual wind speed of 6-9 m/s, the recommended turbines are PGE 20-25 (25kW), Fuhrlander FL30/13 (30 kW), PGE 11-35 (35kW), and Entegrity EW15 (50kW) with 1 turbine. At an annual wind speed of 10 m/s, the recommended turbines are BWC Excel-S (10 kW), PGE 20-25 (25kW), Fuhrlander FL30/13 (30 kW), PGE 11-35 (35kW), and Entegrity EW15 (50kW) with 1 turbine. Finally, at an annual wind speed of 11-12 m/s, all the studied wind turbines are recommended, except SW Whisper 500 (3kW), with 1 turbine.The SW Whisper 500 (3kW), BWC Excel-R (7.5kW), and BWC Excel-S (10kW) possess the minimum number of turbines at high annual wind speeds only. BWC Excel-S (10 kW), PGE 20-25 (25kW), Fuhrlander FL30/13 (30kW), PGE 11-35 (35kW), and the Entegrity EW15 (50kW) turbines possess the extreme minimum number of turbines (1 wind turbine) and compared to PGE 20-25 (25kW), Fuhrlander FL30/13 (30kW), and Entegrity EW15 (50kW), they showed a faster rate of reaching the minimum number of turbine and at low annual wind speed, while the PGE 11-35 (35kW) turbine have the minimum number of turbines at 6 m/s of annual wind speed. Therefore, the most outperformed turbine for (8 kW) load in this round of analysis is the PGE 20-25 (25kW), followed by Fuhrlander FL30/13 (30 kW), and the Entegrity EW15 (50kW) wind turbine. 3.1.2. Effect of Wind Speed and Wind Turbine Sizes on Number of BatteriesThe battery is used as a backup when the output from the wind power system is inadequate to sustain the load. The wind power system utilizing the minimum number of batteries is regarded as outperformed.At lower annual wind speed, most of the systems require battery support. However, as the annual wind speed increases, the wind power system gradually lessens its dependence on batteries. This is due to the production of more usable power, thus the need for lesser batteries. From Figure (6), 4 - wind turbines show the number of batteries needed as being under 10: PGE 20-25 (25 kW), Fuhrlander FL30/13 (30 kW), PGE 11-35 (35 kW), and Entegrity EW15 (50 kW). This occurs when the wind speed is (5.0 m/s) and above for PGE 20-25 (25 kW), while the speed is (7.0 m/s) and above for Fuhrlander FL30/13 (30 kW), and the speed is (8.0 m/s) and above for PGE 11-35 (35 kW), with the wind speed being (6.0 m/s) and above for Entegrity EW15 (50 kW). This again shows that the larger the capacity of wind power system, the less its reliance upon batteries will be. However, we need to compare the systems in terms of cost in order to determine the most optimum system. The outperformed turbine in this round of analysis is the Entegrity EW15 (50kW), followed by the PGE 20-25 (25kW) wind turbine. Fig. 6: No. of batteries vs. annual wind speed for different sizes of wind turbine3.1.3 Effect of Wind Speed and Wind Turbine Sizes on Battery Lifetime In Figure 7, batteries with a longer lifespan remain the best choice. The outstanding wind power system will be selected based on its ability to protect and lengthen the battery’s lifetime. Due to the complexity of determining the battery’s lifetime at different annual wind speeds, Figure 7 did not exhibit a clear trend. Each size of wind turbine showed different battery lifetimes. However, at wind speeds of 3- 4 m/s, the wind power system is unable to produce enough usable power for the load; thus, the batteries are heavily used. Due to this, its lifetime is shorter (~4 - 5 years) compared to higher annual wind speeds. For annual wind speeds of 5 m/s and above, there are at least one wind power system with a fit lifetime of up to 10 years for their battery bank system. Fig 7: Battery lifetime vs. annual wind speed for different sizes of wind turbineFigures 8 and 9 show the relation between the battery quantity and lifetime for two sizes of turbines; BWC Excel-R (7.5 kW) and PGE 20-25 (25kW). In Figure 8, the unstable battery lifetime at different annual wind speeds is observed; while the obvious stable battery lifetime is shown in Fig 9 at annual wind speeds of (5-12 m/s).The higher number of batteries indicates that the wind power system is more dependent on battery power. Due to the frequency of the battery usage, its lifetime is relatively low. In contrast, the lower quantity of battery implies that the system is less dependent on batteries, with the power mainly coming from the wind turbine. Therefore, the battery exhibits a longer lifetime. For the entire annual wind speed range, wind turbine PGE 20-25 (25 kW) exhibited the highest battery lifetime with a fit battery lifetime at most of wind speed range, as shown in Figures 7 and 9.Fig. 8: No. of batteries & battery lifetime vs. annual wind speed for BWC Excel-R (7.5 kW) turbineFig. 9: No. of batteries & battery lifetime vs. annual wind speed for PGE 20-25 (25kW) turbine3.1.4 Effect of Wind Speed and Wind Turbine Sizes on Initial Cost From here on out, the discussion will involve the cost aspects of the system, which encompasses initial Cost, O&M Cost, total NPC, and COE. The results indicate that initial cost decreases as the annual wind speed increases, due to the effect of quantities of turbines and the battery bank size. PGE 11-35 (35 kW) shows the extreme highest initial cost compare to other turbines observed at an annual wind speed 3 m/s. From the 4 m/s henceforth, Entegrity EW15 (50 kW) resulted in the highest initial cost compared to other turbine systems. Moreover, PGE 20-25 (25 kW) and SW Whisper 500 (3 kW) are the best in terms of initial cost, as they frequently report the lowest initial cost in Figure 10 At the annual wind speed range (3-7 m/s), the lowest initial cost was held by PGE 20-25 (25 kW), while at the annual wind speed range (8-12 m/s), the lowest initial cost was held by SW Whisper 500 (3 kW).Fig. 10: Initial Cost vs. annual wind speed for different sizes of wind turbine3.1.5 Effect of Wind Speed and Wind Turbine Sizes on O&M Cost, Total NPC and COEIn this subsection, the outstanding wind turbine should offer the lowest operation and maintenance cost (O&M cost), the lowest total net present cost (total NPC), and the lowest cost of energy (COE). The trends for these three parameters are similar to the initial cost. From the 4 m/s henceforth, Entegrity EW15 (50kW) showed the highest O&M cost, total NPC, and COE. The lowest O&M cost, lowest total NPC, and lowest COE were mainly achieved by the PGE 20-25 (25kW) from 3-8 m/s, then SW Whisper 500 (3kW) from 9-12 m/s.Fig. 11: O&M cost vs. annual wind speed for different sizes of wind turbineFig. 12: Total NPC vs. annual wind speed for different sizes of wind turbineFig. 13: COE vs. annual wind speed for different sizes of wind turbine3.1.6 The outstanding wind turbine size powering a certain load around the Globe The outstanding turbine had been highlighted and discussed based on the techno-economic feasibility parameters. Table 4 demonstrated the outstanding wind turbines that are potentially able to power the load (8kW) at each annual wind speed (3-12 m/s) across all the evaluations. The table showed that there are two distinct wind turbines. PGE 20-25 (25kW) was found to be absolutely superior at a wind speed range (3-8 m/s) in terms of system cost, system size, and stability. SW Whisper 500 (3kW) was found to be superior at an annual wind speed range (9-12 m/s) in terms of system cost. However, under the annual wind speed (9-12 m/s), PGE 20-25 (25kW) is still superior in terms of system size and stability, and lag step from SW Whisper 500 (3kW) in terms of system cost. It can be surmised that under the annual wind speed of (3-12 m/s) that represent any location around the globe, the compromise confirmed that the Outstanding wind turbine is PGE 20-25 (25kW) in terms system cost, system size, and stability concurrently. As a result of this, it is concluded that the outstanding wind turbine is the PGE 20-25 turbine; with rated power of (25kW) for supplying the (8kW) load. From this evaluation, one important lesson learned is that the power system required to sustain the 8 kW load is found to be almost three times the load. Table 5: The outstanding turbines based on techno-economic feasibility parametersSystem size and stabilityEconomic feasibilityAnnual wind speedMin No. of turbinesMin No. of batteriesMax Battery lifetimeMin Initial Cost Min O&M CostMin Total NPCMin COE superior3 m/s25kW25kW25kW25kW25kW25kW25kW25kW4 m/s25kW25kW 25kW, 3kW.25kW 25kW 25kW25kW 25kW5 m/s25kW, 30kW, 50kW. 25kW 25kW 25kW25kW 25kW 25kW 25kW6 m/s25kW, 30kW, 50kW, 35kW.25kW 25kW, 50kW, 30kW.25kW 25kW 25kW25kW 25kW7 m/s25kW, 30kW, 50kW, 35kW. @ 50kW: 9@ 25kW: 425kW, 50kW, 30kW, 35kW. 25kW 25kW 25kW 25kW 25kW8 m/s@25kW,30kW, 50kW, 35kW}:1 @ 3kW : 7@ 50kW : 0 @ 25kW : 2 @ 3kW : 37 @25kW : 10@ 3kW : 8.5@ 25kW :72,830@ 3kW :72,095 @ 25kW :2,268 @ 3kW :2,706@ 25kW :101,824 @ 3kW :106,693@25kW : 0.27 @ 3kW : 0.2825kW9 m/s@(25kW,30kW, 50kW, 35kW): 1 @ 3kW : 4@50kW : 0 @ 25kW : 2 @ 3kW : 35 @25kW : 10 @ 3kW : 9.1 @ 3kW :62,470 @ 25kW :71,735@25kW : 2,256 @ 3kW : 2,278@ 3kW :91,590@ 25kW :100,579@ 3kW : 0.24 @25kW : 0.27at cost level: 3kW at size level: 25kW 10 m/s@(25kW,30kW, 50kW, 35kW, 10kW): 1 @ 3kW :4@(50kW, 30kW) : 0 @25kW :1 @3kW :20 @(25kW , 3kW) :10@ 3kW :58,765 @ 25kW :71,415@ 3kW :1,827 @ 25kW :2,232@ 3kW :82,119@ 25kW :99,954@ 3kW : 0.22 @25kW : 0.27at cost level: (3kW) at size level: 25kW11 m/s@{25kW,30kW, 50kW, 35kW, 7.5kW, 10kW}:1 @ 3kW : 3@(50kW, 30kW, 35kW) : 0 @25kW : 1 @ 3kW:28@(25kW, 3kW): 10@ 3kW :52,340 @ 25kW :71,415@ 3kW :1,724 @ 25kW : 2,232@ 3kW :74,385@ 25kW :99,954@ 3kW : 0.20 @25kW : 0.27at cost level: (3kW) at size level: 25kW12 m/s@{25kW, 30kW, 50kW, 35kW, 7.5kW, 10kW}:1 @ 3kW : 3@(50kW, 30kW, 35kW): 0 @ 25kW : 2 @ 3kW : 24@(25kW,3kW) : 10@ 3kW :51,060@ 25kW :72,830@ 3kW :1,629 @ 25kW :2,268@ 3kW :71,884@ 25kW :101,824@ 3kW :0.19 @25kW : 0.27at cost level: (3kW) at size level: 25kWRange 3-8m/s Recommended turbine at 3-8 m/s in terms of system cost, system size and stability: PGE 20-25 (25kW)Range 9-12m/s Recommended turbine at 9-12 m/s in terms of system cost: SW Whisper 500 (3kW)Range 3-12m/sRecommended turbine as a compromise in terms of system size, system cost and stability: PGE 20-25 (25kW)Features of the outstanding wind turbine PGE 20-25 (25kW) in terms of system cost, system size, and battery stability at each annual wind speed is shown in Figure 14. It can be seen that the number of turbines at low annual wind speed is high compared to wind turbines used at other annual wind speeds. Also, despite the high number of batteries, the battery life time remains low, which means that the dependence on the battery bank to power the load is dominant at low annual wind speed 3-4 m/s. So, adopting higher hub heights at low annual wind speed could optimize the power capacity and consequently reduce the dependency on the batteries and improve battery life. This round of analysis will be performed and evaluated in the next section.Figure 14: No. of turbines, batteries number & life time, and levelized COE of the outstanding wind turbine PGE 20-25 (25kW) vs. annual wind speed3.2 Effect of Different Hub Heights of the Outstanding Wind Turbine (PGE 20-25) on optimizing the Parameters of Techno-economic feasibilityFrom previous discussion, it was concluded that the outstanding turbine size for the 8 kW load of constant profile is the PGE 20-25 (25kW). In this round of analysis, the effect of hub heights offered by the manufacturer on the power duty of the outstanding wind turbine at each annual wind speed will be tested. From the manufacturer’s brochure, the PGE 20-25 wind turbine has 3 hub height options; 25 m, 30 m, and 36 m. If techno-economic results at higher hub heights are not found to be viable at certain annual wind speed, this means that wind turbine size and annual wind speed did impose more impacts compared to higher hub heights and it can be concluded that the proposed sizing approach versus the studied annual wind speed range.4.2.1 Effect of Hub Height on Number of TurbinesFig. 15: No. of turbines vs. annual wind speed for PGE 20-25 turbineFrom Figure 15, at 3 m/s annual wind speed with a hub height of 25 m, PGE 20-25 turbine requires 4 turbines. At the following two hub heights (30 and 36 m), the number of turbines end up at 3. For annual wind speed of 4 m/s and above, the number of turbines are constant (1 turbine) for the three hub heights. Therefore, it is concluded that the increase of hub heights do not generally influence the number of PGE 20-25 wind turbines under annual wind speeds between (4-12 m/s).3.2.2 Effect of Hub Height on Number of BatteriesFig. 16: No. of batteries vs. annual wind speed for PGE 20-25 turbineAs shown in Figure 16, at 3-4 m/s annual wind speeds, the number of batteries is still high at the three hub heights, and the effect of higher hub height influenced the batteries’ reduction to between 5-8 batteries. At 5 m/s, the number of batteries under the three hub heights falls between 10 - 15 batteries. So, the reduction in the number of batteries is 5. At wind speeds of 6-12 m/s, the variation in the number of batteries is negligible at the three hub heights. Generally, the number of batteries decreases as the wind speed and hub height increases. As pointed out earlier, the power duty of the wind turbine increases as the wind speed increases. If the power from the wind turbine is sufficient to sustain the load demand, then the number of batteries decreases.For wind speeds of 5 m/s and above, the number of batteries needed by the system falls under 15; which is reasonable since some designers may opt for a fixed amount of batteries to be installed in the system, due to the fact that the intermittent availability of wind may result in a variable energy output. It can be concluded that the effect of hub height is found not able to reduce the number of batteries significantly at annual low wind speeds (not exceeding 8 batteries). This means that at low annual wind speeds, the higher hub heights are still unable to run the wind turbine to fit the power duty level.3.2.3 Effect of Hub Height on Battery LifetimeFig. 17 Battery lifetime vs. annual wind speed for PGE 20-25 turbineAt a low annual wind speed of 3 m/s, all 3 hub heights for the PGE 20-25 wind turbine showed low battery lifetimes, which is ~4 years. At 4 m/s, the enhancement in battery life is a bit more obvious, as shown in Table 6. However, after that, the annual wind speed 5-12 m/s resulted in an optimum battery lifetime of 10 years, as can be seen from the figure above, which means that at low annual wind speed, higher hub heights are still not crucial.Table 6: The increase in battery lifetime for different hub heights at 4 m/s.Hub heights of PGE 20-25Increase in hub heightBattery lifetime / Increase in battery lifetime25 m-4.7 / -30 m5 m5.8 / 23.4%36 m11 m6.4 / 36.1%Lessons learned:The battery bank’s lifetime at 3-4 m/s is low, because the batteries work frequently compared to higher classes of wind power. At annual wind speed 5-12 m/s, the battery lifetime is at an optimum state. The wind turbine produces sufficient power at this range of wind speed to sustain the load, as well provide proper recharging of the batteries. The effect of hub height is only obvious at low annual wind speed, from 3 - 4 m/s. However, although the hub height increases, the PGE 20-25 turbine is still heavily dependent on battery power to sustain the load at 3-4 m/s annual wind speed.Finally, from a technical perspective, the effects of hub height on the wind power system are insignificant, with the exception of at low wind speed (3-4 m/s). There are only small influences of hub height on power duty of the turbine at low annual wind speed. This means that the sizing approach for the wind turbine power system and its accuracy at the minimum hub height is reasonable under each annual wind speed. Therefore, keeping the wind power system at its minimum hub heights is still, technically, a reasonable option.3.2.4 Effect of Hub Height on Initial Cost Fig. 18: Initial cost vs. annual wind speed for PGE 20-25 turbineThis sub-section discusses the initial cost of the system. It should be pointed out here that the initial cost include the system components only, and not the required cost of the land and infrastructure for higher hub heights. Therefore, the initial cost in this context encompasses the system cost only.First, the discussion will be on the effect of different hub heights on the initial cost of the system for the PGE 20-25 wind turbine. The lowest hub height for the PGE 20-25 wind turbine (25 m) provides the highest value of initial cost. This is followed by the next hub height of 30 m, and the hub height of 36 m results in the lowest initial cost for annual wind speed range (3-10 m/s). Table 4.5 shows the difference in initial costs at different annual wind speed. From Table 7, at a wind speed 3 m/s, increasing the hub height to 30 m or 36 will slash the initial cost to around 22.9% maximum, while increasing the hub height to 30 m or 36 m will slash the initial cost to around 0% to 3.1% within a wind speed range of 4-12 m/s. It was determined that starting from wind speed of 10 - 12 m/s, the initial costs for all the 3 hub heights were similar. Table 7: The decrease in initial cost by increasing the hub heightAnnual wind speed (m/s)Initial cost ($) / reduced initial cost2530363307,860 / -239,780 / 22.1%237,220 / 22.9%496,900 / -95,805 / 1.1%94,205 / 2.7%584,655 / -81,960 / 3.1%81,960 / 3.1%678,810 / -77,395 / 1.8%77,395 / 1.8%774,565 / -74,565 / -74,245 / 0.4%872,830 / -72,830 / -72,830 / -971,735 / - 71,415 / 0.4%71,415 / 0.4%1071,415 / -71,415 / -71,415 / -From the observations above, at low annual wind speeds, the initial cost of the system decreases as the hub height increases. This is due to the lesser quantity of equipment (turbines, batteries, etc.) needed by the system, which caused the initial cost to decrease. However, the differences in initial cost at different hub heights were found to be insignificant from 4-12 m/s. 3.2.5 Effect of Hub Height on O&M Cost, Total NPC and COE of the outstanding PGE 20-25 turbineFigures (19, 20, and 21) describe O&M Cost, Total NPC, and COE, respectively, against annual wind speed, and will be discussed together, as these three figures display similar trends.As shown in Figures (19, 20, and 21) and Tables 8 - 9 - 10, effect of multiple wind turbine hub heights are found significant but the cost of the wind power system remains high and not competitive at low annual wind speed of 3 m/s. At an annual wind speed of 4 m/s, effect of multiple wind turbine hub heights are found marginal ?on the cost reduction values where the percentage of cost reduction for the total NPC and levelized COE values did not exceed 10%. At an annual wind speed of 5 m/s and above, the effect of hub heights on cost parameters and percentage of cost reduction values vanished.Fig. 19: O&M cost vs. annual wind speed for PGE 20-25 turbineFig. 20: Total NPC vs. annual wind speed for PGE 20-25 turbineFig. 21: COE vs. annual wind speed for PGE 20-25 turbineTable 8: Percentage of reduction of O&M cost for different hub heightsAnnual wind speed (m/s)O&M cost ($/year) / reduction O&M cost 2530 36311,978 / -10,390 / 13.2%9,492 / 20.7%44,914 / -4,371 / 11.0%3,920 / 20.2%52,661 / -2,529 / 4.9%2,529 / 4.9%62,434 / -2.399 / 1.4%2,399 / 1.4%72,328 / -2,328 / -2,304 / 1.0%82,268 / -2,268 / -2,268 / -92,256 / -2,232 / 1.0%2,232 / 1.0%102,232 / -2,232 / -2,232 / -Table 9: Percentage of reduction of total NPC for different hub heightsAnnual wind speed (m/s)Total NPC ($) / reduction total NPC2530363460,979 / -372,672 / 19.1%358,555 / 22.2%4159,719 / -151,675 / 5.0%144,313 / 9.6%5118,666 / -114,295 / 3.6%114,295 / 3.6%6109,930 / -108,060 / 1.7%108,060 / 1.7%7104,319 / -104,319 / -103,694 / 0.5%8101,824 / -101,824 / -101,824 / -9100,579 / -99,954 / 0.6%99,954 / 0.6%1099,954/ -99,954 / -99.954 / -Table 10: Percentage of reduction of COE for different hub heightsAnnual wind speed (m/s)COE ($/kWh) / Percentage of reduction in COE 25 30 3631.248 / -1.009 / 19.1%0.971 / 22.1%40.432 / -0.41 / 5.0%0.391 / 9.5%50.321 / -0.309 / 3.7%0.309 / 3.7%60.297 / - 0.292 / 1.6%0.292 / 1.6%70.282 / -0.282 / -0.281 / 0.3%80.276 / -0.276 / -0.276 / -90.272 / -0.27 / 0.7%0.27 / 0.7%100.27 / -0.27 / -0.27 / -From a financial perspective, the higher hub heights were minimally influential vis-à-vis the costs of the wind power system at an annual wind speed range of 4-12 m/s.Although the hub height minimally influences the techno-economic aspects of wind power systems, it was found that wind power systems with higher hub heights are somehow preferable at low annual wind speeds. However, if we consider the cost of the infrastructure for the wind turbine to stand higher hub heights, it will increase the total cost of the wind power project (cost of wind power system and cost of infrastructure for higher hub heights).Overall, the effects of hub heights on the techno-economic aspects of wind power system can be regarded to not be as important as annual wind speeds and wind turbine types. Similar to the first part of the analysis, the effects of wind speed and types of wind turbine were more obvious than that in hub heights.Finally, as the wind speed increases, lesser equipment (turbines, batteries, etc.) is needed by the system, which reduces the initial, operation, and maintenance (O&M) costs, and consequently the total NPC cost. 3.3 Validation of the Outstanding Wind Turbine at Dammam City, Saudi Arabia This round of analysis aims to determine the wind turbine size that can power a certain load using real monthly wind speed data for testing and validation purposes. The tested location is Dammam city. The determined wind turbine size will be compared with the outstanding wind turbine size determined by the proposed sizing approach. If the wind turbine size is found same, this confirms that the proposed sizing approach is accurate to predict the outstanding wind turbine size at any location around the globe. The analysis in this section will be performed under the following assumptions:1.Location of the study is Dammam city. 2.Studied load is 8 kW.3.Real monthly wind speed data obtained from weather2 website. 4.Seven wind turbines of different sizes are used.5.Minimum hub height for each wind turbine is implemented.6.Implemented annual capacity shortage: (0%)3.3.1 Effect of Different Wind Turbine Size on Number of Turbines Figure 22: Number of turbines versus wind turbine sizes for Dammam cityFigure 22 illustrates the number of turbines vs. different wind turbine types at Dammam city. A turbine’s size, with a minimum quantity of turbines, is most crucial when designing the wind power system. Therefore, in this round of evaluation, PGE 20-25 (25kW) with 2 turbines was determined to be outstanding.3.3.2 Effect of Different Wind Turbine Size on Number of Batteries The wind power system that utilized the minimum number of batteries is regarded as outperformed. From Figure (23), 3 wind turbines required the minimum number of batteries below 100 to power the load. The number of batteries was 86, 82, and 95 for PGE 20-25 (25kW), Fuhrlander FL30/13 (30kW) and PGE 11-35 (35kW), respectively. Therefore, Fuhrlander FL30/13 (30kW) is regarded as an outstanding turbine in terms of the minimum amount of batteries. However, the difference in the number of batteries between Fuhrlander FL30/13 (30kW) and PGE 20-25 (25kW) was only 4 batteries. So, PGE 20-25 (25kW) could be regarded as superior compared to other turbines.Figure 23: Number of batteries versus wind turbine sizes for Dammam city3.3.3 Effect of Different Wind Turbine Size on Battery Lifetime Batteries with a standard lifetime remain the best choice. All wind turbines showed standard lifetime of up to 10 years for their battery bank system, as shown in Figure 24. Figure 5.24: Battery lifetime versus wind turbine sizes for Dammam city3.3.4 Effect of Different Wind Turbine Sizes on Cost of Energy From Figure (25), PGE 11-35 (35 kW) shows the extreme highest levelized cost of energy compared to other turbines, while PGE 20-25 (25 kW) shows the lowest levelized cost of energy. So, PGE 20-25 (25kW) was determined to be absolutely superior in terms of levelized cost of energy.Figure 25: COE versus wind turbine sizes for Dammam city3.3.5 Determining Wind Turbine Size at other Different Tested Locations Using their Monthly Wind Speed DataBased on Figures 22, 23, 24, and 25, it can be seen that the wind power system that has the minimum amount of wind turbines, where the number of batteries approaches the minimum, with the standard battery lifetime and lowest levelized cost of energy being PGE 20-25 (25 kW). As a result of this, it was concluded that the outstanding wind turbine was the PGE 20-25 (25 kW) for powering 8 kW load at a Dammam city.Dammam city as a tested location with real monthly wind speed data, the recommended wind turbine amongst the (7) wind turbines is again PGE 20-25 (25kW). The same analyses are performed for another two locations using their real monthly data. The outstanding turbine size based on techno-economic feasibility parameters for three tested locations is shown in table 11. The results of the analyses confirmed that the outstanding wind turbine size is still again PGE 20-25 (25kW). This confirms that the shortcut sizing approach adopted in section 3.1 is accurate to determine the outstanding wind turbine that is confirmed using real monthly data at the tested locations. So, the proposed sizing approach is fit to predict the outstanding wind turbine at any location around the globe.Table11: The outstanding turbine size based on techno-economic feasibility parameters for three tested locationsCase studies with real monthly wind speed data Wind turbine sizes with min No. of turbinesWind turbine sizes with min No. of batteriesWind turbine sizes with max Battery lifetimeWind turbine size with min COE Optimum turbine size at the tested locations using monthly wind speed dataOutstanding turbine size predicted by annual wind speed data Dammam/Saudi25kW@30kW: 82@25kW: 86All sizes25kW25kW25kWRas Monief/ Jordan25kW, 30kW 50kW25kWAll sizes25kW25kWkokhanok, Alaska/ USA25kW, 30kW 35kW, 50kW25kWAll sizes25kW25kW4. CONCLUSIONThis study proposed a shortcut sizing approach that predicts the outstanding wind turbine size to power a certain load 8 kW at so many locations around the globe within annual wind speed range (3-12 m/s). For this purpose, seven wind turbine types with different power were selected. The selection was based on the expected appropriateness of the power capacity to power an 8 kW load, on top of the initial cost of each wind turbine. The outstanding wind turbine size is determined based on the results of techno-economic feasibility parameters. The results of the techno-economic feasibility parameters are obtained using HOMER simulation tool. The seven turbines performances versus the annual wind speed range are compared at each parameter. The results showed that the outstanding size of wind turbine is PGE 20-25 (25 kW). For further confirmation, validation test is performed at three locations using their monthly wind speed data to predict the optimum wind turbine size. The validation results showed that optimum wind turbine size is PGE 20-25 (25 kW) at the three tested locations. Moreover, the results showed that the outstanding wind turbine size and annual wind speed did impose more impacts on the values of techno-economic feasibility parameters compared to higher hub heights. Finally it can be concluded that the proposed sizing approach utilizing annual wind speed data (3-12m/s) a representative of locations is accurate to predict the outstanding wind turbine of optimum power duty to run 8kW load around the globe.REFERENCES[1] Ashourian, M. H., Cherati, S. M., Mohd Zin, A. A., Niknam, N., Mokhtar, A. S. &Anwari, M. Optimal green energy management for island resorts in Malaysia. Renewable Energy 2013; 51:36-45.[2] Sadeghi, M., Gholizadeh, B., Gilanipour, J. & Khaliliaqdam, N. Economicanalysis of using of wind energy, Case study: Baladeh city, North of Iran. International Journal of Agriculture and Crop Sciences 2012; 4(11):666-73.[3] Aagreh, Y. & Al-Ghzawi, A. Feasibility of utilizing renewable energy systems for a small hotel in Ajloun city, Jordan. Applied Energy 2013; 103: 25-31.[4] Goodbody, C., Walsh, E., McDonnell, K. P. & Owende, P. Regional integration of renewable energy systems in Ireland - The role of hybrid energy systems for small communities. Electrical Power and Energy Systems 2012; 44:713-720.[5] Adaramola, M. S. Feasibility study of off-grid hybrid energy systems for applications in Ondo State, Nigeria. Journal of Engineering and Applied Sciences 2012; 7(1):72-78.[6] Osorio, L., Velo, R., Fernández, M. D. & Rodrìguez, M. R. Feasibility of the electrical supply by wind power in dairy cattle farms. International Conference of Agricultural Engineering, Valencia – Spain 2012 8-12 July. [7] Fahmy, F. H., Ahmed, N. M. & Farghally, H. M. Optimization of Renewable Energy Power System for Small Scale Brackish Reverse Osmosis Desalination Unit and a Tourism Motel in Egypt. Smart Grid and Renewable Energy 2012; 3:43-50.[8] Moniruzzaman, M. & Hasan, S. Cost analysis of PV/Wind/Diesel/Grid connected Hybrid Systems. International Conference on Informatics, Electronics & Vision, Dhaka; 2012. 18-19 May.[9] Sadrul Islam, A. K. M., Rahman, M. M., Mondal, M. A. H. & Alam, F. Hybrid energy system for St. Martin Island, Bangladesh: An optimized model. Procedia Engineering 2012; 49:179-188.[10] Badawe, M. E., Iqbal, T. & and Mann, G. K. I. Optimization and modeling of a stand-alone wind/PV hybrid energy system. IEEE Canadian Conference on Electrical and Computer Engineering. Montreal; 2012. pg. 1-6.[11] Abulqasem, Kh., Alghoul, M. A., Mohammed, M. N., Mustafa, A., Glaisa, Kh., Amin, N., Zaharim, A. & Sopian, K. Optimization of Renewable Power System for Small Scale Seawater Reverse Osmosis Desalination Unit in Mrair-Gabis Village, Libya. In: Proceedings of the 5th International Conference on Applied Mathematics, Simulation & Modelling. Wisconsin; 2011. pg. 155-160.[12] Chowdhury, S. H. & Oo, A. M. T. Study on electrical energy and prospective electricity generation from renewable sources in Australia. Renewable and Sustainable Energy Reviews 2012; 16:6879-6887.[13] Ibrahim, M. Z., Zailan, R., Ismail, M. & Muzathik, A. M. Pre-Feasibility Study of Hybrid Hydrogen Based Energy Systems for Coastal Residential Applications. Energy Research Journal 2010; 1(1):12-21.[14] Thakur, M. S., Gupta, B., Kumar, V. & Pandey, M. Design and Optimization of Hybrid Renewable Energy System (2MWH/d) for Sustainable and Economical Power Supply at JEC Jabalpur. International Journal of Current Research and Review 2012; 4(20):188-197.[15] Fantidis, J. G., Bandekas, D. V., Vordos, N. & Karachalios, S. Wind energy potential in Greece using a small wind turbine. In: Proceedings of the 7th International Conference on Energy and Development, Environment and Biomedicine. Cambridge; 2013. p. 25-30.[16] Nandi, S. K. & Ghosh, H. R. Prospect of wind-PV-battery hybrid power system as an alternative to grid extension in Bangladesh. Energy 2010; 35:3040-3047.[17] Irfan Khan Niazi, Muhammad Bilal Khan and Rashid Wazir. Techno-economic analysis of hybrid system (PV/wind/diesel generator/grid) for domestic consumers in balochistan (Nokkundi & Ormara) World Journal of Engineering 12(1) (2015) 29-36[18] Shaahid, S. M. & El-Amin, I. 2009. Techno-economic evaluation of off-grid hybrid photovoltaic–diesel–battery power systems for rural electrification in Saudi Arabia - A way forward for sustainable development. Renewable and Sustainable Energy Reviews 13: 625–633.[19] Amini, Malika. 2010. Renewable Energy Systems for Rural Health Clinics in Algeria: Homer Application. [25 October 2011].[20] Md. Ruhul Amin, Rajib Baran Roy and Md. Mahmudul Hasan. Modeling and optimization of decentralized microgrid system for St. Martin’s Island in Bangladesh. International Journal of Energy, Information and Communications Vol.5, Issue 5 (2014), pp.1-12.[21] Thi Thi Soe, Maosheng Zheng. Planning on wind-diesel hybrid model for rural electrification in Myanmar. April 28, 2014.[22] Fahd Diab, Hai Lan, Lijun Zhang and Salwa Ali. An environmentally-friendly tourist village in Egypt based on a hybrid renewable energy system–Part One: What Is the Optimum City?. Energies 2015, 8, 6926-6944; doi:10.3390/en8076926 [23] Local Weather Dammam Climate History. 2015. [24] M. A. Alghoul, M.Y.Sulaiman, B.Z.Azmi and M. Abd. Wahab. Wind energy potential of Jordan. International Energy Journal 8 (2007) 71-78.[25] Kokhanok, Alaska Wind Resource Report. Report written by: Douglas Vaught, P.E., V3 Energy, LLC. [26] National Renewable Energy Laboratory (NREL). 2004. HOMER brochure. [12 January 2013].[27] Givler, T. & Lilienthal, P. 2005. Using HOMER Software, NREL's Micropower Optimization Model to Explore the Role of Gen-sets in Small Solar Power Systems. [22 July 2013]. ................
................

In order to avoid copyright disputes, this page is only a partial summary.

Google Online Preview   Download