Delaware Valley School District / Overview



Earth Science Introduction to Earth Science: Chapter 1Name: _________________________________Earth Science Chapter-1 Pretest True or False: Our solar system consists only of Earth and the sun.Object A is denser than water. If object A is dropped into a cup of water, what will happen to the object?Object A will float on top of the water.b. Object A will float in the middle of the water.Object A will sink to the bottom of the cup.What is earth known to have that other planets in our solar system are not known to have?a. An atmosphere b. Volcanoesc. Liquid waterd. Rings What is the name of the imaginary horizontal line that goes around Earth’s middle? a. Equatorb. Prime Meridianc. International Date LineWhich of these imaginary lines crosses through Greenwich, England? a. Equatorb. Prime meridianc. International Date LineFill in the locations for north, west, east, and south on a compass rose. Developing Your Observation Skills1. Observing: What features can you identify in the photograph?2. Inferring: Where do you think this photograph came from?3. Designing Experiments: If you were an Earth scientist, how could you use this photograph in your work? Branches of Earth ScienceA star in the Milky Way Galaxy is found to have five planets. One planet is similar in size and distance from thestar, as Earth is from the Sun. What information would be needed about the planet to compare it to the Earth?Earth Science Encompasses all sciences that seek to understand Earth Earth's neighbors in space Earth Science includesGeology - literally the “study of Earth” Oceanography – a study of the oceanMeteorology - the study of the atmosphere and the processes that produce weather Astronomy - the study of the universe Earth ScienceGeology is the science that pursues an understanding of planet Earth Physical geology – examines the materials composing Earth and seeks to understand the many processes that operate beneath and upon its surface Historical geology – seeks an understanding of the origin of Earth and its development through timeEarth Science: Some historical notes about geology The nature of Earth has been a focus of study for centuries Catastrophism Uniformitarianism and the birth of modern geology Early evolution of Earth Origin of Earth Most researchers believe that Earth and the other planets formed at essentially the same time The Nebular hypothesisNebular hypothesis Solar system evolved from an enormous rotating cloud called the solar nebula Nebula was composed mostly of hydrogen and helium About 5 billion years ago the nebula began to contract Assumes a flat, disk shape with the protosun (pre-Sun) at the center Inner planets begin to form from metallic and rocky clumps Larger outer planets began forming from fragments with a high percentage of ices Early evolution of Earth Formation of Earth’s layered structure As Earth formed, the decay of radioactive elements and heat from high-velocity impacts caused the temperature to increase Iron and nickel began to melt and sink toward the center Lighter rocky components floated outward, toward the surface Gaseous material escaped from Earth’s interior to produce the primitive atmosphere Earth’s Place in the UniverseScales of Space and Time in Earth ScienceEarth science involves investigations of phenomena that range in size from atoms to galaxies and beyond.Chapter 1 Section 2: A View of EarthEarth's “Spheres": (True or False) _____ The atmosphere contains all of the water on Earth._____ Groundwater is part of Earth’s hydrosphere._____ Earth’s atmosphere does nothing to protect us from the sun’s radiation._____ There is no crust under Earth’s oceans._____ Earth’s crust is the same thickness under land as under water._____ The only layer of Earth that is solid is the crust._____ The biosphere affects all other spheres of Earth.Earth's “Spheres"Hydrosphere Ocean – the most prominent feature of the hydrosphere Nearly 71% of Earth's surface About 97% of Earth's water Also includes fresh water found in streams, lakes, and glaciers, as well as that found underground Atmosphere Thin, tenuous blanket of air One half lies below 5.6 kilometers (3.5 miles) Biosphere Includes all life Concentrated near the surface in a zone that extends from the ocean floor upward for several kilometers into the atmosphere Geosphere Based on compositional differences, it consists of the crust, mantle, and core Divisions of the outer portion are based on how materials behave Lithosphere - rigid outer layer Divisions of Earth’s surface - continents and ocean basins Earth’s layered structurePlate TectonicsPlate tectonics is the theory that proposes that Earth’s outer shell consists of individual plates that interact in various ways and thereby produce earthquakes, volcanoes, mountains, and Earth’s crust itself.Destructive forces such as weathering and erosion work to wear away high points and flatten out the surface.Constructive forces such as mountain building and volcanism build up the surface by raising the land and depositing new material in the form of lava.Depend on Earth’s internal heat for their source of energy.Chapter 1 Section 3: Representing Earth’s SurfaceDetermining Location Latitude and longitude are lines on the globe that are used to determine location.Latitude is distance north or south of the equator, measured in degrees.Also known as parallels.Ranges from 0 - 90 Degrees1 degree of latitude is approximately equal to 111 km (69 miles). Longitude is distance east or west of the prime meridian, measured in degrees.Also known as meridians.Ranges from 0 - 180 Degrees1 degree of longitude ranges from 111 km (69 miles) at the Equator to 0 km at the poles. Meridians converge at the poles. Representing Earth’s Surface Latitude-Longitude Coordinates Latitude always comes first.A compass direction must be used for both latitude and longitude.latitude can only be north or south of the equatorlongitude can only be east or west of the prime meridianSmaller units of a degree1 minute of latitude = 1.85 km (1.16 miles)1 second of latitude = .031 km (96 feet) Example: Coordinates for Delaware Valley High School in degrees, minutes, and seconds.41o20’59” N, 74o44’15” WLatitude-Longitude Coordinates 20o South, 20o East F H 20o South, 100o East A F 20o North, 40o East F H 60o South, 40o West D J 10o South, 40o West C J0o, 140o West B C40o North, 100o West E GMaps and Mapping No matter what kind of map is made, some portion of the surface will always look either too small, too big, or out of place. Mapmakers have, however, found ways to limit the distortion of shape, size, distance and direction.The smaller the area mapped, the less distorted the map will be.Mercator Projection - Created by Gerardus Mercator in 1569- Lines of latitude and longitude are parallel- Shows direction accurately, but sizes and distances are distorted (especially near poles)- Used for seagoing navigatorsGnomonic Projection (Polar)Made by placing a piece of paper on the globe so that it touches a single pointUseful to sailors and navigators because they show the shortest distance between two pointsConic Projection (Polyconic)- Made by wrapping a cone of paper around a globe at a particular line of latitude- Almost no distortion along the line in contact- Great accuracy over a small area, so these are used to make topographic, road, and weather mapsRobinson ProjectionShow most distances, sizes, and shapes accuratelyDistortions near the edges of the mapTopographic Maps Topographic maps represent Earth’s surface in three dimensions; they show elevation, distance directions, and slopeangles.Contour lines are lines on a topographic map that indicate an elevation.Contour interval is the distance in elevation between adjacent contour lines. Small contour intervals are used for flat areas.Larger contour intervals are used for mountainous terrain.Shown at the bottom center of a topographic map. Index Contours are heavier, darker contour lines that are labeled with the elevation. They are generally every fifth contour line.Depression Contours indicate a depression in the land, such as a crater.Hachure marks are small lines, on a depression contour line, that point to the center of the depression.The elevation on the lip, or edge of the depression, is equal to the elevation of the regular contour line beneath the ographic Maps Elevation Indicators Bench Marks are points of known elevation and position where a brass plate is physically found in the ground. Shown on a map by the letters BM and the elevation given to the nearest foot.Spot elevations are points of known elevation without a brass plate in the ground. Shown on a map with an X.Features Shown on a Topographic Map Relief features–hills, valleys, mountains, plains, and other landformsWater features–lakes, ponds, rivers, canals, swampsCultural features -- roads, railroads, and buildings Topographic Map Colors Black–manmade or cultural features, such as roads, buildings, names, and boundaries.Blue–water features such as lakes, rivers, canals, glaciers, or swamps.Brown–land shape portrayed by contour lines (relief).Green–used for woodland cover with patterns to show scrub, vineyards, or orchards.Red–important roads and public land subdivision linesRed Tint–indicates urban areas in which only landmark buildings are shown.Purple–show office revisions from aerial photographs which are not field checked.Rules of Topographic MapsAll points along a contour line have the same elevation.Contour lines form closed loops.Circles represent hills or mountains.Ovals represent ridges.Contour lines never cross.Contour lines never touch or intersect, except where there is a vertical cliff.Contour lines that are close together indicate a steeper slope.Contour lines that are farther apart indicate a gentle slope.Contour lines “V” ographic ProfilesA cross section, or side view of the Earth’s surface along a given line (baseline).Determining a Gradient or Slope on a Topographic Map Gradient (average slope) is the rate of change in elevation between two points on a topo. map.Avg. Slope = Diff. in elevation of point A and B (ft) Distance between A and B (mile)Magnetic Declination The acute angle between the directions of magnetic north and geographic north. This angle is indicated at the bottom of a topo map. Geographic North Pole (True North) is the location on Earth where the meridians or lines of longitude converge.Magnetic North Pole is the uncorrected direction indicated by the north seeking end of the needle of a magnetic compass. Located in Canada. Representing Earth’s SurfaceMap scale is the ratio of distance on the map to distance on Earth.Types of Scales:Verbal or written scale– simple statementExample: 1cm=1km Graphic scale– a line divided into equal segments. Each segment length represents an actual distance on land. The lines are marked in km, miles or other units of length.Ratio or numerical scale– written using a representative fraction or ratio.Example: 1:25,000 means that one unit on the map equals 25,000 of the same units on Earth’s surface.The more closely the map approaches the land in size, the larger the scale is.Geologic MapsA geologic map shows the type and age of exposed rocks.Advanced TechnologyToday’s technology provides us with the ability to more precisely analyze Earth’s physical properties.The process of collecting data about Earth from a distance, such as from orbiting satellites, is called remote sensing.Satellites and computers provide more accurate maps.Example: Global Positioning Systems (GPS)Chapter 1 Section 4: Earth system scienceEarth is a dynamic body with many separate but highly interacting parts or spheres Earth system science studies Earth as a system composed of numerous parts, or subsystems System - any size group of interacting parts that form a complex whole Closed systems are self-contained (e.g. an automobile cooling system) Open systems - both energy and matter flow into and out of the system (e.g. a river system)Most natural systems are open systems. Feedback mechanisms Negative-feedback mechanisms resist change and stabilize the system Positive-feedback mechanisms enhance the systemEarth as a system Consists of a nearly endless array of subsystems (e.g. hydrologic cycle, rock cycle) Earth as a system Sources of energy Sun – drives external processes such as weather, ocean circulation and erosional processesEarth’s interior – drives internal processes including volcanoes, earthquakes and mountain buildingHumans are part of the Earth system Our actions produce changes in all of the other parts of the Earth system.People and the environment Environment Surrounds and influences organisms Physical environment encompasses water, air, soil, and rockTerm “environmental” is usually reserved for those aspects that focus on the relationships between people and the natural environment Resources An important focus of the Earth sciences Includes water, soil, minerals, and energyTwo broad categories Renewable – can be replenished (examples include plants and energy from water and wind)Nonrenewable – metals (examples include metals and fuels)The processes that create them are so slow that it takes millions of years for significant deposits to accumulate.Population Population of the planet is growing rapidly Rate of mineral and energy usage has climbed more rapidly than the overall growth of populationEnvironmental problemsLocal, regional, and global Human-induced and accentuated : Urban air pollution, Acid rain, Ozone depletion, Global warmingNatural hazards: Earthquakes, Landslides, Floods, HurricanesWorld population pressuresChapter 1 Section 5: Scientific inquiryScience assumes the natural world is ConsistentPredictableGoal of science To discover patterns in natureTo use the knowledge to predict An idea can become aHypothesis (tentative or untested explanation) Theory (tested and confirmed hypothesis) Paradigm (a theory that explains a large number of interrelated aspects of the natural world) Scientific method Gather facts through observation Formulate hypotheses and theories Scientific knowledge is gained through Following systematic steps Collecting factsDeveloping a hypothesis Conduct experiments Re-examine the hypothesis and accept, modify, or rejectTheories that withstand examination Totally unexpected occurrences End of Chapter 1Name: ___________________________________ Pd: _____ Date: __________________ Magic Number: ___Magic SquaresDirections: Select the best answer for each of the following terms from the number definitions. Put thenumber in the proper space in the magic square box. If the totals of the numbers are the same across,up-and-down and diagonal, you have found the magic number! theory ____ geology ____hydrosphere ____biosphere ____longitude ____atmosphere ____topographic map ____ system ____hypothesis ____ contour interval ____ geosphere ____ contour lines ____ latitude ____astronomy ____meteorology ____Earth science ____1. The name of the group of sciences that deal with Earth and its neighbors in space is called?2. All the water on Earth makes up this 3. A word that means “study of Earth”.4. A distance measured in degrees north or south of the equator5. A distance measured in degrees east or west of the prime meridian is6. This tells you the difference in elevation between two adjacent lines on a topographic map.7. Lying beneath both the atmosphere and the ocean is the8. This can be any size group of interacting parts that form a complex whole.9. An untested scientific explanation is called 10. The gaseous envelope surrounding Earth is called the11. This is used to represent the Earth’s three-dimensional surface in two dimensions.12. The elevation on a topographic map is shown using this13. This includes all life on Earth.14. The study of the atmosphere and the processes that produce weather and climate is .15. The branch of Earth science studies the universe 16. A scientific idea that is well tested and widely accepted by the scientific community is called a ................
................

In order to avoid copyright disputes, this page is only a partial summary.

Google Online Preview   Download