Design of an off-grid Photovoltaic system - Harvard University

Design of an off-grid Photovoltaic system

With supplementing energy from Wind and Diesel

ANTON ?RB?K S091870, JOHANNES DAHL S091251, CARLO ALBERTO AMADEI S102087

DEPARTMENT OF CIVIL ENGINEERING, TECHNICAL UNIVERSITY OF DENMARK

DK 2800, KGS. LYNGBY, DENMARK

Course: 11128

Team: 11

Handed in to: Bengt Perers

Abstract

With increasing electricity prices and the need to minimize environmental impact, two young men have

decided to see if it¡¯s possible to live in a capital city completely off the main grid. The combination of a

number of sustainable energy technologies were considered in order to help them reach their goal. In

order to completely go off the grid enough electricity needs to be generated by either photovoltaic solar

panels or wind turbines to cover their electrical requirements. Two different simulation programs,

HOMER and PVSUN3, were used in order to determine the required size of the solar collector array and

components. Both simulation programs showed that it¡¯s not economical to cover the electrical

requirement only by solar PV for all year operation. A hybrid system consisting of a wind turbine, solar

collectors, controller, invertor and a backup generator is required in order to meet the cabins electrical

demand.

Course: 11128

Team: 11

Handed in to: Bengt Perers

Contents

Abstract ......................................................................................................................................................... 2

Introduction .................................................................................................................................................. 5

1. Scenario description and load................................................................................................................... 5

1.1 Location............................................................................................................................................... 5

1.2 Occupants ........................................................................................................................................... 5

1.3 Heating requirements ......................................................................................................................... 5

2. Scenarios ................................................................................................................................................... 6

2.1 Determination of the daily consumption............................................................................................ 6

2.2 Real consumption of electrical devices............................................................................................... 8

3. System Components ................................................................................................................................. 9

3.1 Solar panels ......................................................................................................................................... 9

3.2 Batteries ............................................................................................................................................ 10

3.3 Wind turbine ..................................................................................................................................... 14

3.4 Generators ........................................................................................................................................ 15

3.5 Inverter/Charger ............................................................................................................................... 16

3.6 Controller/Charger ............................................................................................................................ 16

4. Simulations.............................................................................................................................................. 18

4.1 PVSUN3 ............................................................................................................................................. 19

4.1.1 Results ........................................................................................................................................ 19

4.1.2 PVSUN3 conclusion .................................................................................................................... 22

4.2 HOMER simulations .......................................................................................................................... 22

5. Conclusion ............................................................................................................................................... 29

5.1 Simulations with PVSUN3 ................................................................................................................. 29

5.2 Comparison of the two simulation programs ................................................................................... 29

5.3 Simulations with HOMER .................................................................................................................. 29

Appendix A: Load calculations .................................................................................................................... 31

Experiment .............................................................................................................................................. 31

Appendix B: PVSUN3 simulation ................................................................................................................. 32

Appendix C: Homer simulation ................................................................................................................... 34

Load......................................................................................................................................................... 35

Components ............................................................................................................................................ 36

Course: 11128

Team: 11

Handed in to: Bengt Perers

PV ........................................................................................................................................................ 36

Wind Turbine ...................................................................................................................................... 37

Generator ............................................................................................................................................ 38

Battery................................................................................................................................................. 38

Inverter ............................................................................................................................................... 39

Economics ............................................................................................................................................... 39

System control ........................................................................................................................................ 39

Output ..................................................................................................................................................... 39

Bibliography ................................................................................................................................................ 41

Course: 11128

Team: 11

Handed in to: Bengt Perers

Introduction

With the ever growing concerns of global warming, international interests have increased the research

and development into sustainable energy systems. The costs of many different technologies have

steadily decreased while the systems themselves have improved. Combining this with steadily growing

electricity prices the market for sustainable, efficient energy technologies has opened up to a large user

group of home owners. It¡¯s not necessarily expensive to be disconnected from the main grid anymore;

local resources can even give conditions that are better economically. All it takes is a little effort.

The aim of this project is to investigate and design a solar PV and wind turbine system for a standalone

house in the outskirts of Copenhagen, Denmark. In order to correctly size the system two different

simulation programs, HOMER and PVSUN3, will be used. With these programs a number of different

solar PV and wind turbine arrays can be simulated in order to determine the cheapest and best system

configuration.

1. Scenario description and load

1.1 Location

The small scenario house, in size compared to a cabin, is located on the outskirts of Copenhagen, at the

GPS coordinates N55o40¡¯52.32¡±, E12o36¡¯38.88¡±. The building is facing directly south and benefits from

not having any buildings or trees close by, blocking the sun.

1.2 Occupants

There are two people living full time in the building. One of the occupants is a full-time student. The

time spent at home is generally limited to early mornings and late evenings, the rest of the time is spent

in school. During weekends the approximate time spent at home is 50 %, but large variations occur

throughout the year. The second person living in the residence is a full-time employed carpenter. The

weekday schedule is similar to the student with a five workday¡¯s but he might occasionally work during

the weekends. Work starts later in the morning however and like the student he uses a number of

appliances in the morning. He returns home for lunch for approximately one hour.

Between morning and evening, except lunch, the cabin stands empty. This means that the only electrical

usage in this period of the day is for appliances such as fridge and clock radio.

1.3 Heating requirements

The building is heated by a wood burning stove with a back boiler. The back boiler heats up the domestic

hot water for the home when the fire is on. There is a solar air heater installed on the south facing wall

which provides sufficient amount of heat to cover the day time heating requirement from early spring

until late autumn. There is also a flat plate solar water collector on the roof to heat the water during the

summer periods and help pre-warm the water during the winter months. A large expected amount of

electricity for heating requirements can therefore be neglected.

Course: 11128

Team: 11

Handed in to: Bengt Perers

................
................

In order to avoid copyright disputes, this page is only a partial summary.

Google Online Preview   Download