GCSE Mathematics - Elite Tuition
Revision
Guides
ABCDEFGHIJKLMNOPQRSTUVWXYZ abcdefghijklmnopqrstuvwxyz-&!?,''.()[]/\*@;:1234567890
GCSE Mathematics
Higher Tier
Stafford Burndred
Consultant Editor: Brian Seager, Chairman of Examiners
Easingwold School
GCSE Mathematics
Name ....................................................................................................................................
Address ................................................................................................................................
..............................................................................................................................................
..............................................................................................................................................
Date of exams:
(1) ..............................................................................
(2) ................................................................................
Aural .........................................................................
Coursework deadline dates:
(1) ..............................................................................
(2) ................................................................................
Exam board ..........................................................................................................................
Syllabus number ...................................................................................................................
Candidate number ...............................................................................................................
Centre number .....................................................................................................................
Further copies of this publication, as well as the guides for Foundation and Intermediate tiers may be obtained from: Pearson Publishing
Chesterton Mill, French's Road, Cambridge CB4 3NP Tel 01223 350555 Fax 01223 356484
Email info@pearson.co.uk Web site
ISBN: 1 84070 272 9 Published by Pearson Publishing 2003
? Pearson Publishing
No part of this publication may be copied or reproduced, stored in a retrieval system or transmitted in any form or by any means electronic, mechanical, photocopy, recording or
otherwise without the prior permission of the publisher.
Easingwold School
Introduction Examiner's tips Number skills Calculator skills Fractions, decimals and percentages Number patterns Equations Variation Algebraic skills
Graphs
Easingwold School
Contents
...........................................................................................
vi
........................................................................................... vii
Rational and irrational numbers .........................................
1
Using a calculator: Brackets, memory and fractions ..........
2
Using a calculator: Powers, roots and memory .................
3
Standard form ....................................................................
4
Percentages and fractions..................................................
5
Calculating growth and decay rates ..................................
6
Patterns you must recognise..............................................
7
Product of primes, highest common factor,
lowest common multiple and reciprocals ..........................
8
Trial and improvement .......................................................
9
Equations ........................................................................... 10
Rewriting formulae ............................................................. 11
Iteration .............................................................................. 12
Direct and inverse variation ............................................... 13
Using algebraic formulae ................................................... 14 Rules for indices (powers) .................................................. 15 Expansion of brackets ........................................................ 16 Factorisation ? 1................................................................. 17 Factorisation ? 2................................................................. 18 Factorisation ? 3................................................................. 19 Solving quadratic equations .............................................. 20 Simultaneous equations: Solving using algebra ................ 21 Simplifying algebraic fractions ? 1 ..................................... 22 Simplifying algebraic fractions ? 2 ..................................... 23
Drawing lines...................................................................... 24 Simultaneous equations: Solving by drawing a graph ...... 25 Solving equations using graphical methods...................... 26 The straight line equation y = mx + c ............................... 27 Using tangents to find gradients ....................................... 28 Expressing general rules in symbolic form ? 1 .................. 29 Expressing general rules in symbolic form ? 2 .................. 30 Drawing graphs.................................................................. 31 Sketching graphs ? 1.......................................................... 32 Sketching graphs ? 2.......................................................... 33 Speed, time and distance graphs ...................................... 34 Area under a curve............................................................. 35
Contents
Angles Similarity Congruency Transformations Measurement Circles Perimeter, area and volume
Pythagoras' theorem and trigonometry
Vectors Locus
Intersecting and parallel lines ............................................ 36 Bearings ............................................................................. 37
Similarity............................................................................. 38
Congruent triangles ? 1 ..................................................... 39 Congruent triangles ? 2 ..................................................... 40
Combined and inverse transformations............................. 41 Enlargement by a fractional scale factor............................ 42 Enlargement by a negative scale factor............................. 43
Compound measures......................................................... 44 Time ................................................................................... 45 Upper and lower bounds of numbers ? 1.......................... 46 Upper and lower bounds of numbers ? 2.......................... 47
Length, area and volume of shapes with curves................ 48 Angle and tangent properties of circles ? 1 ...................... 49 Angle and tangent properties of circles ? 2 ...................... 50 Angle and tangent properties of circles ? 3 ...................... 51
Calculating length, area and volume ? 1 ........................... 52 Calculating length, area and volume ? 2 ........................... 53 Calculating length, area and volume ? 3 ........................... 54 Formulae for length, area and volume .............................. 55 Ratio for length, area and volume ..................................... 56
Pythagoras' theorem .......................................................... 57 Trigonometry: Finding an angle......................................... 58 Trigonometry: Finding a side ............................................. 59 Trigonometry: Solving problems........................................ 60 Trigonometry and Pythagoras' theorem for 3-D shapes.... 61 Sine, cosine and tangent of any angle ? 1 ........................ 62 Sine, cosine and tangent of any angle ? 2 ........................ 63 Sine, cosine and tangent of any angle ? 3 ........................ 64 Sine rule, cosine rule, area of a triangle ? 1 ...................... 65 Sine rule, cosine rule, area of a triangle ? 2 ...................... 66
Vectors ? 1.......................................................................... 67 Vectors ? 2.......................................................................... 68 Vectors ? 3.......................................................................... 69 Vectors ? 4.......................................................................... 70
Locus (plural loci) ............................................................... 71
Easingwold School
Contents
Questionnaires Tables and graphs Cumulative frequency
Designing questionnaires................................................... 72 Sampling ............................................................................ 73 Hypotheses ........................................................................ 74
Comparing data ................................................................. 75 Histograms ......................................................................... 76 Grouped data..................................................................... 77
Cumulative frequency ........................................................ 78 Using cumulative frequency diagrams to compare distributions .................................................... 79
Standard deviation
Standard deviation ............................................................. 80 The normal distribution...................................................... 81
Scatter diagrams
Line of best fit .................................................................... 82
Probability
Estimation of probability by experiment ........................... 83 Tree diagrams..................................................................... 84 Conditional and independent probability ......................... 85 Probability (and, or)............................................................ 86 Probability (at least)............................................................ 87
Supplementary material
3-D co-ordinates ................................................................ 88 Inequalities ......................................................................... 89 Critical path analysis .......................................................... 90 Linear programming........................................................... 91 Transformations (matrices) ? 1 ........................................... 92 Transformations (matrices) ? 2 ........................................... 93
Important facts you are expected to know ............................................................................. 94
Diagnostic tests
Diagnostic tests ......................................................................... 98 Answers...................................................................................... 111
Index
........................................................................................... 116
Easingwold School
................
................
In order to avoid copyright disputes, this page is only a partial summary.
To fulfill the demand for quickly locating and searching documents.
It is intelligent file search solution for home and business.
Related searches
- elite credit cards for excellent credit
- elite document management solutions
- hollywood elite and satanic rituals
- hollywood elite satan worshippers
- elite dangerous fast federation ranking
- elite dangerous federation ranks chart
- elite dangerous empire rank
- elite dangerous quick federation rank
- elite dangerous federation ranks
- elite dangerous federation ranking
- elite dangerous rank missions
- elite dangerous all federation ranks