RECITATION PROBLEMS - Physics



RECITATION PROBLEMS

CHAPTER 6: CIRCULAR MOTION AND GRAVITATION

3. Force on a skater’s wrist. A 52 kg ice skater spins about a vertical axis through her body with her arms horizontally outstretched, making 2.0 turns each second. The distance from one hand to the other 1.50 m, Biometric measurements indicate that each hand typically makes up about 1.25% of body weight.

a) Draw a free-body diagram of one of her hands.

b) What horizontal force must her wrist exert on her hand?

c) Express the force in part (b) as a multiple of the weight of her hand.

[pic]

(b) [pic]

[pic]

(c) [pic]

The horizontal force from the wrist is 12 time the weight of the hand.

5. The “Giant Swing” at a county fair consists of a vertical central shaft with a number

of horizontal arms attached at its upper end. Each arm supports a seat suspended

from a 5.00-m-long rod, the upper end of which is fastened to the arm at a point 3.00

m from the central shaft.

a) Make a free-body diagram of the seat, including the person in it.

b) Find the time of one revolution of the swing if the rod supporting the seat makes an angle of 30.0° with the vertical.

c) Does the angle depend on the weight of the passenger for a given rate of revolution?

[pic]

(a) Free-body diagram: [pic]

(b) [pic] gives [pic]. Solving this equation for F gives,

[pic] ------------------ (1)

The person moves in a circle of radius [pic]

The acceleration of the person is [pic] directed horizontally to the left as

shown in the figure.

[pic] gives

[pic] ------------------- (2)

From equations (1) and (2) we get,

[pic]

The time for one revolution is the period [pic]

[pic]

(c) The angle does not depend on the weight of the passenger for a given rate of

rotation since the net force is proportional to m and in [pic] when the

expression for F is substituted (see above) the mass cancels out.

13. Effect on blood of walking. A person is walking, his arms swing through approximately a 45° angle in (½) s. As a reasonable approximation, we can assume that the arm moves with constant speed during each swing. A typical arm is 70.0 cm long, measured from the shoulder joint.

(a) What is the acceleration of a 1.0 gram drop of blood in the fingertips at the bottom

of the swing?

(b) Make a free-body diagram of the drop of blood in part (a).

(c) Find the force that the blood vessel must exert on the drop of blood in part (b).

Which way does the force point?

(d) What force would the blood vessel exert if the arm were not swinging?

a) A 45° angle is [pic] of a full rotation, so in [pic] a hand travels through a distance of [pic].

The speed and hence the radial acceleration is calculated as follows:

[pic]

[pic]

(b) In the following free-body diagram, F is the force exerted by the blood vessel.

(c) [pic] gives [pic] and

[pic]N, upward.

(d) When the arm hangs vertically and is at rest, [pic]and hence,

[pic].

22. Find the magnitude and direction of the net gravitational force on mass A due to masses B and C in the following figure. Each mass is 2.00 kg.

[pic]

a) Force on mass A because of mass B is directed horizontally to the right (+x direction) and is calculated as follows:

[pic]

Force on mass A because of mass C is directed horizontally to the right and is

calculated as follows:

[pic]N

The net force on mass A because of masses B and C is:

[pic]

This force is towards the right.

(b) Force on mass A because of mass B is directed horizontally to the right and is calculated as follows:

[pic]

Force on mass A because of mass C is directed horizontally to the left and is calculated as follows:

[pic]N

The net force on mass A because of masses B and C is:

[pic]

This force is towards the left.

6-24 Each mass in the following figure is 3.00 kg. Find the magnitude and direction of the net gravitational force on mass A due to the other masses.

[pic]

Let in figure (a), the force on mass A because of mass B has a magnitude FB and is pointing towards mass B. Hence this force vector is making an angle o f 30° with the downward direction. Also, suppose the force on mass A because of mass C is Fc. This force is pointing towards mass C and is oriented at an angle of 30° with the downward direction. Magnitudes of these forces can be calculated as follows:

[pic]

x and y components are:

[pic]Since[pic]

[pic]

The net force is 1.04 x 10-7 N, in the direction from A toward the center of the line

connecting B and C.

In figure (b), the distance between A and D is rAD = 0.141 m

[pic]

Let +x direction be towards the right and +y upwards.

Following are the x and y components of the net force:

[pic]

[pic]

The magnitude of the net gravitational force on mass A is

[pic]

This force is pointing towards mass D.

29. Huygens probe on Titan. In January 2005 the Huygens probe landed on Saturn’s moon Titan, the only satellite in the solar system having a thick atmosphere. Titan’s diameter is 5150 km, and its mass is 1.35 x 1023 kg. The probe is weighed 3120 N on the earth. What did it weigh on the surface of Titan?

The mass of the probe can be determined using the expression for its weight on earth [pic]

The radius of Titan is [pic]

The weight on the surface of Titan is:

[pic]

Weight depends on the location, mass does not.

36. Planets beyond the solar system. On October 15 2001, a planet was discovered orbiting around the star HD68988. Its orbital distance was measured to be 10.5 million kilometers from the center of the star, and its orbital period was estimated at 6.3 days. What is the mass of HD68988? Express your answer in kilograms and in terms of our sun’s mass.

Following is the equation for the period T:

[pic] OR [pic]

Solving this equation for the mass m, we get mass of the star HD68988 as follows:

[pic]

Mass of HD68988 in terms of our Sun’s mass is:

[pic]

-----------------------

x

y

[pic]

F

arad

w

Fx

Free-body diagram

¸

In the following figure ¸ = 30.0°.

F

arad

w

Fsin30.0°

Fcos30.0°

x

y

w = mg

F

arad

+x

+y

~

~

ree-body diagram

θ

In the following figure θ = 30.0°.

F

arad

w

Fsin30.0°

Fcos30.0°

x

y

w = mg

F

arad

+x

+y

~

~

................
................

In order to avoid copyright disputes, this page is only a partial summary.

Google Online Preview   Download