Image Map of the Moon - USGS

U.S. Department of the Interior U.S. Geological Survey

180? 55?

Prepared for the

National Aeronautics and Space Administration

0? ?55?

Scientific Investigations Map 3316 Sheet 1 of 2

60?E 300?E

120?E

240?E 300?E

Poczobutt

240?E

210?E

Rowland

Bi rk h o ff

van't Ho ff

Stebbins

So m m e rfe l d

60? Emden

Av o g a dr o

70? Roberts

Karpinskiy

Milankovic

Seares

80? Plaskett

Rozhdestvenskiy

150?E

Gamow

Ya b l o ch k o v

S c h w ar z s c h i l d

Compton

270?E Xenophanes

Cremona

Brianchon Pascal

Catena Sylvester

Hermite

Peary Byrd

Nansen

Bel'kovich

90?E

Hayn

MARE HUMBOLDTIANUM

Pythagoras

Babbage South

J. Herschel

80? Baillaud

Meton Goldschmidt

Barrow 70?

Arnold

De La Rue

MARE

330?E

Birmingham

W. Bond

FRIGORIS

60?

G?rtner 30?E

60?E 120?E

MAP DESCRIPTION

This image mosaic is based on data from the Lunar Reconnaissance Orbiter Wide Angle Camera (WAC; Robinson and others, 2010), an instrument on the National Aeronautics and Space Administration (NASA) Lunar Reconnaissance Orbiter (LRO) spacecraft (Tooley and others, 2010). The WAC is a seven band (321 nanometers [nm], 360 nm, 415 nm, 566 nm, 604 nm, 643 nm, and 689 nm) push frame imager with a 90? field of view in monochrome mode, and 60? field of view in color mode. From the nominal 50-kilometer (km) polar orbit, the WAC acquires images with a 57-km swath-width and a typical length of 105 km. At nadir, the pixel scale for the visible filters (415?689 nm) is 75 meters (Speyerer and others, 2011). Each month, the WAC provided almost complete coverage of the Moon.

PROJECTION

The Mercator projection is used between latitudes ?57?, with a central meridian at 0? longitude and latitude equal to the nominal scale at 0?. The Polar Stereographic projection is used for the regions north of the +55? parallel and south of the ?55? parallel, with a central meridian set for both at 0? and a latitude of true scale at +90? and -90?, respectively. The adopted spherical radius used to define the maps scale is 1737.4 km (Lunar Reconnaissance Orbiter Project Lunar Geodesy and Cartography Working Group, 2008; Archinal and others, 2011). In projection, the pixels are 100 meters at the equator.

COORDINATE SYSTEM

The Wide Angle Camera images were referenced to an internally consistent inertial coordinate system, derived from tracking of the LRO spacecraft and crossover-adjusted Lunar Orbiter Laser Altimeter (LOLA) data that were used together to determine the orbit of LRO in inertial space (Smith and others, 2011). By adopting appropriate values for the orientation of the Moon, as defined by the International Astronomical Union (IAU; Archinal and others, 2011), the images were orthorectified into the planet-fixed coordinates (longitude and latitude) used on this map. The coordinate system defined for this product is the mean Earth/polar axis (ME) system, sometimes called the mean Earth/rotation axis system. The ME system is the method most often used for cartographic products of the past (Davies and Colvin, 2000). Values for the orientation of the Moon were derived from the Jet Propulsion Laboratory Developmental Ephemeris (DE) 421 planetary ephemeris (Williams and others, 2008; Folkner and others, 2008; 2009) and rotated into the ME system. The LOLA-derived crossover-corrected ephemeris (Mazarico and others, 2012) and an updated camera pointing provide an average accuracy of ~1 km in the horizontal position (Scholten and others, 2012).

Longitude increases to the east and latitude is planetocentric, as allowed in accordance with current NASA and U.S. Geological Survey standards (Archinal and others, 2011). The intersection of the lunar equator and prime meridian occurs at what can be called the Moon's "mean sub-Earth point." The concept of a lunar "sub-Earth point" derives from the fact that the Moon's rotation is tidally locked to the Earth. The actual sub-Earth point on the Moon varies slightly due to orbital eccentricity, inclination, and other factors. So a "mean sub-Earth point" is used to define the point on the lunar surface where longitude equals 0?. This point does not coincide with any prominent crater or other lunar surface feature (Lunar Reconnaissance Orbiter Project Lunar Geodesy and Cartography Working Group, 2008; Archinal and others, 2011).

MAPPING TECHNIQUES

The WAC global mosaic shown here is a monochrome product with a normalized reflectance at 643 nm wavelength, and consists of more than 15,000 images acquired between November 2009 and February 2011 (Sato and others, 2014) using revised camera pointing (Wagner and others, 2015). The solar incidence angle at the Equator changes ~28? from the beginning to the end of each month. To reduce these incidence angle variations, data for the equatorial mosaic were collected over three periods (January 20, 2010 to January 28, 2010, May 30, 2010 to June 6, 2010, and July 24, 2010 to July 31, 2010). The South Pole mosaic images were acquired from August 10, 2010 to September 19, 2010, and the North Pole images were acquired from April 22, 2010 to May 19, 2010. Remaining gaps were filled with images acquired at other times with similar lighting conditions (Robinson and others, 2012). There is a brightness difference where the polar mosaics meet the equatorial mosaics because the polar images were acquired in a different season than the equatorial images, and the lunar photometric function is not perfectly known (Sato and others, 2014).

The equatorial WAC images were orthorectified onto the Global Lunar Digital Terrain Mosaic (GLD100, WAC-derived 100 m/pixel digital elevation model; Scholten and others, 2012) while the polar images were orthorectified onto the lunar LOLA polar digital elevation models (Neumann and others, 2010).

To create the final base image, the original WAC mosaic that was produced by the Lunar Reconnaissance Orbiter Camera team in a Simple Cylindrical projection with a resolution of 100m/pixel was projected into the Mercator and Polar Stereographic pieces. The images were then scaled to 1: 10,000,000 for the Mercator part and 1:6,078,683 for the two Polar Stereographic parts with a resolution of 300 pixels per inch. The two projections have a common scale at ?56? latitude.

NOMENCLATURE

Feature names on this sheet are approved by the IAU. All features greater than 85 km in diameter or length were included unless they were not visible on the map due to the small scale

used for printing. However, some selected well-known features less that 85 km in diameter or length were included. For a complete list of the IAU-approved nomenclature for the Moon, see the Gazetteer of Planetary Nomenclature at . For lunar mission names, only successful landers are shown, not impactors or expended orbiters.

ACKNOWLEDGMENTS

This map was made possible with thanks to NASA, the LRO mission, and the Lunar Reconnaissance Orbiter Camera team. The map was funded by NASA's Planetary Geology and Geophysics Cartography Program.

REFERENCES

Archinal, B.A. (Chair), A'Hearn, M.F., Bowell, E., Conrad, A., Consolmagno, G.J., Courtin, R., Fukushim, T., Hestroffer, D., Hilton, J.L., Krasinsky, G.A., Neumann, G.A., Oberst, J., Seidelmann, P.K., Stooke, P., Tholen, D.J., Thomas, P.C., and Williams, I.P., 2011, Report of the IAU Working Group on cartographic coordinates and rotational elements--2009: Celestial Mechanics and Dynamical Astronomy, v. 109, no. 2, p. 101?135, doi:10.1007/s10569-0109320-4.

Davies, M.E., and Colvin, T.R., 2000, Lunar coordinates in the regions of the Apollo landers: Journal of Geophysical Research, v. 105, no. E8, p. 20,277?20,280.

Folkner, W.M., Williams, J.G., and Boggs, D.H., 2008, The planetary and lunar ephemeris DE 421: Jet Propulsion Laboratory Memorandum IOM 343R-08-003, 31 p., at .

Folkner, W.M., Williams, J.G., and Boggs, D.H., 2009, The planetary and lunar ephemeris DE 421: Interplanetary Network Progress Report 42-178, 34 p., at .

Lunar Reconnaissance Orbiter Project Lunar Geodesy and Cartography Working Group, 2008, A standardized lunar coordinate system for the Lunar Reconnaissance Orbiter and lunar datasets: Lunar Reconnaissance Orbiter Project and Lunar Reconnaissance Orbiter Project Lunar Geodesy and Cartography Working Group White Paper, v. 5, at .

Mazarico, E., Rowlands, D.D., Neumann, G.A., Smith, D.E., Torrence, M.H., Lemoine, F.G., and Zuber, M.T., 2012, Orbit determination of the Lunar Reconnaissance Orbiter: Journal of Geodesy, v. 86, no. 3, p. 193?207.

Neumann, G.A., 2011, Lunar Reconnaissance Orbiter Lunar Orbiter Laser Altimeter reduced data record and derived products software interface specification, version 2.42, LRO-L-LOLA-4GDR-V1.0, NASA Planetary Data System (PDS), at

Robinson, M.S., Brylow, S.M., Tschimmel, M., Humm, D., Lawrence, S.J., Thomas, P.C., Denevi, B.W., Bowman-Cisneros, E., Zerr, J., Ravine, M.A., Caplinger, M.A., Ghaemi, F.T., Schaffner, J.A., Malin, M.C., Mahanti, P., Bartels, A., Anderson, J., Tran, T.N., Eliason, E.M., McEwen, A.S., Turtle, E., Jolliff, B.L., and Hiesinger, H., 2010, Lunar Reconnaissance Orbiter Camera (LROC) instrument overview: Space Science Reviews, v. 150, no. 1-4, p. 81?124, doi:10.1007/s11214-010-9634-2.

Robinson, M.S., Speyerer, E.J., Boyd, A., Waller, D., Wagner, R., and Burns, K., 2012, Exploring the Moon with the Lunar Reconnaissance Orbiter Camera: International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, v. XXXIX-B4, XXII International Society for Photogrammetry and Remote Sensing Congress, Melbourne, Australia.

Sato, H., Robinson, M.S., Hapke, B., Denevi, B.W., and Boyd, A.K., 2014, Resolved Hapke parameter maps of the Moon: Journal of Geophysical Research, Planets, v. 119, p. 17751805, doi: 10.1002/2013JE004580.

Scholten, F., Oberst, J., Matz, K.-D., Roatsch, T., W?hlisch, M., Speyerer, E.J., and Robinson, M.S., 2012, GLD100 - The near-global lunar 100 m raster DTM from LROC WAC stereo image data: Journal of Geophysical Research, v. 117, no. E12, doi:10.1029/2011JE003926.

Smith, D.E., Zuber, M.T., Neumann, G.A., Mazarico, E., Head, J.W., III, Torrence, M.H., and the LOLA Science Team, 2011, Results from the Lunar Orbiter Laser Altimeter (LOLA)--global, high-resolution topographic mapping of the Moon [abs.]: Lunar Planetary Science Conference XLII, Woodlands, Tex., Abstract 2350.

Speyerer, E.J., Robinson, M.S., Denevi, B.W., and the LROC Science Team, 2011, Lunar Reconnaissance Orbiter Camera global morphological map of the Moon [abs.]: Lunar Planetary Science Conference XLII, Woodlands, Tex., Abstract 2387.

Tooley, C.R., Houghton, M.B., Saylor, R.S., Peddie, C., Everett, D.F., Baker, C.L., and Safdie, K.N., 2010, Lunar Reconnaissance Orbiter mission and spacecraft design: Space Science Reviews, v. 150, no. 1, p. 23?62, doi:10.1007/s11214-009-9624-4.

Wagner, R.V., Speyerer, E.J., Robinson, M.S., and the LROC Science Team, 2015, New mosaicked data products from the LROC Team [abs.]: Lunar Planetary Science Conference XLVI, Woodlands, Tex., Abstract 1473.

Williams, J.G., Boggs, D.H., and Folkner, W.M., 2008, DE421 Lunar orbit, physical librations, and surface coordinates: Jet Propulsion Laboratory Interoffice Memorandum IOM 335-JW,DB,WF-20080314-001, at .

330?E

30?E

Clavius

?60??

270?E

Pingr? Lippmann

Scheiner

Blancanus

Klaproth

Gruemberger Moretus

Curtius ?70?

Manzinus

Ro se n b e rg e r

Ca sa t us

Ba illy

Hausen

Le Gentil

Drygalski

Cabeus

?80?

Schomberger

Bo u ssi n ga u l t Boguslawsky

Helmholtz

Malapert

Scott

Demonax

Shoemaker

Amundsen Shackleton

Pont?coulant

Petzval

Ashbrook Zeeman

?80?

Schr?dinger

Si ko r sk y Vallis

Schr?dinger

90?E

Fizeau

Minkowski 210?E

Crommelin

Numerov Antoniadi

?70?

Lema?tre

Berlage

Minnaert

?60?

Po inca r?

Vallis

Planck

Pla nck Prandtl

150?E

M e nCda te leeneav East

West

55? 0?

?55? 180?

180? 57?

50? Debye

Rowland

1000 90? 70? 55?

210?E Birkhoff

Carnot

Paraskevopoulos

Fo wle r

SCALE 1:6 078 683 (1 mm = 6.078683 km) AT 90? LATITUDE POLAR STEREOGRAPHIC PROJECTION

500

0

500

NORTH POLAR REGION

240?E

Coulomb

Schlesinger Perrine

Stefan We g e n e r

Landau

1000 KILOMETERS 90? 70? 55?

270?E

Vo lta Repsold

Gerard

Rimae Gerard Rima Sh

Montes

300?E

SINUS RORIS arp

Mons R?mker

330?E

Jura SINUS IRIDUM

Luna 17 (Nov. 17, 1970)

North 0?

30?E

Montes Recti

Plato

Montes Teneriffe

RPimlaat

e o

Mons Pico

MONTES

MARE

Vallis Alpes

ALPES

MARE

Mons Piton

CAUCASUS

FRIGORIS

Aristoteles Alexander

LACUS MORTIS

LACUS SOMNIORUM

Atlas

Dorsum Scilla

OCEANUS

Larmor 30?

Fitzgerald

Co ck cr o ft

M cM a t h

Mitra

Mach

0? Lipskiy

Icarus Daedalus

Tsa nder

Korolev

Doppler

Ga lo is

?30?

Leeuwenhoek

Oppenheimer

Leibnitz

Davisson

Apoll

?50?

Jo u l e

Charlier Kovalevskaya

Poynting Kekul?

Fersman

Wey l

Parenago

Kibal'chich Vav ilo v

H

e

r

t

z

s

p

r

u

Mich ng

e

ls

o

nCatena

Michelson

(GIRD)

Catena Lucretius (RNII)

Paschen

Fridman

Sternfeld

Ge r a si m o v ich

Chebyshev

Brouwer

o

Langmuir

Blackett

Bu ffo n

Mendel

Catena Leuschner (GDL)

Nernst L o r e n t z R?ntgen

Laue Berkner Robertson Bell

Moseley Einstein

Vallis Bohr

ONTES M

ONTES M

CORDILLERA ROOK

MARE O R I E N TA L E

M O NTES M ONTES

O RO C O RD ILLE

K R

A

LAAUCTUUSMNI LACUS VERIS

Ru sse l l Struve

Montes Agricola llis Schr?

Va

teri DoBrusranet

Luna 13 Eddingto n (Dec. 24, 1966)

Herodotus

PROCELLARUM

Va s c o da Gama

Hedin

CRaridmaanus

Luna 9 Feb. 3, 1966)

Reiner Gamma

Hevelius

Riccioli Schl?ter

Grimaldi

Sirsalis

Rimae

Darwin Lamarck

Lagrange Piazzi

Vi e ta

Vallis Inghirami Inghirami

Schickard

LiebRiugpes

Rima G. Bond

Zirkel Dorsum Dorsum Heim

IMBRIUM

Montes Spitzbergen

SINUS LUNICUS

MARE

Posidonius

Dorsa Smirnov

Rim

DoArzsaurma orsu MON

Montes Harbinger Aristarchus

Surveyor 1 (June 2, 1966)

Montes Archimedes

P

U

T

PA RE

LUS DINIS

Apollo 15 (July 30, 1971)

Luna 21 Jan. 15, 1973)

MONTES TA U R U S

MONTES CARPATUS

MARE INSULARUM

Apollo 12 (No v. 19, 1969)

Copernicus

Apollo 14 (Feb. 5, 1971)

MONTES SINUS AESTUUM

Surveyor 6 (No v. 10, 1967)

APENNINUS

SE RE NITATIS

D

TES

m Buckland

LACUSHAEMUS

DOLORIS

Dorsa

MARE VA P O R U M

SINUS HONORIS

Lister

BarDloorwsa

Apollo 17 De c. 11, 1972)

MARE

HyRgiimnuas

Rima Ariadaeus

TRANQUILLITATIS

SINUS MEDII

Surveyor 5

(Sep. 11, 1967) Apo llo 11

Rimae

(J u l y Hypatia

20,

1969)

SINUS

SINUS AMORIS

PALUS SOMNI

SINUS

a

Cau

CO chy

N

CORDI

A

E

Montes Riphaeus

Dorsa Letronne

Ewing

Gassendi

MARE

Surveyor 3 (April 20, 1967)

MARE

COGNITUM

Fra Mauro Ptolemaeus

MARE NUBIUM

Arzachel

Hipparchus

Alphonsus

Albategnius

Rupes

VCaallpisella

Apollo 16 (April 21, 1972) ASPERITATIS

Mons Penck

Th e o p h i lu s

AbCualfteednaa

Cyrillus

MARE

N E C TA R I S

Catharina

Fracastorius

Rupes Recta

Rimae Hipp alus

HUMORUM

LACUS EXCELLENTIAE

PA L U S

Rupes Rima

MercaHtoer siodu

s

EPIDEMIARUM

Pitatus

Wurzelba ue r

Pu rb a ch Regiomontanus

De sla ndres Wa lther

Sacrobosco

Altai

Gemma Frisius

Pi cco l o m in i

LACUS TIMORIS Mee

Wilhe lm Lagalla

Surveyor 7 (Jan. 10, 1968)

Orontius

Ty cho

St?fler

Maurolycus

Brenner

RJimanasesen Ja n sse n

Longomontanus

Heraclitus

MONTES

Maginus

Montes Pyrenaeus

Dorsa Geiki e

BONILTAACTIUSS Dorsum

?90?

?70? ?55?

1000

SCALE 1:6 078 683 (1 mm = 6.078683 km) AT -90? LATITUDE POLAR STEREOGRAPHIC PROJECTION

500

0

500

SOUTH POLAR REGION

1000 KILOMETERS

?90? ?70? ?55?

60?E Endymion

MARE HUMBOLDTIANUM

90?E

Compton

120?E

150?E

180? 57?

von B?k?sy

d'Alembert 50?

LACUS TEMPORIS

LACUS SPEI

Messala

MARE

Cleomedes

Oppel

MARE

ANGUIS

DToertysaaev

Millikan

Gauss Hahn

Riemann

Fabry Ha rkhe bi

Catena Sumner

H. G. We l l s

Ve stine

Szilard Richardson

Rayleigh

Maxwell

Jo l io t

Lomonosov

Se y fe rt

CAarttaemnaonov

Ca mp be ll

Wie ne r

Catena

Kurchatov Kurchatov

Ve rna dskiy

MOMSCAROEVIENSE

Chandler

Shayn Larmor 30?

HaDrokresra

Proclus

CRISIUM

Luna 24 (Aug. 18, 1976)

Luna 20 (Fe b. 21, 1972)

MARE UNDARUM

MARE

SINUS SUCCESSUS

MARE SPUMANS

Luna 16 (Se p. 20, 1970)

Gilbert

MARE MARGINIS

Goddard

Neper Banachiewicz

MARE SMYTHII

Ba b co ck

Wy ld

Saha

Fleming

Guyot

Ostwald

Lo b a ch e v sk iy

Ve tchinkin Ibn Firnas

CGatreengaory

DMoarswason

F E C U N D I TAT I S

Langrenus

Ve nde linus

K?stner Ansgarius

RPiemtaaveius Petavius

Snellius

Vallis Palitzsch

HumCbatolednta

Balmer

Hecataeus

Phillips Humboldt Barnard

Hirayama

Pasteur

Meitner

Love

Langemak

Perepelkin

Curie

Sklodowska

Hilbert

Alden

Kondratyuk

Fermi Tsi o l k o v sk i y

LACUS SOLITUDINIS

Scaliger

Neujmin

Milne

Furnerius

Abel

MARE

Parkhurst

Bolyai

E?tv?s

Mendeleev

Schuster

An d e r so n Spencer Jones Pa p a l e k si Ma n de l' shta m

0? Ve ning Me ine sz

Ve ntris Chaplygin

Keeler Heaviside

Daedalus

Isaev Gagarin

Levi-Civita

Pavlov

Ju l e s Ve rne

Zwicky

Aitken

Vertregt

Paracelsus

MARE Th o m so n

Van de Graaff

INGENII

?30?

Lundmark

Leibnitz

Vallis

AUSTRALE

Lamb

Lebedev

Van de r Wa a ls

Ro ch e Pauli

Ryder

Koch

Chr?tien

Vo n K? rm? n

Rheita

Ly o t

Hopmann

?50?

Schiller

Vallis Baade Vallis Bouvard

Vallis Planck

Bose

?57? 180?

Descriptions of nomenclature used on map are listed at

Minkowski

210?E (150?W)

Lippmann

240?E (120?W)

270?E (90?W)

Ph o cy l i de s

300?E (60?W)

2000 57? 40? 20? 0?

330?E (30?W)

1000

0? South

SCALE 1:10 000 000 (1 mm = 10 km) AT 0? LATITUDE MERCATOR PROJECTION

500

0

500

Vlacq Ho mm e l

30?E

Ro se n b e rg e r

60?E

1000

2000 KILOMETERS 57? 40? 20? 0?

90?E

120?E

Planck

150?E

Poincar?

He ss

?57? 180?

Prepared on behalf of the Planetary Geology and Geophysics Program, Solar System Exploration Division, Office of Space Science, National Aeronautics and Space Administration

Edited by Kate Jacques; digital cartography by Vivian Nguyen

Manuscript approved for publication October 28, 2014

Image Map of the Moon

By Trent M. Hare,1 Rosalyn K. Hayward,1 Jennifer S. Blue,1 Brent A. Archinal,1 Mark S. Robinson,2 Emerson J. Speyerer,2 Robert V. Wagner,2 David E. Smith,3 Maria T. Zuber,3 Gregory A. Neumann,4 and Erwan Mazarico4

2015

1U.S. Geological Survey; 2Arizona State University; 3Massachusetts Institute of Technology; 4NASA Goddard Space Flight Center

ISSN 2329-1311 (print) ISSN 2329-132X (online)

Printed on recycled paper

Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Government

For sale by U.S. Geological Survey, Information Services, Box 25286, Federal Center, Denver, CO 80225, 1?888?ASK?USGS

Digital files available at

Suggested citation: Hare, T.M., Hayward, R.K., Blue, J.S., Archinal, B.A., Robinson, M.S., Speyerer, E.J., Wagner, R.V., Smith, D.E., Zuber, M.T., Neumann, G.A., and Mazarico, E., 2015, Image mosaic and topographic map of the moon: U.S. Geological Survey Scientific Investigations Map 3316, 2 sheets, .

................
................

In order to avoid copyright disputes, this page is only a partial summary.

Google Online Preview   Download