Engineering Properties of IN-100 ALLOY - Nickel Institute

Engineering Properties

of IN-100 ALLOY

INTERNATIONAL NICKEL

CONTENTS

Page

COMPOSITION .................................................................................. 1

SPECIFICATION ................................................................................ 1 STRESS-RUPTURE PROPERTIES ............................................ 1 TENSILE PROPERTIES ........................................................... 1 HARDNESS ............................................................................. 1

PHYSICAL PROPERTIES ................................................................... 2 DENSITY ................................................................................ 2 MELTING RANGE .................................................................... 2 STABILITY .............................................................................. 2 THERMAL EXPANSION ............................................................ 2 ELECTRICAL RESISTIVITY ...................................................... 2

CHEMICAL PROPERTIES .................................................................. 2 OXIDATION RESISTANCE ....................................................... 2 Cyclic Test .................................................................... 2 Static Test .................................................................... 2 Dynamic Test ................................................................ 2 SULFIDATION RESISTANCE .................................................... 5 Crucible Test ................................................................ 5 Rig Test ........................................................................ 5

HEAT TREATMENT ........................................................................... 5

MECHANICAL PROPERTIES .............................................................. 5 TENSILE PROPERTIES ........................................................... 5 STRESS-RUPTURE PROPERTIES ............................................ 5 STRESS-RUPTURE PARAMETER ............................................ 8 CREEP RATE .......................................................................... 8 MINIMUM CREEP RATE ........................................................... 8 DYNAMIC MODULUS OF ELASTICITY ...................................... 8

IMPACT PROPERTIES ....................................................................... 11

HOT HARDNESS ............................................................................... 11

FATIGUE .......................................................................................... 11 MECHANICAL ......................................................................... 11 THERMAL ............................................................................... 14

MACHINING AND GRINDING ............................................................. 14

APPENDIX ........................................................................................ 16

REFERENCES ................................................................................... IBC

Engineering Properties of IN-100 ALLOY

IN-100 alloy* is a nickel-base precipitation hardenable, vacuum cast alloy possessing high rupture strength through 1900 ?F. The high percentages of aluminum and titanium and the low

refractory metal content make IN -100 particularly attractive on a strength to density basis. The alloy has been successfully cast and utilized in a variety of shapes from turbine blades, vanes and

nozzles to integral wheels.

COMPOSITION ? WEIGHT PER CENT

Element

Carbon Chromium Cobalt Molybdenum Titanium Aluminum Vanadium Zirconium Boron Iron Manganese Silicon Sulfur Nickel

Nominal

0.18 10.00 15.00

3.00 4.70 5.50 0.90 0.06 0.014 LAP** LAP LAP LAP balance (60)

Range (AMS 5397)

0.15 ? 0.20 8.00 ? 11.00 13.00 ? 17.00 2.00 ? 4.00 4.50 ? 5.00 5.00 ? 6.00 0.70 ? 1.20 0.03 ? 0.09 0.01 ? 0.02 1.00 max. 0.20 max. 0.20 max. 0.015 max. balance

SPECIFICATION

The AMS 5397 specification for IN-100 alloy requires the following mechanical properties in the as-cast condition:

Stress - Rupture Properties ? Minimum

Test Temp. ?F

1800

Stress psi

29,000

Life

E long.

Hrs.

% in 4D

23

4

Tensile Properties ? Minimum

Test Temp. ?F

0.2% Yield Strength

psi

70

95,000

Tensile Strength

psi

115,000

Elong. % in 4D

5

Hardness

Rockwell C 30-44 or equivalent

There are many alternate specifications in existence and individual companies should be contacted as to their requirements.

* U.S. Patent #3,061,426; produced under license from The International Nickel Company, Inc. **Low as possible

1

PHYSICAL PROPERTIES

Density 0.280 lb./cu. in. (7.75 g/cu. cm)

Melting Range 2305 - 2435 ?F (1260 -1335 ?C)

Stability While long-time elevated temperature stability can be demonstrated only by long-time exposure, a mathematical analysis based on electron vacancy concentration (see Appendix) is useful in indicating the susceptibility of an alloy to form sigma. The electron vacancy number, N , of IN-100 of nominal

v

composition is 2.46. Nv values over 2.50 generally indicate that an alloy is susceptible to sigma.

When IN-100 was originally introduced, the suggested range for titanium extended from 4.5 to a maximum of 5.5 per cent. Compositions toward the top side of this range did exhibit sigma formation. For example, a 5.3 Ti alloy with an N of 2.70 contained sigma which detracted from rupture life.

v

The maximum titanium level then was reduced to the current AMS specification value of 5.0 percent. This change eliminated the deleterious effects of sigma on material properties without sacrificing any of the material's desired properties.

Thermal Expansion (See Figure 1)

Test Temp. oF

70 - 200 70 - 400 70 - 600 70 - 800 70 - 1000

Mean Coefficient

per oF 7.2 x 10-6 7.2 7.3 7.5 7.7

Test Temp. oF

70 ? 1200 70 ? 1400 70 ? 1600 70 ? 1800 70 ? 2000

Mean Coefficient

per oF 8.0 x 10-6 8.3 8.8 9.3 10.1

Electrical Resistivity 143.0 microhm-cm at R.T.

CHEMICAL PROPERTIES

OXIDATION RESISTANCE

Cyclic Test (See Figure 2)

Samp les were g iv en a cy clic ex p o su re b y heatin g in air at 1900 ?F fo r 16 hours and then coolin g fo r 8 hours.

Alloy

IN -100 Alloy 713LC

Wt. Change, % in 208 Hrs.

?.80 ?.10

Static Test (See Figure 3)

The static oxidation tests, performed by General Electric, were conducted by placing specimens in open zircon cup-type crucibles and oxidizing them in the static atmosphere of electric box furnaces.(1)

Dynamic Test (See Figure 4)

The dynamic oxidation tests were performed by General Electric in a natural gas-fired flame tunnel. Test specimens were placed in a rotating fixture positioned in the hot zone of the flame tunnel perpendicular to the gas flow.(1)

2

Figure 1. Thermal ? Expansion of IN-100 Alloy.

Figure 2. Oxidation Resistance of IN-100 Alloy. and 713C: Cyclic Test 16 Hours At 1900 ?F, Cool In Air For 8 Hours.

Figure 3. Comparison of Oxidation Kinetics of IN-100 and Alloy 713C at 1600 and 2000 ?F. Note the Decreasing Oxidation Rates at 2000 ?F (t>100 min.).

3

................
................

In order to avoid copyright disputes, this page is only a partial summary.

Google Online Preview   Download