Assignment 2 – Cognitive Learning and Instructional …



Assignment 2–Cognitive Learning and Instructional ApproachesCourse 3013VTA and Expertise and DevelopmentCourse Convenor: Julie MassieSubmitted by: David MartinStudent #2636349David.Martin3@student.griffith.edu.au Date Submitted: This assignment will analyse computer based instruction by using cognitive theories to demonstrate what types of knowledge are developed and how phases of learning can demonstrate that this knowledge is added to over time; eventually developing expertise. Further, transfer and scaffolding theories will analyse the development of expertise and how metacognitive theories can be applied to computer based instruction. It will be argued that computer based instruction is useful but cannot be used as a total replacement of teacher interaction. For the purpose of this assignment, computer based instruction will refer to software and/or hardware that primarily provides simulation, on-screen instructions and limited interaction between students and/or teachers. Instructional methods can be described as a teaching strategy, something that contains a group of mental tactics that are used to gain knowledge or a skill. Computer based instruction uses several tactics based around drill and practice, simulations, games, multimedia and collaboration.Knowledge that is taught in a classroom tends to be declarative CITATION Lei95 \p 403 \l 1033 (Leinhardt, McCarthy Young, & Merrimam, 1995, p. 403) and involves labelling and codifying information. Computer based instruction can be efficient in presenting declarative knowledge to students in a number of ways. Firstly, the varied cognitive learning styles of students can be more easily accommodated with computer based instruction by using multimedia and self-regulated learning. In a typical classroom situation the teacher is involved with a group of students, rather than individuals, and must use a particular strategy that may not be suitable for all involved. Further, conceptual tempo problems can be eliminated as most computer based instruction is self-paced. Declarative knowledge still needs to be applied, especially in vocational education, where knowledge of procedures and how to do something is important. A student with procedural knowledge will be able to perform routine tasks and specific procedures CITATION Ste941 \p 11 \t \l 1033 (Stevenson, 1994, p. 11). Computer based instruction is able to develop procedural knowledge using rote learning, presenting procedures step-by-step, as many times as necessary for a student to remember the procedure. However, this method of instruction does not help students develop an understanding of when to use procedures and why the procedure works (Gott cited in Stevenson, 1994, p. 11) and therefore doesn’t provide skills for non-routine tasks (Stevenson, 2003, p. 132). Phases of learning can be used to help create a hierarchical idea of how knowledge is added to over time. More than one idea of phases has been researched and Dreyfus and Dreyfus have suggested five stages of learning (Dreyfus and Dreyfus cited in Shuell, 1990). The first stage is a novice, a beginner who has to learn commonplace terms and elements and general guiding rules, whereas an advanced beginner realises that the generalised rules do not fit all situations and experience starts to become important. Computer based instruction is useful in these phases of development, information can be presented in a variety of methods When a learner is able to prioritise what rules are important and that the context determines the importance of which rules to use, the competent phases has then been reached. Being able to identify similarities between events and doing more analysis and decision making is associated with the proficient phase. More advanced computer based instruction such as simulations would be needed to develop these phases. An expert has a high level of understanding between linkages that occur between different areas of knowledge, have fluid performance and an intuitive grasp of situations CITATION Cor99 \p 274 \l 1033 (Cornford, 1999, p. 274). For this phase of development a computer may be able to assess expert knowledge using complex case scenarios, simulations and a broad range of questions.Shuell’s three phases can also be used to describe the development of knowledge in computer based instruction. In the initial phase of learning, a large amount of facts are presented with the learner seeing no underlying structure. Existing knowledge schemes would be used to try and associate meaning with the information. During this stage learners will memorise facts and use existing schemes to interpret information CITATION Shu90 \p 541 \l 1033 (Shuell, 1990, p. 541). If assimilation cannot occur, then information remains isolated and general problem solving techniques or techniques that have been used in other learning areas will be used, but will not be able to form complex procedural of propositional structures CITATION Shu90 \p 542 \l 1033 (Shuell, 1990, p. 542). Computer based training allows for presentation of large amounts of facts and can be used successfully in the first phase of knowledge development. The intermediate phase of learning occurs as the student begins to see relationships between the information being presented. New structures and schemes are created that allow concepts to be related, and deeper learning is performed as the student contextualises the material being taught CITATION Shu90 \p 542 \l 1033 (Shuell, 1990, p. 542) into more meaningful schemes. Further, meaningful knowledge can be taught by “demonstrating links between concepts and procedures” CITATION Kar98 \p 29 \l 1033 (Karpov & C, 1998, p. 29) and computer based problem solving activities and simulations can be used so that students could have practice at applying knowledge and links with new topics CITATION Shu90 \p 541 \l 1033 (Shuell, 1990, p. 541), helping to develop assimilation, accommodations and meaning. The terminal phase of learning involves actions becoming automatic, being performed without conscious effort, instead relying on domain specific knowledge that has been previously developed CITATION Shu90 \p 543 \l 1033 (Shuell, 1990, p. 543). During this phase tacit knowledge will be acquired as expertise is attained. Tacit knowledge, “referred to as knowledge in action” CITATION Ste03 \p 149 \t \l 1033 (Stevenson, 2003, p. 149), is difficult to convey using computer based training because codification is required for information to be stored effectively on the computer. Further, it is situational; such tacit knowledge is something that is felt as being right, rather than being perfectly described; “not everything can be made explicit in language” CITATION Ste03 \p 7 \t \l 1033 (Stevenson, 2003, p. 7). The development of expertise is also connected with general problem solving ability, knowledge of underlying principles, innovation and evaluation techniques CITATION Ste941 \p 9 \t \l 1033 (Stevenson, 1994, p. 9) and heuristic strategies and problem solving are two methods of experts acquiring tacit knowledge. This type of knowledge is generally unsuitable to computer based instruction unless it is using complex and realistic simulations. Further, most computer based instruction is based more on behaviourism than cognitive learning theories CITATION Joh05 \p 4 \l 1033 (Johansson & Gardenfors, 2005, p. 4) and the majority of computer based instruction is heavily teacher-centred and uses repetition and drilling techniques, though intelligent tutorials, simulation and games are becoming more popular. In many fields the when and why of procedures are learnt over time by practical application of declarative and procedural knowledge and technical expertise also includes the ability to transfer existing expert performance into new circumstances CITATION Ste03 \p 11 \t \l 1033 (Stevenson, 2003, p. 11). Specific or near transfer occurs when there is a clear similarity between the original learning and the new transfer task and this type of transfer is generally done by novices and transfer can occur with simple computer based instruction. Developing transfer ability is best done with scenario based instructions CITATION Ste03 \p 257 \t \l 1033 (Stevenson, 2003, p. 257), which can be done with computer based training using simulations and case studies. Scaffolding is a teaching technique that involves near transfer. Computer based instruction can facilitate scaffolding by identifying the students zone of proximal development by first testing existing knowledge CITATION Ker06 \p 377 \l 1033 (Krause, Bochner, & Duchesne, 2006, p. 377). Experts are more likely to use non-specific or far transfer, that occurs when there are little or no similarities CITATION Ste941 \p 9-10 \t \l 1033 (Stevenson, 1994, pp. 9-10). Further, the expert is able to use higher order procedures and problem solving methods to adapt their wider range of knowledge to new situations. Computer based instruction traditionally lacks the ability to engage the learner in far transfer, but must strive to do so, with the inclusion of interactivity, multiple simulation outcomes and inductive coaching CITATION Ruo05 \p 201 \l 1033 (Ruohonen, 2005, p. 201) and needs to be designed with the zone of proximal development theory in mind, allowing more chance of transfer occurring.Metacognitive skills can also be developed using computer based instruction, especially when it involves collaborative efforts or communication between students and teachers. The instruction should be organised as a shared activity, with control being shared between students and teachers CITATION Kar98 \p 29 \l 1033 (Karpov & C, 1998, p. 29). Software tools that allow monitoring and self-check opportunities are examples of meta-cognitive skills to be used and developed. Further, specific meta-cognitive sub-skills have been demonstrated as having to “be performed with great speed and automaticity” therefore the repetition and drilling techniques found in computer based instruction can be useful (Derry & Murphy, 1986, p. 6). Interactivity is something that is taken for granted in a normal classroom but is very difficult to replicate in computer software as most communication on computers between students is asynchronous; it is not real time, making many reluctant to use it. However, a major advantage of computer based instruction is that feedback can be tracked constantly and can be instantly updated, whereas in a regular classroom, feedback is entirely dependant on the teacher CITATION Jon02 \p 50 \l 1033 (Jones, 2002, p. 50). Feedback is useful in motivating students using extrinsic motivation; computer based instruction generally uses task-contingent extrinsic rewards. Different forms of feedback can be used. Critical feedback is almost a simple right or wrong response, whereas cognitive feedback explains what is required for a better result CITATION Keh99 \l 1033 (Kehoe & Macrae, 1999). Computer instruction that just gives a right/wrong response is an example of critical feedback. Children, and even a large range of adults have experience with xbox and playstations; game based computer instruction offers a familiar environment already associated with high interest level and motivation CITATION Ker06 \p 375 \l 1033 (Krause, Bochner, & Duchesne, 2006, p. 375). However, while intrinsic motivation can be undermined by overuse of task-contingent rewards CITATION Edw01 \p 4,11 \l 1033 (Deci, Koestner, & Ryan, 2001, pp. 4,11) research indicates that correctly used positive feedback tends to have a positive effect on intrinsic motivation CITATION Der86 \p 9 \l 1033 (Derry & Murphy, 1986, p. 9). Further, tasks that give the learner active control are more likely to activate intrinsic motivation CITATION Ain99 \p 167 \l 1033 (Ainley, 1999, p. 167). Therefore computer based instruction that uses these types of rewards need to be bolstered with other reward and motivational systems along with intended and real interactivity.Constructivist ideas of development, where students are active participants and learning can be self-regulated can be applied to computer based instruction as activities that allow the manipulation of virtual materials and ideas can be used CITATION Ker06 \p 184 \l 1033 (Krause, Bochner, & Duchesne, 2006, p. 184). Further, using computer based instruction allows information to be presented in either a linear or branched method. Using a branched method of information presentation, the student is more likely to follow links or leads that have the most chance of assimilating new knowledge with their own existing schemes and is an example of student-centred learning. While cognitive theory offers what appears to be a complete view of learning, emotional, affective and social considerations also need to be taken CITATION Shu90 \p 544 \l 1033 (Shuell, 1990, p. 544). Computer based instruction is generally unable to accommodate these predispositions. A further limitation of computer based training is highlighted by Piaget’s theory of knowledge acquisition done through interaction, which is social in nature and requires “an exchange of thoughts, feeling and strategies” CITATION Jon02 \p 50 \l 1033 (Jones, 2002, p. 50) between the teacher and student. While computer based instruction is becoming more complex, it would be unlikely to find any real social interaction without off line contact with other students or a teacher. Further, there is a gap between what can easily be taught using computer based instruction and what is taught in an interactive classroom environment; computer based instructional methods are unable to provide active teaching (explain active teaching) or to answer complex questions CITATION Sha00 \p 264 \l 1033 (Sharples, Jeffery, du Boulay, Teather, Teather, & and du Boulay, 2000, p. 264). Therefore the more practical or complex the task the less successful computer based instruction is likely to be. Further, “knowledge acquired in practice tends to be procedural” CITATION Lei95 \p 403 \l 1033 (Leinhardt, McCarthy Young, & Merrimam, 1995, p. 403) and while computer based instruction that is designed to deliver procedural knowledge uses step-by-step instruction and using multi-modal methods, such as text and video/pictures; practical skills are often better transmitted non-linguistically (Bloch, 1998 cited in Stevenson, 2003 p. 13); even when using video and audio there can be problems with linguistics and the re-contextualisation of physical activities. Further, to create computer based instruction several transformations of information needs to take place; from the practical task, into written language, and then computer code that can be used to re-transform the information. Teacher mediation of content is a key factor in the success of any instruction method, whether in a class room or in a remote access situation and this is what will ultimately determine what and how development puter based instruction is one of many useful tools in education that when designed and implemented correctly, can enhance the learners experiences. Cognitive theories show that declarative and procedural knowledge can be taught using computers, and can be used to help the development expertise through phases of learning. There are benefits and limitations involved in the reliance of this instructional style that teachers should take into account. There are many facets of learning and one type of instruction cannot be applied to all situations. References BIBLIOGRAPHY Ainley, M. (1999). Interest and learning: from attraction to absorbing interest. In J. A. Athanasou (Ed.), Adult Educational Psychology (pp. 159-182). Katoomba: Social Science Press.Cornford, I. R. (1999). Skill Learning and the Development of Expertise. In J. A. Athanasou (Ed.), Adult Educational Psychology (pp. 263-320). Katoomba: Social Science Press.Deci, E. L., Koestner, R., & Ryan, R. M. (2001). Extrinsic Rewards and Intrinsic Motivation in Education: Reconsidered Once Again. Review of Educational Research , 71 (1), 1-27.Derry, S. J., & Murphy, D. A. (1986). Designing Systems That Train Learning Ability: From Theory to Practice. Review of Education Research , 56 (1), 1-39.Johansson, P., & Gardenfors, P. (2005). Introduction to Cognition, Education, and Communication Technology. In Cognition, Education and Communication Technology (pp. 1-35). Mahwah: Lawrence Erlbaum Associates Inc.Jones, A. J. (2002). Integration of ICT in an initial teacher training course: participants view. ACM International Conference Proceeding Series. 26, pp. 49-54. Darlinghurst: Australian Computer Society, Inc.Karpov, Y. V., & C, H. H. (1998). Two ways to elaborate Vygotsky's concept of mediation: Implications for instruction. American Psychologist , 53 (1), 27-36.Kehoe, E. J., & Macrae, M. (1999). Modern Associative Theory in Teaching and Learning. In J. A. Athanasou (Ed.), Adult Educational Psychology (pp. 211-246). Katoomba: Social Science Press.Krause, K.-L., Bochner, S., & Duchesne, S. (2006). Educational Psychology for learning and teaching. Melbourne: Thomson.Leinhardt, G., McCarthy Young, K., & Merrimam, J. (1995). Commenatry. Integrating professional knowledge: the theory of practice and the practice of theory. The Journal of the European Association for Research: Learning and Instruction , 5, 401-408.Ruohonen, M. J. (2005). Networked Economy: Effects on organisational development and the role of education. In T. J. Weert, & H. v. Utrech (Eds.), Education and the Knowledge Society: Information Technology Supporting Human Development (pp. 177-201). Boston: Springer.Sharples, M., Jeffery, N., du Boulay, B., Teather, B., Teather, D., & and du Boulay, G. H. (2000). Structured computer-based Training and Decision Support in the Interpretation of Neurological Images'. International Journal of Medical Informatics , 60 (3).Shuell, T. J. (1990). Phases of Meaningful Learning. Review of Educational Research , 60 (4), 531-547.Stevenson, J. C. (1994). Cognition at work: the development of vocational expertise. In Cognition at work: the development of vocational expertise (pp. 7-35). Adelaide: National Centre for Vocational Education Research.Stevenson, J. C. (2003). Developing Vocational Expertise: Principle and Issues in Vocational Education. Allen & Unwin. ................
................

In order to avoid copyright disputes, this page is only a partial summary.

Google Online Preview   Download