Table of Integrals - Oregon State University



Table of Integrals

Basic Forms

Z

n

1 n+1

x dx =

x

n+1 Z

1

||

dx = ln x

x

Z

Z

udv = uv vdu Z

Zp

2

2

2 2p

x ax + bdx = 2 ( 2b + abx + 3a x ) ax + b (26)

15a

(1)

(2)

Zp

h

p

1

x(ax + b)dx = 3/2 (2ax + b) ax(ax + b)

(3)

4a

2

p

p

i

b ln a x + a(ax + b)

(27)

1

1|

|

dx = ln ax + b

(4)

ax + b a

Integrals of Rational Functions

Z

1

1

2 dx =

(5)

(x + a)

x+a

Z

n+1

n

(x + a)

6

(x + a) dx =

,n = 1

(6)

n+1

Z

n+1

n (x + a) ((n + 1)x a)

x(x + a) dx =

(7)

(n + 1)(n + 2)

Z

1

1

2 dx = tan x

(8)

1+x

Z

1

1

1x

2 2 dx = tan

(9)

a +x

a

a

Z

x

2

2 dx

=

1

|2 ln a

2| +x

(10)

a +x

2

Z

2

x

1x

2 2 dx = x a tan

(11)

a +x

a

Z

3

x

12

2 2 dx = x

1 2 | 2 2| a ln a + x

(12)

a +x

22

Z

1

2

p2

1 p2ax + b

dx =

2 tan

2 (13)

ax + bx + c

4ac b

4ac b

Z

1

1 a+x 6

dx =

ln

, a = b (14)

(x + a)(x + b) b a b + x

Z

Zp 3

2

p

b

b

x

3

x (ax + b)dx =

2+

x (ax + b)

12a 8a x 3

3

pp

b

+ 5/2 ln a x + a(ax + b) (28) 8a

Zp

p

p

2? 2

1

2? 2?1 2

2? 2

x a dx = x x a a ln x + x a

2

2

(29)

Zp 2 a

p

2

1

2

x dx = x a

2

2 12

1p x

x + a tan

2

2

2

ax

(30)

Zp 2? 2

1 2 ? 2 3/2

x x a dx = x a

3

(31)

Z

p

p1

2? 2

2 ? 2 dx = ln x + x a

(32)

xa

Z

p1

1x

2 2 dx = sin

(33)

ax

a

Z

p

px

2? 2

2 ? 2 dx = x a

(34)

xa

Z

p

px 2 2 dx =

2

2

ax

(35)

ax

x 2 dx =

a

|| + ln a + x

(x + a)

a+x

Z

x

2

1 |2

|

dx = ln ax + bx + c

ax + bx + c 2a

(15)

Z

2

p

p

px

1

2? 21 2

2? 2

2

x

? 2 dx a

=

x 2

x

a

a ln x + x 2

a

(36)

pb

1 p2ax + b

2 tan

2 (16)

a 4ac b

4ac b

Integrals with Roots

Zp

p

2

b + 2ax 2

ax + bx + cdx =

ax + bx + c

Zp

2

3/2

x adx = (x a)

4a

2

p

4ac b

2

+

+ 3 2 ln 2ax + b + 2 a(ax + bx c) (37) / 8a

(17)

Zp xx

3

Z

p

p1

?

? dx = 2 x a

xa

Z

p

p1

dx = 2 a x

ax

2

32 /

2

52 /

adx = a(x a) + (x a)

(18) Z p

pp

2

1

2

x ax + bx + c = 5 2 2 a ax + bx + c /

48a

(19)

2

2

3b + 2abx + 8a(c + ax )

3

pp 2

+3(b 4abc) ln b + 2ax + 2 a ax + bx + c (38)

(20)

3

5

Zp

p

2b 2x

ax + bdx = +

ax + b

3a 3 Z

Z

p

(21) p 1

p1

2

2

dx = ln 2ax + b + 2 a(ax + bx + c)

ax + bx + c

a

3/2

2

5/2

(39)

(ax + b) dx = (ax + b)

(22)

5a

Z

p

px

2

?

x

?

dx a

=

(x 3

2a) x

a

Zr

p

x

p 1 x(a

dx = x(a x) a tan

(23)

x) (24)

Z

p

px 2

1

2

dx = ax + bx + c

ax + bx + c a

p

b

2

3/2 ln 2ax + b + 2 a(ax + bx + c)

(40)

2a

ax

xa

Zr

p

x

p p

dx = x(a + x) a ln x + x + a (25)

a+x

Z

dx 2 232=

/

px

22

2

(a + x )

a a +x

(41)

Integrals with Logarithms

Z

ln axdx = x ln ax x

(42)

Z

ln ax 1

2

dx = (ln ax)

(43)

x

2

Z

b ln(ax + b)dx = x +

ln(ax + b)

x, a 6= 0

(44)

a

Z

2

2

2

2

1x

ln(x + a ) dx = x ln(x + a ) + 2a tan

2x (45)

a

Z

2

2

2

2

x+a

ln(x a ) dx = x ln(x a ) + a ln

2x (46)

xa

Z

p

2

1

ln ax + bx + c dx = 4ac

a

2

1 p2ax + b

b tan

2

4ac b

b

2

2x + + x ln ax + bx + c

(47)

2a

Z

bx 1 2

x ln(ax + b)dx =

x

2a 4 2 1 2b

+ x 2 ln(ax + b) (48)

2

a

Z

2

x ln a

22

12

b x dx = x +

2 2

1 2a

2

x 2 ln a

2

b

22

bx

(49)

Integrals with Exponentials

Z

ax

1 ax

e dx = e

a

(50)

Zp

p

p

p

ax

1 ax i

xe dx = xe + 3/2 erf i ax ,

a

2a Z

x

2

p2

t

where erf(x) =

e dt (51)

0

Z

x

x

xe dx = (x 1)e

(52)

Z

ax

x

xe dx =

a Z

1 ax

2e a

(53)

2x

2

x

x e dx = x 2x + 2 e

(54)

Z

2 ax

2 x

x e dx =

a Z

2x 2 ax 2+ 3 e

aa

3x

3

2

x

x e dx = x 3x + 6x 6 e

(55) (56)

Z

n ax

n ax

xe

x e dx =

a

Z

n

n 1 ax

x e dx

a

(57)

Z

n

n ax

( 1)

x e dx = +1 [1 + n, ax],

n

a Z1

(58)

a1 t

where (a, x) = t e dt

x

Z 2

p

p

ax

i p

e dx =

erf ix a

(59)

2a

Z

p

2

p

ax

p

e dx = erf x a

(60)

2a

Z

2

2

ax

1 ax

xe dx = e

(61)

2a

Z

2

2

ax

r p

1

x e dx =

3 erf(x a)

4a

2

x ax e

2a

(62)

2014. From , last revised June 14, 2014. This material is provided as is without warranty or representation about the accuracy, correctness or

suitability of the material for any purpose, and is licensed under the Creative Commons Attribution-Noncommercial-ShareAlike 3.0 United States License. To view a copy of this

license, visit or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA.

Integrals with Trigonometric Functions

Z

1

sin axdx = cos ax

(63)

a Z

2

x sin 2ax

sin axdx =

(64)

2 4a

Z

n

sin axdx =

1

11 n3 2

cos ax 2F1 ,

, , cos ax

(65)

a

222

Z

3

3 cos ax cos 3ax

sin axdx =

+

(66)

4a

12a

Z

1

cos axdx = sin ax

(67)

a Z

2

x sin 2ax

cos axdx = +

(68)

2 4a

Z

p

cos axdx =

1

1+p

cos ax

a(1 + p)

1+p 1 3+p 2

2 F1

, , , cos ax (69)

222

Z

3

3 sin ax sin 3ax

cos axdx =

+

(70)

4a

12a

Z

3

1

1|

|

sec x dx = sec x tan x + ln sec x + tan x (84)

2

2

Z

sec x tan xdx = sec x

(85)

Z

2

12

sec x tan xdx = sec x

(86)

2 Z

n

1n 6

sec x tan xdx = sec x, n = 0

(87)

n

Z

x

|

|

csc xdx = ln tan = ln csc x cot x + C (88)

2

Z

2

1

csc axdx = cot ax

(89)

a

Z

3

1

1|

|

csc xdx = cot x csc x + ln csc x cot x (90)

2

2

Z

n

1n 6

csc x cot xdx = csc x, n = 0

(91)

n Z

||

sec x csc xdx = ln tan x

(92)

Products of Trigonometric Functions and Monomials

Z

x

1x

e cos xdx = e (sin x + cos x)

2

(106)

Z

bx

1 bx

e cos axdx = 2 2 e (a sin ax + b cos ax) (107)

a +b

Z

x

1x

xe sin xdx = e (cos x x cos x + x sin x)

2

(108)

Z

x

1x

xe cos xdx = e (x cos x sin x + x sin x)

2

(109)

Integrals of Hyperbolic Functions

Z 1

cosh axdx = sinh ax a

Z

ax

e cosh bxdx =

8

><

ax

e

2 2 [a cosh bx

>:

a2ax e

b

x

+

4a 2

Z

6 b sinh bx] a = b

a=b

1 sinh axdx = cosh ax

a

(110)

(111) (112)

Z cos[(a b)x]

cos ax sin bxdx = 2(a b)

cos[(a + b)x] 6 ,a = b

2(a + b)

(71)

Z

2

sin[(2a b)x]

sin ax cos bxdx =

4(2a b)

sin bx sin[(2a + b)x]

+

(72)

2b

4(2a + b)

Z

2

13

sin x cos xdx = sin x

(73)

3

Z

2

cos[(2a b)x] cos bx

cos ax sin bxdx =

4(2a b)

2b

cos[(2a + b)x] (74)

4(2a + b)

Z

2

13

cos ax sin axdx = cos ax

(75)

3a

Z

2

2

x

sin ax cos bxdx =

4

sin 2ax 8a

sin[2(a b)x] 16(a b)

sin 2bx sin[2(a + b)x]

+

(76)

8b

16(a + b)

Z

2

2

x sin 4ax

sin ax cos axdx =

(77)

8 32a Z

1

tan axdx = ln cos ax

(78)

a Z

2

1

tan axdx = x + tan ax

(79)

a

Z

x cos xdx = cos x + x sin x

(93)

Z

1

x

x cos axdx = 2 cos ax + sin ax

(94)

a

a

Z

2

2

x cos xdx = 2x cos x + x 2 sin x (95)

Z

2

22

2x cos ax a x 2

x cos axdx = 2 + 3 sin ax (96)

a

a

Z

n

1

+1 n

x cosxdx = (i) [ (n + 1, ix)

2

n

+( 1) (n + 1, ix)]

(97)

Z

n

1

1 n

n

x cosaxdx = (ia) [( 1) (n + 1, iax)

2

(n + 1, ixa)]

(98)

Z

x sin xdx = x cos x + sin x

Z

x cos ax sin ax

x sin axdx =

+2

a

a

Z

2

2

x sin xdx = 2 x cos x + 2x sin x

(99) (100) (101)

Z

2

22

2 ax

2x sin ax

x sin axdx = 3 cos ax + 2

a

a

(102)

Z

ax

e sinh bxdx =

8

><

ax

e

2 2 [ b cosh bx + a sinh bx]

>:

a2 ax

e

b

x

4a 2

a 6= b a=b

(113)

Z

ax

e tanh bxdx =

8

>>>>><

(a+2b)x

e

(a + 2b)

2

F1

h 1

+

a

, 1, 2 2hb

+

a ,

2b

i

2bx

e i

>>>>>:

ax

e

1

ax

e

2

F1

a , 1, 1E,

2 bx

e

a 1 ax 2b 2 tan [e ]

a Z

1 tanh ax dx = ln cosh ax

a

6 a=b a=b

(114) (115)

Z

1 cos ax cosh bxdx = 2 2 [a sin ax cosh bx

a +b

+b cos ax sinh bx]

(116)

Z

1 cos ax sinh bxdx = 2 2 [b cos ax cosh bx+

a +b

a sin ax sinh bx]

(117)

Z

1 sin ax cosh bxdx = 2 2 [ a cos ax cosh bx+

a +b

b sin ax sinh bx]

(118)

Z

n+1

n

tan ax

tan axdx =

a(1 + n)

n+1 n+3

2

2 F1

, 1, , tan ax

2

2

Z

3

1

12

tan axdx = ln cos ax + sec ax

a

2a

Z

n

1n

n

x sin xdx = (i) [ (n + 1, ix) ( 1) (n + 1, ix)]

2

(103) (80)

Products of Trigonometric Functions and Exponentials

(81)

Z

|

|

1

x

sec xdx = ln sec x + tan x = 2 tanh tan (82)

2

Z

x

1x

e sin xdx = e (sin x cos x)

2

(104)

Z

2

1

sec axdx = tan ax

a

Z

bx

1 bx

(83)

e sin axdx = 2 2 e (b sin ax a cos ax) (105)

a +b

Z 1

sin ax sinh bxdx = 2 2 [b cosh bx sin ax a +b

a cos ax sinh bx]

(119)

Z 1

sinh ax cosh axdx = [ 2ax + sinh 2ax] 4a

(120)

Z

1 sinh ax cosh bxdx = 2 2 [b cosh bx sinh ax

ba

a cosh ax sinh bx]

(121)

................
................

In order to avoid copyright disputes, this page is only a partial summary.

Google Online Preview   Download