The biogeography of the Reptiles and Amphibians of ...



A necessarily complex model to explain the biogeography of Madagascar's amphibians and reptiles Jason L. Brown1,2, Alison Cameron3, Anne D. Yoder1, Miguel Vences41 Department of Biology, Duke University, Durham, NC 27708 Durham, NC, USA2 Current address: Department of Biology, The City College of New York, NY, USA3 School of Biological Sciences, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK4 Zoological Institute, Technical University of Braunschweig, Mendelssohnstr. 4, 38106 Braunschweig, GermanyAbstractA fundamental limitation of biogeographic analyses are that pattern and process are inextricably linked, and whereas we can observe pattern, we must infer process. Yet, such inferences are often based on ad-hoc comparisons using a single spatial predictor such as climate, topography, vegetation, or assumed barriers to dispersal without taking into account competing explanatory factors. Here we present an alternative approach, using mixed-spatial models to measure the predictive potential of combinations of spatially explicit hypotheses to explain observed biodiversity patterns. In this study we compiled a comprehensive dataset of 8362 occurrence records from 745 amphibian and reptile species from Madagascar. These data were used to estimate species richness, corrected weighted endemism, and species turnover (based on generalized dissimilarity modeling). We also created or incorporated, when previously available, 18 spatially explicit predictions of 12 major diversification and biogeography hypotheses, such as: mid-domain, topographic heterogeneity, sanctuary, and climate-related factors. Our results clearly demonstrate that mixed-models greatly improved our ability to explain the observed amphibian and reptile biodiversity patterns. Hence, the observed biogeographic patterns were likely influenced by a combination of diversification processes rather than by a single predominant mechanism. Further, selected genera of Malagasy amphibians and reptiles differed in the major factors explaining their spatial patterns of richness and endemism. These differences suggest that key factors in diversification are lineage specific and vary among major endemic clades. Our study therefore emphasizes the importance of comprehensive analyses across taxonomic, temporal, and spatial scales for understanding the complex diversification history of Madagascar's biota. A "one-size-fits-all" model does not exist.Keywords: Conditional Autoregressive Models, Orthogonally Transformed Beta Coefficients, Generalized Dissimilarity Modelling, Species Distribution Modelling The spatial distribution of biodiversity is at the core of biogeography, macroecology, evolutionary biology, and conservation biologyPEVuZE5vdGU+PENpdGU+PEF1dGhvcj5LZW50PC9BdXRob3I+PFllYXI+MjAwNTwvWWVhcj48UmVj

TnVtPjQ5MDwvUmVjTnVtPjxEaXNwbGF5VGV4dD48c3R5bGUgZmFjZT0ic3VwZXJzY3JpcHQiPjEs

Mjwvc3R5bGU+PC9EaXNwbGF5VGV4dD48cmVjb3JkPjxyZWMtbnVtYmVyPjQ5MDwvcmVjLW51bWJl

cj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9IjI5ZTUydjVmbmR2c3c3ZXM1dmJw

OXY1d3ZhNXhycHh4YTk1ZSIgdGltZXN0YW1wPSIxMzg0NTUzNDI0Ij40OTA8L2tleT48L2ZvcmVp

Z24ta2V5cz48cmVmLXR5cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwvcmVmLXR5cGU+PGNv

bnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPktlbnQsIE0uPC9hdXRob3I+PC9hdXRob3JzPjwv

Y29udHJpYnV0b3JzPjx0aXRsZXM+PHRpdGxlPkJpb2dlb2dyYXBoeSBhbmQgbWFjcm9lY29sb2d5

PC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPlByb2dyZXNzIGluIFBoeXNpY2FsIEdlb2dyYXBoeTwv

c2Vjb25kYXJ5LXRpdGxlPjwvdGl0bGVzPjxwZXJpb2RpY2FsPjxmdWxsLXRpdGxlPlByb2dyZXNz

IGluIFBoeXNpY2FsIEdlb2dyYXBoeTwvZnVsbC10aXRsZT48L3BlcmlvZGljYWw+PHBhZ2VzPjI1

Ni0yNjQ8L3BhZ2VzPjx2b2x1bWU+Mjk8L3ZvbHVtZT48bnVtYmVyPjI8L251bWJlcj48ZGF0ZXM+

PHllYXI+MjAwNTwveWVhcj48cHViLWRhdGVzPjxkYXRlPkp1bjwvZGF0ZT48L3B1Yi1kYXRlcz48

L2RhdGVzPjxpc2JuPjAzMDktMTMzMzwvaXNibj48YWNjZXNzaW9uLW51bT5XT1M6MDAwMjI5NDc2

NTAwMDA4PC9hY2Nlc3Npb24tbnVtPjx1cmxzPjxyZWxhdGVkLXVybHM+PHVybD4mbHQ7R28gdG8g

SVNJJmd0OzovL1dPUzowMDAyMjk0NzY1MDAwMDg8L3VybD48L3JlbGF0ZWQtdXJscz48L3VybHM+

PGVsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjEwLjExOTEvMDMwOTEzMzMwNXBwNDQ3cHI8L2VsZWN0

cm9uaWMtcmVzb3VyY2UtbnVtPjwvcmVjb3JkPjwvQ2l0ZT48Q2l0ZT48QXV0aG9yPkJlY2s8L0F1

dGhvcj48WWVhcj4yMDEyPC9ZZWFyPjxSZWNOdW0+NDY3PC9SZWNOdW0+PHJlY29yZD48cmVjLW51

bWJlcj40Njc8L3JlYy1udW1iZXI+PGZvcmVpZ24ta2V5cz48a2V5IGFwcD0iRU4iIGRiLWlkPSIy

OWU1MnY1Zm5kdnN3N2VzNXZicDl2NXd2YTV4cnB4eGE5NWUiIHRpbWVzdGFtcD0iMTM4NDU1MTUx

MCI+NDY3PC9rZXk+PC9mb3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNs

ZSI+MTc8L3JlZi10eXBlPjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5CZWNrLCBKYW48

L2F1dGhvcj48YXV0aG9yPkJhbGxlc3Rlcm9zLU1lamlhLCBMaWxpYW5hPC9hdXRob3I+PGF1dGhv

cj5CdWNobWFubiwgQ2Fyc3RlbiBNLjwvYXV0aG9yPjxhdXRob3I+RGVuZ2xlciwgSnVlcmdlbjwv

YXV0aG9yPjxhdXRob3I+RnJpdHosIFN1c2FubmUgQS48L2F1dGhvcj48YXV0aG9yPkdydWJlciwg

QmVybmQ8L2F1dGhvcj48YXV0aG9yPkhvZiwgQ2hyaXN0aWFuPC9hdXRob3I+PGF1dGhvcj5KYW5z

ZW4sIEZsb3JpYW48L2F1dGhvcj48YXV0aG9yPktuYXBwLCBTb25qYTwvYXV0aG9yPjxhdXRob3I+

S3JlZnQsIEhvbGdlcjwvYXV0aG9yPjxhdXRob3I+U2NobmVpZGVyLCBBbm5lLUthdGhyaW48L2F1

dGhvcj48YXV0aG9yPldpbnRlciwgTWFydGVuPC9hdXRob3I+PGF1dGhvcj5Eb3JtYW5uLCBDYXJz

dGVuIEYuPC9hdXRob3I+PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjx0aXRsZXM+PHRpdGxlPldo

YXQmYXBvcztzIG9uIHRoZSBob3Jpem9uIGZvciBtYWNyb2Vjb2xvZ3k/PC90aXRsZT48c2Vjb25k

YXJ5LXRpdGxlPkVjb2dyYXBoeTwvc2Vjb25kYXJ5LXRpdGxlPjwvdGl0bGVzPjxwZXJpb2RpY2Fs

PjxmdWxsLXRpdGxlPkVjb2dyYXBoeTwvZnVsbC10aXRsZT48L3BlcmlvZGljYWw+PHBhZ2VzPjY3

My02ODM8L3BhZ2VzPjx2b2x1bWU+MzU8L3ZvbHVtZT48bnVtYmVyPjg8L251bWJlcj48ZGF0ZXM+

PHllYXI+MjAxMjwveWVhcj48cHViLWRhdGVzPjxkYXRlPkF1ZzwvZGF0ZT48L3B1Yi1kYXRlcz48

L2RhdGVzPjxpc2JuPjA5MDYtNzU5MDwvaXNibj48YWNjZXNzaW9uLW51bT5XT1M6MDAwMzA1ODky

MzAwMDAxPC9hY2Nlc3Npb24tbnVtPjx1cmxzPjxyZWxhdGVkLXVybHM+PHVybD4mbHQ7R28gdG8g

SVNJJmd0OzovL1dPUzowMDAzMDU4OTIzMDAwMDE8L3VybD48L3JlbGF0ZWQtdXJscz48L3VybHM+

PGVsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjEwLjExMTEvai4xNjAwLTA1ODcuMjAxMi4wNzM2NC54

PC9lbGVjdHJvbmljLXJlc291cmNlLW51bT48L3JlY29yZD48L0NpdGU+PENpdGU+PEF1dGhvcj5C

ZWNrPC9BdXRob3I+PFllYXI+MjAxMjwvWWVhcj48UmVjTnVtPjQ2NzwvUmVjTnVtPjxyZWNvcmQ+

PHJlYy1udW1iZXI+NDY3PC9yZWMtbnVtYmVyPjxmb3JlaWduLWtleXM+PGtleSBhcHA9IkVOIiBk

Yi1pZD0iMjllNTJ2NWZuZHZzdzdlczV2YnA5djV3dmE1eHJweHhhOTVlIiB0aW1lc3RhbXA9IjEz

ODQ1NTE1MTAiPjQ2Nzwva2V5PjwvZm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJKb3VybmFs

IEFydGljbGUiPjE3PC9yZWYtdHlwZT48Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+QmVj

aywgSmFuPC9hdXRob3I+PGF1dGhvcj5CYWxsZXN0ZXJvcy1NZWppYSwgTGlsaWFuYTwvYXV0aG9y

PjxhdXRob3I+QnVjaG1hbm4sIENhcnN0ZW4gTS48L2F1dGhvcj48YXV0aG9yPkRlbmdsZXIsIEp1

ZXJnZW48L2F1dGhvcj48YXV0aG9yPkZyaXR6LCBTdXNhbm5lIEEuPC9hdXRob3I+PGF1dGhvcj5H

cnViZXIsIEJlcm5kPC9hdXRob3I+PGF1dGhvcj5Ib2YsIENocmlzdGlhbjwvYXV0aG9yPjxhdXRo

b3I+SmFuc2VuLCBGbG9yaWFuPC9hdXRob3I+PGF1dGhvcj5LbmFwcCwgU29uamE8L2F1dGhvcj48

YXV0aG9yPktyZWZ0LCBIb2xnZXI8L2F1dGhvcj48YXV0aG9yPlNjaG5laWRlciwgQW5uZS1LYXRo

cmluPC9hdXRob3I+PGF1dGhvcj5XaW50ZXIsIE1hcnRlbjwvYXV0aG9yPjxhdXRob3I+RG9ybWFu

biwgQ2Fyc3RlbiBGLjwvYXV0aG9yPjwvYXV0aG9ycz48L2NvbnRyaWJ1dG9ycz48dGl0bGVzPjx0

aXRsZT5XaGF0JmFwb3M7cyBvbiB0aGUgaG9yaXpvbiBmb3IgbWFjcm9lY29sb2d5PzwvdGl0bGU+

PHNlY29uZGFyeS10aXRsZT5FY29ncmFwaHk8L3NlY29uZGFyeS10aXRsZT48L3RpdGxlcz48cGVy

aW9kaWNhbD48ZnVsbC10aXRsZT5FY29ncmFwaHk8L2Z1bGwtdGl0bGU+PC9wZXJpb2RpY2FsPjxw

YWdlcz42NzMtNjgzPC9wYWdlcz48dm9sdW1lPjM1PC92b2x1bWU+PG51bWJlcj44PC9udW1iZXI+

PGRhdGVzPjx5ZWFyPjIwMTI8L3llYXI+PHB1Yi1kYXRlcz48ZGF0ZT5BdWc8L2RhdGU+PC9wdWIt

ZGF0ZXM+PC9kYXRlcz48aXNibj4wOTA2LTc1OTA8L2lzYm4+PGFjY2Vzc2lvbi1udW0+V09TOjAw

MDMwNTg5MjMwMDAwMTwvYWNjZXNzaW9uLW51bT48dXJscz48cmVsYXRlZC11cmxzPjx1cmw+Jmx0

O0dvIHRvIElTSSZndDs6Ly9XT1M6MDAwMzA1ODkyMzAwMDAxPC91cmw+PC9yZWxhdGVkLXVybHM+

PC91cmxzPjxlbGVjdHJvbmljLXJlc291cmNlLW51bT4xMC4xMTExL2ouMTYwMC0wNTg3LjIwMTIu

MDczNjQueDwvZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+PC9yZWNvcmQ+PC9DaXRlPjwvRW5kTm90

ZT5=

ADDIN EN.CITE PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5LZW50PC9BdXRob3I+PFllYXI+MjAwNTwvWWVhcj48UmVj

TnVtPjQ5MDwvUmVjTnVtPjxEaXNwbGF5VGV4dD48c3R5bGUgZmFjZT0ic3VwZXJzY3JpcHQiPjEs

Mjwvc3R5bGU+PC9EaXNwbGF5VGV4dD48cmVjb3JkPjxyZWMtbnVtYmVyPjQ5MDwvcmVjLW51bWJl

cj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9IjI5ZTUydjVmbmR2c3c3ZXM1dmJw

OXY1d3ZhNXhycHh4YTk1ZSIgdGltZXN0YW1wPSIxMzg0NTUzNDI0Ij40OTA8L2tleT48L2ZvcmVp

Z24ta2V5cz48cmVmLXR5cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwvcmVmLXR5cGU+PGNv

bnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPktlbnQsIE0uPC9hdXRob3I+PC9hdXRob3JzPjwv

Y29udHJpYnV0b3JzPjx0aXRsZXM+PHRpdGxlPkJpb2dlb2dyYXBoeSBhbmQgbWFjcm9lY29sb2d5

PC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPlByb2dyZXNzIGluIFBoeXNpY2FsIEdlb2dyYXBoeTwv

c2Vjb25kYXJ5LXRpdGxlPjwvdGl0bGVzPjxwZXJpb2RpY2FsPjxmdWxsLXRpdGxlPlByb2dyZXNz

IGluIFBoeXNpY2FsIEdlb2dyYXBoeTwvZnVsbC10aXRsZT48L3BlcmlvZGljYWw+PHBhZ2VzPjI1

Ni0yNjQ8L3BhZ2VzPjx2b2x1bWU+Mjk8L3ZvbHVtZT48bnVtYmVyPjI8L251bWJlcj48ZGF0ZXM+

PHllYXI+MjAwNTwveWVhcj48cHViLWRhdGVzPjxkYXRlPkp1bjwvZGF0ZT48L3B1Yi1kYXRlcz48

L2RhdGVzPjxpc2JuPjAzMDktMTMzMzwvaXNibj48YWNjZXNzaW9uLW51bT5XT1M6MDAwMjI5NDc2

NTAwMDA4PC9hY2Nlc3Npb24tbnVtPjx1cmxzPjxyZWxhdGVkLXVybHM+PHVybD4mbHQ7R28gdG8g

SVNJJmd0OzovL1dPUzowMDAyMjk0NzY1MDAwMDg8L3VybD48L3JlbGF0ZWQtdXJscz48L3VybHM+

PGVsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjEwLjExOTEvMDMwOTEzMzMwNXBwNDQ3cHI8L2VsZWN0

cm9uaWMtcmVzb3VyY2UtbnVtPjwvcmVjb3JkPjwvQ2l0ZT48Q2l0ZT48QXV0aG9yPkJlY2s8L0F1

dGhvcj48WWVhcj4yMDEyPC9ZZWFyPjxSZWNOdW0+NDY3PC9SZWNOdW0+PHJlY29yZD48cmVjLW51

bWJlcj40Njc8L3JlYy1udW1iZXI+PGZvcmVpZ24ta2V5cz48a2V5IGFwcD0iRU4iIGRiLWlkPSIy

OWU1MnY1Zm5kdnN3N2VzNXZicDl2NXd2YTV4cnB4eGE5NWUiIHRpbWVzdGFtcD0iMTM4NDU1MTUx

MCI+NDY3PC9rZXk+PC9mb3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNs

ZSI+MTc8L3JlZi10eXBlPjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5CZWNrLCBKYW48

L2F1dGhvcj48YXV0aG9yPkJhbGxlc3Rlcm9zLU1lamlhLCBMaWxpYW5hPC9hdXRob3I+PGF1dGhv

cj5CdWNobWFubiwgQ2Fyc3RlbiBNLjwvYXV0aG9yPjxhdXRob3I+RGVuZ2xlciwgSnVlcmdlbjwv

YXV0aG9yPjxhdXRob3I+RnJpdHosIFN1c2FubmUgQS48L2F1dGhvcj48YXV0aG9yPkdydWJlciwg

QmVybmQ8L2F1dGhvcj48YXV0aG9yPkhvZiwgQ2hyaXN0aWFuPC9hdXRob3I+PGF1dGhvcj5KYW5z

ZW4sIEZsb3JpYW48L2F1dGhvcj48YXV0aG9yPktuYXBwLCBTb25qYTwvYXV0aG9yPjxhdXRob3I+

S3JlZnQsIEhvbGdlcjwvYXV0aG9yPjxhdXRob3I+U2NobmVpZGVyLCBBbm5lLUthdGhyaW48L2F1

dGhvcj48YXV0aG9yPldpbnRlciwgTWFydGVuPC9hdXRob3I+PGF1dGhvcj5Eb3JtYW5uLCBDYXJz

dGVuIEYuPC9hdXRob3I+PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjx0aXRsZXM+PHRpdGxlPldo

YXQmYXBvcztzIG9uIHRoZSBob3Jpem9uIGZvciBtYWNyb2Vjb2xvZ3k/PC90aXRsZT48c2Vjb25k

YXJ5LXRpdGxlPkVjb2dyYXBoeTwvc2Vjb25kYXJ5LXRpdGxlPjwvdGl0bGVzPjxwZXJpb2RpY2Fs

PjxmdWxsLXRpdGxlPkVjb2dyYXBoeTwvZnVsbC10aXRsZT48L3BlcmlvZGljYWw+PHBhZ2VzPjY3

My02ODM8L3BhZ2VzPjx2b2x1bWU+MzU8L3ZvbHVtZT48bnVtYmVyPjg8L251bWJlcj48ZGF0ZXM+

PHllYXI+MjAxMjwveWVhcj48cHViLWRhdGVzPjxkYXRlPkF1ZzwvZGF0ZT48L3B1Yi1kYXRlcz48

L2RhdGVzPjxpc2JuPjA5MDYtNzU5MDwvaXNibj48YWNjZXNzaW9uLW51bT5XT1M6MDAwMzA1ODky

MzAwMDAxPC9hY2Nlc3Npb24tbnVtPjx1cmxzPjxyZWxhdGVkLXVybHM+PHVybD4mbHQ7R28gdG8g

SVNJJmd0OzovL1dPUzowMDAzMDU4OTIzMDAwMDE8L3VybD48L3JlbGF0ZWQtdXJscz48L3VybHM+

PGVsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjEwLjExMTEvai4xNjAwLTA1ODcuMjAxMi4wNzM2NC54

PC9lbGVjdHJvbmljLXJlc291cmNlLW51bT48L3JlY29yZD48L0NpdGU+PENpdGU+PEF1dGhvcj5C

ZWNrPC9BdXRob3I+PFllYXI+MjAxMjwvWWVhcj48UmVjTnVtPjQ2NzwvUmVjTnVtPjxyZWNvcmQ+

PHJlYy1udW1iZXI+NDY3PC9yZWMtbnVtYmVyPjxmb3JlaWduLWtleXM+PGtleSBhcHA9IkVOIiBk

Yi1pZD0iMjllNTJ2NWZuZHZzdzdlczV2YnA5djV3dmE1eHJweHhhOTVlIiB0aW1lc3RhbXA9IjEz

ODQ1NTE1MTAiPjQ2Nzwva2V5PjwvZm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJKb3VybmFs

IEFydGljbGUiPjE3PC9yZWYtdHlwZT48Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+QmVj

aywgSmFuPC9hdXRob3I+PGF1dGhvcj5CYWxsZXN0ZXJvcy1NZWppYSwgTGlsaWFuYTwvYXV0aG9y

PjxhdXRob3I+QnVjaG1hbm4sIENhcnN0ZW4gTS48L2F1dGhvcj48YXV0aG9yPkRlbmdsZXIsIEp1

ZXJnZW48L2F1dGhvcj48YXV0aG9yPkZyaXR6LCBTdXNhbm5lIEEuPC9hdXRob3I+PGF1dGhvcj5H

cnViZXIsIEJlcm5kPC9hdXRob3I+PGF1dGhvcj5Ib2YsIENocmlzdGlhbjwvYXV0aG9yPjxhdXRo

b3I+SmFuc2VuLCBGbG9yaWFuPC9hdXRob3I+PGF1dGhvcj5LbmFwcCwgU29uamE8L2F1dGhvcj48

YXV0aG9yPktyZWZ0LCBIb2xnZXI8L2F1dGhvcj48YXV0aG9yPlNjaG5laWRlciwgQW5uZS1LYXRo

cmluPC9hdXRob3I+PGF1dGhvcj5XaW50ZXIsIE1hcnRlbjwvYXV0aG9yPjxhdXRob3I+RG9ybWFu

biwgQ2Fyc3RlbiBGLjwvYXV0aG9yPjwvYXV0aG9ycz48L2NvbnRyaWJ1dG9ycz48dGl0bGVzPjx0

aXRsZT5XaGF0JmFwb3M7cyBvbiB0aGUgaG9yaXpvbiBmb3IgbWFjcm9lY29sb2d5PzwvdGl0bGU+

PHNlY29uZGFyeS10aXRsZT5FY29ncmFwaHk8L3NlY29uZGFyeS10aXRsZT48L3RpdGxlcz48cGVy

aW9kaWNhbD48ZnVsbC10aXRsZT5FY29ncmFwaHk8L2Z1bGwtdGl0bGU+PC9wZXJpb2RpY2FsPjxw

YWdlcz42NzMtNjgzPC9wYWdlcz48dm9sdW1lPjM1PC92b2x1bWU+PG51bWJlcj44PC9udW1iZXI+

PGRhdGVzPjx5ZWFyPjIwMTI8L3llYXI+PHB1Yi1kYXRlcz48ZGF0ZT5BdWc8L2RhdGU+PC9wdWIt

ZGF0ZXM+PC9kYXRlcz48aXNibj4wOTA2LTc1OTA8L2lzYm4+PGFjY2Vzc2lvbi1udW0+V09TOjAw

MDMwNTg5MjMwMDAwMTwvYWNjZXNzaW9uLW51bT48dXJscz48cmVsYXRlZC11cmxzPjx1cmw+Jmx0

O0dvIHRvIElTSSZndDs6Ly9XT1M6MDAwMzA1ODkyMzAwMDAxPC91cmw+PC9yZWxhdGVkLXVybHM+

PC91cmxzPjxlbGVjdHJvbmljLXJlc291cmNlLW51bT4xMC4xMTExL2ouMTYwMC0wNTg3LjIwMTIu

MDczNjQueDwvZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+PC9yZWNvcmQ+PC9DaXRlPjwvRW5kTm90

ZT5=

ADDIN EN.CITE.DATA 1,2. Biodiversity mapping indices are multi-faceted concepts with the main components being local endemism, species richness, and species turnover, of which the two latter correspond to alpha- and beta-diversity as used in community ecology ADDIN EN.CITE <EndNote><Cite><Author>Whittaker</Author><Year>1960</Year><RecNum>518</RecNum><DisplayText><style face="superscript">3,4</style></DisplayText><record><rec-number>518</rec-number><foreign-keys><key app="EN" db-id="29e52v5fndvsw7es5vbp9v5wva5xrpxxa95e" timestamp="1384554776">518</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Whittaker, Robert H.</author></authors></contributors><titles><title>Vegetation of the Siskiyou Mountains, Oregon and California</title><secondary-title>Ecol Monogr</secondary-title></titles><periodical><full-title>Ecol Monogr</full-title></periodical><pages>279-338</pages><volume>30</volume><number>(3)</number><dates><year>1960</year><pub-dates><date>1960</date></pub-dates></dates><accession-num>BCI:BCI19613600009684</accession-num><urls><related-urls><url>&lt;Go to ISI&gt;://BCI:BCI19613600009684</url></related-urls></urls><electronic-resource-num>10.2307/1943563</electronic-resource-num></record></Cite><Cite><Author>Whittaker</Author><Year>1972</Year><RecNum>519</RecNum><record><rec-number>519</rec-number><foreign-keys><key app="EN" db-id="29e52v5fndvsw7es5vbp9v5wva5xrpxxa95e" timestamp="1384554807">519</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Whittaker, R. H.</author></authors></contributors><titles><title>Evolution and Measurement of Species Diversity</title><secondary-title>Taxon</secondary-title></titles><periodical><full-title>Taxon</full-title></periodical><pages>213-251</pages><volume>21</volume><number>2-3</number><dates><year>1972</year><pub-dates><date>1972</date></pub-dates></dates><isbn>0040-0262</isbn><accession-num>BCI:BCI197254065336</accession-num><urls><related-urls><url>&lt;Go to ISI&gt;://BCI:BCI197254065336</url></related-urls></urls><electronic-resource-num>10.2307/1218190</electronic-resource-num></record></Cite></EndNote>3,4. In different combinations, these components are invoked to identify biogeographic regionsPEVuZE5vdGU+PENpdGU+PEF1dGhvcj5XaWxsaWFtczwvQXV0aG9yPjxZZWFyPjE5OTY8L1llYXI+

PFJlY051bT41MjI8L1JlY051bT48RGlzcGxheVRleHQ+PHN0eWxlIGZhY2U9InN1cGVyc2NyaXB0

Ij41LTc8L3N0eWxlPjwvRGlzcGxheVRleHQ+PHJlY29yZD48cmVjLW51bWJlcj41MjI8L3JlYy1u

dW1iZXI+PGZvcmVpZ24ta2V5cz48a2V5IGFwcD0iRU4iIGRiLWlkPSIyOWU1MnY1Zm5kdnN3N2Vz

NXZicDl2NXd2YTV4cnB4eGE5NWUiIHRpbWVzdGFtcD0iMTM4NDU1NDkyNSI+NTIyPC9rZXk+PC9m

b3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBl

Pjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5XaWxsaWFtcywgUC4gSC48L2F1dGhvcj48

L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PHRpdGxlcz48dGl0bGU+TWFwcGluZyB2YXJpYXRpb25z

IGluIHRoZSBzdHJlbmd0aCBhbmQgYnJlYWR0aCBvZiBiaW9nZW9ncmFwaGljIHRyYW5zaXRpb24g

em9uZXMgdXNpbmcgc3BlY2llcyB0dXJub3ZlcjwvdGl0bGU+PHNlY29uZGFyeS10aXRsZT5Qcm9j

ZWVkaW5ncyBvZiB0aGUgUm95YWwgU29jaWV0eSBCLUJpb2xvZ2ljYWwgU2NpZW5jZXM8L3NlY29u

ZGFyeS10aXRsZT48L3RpdGxlcz48cGVyaW9kaWNhbD48ZnVsbC10aXRsZT5Qcm9jZWVkaW5ncyBv

ZiB0aGUgUm95YWwgU29jaWV0eSBCLUJpb2xvZ2ljYWwgU2NpZW5jZXM8L2Z1bGwtdGl0bGU+PC9w

ZXJpb2RpY2FsPjxwYWdlcz41NzktNTg4PC9wYWdlcz48dm9sdW1lPjI2Mzwvdm9sdW1lPjxudW1i

ZXI+MTM3MDwvbnVtYmVyPjxkYXRlcz48eWVhcj4xOTk2PC95ZWFyPjxwdWItZGF0ZXM+PGRhdGU+

TWF5IDIyPC9kYXRlPjwvcHViLWRhdGVzPjwvZGF0ZXM+PGlzYm4+MDk2Mi04NDUyPC9pc2JuPjxh

Y2Nlc3Npb24tbnVtPldPUzpBMTk5NlVQNTMzMDAwMTA8L2FjY2Vzc2lvbi1udW0+PHVybHM+PHJl

bGF0ZWQtdXJscz48dXJsPiZsdDtHbyB0byBJU0kmZ3Q7Oi8vV09TOkExOTk2VVA1MzMwMDAxMDwv

dXJsPjwvcmVsYXRlZC11cmxzPjwvdXJscz48ZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+MTAuMTA5

OC9yc3BiLjE5OTYuMDA4NzwvZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+PC9yZWNvcmQ+PC9DaXRl

PjxDaXRlPjxBdXRob3I+S3JlZnQ8L0F1dGhvcj48WWVhcj4yMDEwPC9ZZWFyPjxSZWNOdW0+NDky

PC9SZWNOdW0+PHJlY29yZD48cmVjLW51bWJlcj40OTI8L3JlYy1udW1iZXI+PGZvcmVpZ24ta2V5

cz48a2V5IGFwcD0iRU4iIGRiLWlkPSIyOWU1MnY1Zm5kdnN3N2VzNXZicDl2NXd2YTV4cnB4eGE5

NWUiIHRpbWVzdGFtcD0iMTM4NDU1MzUwMSI+NDkyPC9rZXk+PC9mb3JlaWduLWtleXM+PHJlZi10

eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBlPjxjb250cmlidXRvcnM+PGF1

dGhvcnM+PGF1dGhvcj5LcmVmdCwgSG9sZ2VyPC9hdXRob3I+PGF1dGhvcj5KZXR6LCBXYWx0ZXI8

L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PHRpdGxlcz48dGl0bGU+QSBmcmFtZXdv

cmsgZm9yIGRlbGluZWF0aW5nIGJpb2dlb2dyYXBoaWNhbCByZWdpb25zIGJhc2VkIG9uIHNwZWNp

ZXMgZGlzdHJpYnV0aW9uczwvdGl0bGU+PHNlY29uZGFyeS10aXRsZT5Kb3VybmFsIG9mIEJpb2dl

b2dyYXBoeTwvc2Vjb25kYXJ5LXRpdGxlPjwvdGl0bGVzPjxwZXJpb2RpY2FsPjxmdWxsLXRpdGxl

PkpvdXJuYWwgb2YgQmlvZ2VvZ3JhcGh5PC9mdWxsLXRpdGxlPjwvcGVyaW9kaWNhbD48cGFnZXM+

MjAyOS0yMDUzPC9wYWdlcz48dm9sdW1lPjM3PC92b2x1bWU+PG51bWJlcj4xMTwvbnVtYmVyPjxk

YXRlcz48eWVhcj4yMDEwPC95ZWFyPjxwdWItZGF0ZXM+PGRhdGU+Tm92PC9kYXRlPjwvcHViLWRh

dGVzPjwvZGF0ZXM+PGlzYm4+MDMwNS0wMjcwPC9pc2JuPjxhY2Nlc3Npb24tbnVtPldPUzowMDAy

ODMwODQ2MDAwMDI8L2FjY2Vzc2lvbi1udW0+PHVybHM+PHJlbGF0ZWQtdXJscz48dXJsPiZsdDtH

byB0byBJU0kmZ3Q7Oi8vV09TOjAwMDI4MzA4NDYwMDAwMjwvdXJsPjwvcmVsYXRlZC11cmxzPjwv

dXJscz48ZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+MTAuMTExMS9qLjEzNjUtMjY5OS4yMDEwLjAy

Mzc1Lng8L2VsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjwvcmVjb3JkPjwvQ2l0ZT48Q2l0ZT48QXV0

aG9yPkhvbHQ8L0F1dGhvcj48WWVhcj4yMDEzPC9ZZWFyPjxSZWNOdW0+NDg3PC9SZWNOdW0+PHJl

Y29yZD48cmVjLW51bWJlcj40ODc8L3JlYy1udW1iZXI+PGZvcmVpZ24ta2V5cz48a2V5IGFwcD0i

RU4iIGRiLWlkPSIyOWU1MnY1Zm5kdnN3N2VzNXZicDl2NXd2YTV4cnB4eGE5NWUiIHRpbWVzdGFt

cD0iMTM4NDU1MzE5OCI+NDg3PC9rZXk+PC9mb3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9Ikpv

dXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBlPjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhv

cj5Ib2x0LCBCZW4gRy48L2F1dGhvcj48YXV0aG9yPkxlc3NhcmQsIEplYW4tUGhpbGlwcGU8L2F1

dGhvcj48YXV0aG9yPkJvcnJlZ2FhcmQsIE1pY2hhZWwgSy48L2F1dGhvcj48YXV0aG9yPkZyaXR6

LCBTdXNhbm5lIEEuPC9hdXRob3I+PGF1dGhvcj5BcmF1am8sIE1pZ3VlbCBCLjwvYXV0aG9yPjxh

dXRob3I+RGltaXRyb3YsIERpbWl0YXI8L2F1dGhvcj48YXV0aG9yPkZhYnJlLCBQaWVycmUtSGVu

cmk8L2F1dGhvcj48YXV0aG9yPkdyYWhhbSwgQ2F0aGVyaW5lIEguPC9hdXRob3I+PGF1dGhvcj5H

cmF2ZXMsIEdhcnkgUi48L2F1dGhvcj48YXV0aG9yPkpvbnNzb24sIEtudWQgQS48L2F1dGhvcj48

YXV0aG9yPk5vZ3Vlcy1CcmF2bywgRGF2aWQ8L2F1dGhvcj48YXV0aG9yPldhbmcsIFpoaWhlbmc8

L2F1dGhvcj48YXV0aG9yPldoaXR0YWtlciwgUm9iZXJ0IEouPC9hdXRob3I+PGF1dGhvcj5GamVs

ZHNhLCBKb248L2F1dGhvcj48YXV0aG9yPlJhaGJlaywgQ2Fyc3RlbjwvYXV0aG9yPjwvYXV0aG9y

cz48L2NvbnRyaWJ1dG9ycz48dGl0bGVzPjx0aXRsZT5BbiBVcGRhdGUgb2YgV2FsbGFjZSZhcG9z

O3MgWm9vZ2VvZ3JhcGhpYyBSZWdpb25zIG9mIHRoZSBXb3JsZDwvdGl0bGU+PHNlY29uZGFyeS10

aXRsZT5TY2llbmNlPC9zZWNvbmRhcnktdGl0bGU+PC90aXRsZXM+PHBlcmlvZGljYWw+PGZ1bGwt

dGl0bGU+U2NpZW5jZTwvZnVsbC10aXRsZT48L3BlcmlvZGljYWw+PHBhZ2VzPjc0LTc4PC9wYWdl

cz48dm9sdW1lPjMzOTwvdm9sdW1lPjxudW1iZXI+NjExNTwvbnVtYmVyPjxkYXRlcz48eWVhcj4y

MDEzPC95ZWFyPjxwdWItZGF0ZXM+PGRhdGU+SmFuIDQ8L2RhdGU+PC9wdWItZGF0ZXM+PC9kYXRl

cz48aXNibj4wMDM2LTgwNzU8L2lzYm4+PGFjY2Vzc2lvbi1udW0+V09TOjAwMDMxMjk4NTgwMDA1

NDwvYWNjZXNzaW9uLW51bT48dXJscz48cmVsYXRlZC11cmxzPjx1cmw+Jmx0O0dvIHRvIElTSSZn

dDs6Ly9XT1M6MDAwMzEyOTg1ODAwMDU0PC91cmw+PC9yZWxhdGVkLXVybHM+PC91cmxzPjxlbGVj

dHJvbmljLXJlc291cmNlLW51bT4xMC4xMTI2L3NjaWVuY2UuMTIyODI4MjwvZWxlY3Ryb25pYy1y

ZXNvdXJjZS1udW0+PC9yZWNvcmQ+PC9DaXRlPjwvRW5kTm90ZT5=

ADDIN EN.CITE PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5XaWxsaWFtczwvQXV0aG9yPjxZZWFyPjE5OTY8L1llYXI+

PFJlY051bT41MjI8L1JlY051bT48RGlzcGxheVRleHQ+PHN0eWxlIGZhY2U9InN1cGVyc2NyaXB0

Ij41LTc8L3N0eWxlPjwvRGlzcGxheVRleHQ+PHJlY29yZD48cmVjLW51bWJlcj41MjI8L3JlYy1u

dW1iZXI+PGZvcmVpZ24ta2V5cz48a2V5IGFwcD0iRU4iIGRiLWlkPSIyOWU1MnY1Zm5kdnN3N2Vz

NXZicDl2NXd2YTV4cnB4eGE5NWUiIHRpbWVzdGFtcD0iMTM4NDU1NDkyNSI+NTIyPC9rZXk+PC9m

b3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBl

Pjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5XaWxsaWFtcywgUC4gSC48L2F1dGhvcj48

L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PHRpdGxlcz48dGl0bGU+TWFwcGluZyB2YXJpYXRpb25z

IGluIHRoZSBzdHJlbmd0aCBhbmQgYnJlYWR0aCBvZiBiaW9nZW9ncmFwaGljIHRyYW5zaXRpb24g

em9uZXMgdXNpbmcgc3BlY2llcyB0dXJub3ZlcjwvdGl0bGU+PHNlY29uZGFyeS10aXRsZT5Qcm9j

ZWVkaW5ncyBvZiB0aGUgUm95YWwgU29jaWV0eSBCLUJpb2xvZ2ljYWwgU2NpZW5jZXM8L3NlY29u

ZGFyeS10aXRsZT48L3RpdGxlcz48cGVyaW9kaWNhbD48ZnVsbC10aXRsZT5Qcm9jZWVkaW5ncyBv

ZiB0aGUgUm95YWwgU29jaWV0eSBCLUJpb2xvZ2ljYWwgU2NpZW5jZXM8L2Z1bGwtdGl0bGU+PC9w

ZXJpb2RpY2FsPjxwYWdlcz41NzktNTg4PC9wYWdlcz48dm9sdW1lPjI2Mzwvdm9sdW1lPjxudW1i

ZXI+MTM3MDwvbnVtYmVyPjxkYXRlcz48eWVhcj4xOTk2PC95ZWFyPjxwdWItZGF0ZXM+PGRhdGU+

TWF5IDIyPC9kYXRlPjwvcHViLWRhdGVzPjwvZGF0ZXM+PGlzYm4+MDk2Mi04NDUyPC9pc2JuPjxh

Y2Nlc3Npb24tbnVtPldPUzpBMTk5NlVQNTMzMDAwMTA8L2FjY2Vzc2lvbi1udW0+PHVybHM+PHJl

bGF0ZWQtdXJscz48dXJsPiZsdDtHbyB0byBJU0kmZ3Q7Oi8vV09TOkExOTk2VVA1MzMwMDAxMDwv

dXJsPjwvcmVsYXRlZC11cmxzPjwvdXJscz48ZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+MTAuMTA5

OC9yc3BiLjE5OTYuMDA4NzwvZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+PC9yZWNvcmQ+PC9DaXRl

PjxDaXRlPjxBdXRob3I+S3JlZnQ8L0F1dGhvcj48WWVhcj4yMDEwPC9ZZWFyPjxSZWNOdW0+NDky

PC9SZWNOdW0+PHJlY29yZD48cmVjLW51bWJlcj40OTI8L3JlYy1udW1iZXI+PGZvcmVpZ24ta2V5

cz48a2V5IGFwcD0iRU4iIGRiLWlkPSIyOWU1MnY1Zm5kdnN3N2VzNXZicDl2NXd2YTV4cnB4eGE5

NWUiIHRpbWVzdGFtcD0iMTM4NDU1MzUwMSI+NDkyPC9rZXk+PC9mb3JlaWduLWtleXM+PHJlZi10

eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBlPjxjb250cmlidXRvcnM+PGF1

dGhvcnM+PGF1dGhvcj5LcmVmdCwgSG9sZ2VyPC9hdXRob3I+PGF1dGhvcj5KZXR6LCBXYWx0ZXI8

L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PHRpdGxlcz48dGl0bGU+QSBmcmFtZXdv

cmsgZm9yIGRlbGluZWF0aW5nIGJpb2dlb2dyYXBoaWNhbCByZWdpb25zIGJhc2VkIG9uIHNwZWNp

ZXMgZGlzdHJpYnV0aW9uczwvdGl0bGU+PHNlY29uZGFyeS10aXRsZT5Kb3VybmFsIG9mIEJpb2dl

b2dyYXBoeTwvc2Vjb25kYXJ5LXRpdGxlPjwvdGl0bGVzPjxwZXJpb2RpY2FsPjxmdWxsLXRpdGxl

PkpvdXJuYWwgb2YgQmlvZ2VvZ3JhcGh5PC9mdWxsLXRpdGxlPjwvcGVyaW9kaWNhbD48cGFnZXM+

MjAyOS0yMDUzPC9wYWdlcz48dm9sdW1lPjM3PC92b2x1bWU+PG51bWJlcj4xMTwvbnVtYmVyPjxk

YXRlcz48eWVhcj4yMDEwPC95ZWFyPjxwdWItZGF0ZXM+PGRhdGU+Tm92PC9kYXRlPjwvcHViLWRh

dGVzPjwvZGF0ZXM+PGlzYm4+MDMwNS0wMjcwPC9pc2JuPjxhY2Nlc3Npb24tbnVtPldPUzowMDAy

ODMwODQ2MDAwMDI8L2FjY2Vzc2lvbi1udW0+PHVybHM+PHJlbGF0ZWQtdXJscz48dXJsPiZsdDtH

byB0byBJU0kmZ3Q7Oi8vV09TOjAwMDI4MzA4NDYwMDAwMjwvdXJsPjwvcmVsYXRlZC11cmxzPjwv

dXJscz48ZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+MTAuMTExMS9qLjEzNjUtMjY5OS4yMDEwLjAy

Mzc1Lng8L2VsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjwvcmVjb3JkPjwvQ2l0ZT48Q2l0ZT48QXV0

aG9yPkhvbHQ8L0F1dGhvcj48WWVhcj4yMDEzPC9ZZWFyPjxSZWNOdW0+NDg3PC9SZWNOdW0+PHJl

Y29yZD48cmVjLW51bWJlcj40ODc8L3JlYy1udW1iZXI+PGZvcmVpZ24ta2V5cz48a2V5IGFwcD0i

RU4iIGRiLWlkPSIyOWU1MnY1Zm5kdnN3N2VzNXZicDl2NXd2YTV4cnB4eGE5NWUiIHRpbWVzdGFt

cD0iMTM4NDU1MzE5OCI+NDg3PC9rZXk+PC9mb3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9Ikpv

dXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBlPjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhv

cj5Ib2x0LCBCZW4gRy48L2F1dGhvcj48YXV0aG9yPkxlc3NhcmQsIEplYW4tUGhpbGlwcGU8L2F1

dGhvcj48YXV0aG9yPkJvcnJlZ2FhcmQsIE1pY2hhZWwgSy48L2F1dGhvcj48YXV0aG9yPkZyaXR6

LCBTdXNhbm5lIEEuPC9hdXRob3I+PGF1dGhvcj5BcmF1am8sIE1pZ3VlbCBCLjwvYXV0aG9yPjxh

dXRob3I+RGltaXRyb3YsIERpbWl0YXI8L2F1dGhvcj48YXV0aG9yPkZhYnJlLCBQaWVycmUtSGVu

cmk8L2F1dGhvcj48YXV0aG9yPkdyYWhhbSwgQ2F0aGVyaW5lIEguPC9hdXRob3I+PGF1dGhvcj5H

cmF2ZXMsIEdhcnkgUi48L2F1dGhvcj48YXV0aG9yPkpvbnNzb24sIEtudWQgQS48L2F1dGhvcj48

YXV0aG9yPk5vZ3Vlcy1CcmF2bywgRGF2aWQ8L2F1dGhvcj48YXV0aG9yPldhbmcsIFpoaWhlbmc8

L2F1dGhvcj48YXV0aG9yPldoaXR0YWtlciwgUm9iZXJ0IEouPC9hdXRob3I+PGF1dGhvcj5GamVs

ZHNhLCBKb248L2F1dGhvcj48YXV0aG9yPlJhaGJlaywgQ2Fyc3RlbjwvYXV0aG9yPjwvYXV0aG9y

cz48L2NvbnRyaWJ1dG9ycz48dGl0bGVzPjx0aXRsZT5BbiBVcGRhdGUgb2YgV2FsbGFjZSZhcG9z

O3MgWm9vZ2VvZ3JhcGhpYyBSZWdpb25zIG9mIHRoZSBXb3JsZDwvdGl0bGU+PHNlY29uZGFyeS10

aXRsZT5TY2llbmNlPC9zZWNvbmRhcnktdGl0bGU+PC90aXRsZXM+PHBlcmlvZGljYWw+PGZ1bGwt

dGl0bGU+U2NpZW5jZTwvZnVsbC10aXRsZT48L3BlcmlvZGljYWw+PHBhZ2VzPjc0LTc4PC9wYWdl

cz48dm9sdW1lPjMzOTwvdm9sdW1lPjxudW1iZXI+NjExNTwvbnVtYmVyPjxkYXRlcz48eWVhcj4y

MDEzPC95ZWFyPjxwdWItZGF0ZXM+PGRhdGU+SmFuIDQ8L2RhdGU+PC9wdWItZGF0ZXM+PC9kYXRl

cz48aXNibj4wMDM2LTgwNzU8L2lzYm4+PGFjY2Vzc2lvbi1udW0+V09TOjAwMDMxMjk4NTgwMDA1

NDwvYWNjZXNzaW9uLW51bT48dXJscz48cmVsYXRlZC11cmxzPjx1cmw+Jmx0O0dvIHRvIElTSSZn

dDs6Ly9XT1M6MDAwMzEyOTg1ODAwMDU0PC91cmw+PC9yZWxhdGVkLXVybHM+PC91cmxzPjxlbGVj

dHJvbmljLXJlc291cmNlLW51bT4xMC4xMTI2L3NjaWVuY2UuMTIyODI4MjwvZWxlY3Ryb25pYy1y

ZXNvdXJjZS1udW0+PC9yZWNvcmQ+PC9DaXRlPjwvRW5kTm90ZT5=

ADDIN EN.CITE.DATA 5-7, prioritize geographic areas for conservation ADDIN EN.CITE <EndNote><Cite><Author>Kremen</Author><Year>2008</Year><RecNum>5</RecNum><DisplayText><style face="superscript">8</style></DisplayText><record><rec-number>5</rec-number><foreign-keys><key app="EN" db-id="29e52v5fndvsw7es5vbp9v5wva5xrpxxa95e" timestamp="1379361300">5</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Kremen, C.</author><author>Cameron, A.</author><author>Moilanen, A.</author><author>Phillips, S. J.</author><author>Thomas, C. D.</author><author>Beentje, H.</author><author>Dransfield, J.</author><author>Fisher, B. L.</author><author>Glaw, F.</author><author>Good, T. C.</author><author>Harper, G. J.</author><author>Hijmans, R. J.</author><author>Lees, D. C.</author><author>Louis, E., Jr.</author><author>Nussbaum, R. A.</author><author>Raxworthy, C. J.</author><author>Razafimpahanana, A.</author><author>Schatz, G. E.</author><author>Vences, M.</author><author>Vieites, D. R.</author><author>Wright, P. C.</author><author>Zjhra, M. L.</author></authors></contributors><titles><title>Aligning conservation priorities across taxa in Madagascar with high-resolution planning tools</title><secondary-title>Science</secondary-title></titles><periodical><full-title>Science</full-title></periodical><pages>222-226</pages><volume>320</volume><number>5873</number><dates><year>2008</year><pub-dates><date>Apr 11</date></pub-dates></dates><isbn>0036-8075</isbn><accession-num>WOS:000254836700041</accession-num><urls><related-urls><url>&lt;Go to ISI&gt;://WOS:000254836700041</url></related-urls></urls><electronic-resource-num>10.1126/science.1155193</electronic-resource-num></record></Cite></EndNote>8, assess the effects of conservation measuresPEVuZE5vdGU+PENpdGU+PEF1dGhvcj5Ib2ZmbWFubjwvQXV0aG9yPjxZZWFyPjIwMTA8L1llYXI+

PFJlY051bT40ODY8L1JlY051bT48RGlzcGxheVRleHQ+PHN0eWxlIGZhY2U9InN1cGVyc2NyaXB0

Ij45PC9zdHlsZT48L0Rpc3BsYXlUZXh0PjxyZWNvcmQ+PHJlYy1udW1iZXI+NDg2PC9yZWMtbnVt

YmVyPjxmb3JlaWduLWtleXM+PGtleSBhcHA9IkVOIiBkYi1pZD0iMjllNTJ2NWZuZHZzdzdlczV2

YnA5djV3dmE1eHJweHhhOTVlIiB0aW1lc3RhbXA9IjEzODQ1NTMxMjkiPjQ4Njwva2V5PjwvZm9y

ZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJKb3VybmFsIEFydGljbGUiPjE3PC9yZWYtdHlwZT48

Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+SG9mZm1hbm4sIE1pY2hhZWw8L2F1dGhvcj48

YXV0aG9yPkhpbHRvbi1UYXlsb3IsIENyYWlnPC9hdXRob3I+PGF1dGhvcj5Bbmd1bG8sIEFyaWFk

bmU8L2F1dGhvcj48YXV0aG9yPkJvZWhtLCBNb25pa2E8L2F1dGhvcj48YXV0aG9yPkJyb29rcywg

VGhvbWFzIE0uPC9hdXRob3I+PGF1dGhvcj5CdXRjaGFydCwgU3R1YXJ0IEguIE0uPC9hdXRob3I+

PGF1dGhvcj5DYXJwZW50ZXIsIEtlbnQgRS48L2F1dGhvcj48YXV0aG9yPkNoYW5zb24sIEphbmlj

ZTwvYXV0aG9yPjxhdXRob3I+Q29sbGVuLCBCZW48L2F1dGhvcj48YXV0aG9yPkNveCwgTmVpbCBB

LjwvYXV0aG9yPjxhdXRob3I+RGFyd2FsbCwgV2lsbGlhbSBSLiBULjwvYXV0aG9yPjxhdXRob3I+

RHVsdnksIE5pY2hvbGFzIEsuPC9hdXRob3I+PGF1dGhvcj5IYXJyaXNvbiwgTHVjeSBSLjwvYXV0

aG9yPjxhdXRob3I+S2F0YXJpeWEsIFZpbmVldDwvYXV0aG9yPjxhdXRob3I+UG9sbG9jaywgQ2Fy

b2xpbmUgTS48L2F1dGhvcj48YXV0aG9yPlF1YWRlciwgU3VoZWw8L2F1dGhvcj48YXV0aG9yPlJp

Y2htYW4sIE5hZGlhIEkuPC9hdXRob3I+PGF1dGhvcj5Sb2RyaWd1ZXMsIEFuYSBTLiBMLjwvYXV0

aG9yPjxhdXRob3I+VG9nbmVsbGksIE1hcmNlbG8gRi48L2F1dGhvcj48YXV0aG9yPlZpZSwgSmVh

bi1DaHJpc3RvcGhlPC9hdXRob3I+PGF1dGhvcj5BZ3VpYXIsIEpvaG4gTS48L2F1dGhvcj48YXV0

aG9yPkFsbGVuLCBEYXZpZCBKLjwvYXV0aG9yPjxhdXRob3I+QWxsZW4sIEdlcmFsZCBSLjwvYXV0

aG9yPjxhdXRob3I+QW1vcmksIEdpb3Zhbm5pPC9hdXRob3I+PGF1dGhvcj5BbmFuamV2YSwgTmF0

YWxpYSBCLjwvYXV0aG9yPjxhdXRob3I+QW5kcmVvbmUsIEZyYW5jbzwvYXV0aG9yPjxhdXRob3I+

QW5kcmV3LCBQYXVsPC9hdXRob3I+PGF1dGhvcj5BcXVpbm8gT3J0aXosIEFpZGEgTHV6PC9hdXRo

b3I+PGF1dGhvcj5CYWlsbGllLCBKb25hdGhhbiBFLiBNLjwvYXV0aG9yPjxhdXRob3I+QmFsZGks

IFJpY2FyZG88L2F1dGhvcj48YXV0aG9yPkJlbGwsIEJlbiBELjwvYXV0aG9yPjxhdXRob3I+Qmlq

dSwgUy4gRC48L2F1dGhvcj48YXV0aG9yPkJpcmQsIEplcmVteSBQLjwvYXV0aG9yPjxhdXRob3I+

QmxhY2stRGVjaW1hLCBQYXRyaWNpYTwvYXV0aG9yPjxhdXRob3I+QmxhbmMsIEouIEp1bGlhbjwv

YXV0aG9yPjxhdXRob3I+Qm9sYW5vcywgRmVkZXJpY288L2F1dGhvcj48YXV0aG9yPkJvbGl2YXIt

RywgV2lsbWFyPC9hdXRob3I+PGF1dGhvcj5CdXJmaWVsZCwgSWFuIEouPC9hdXRob3I+PGF1dGhv

cj5CdXJ0b24sIEphbWVzIEEuPC9hdXRob3I+PGF1dGhvcj5DYXBwZXIsIERhdmlkIFIuPC9hdXRo

b3I+PGF1dGhvcj5DYXN0cm8sIEZlcm5hbmRvPC9hdXRob3I+PGF1dGhvcj5DYXR1bGxvLCBHaWFu

bHVjYTwvYXV0aG9yPjxhdXRob3I+Q2F2YW5hZ2gsIFJhY2hlbCBELjwvYXV0aG9yPjxhdXRob3I+

Q2hhbm5pbmcsIEFsYW48L2F1dGhvcj48YXV0aG9yPkNoYW8sIE5pbmcgTGFiYmlzaDwvYXV0aG9y

PjxhdXRob3I+Q2hlbmVyeSwgQW5uYSBNLjwvYXV0aG9yPjxhdXRob3I+Q2hpb3p6YSwgRmVkZXJp

Y2E8L2F1dGhvcj48YXV0aG9yPkNsYXVzbml0emVyLCBWaW9sYTwvYXV0aG9yPjxhdXRob3I+Q29s

bGFyLCBOaWdlbCBKLjwvYXV0aG9yPjxhdXRob3I+Q29sbGV0dCwgTGVhaCBDLjwvYXV0aG9yPjxh

dXRob3I+Q29sbGV0dGUsIEJydWNlIEIuPC9hdXRob3I+PGF1dGhvcj5GZXJuYW5kZXosIENsYXVk

aWEgRi4gQ29ydGV6PC9hdXRob3I+PGF1dGhvcj5DcmFpZywgTWF0dGhldyBULjwvYXV0aG9yPjxh

dXRob3I+Q3Jvc2J5LCBNaWNoYWVsIEouPC9hdXRob3I+PGF1dGhvcj5DdW1iZXJsaWRnZSwgTmVp

bDwvYXV0aG9yPjxhdXRob3I+Q3V0dGVsb2QsIEFubmFiZWxsZTwvYXV0aG9yPjxhdXRob3I+RGVy

b2NoZXIsIEFuZHJldyBFLjwvYXV0aG9yPjxhdXRob3I+RGllc21vcywgQXJ2aW4gQy48L2F1dGhv

cj48YXV0aG9yPkRvbmFsZHNvbiwgSm9obiBTLjwvYXV0aG9yPjxhdXRob3I+RHVja3dvcnRoLCBK

LiBXLjwvYXV0aG9yPjxhdXRob3I+RHV0c29uLCBHdXk8L2F1dGhvcj48YXV0aG9yPkR1dHRhLCBT

LiBLLjwvYXV0aG9yPjxhdXRob3I+RW1zbGllLCBSaWNoYXJkIEguPC9hdXRob3I+PGF1dGhvcj5G

YXJqb24sIEFsam9zPC9hdXRob3I+PGF1dGhvcj5Gb3dsZXIsIFNhcmFoPC9hdXRob3I+PGF1dGhv

cj5GcmV5aG9mLCBKb2VyZzwvYXV0aG9yPjxhdXRob3I+R2Fyc2hlbGlzLCBEYXZpZCBMLjwvYXV0

aG9yPjxhdXRob3I+R2VybGFjaCwgSnVzdGluPC9hdXRob3I+PGF1dGhvcj5Hb3dlciwgRGF2aWQg

Si48L2F1dGhvcj48YXV0aG9yPkdyYW50LCBUYW5kb3JhIEQuPC9hdXRob3I+PGF1dGhvcj5IYW1t

ZXJzb24sIEdlb2ZmcmV5IEEuPC9hdXRob3I+PGF1dGhvcj5IYXJyaXMsIFJpY2hhcmQgQi48L2F1

dGhvcj48YXV0aG9yPkhlYW5leSwgTGF3cmVuY2UgUi48L2F1dGhvcj48YXV0aG9yPkhlZGdlcywg

Uy4gQmxhaXI8L2F1dGhvcj48YXV0aG9yPkhlcm8sIEplYW4tTWFyYzwvYXV0aG9yPjxhdXRob3I+

SHVnaGVzLCBCYXo8L2F1dGhvcj48YXV0aG9yPkh1c3NhaW4sIFN5ZWQgQWludWw8L2F1dGhvcj48

YXV0aG9yPkljb2NoZWEgTSwgSmF2aWVyPC9hdXRob3I+PGF1dGhvcj5JbmdlciwgUm9iZXJ0IEYu

PC9hdXRob3I+PGF1dGhvcj5Jc2hpaSwgTm9idW88L2F1dGhvcj48YXV0aG9yPklza2FuZGFyLCBE

am9rbyBULjwvYXV0aG9yPjxhdXRob3I+SmVua2lucywgUmljaGFyZCBLLiBCLjwvYXV0aG9yPjxh

dXRob3I+S2FuZWtvLCBZb3NoaW88L2F1dGhvcj48YXV0aG9yPktvdHRlbGF0LCBNYXVyaWNlPC9h

dXRob3I+PGF1dGhvcj5Lb3ZhY3MsIEtpdCBNLjwvYXV0aG9yPjxhdXRob3I+S3V6bWluLCBTZXJn

aXVzIEwuPC9hdXRob3I+PGF1dGhvcj5MYSBNYXJjYSwgRW5yaXF1ZTwvYXV0aG9yPjxhdXRob3I+

TGFtb3JldXgsIEpvaG4gRi48L2F1dGhvcj48YXV0aG9yPkxhdSwgTWljaGFlbCBXLiBOLjwvYXV0

aG9yPjxhdXRob3I+TGF2aWxsYSwgRXN0ZWJhbiBPLjwvYXV0aG9yPjxhdXRob3I+TGV1cywgS3Jp

c3RpbjwvYXV0aG9yPjxhdXRob3I+TGV3aXNvbiwgUmViZWNjYSBMLjwvYXV0aG9yPjxhdXRob3I+

TGljaHRlbnN0ZWluLCBHYWJyaWVsYTwvYXV0aG9yPjxhdXRob3I+TGl2aW5nc3RvbmUsIFN1emFu

bmUgUi48L2F1dGhvcj48YXV0aG9yPkx1a29zY2hlaywgVmltb2tzYWxlaGk8L2F1dGhvcj48YXV0

aG9yPk1hbGxvbiwgRGF2aWQgUC48L2F1dGhvcj48YXV0aG9yPk1jR293YW4sIFBoaWxpcCBKLiBL

LjwvYXV0aG9yPjxhdXRob3I+TWNJdm9yLCBBbm5hPC9hdXRob3I+PGF1dGhvcj5Nb2VobG1hbiwg

UGF0cmljaWEgRC48L2F1dGhvcj48YXV0aG9yPk1vbHVyLCBTYW5qYXk8L2F1dGhvcj48YXV0aG9y

Pk11bm96IEFsb25zbywgQW50b25pbzwvYXV0aG9yPjxhdXRob3I+TXVzaWNrLCBKb2huIEEuPC9h

dXRob3I+PGF1dGhvcj5Ob3dlbGwsIEtyaXN0aW48L2F1dGhvcj48YXV0aG9yPk51c3NiYXVtLCBS

b25hbGQgQS48L2F1dGhvcj48YXV0aG9yPk9sZWNoLCBXYW5kYTwvYXV0aG9yPjxhdXRob3I+T3Js

b3YsIE5pa29sYXkgTC48L2F1dGhvcj48YXV0aG9yPlBhcGVuZnVzcywgVGhlb2RvcmUgSi48L2F1

dGhvcj48YXV0aG9yPlBhcnJhLU9sZWEsIEdhYnJpZWxhPC9hdXRob3I+PGF1dGhvcj5QZXJyaW4s

IFdpbGxpYW0gRi48L2F1dGhvcj48YXV0aG9yPlBvbGlkb3JvLCBCZXRoIEEuPC9hdXRob3I+PGF1

dGhvcj5Qb3Vya2F6ZW1pLCBNb2hhbW1hZDwvYXV0aG9yPjxhdXRob3I+UmFjZXksIFBhdWwgQS48

L2F1dGhvcj48YXV0aG9yPlJhZ2xlLCBKYW1lcyBTLjwvYXV0aG9yPjxhdXRob3I+UmFtLCBNYWxh

PC9hdXRob3I+PGF1dGhvcj5SYXRoYnVuLCBHYWxlbjwvYXV0aG9yPjxhdXRob3I+UmV5bm9sZHMs

IFJvYmVydCBQLjwvYXV0aG9yPjxhdXRob3I+UmhvZGluLCBBbmRlcnMgRy4gSi48L2F1dGhvcj48

YXV0aG9yPlJpY2hhcmRzLCBTdGVwaGVuIEouPC9hdXRob3I+PGF1dGhvcj5Sb2RyaWd1ZXosIExp

bHkgTy48L2F1dGhvcj48YXV0aG9yPlJvbiwgU2FudGlhZ28gUi48L2F1dGhvcj48YXV0aG9yPlJv

bmRpbmluaSwgQ2FybG88L2F1dGhvcj48YXV0aG9yPlJ5bGFuZHMsIEFudGhvbnkgQi48L2F1dGhv

cj48YXV0aG9yPmRlIE1pdGNoZXNvbiwgWXZvbm5lIFNhZG92eTwvYXV0aG9yPjxhdXRob3I+U2Fu

Y2lhbmdjbywgSm9ubmVsbCBDLjwvYXV0aG9yPjxhdXRob3I+U2FuZGVycywgS2F0ZSBMLjwvYXV0

aG9yPjxhdXRob3I+U2FudG9zLUJhcnJlcmEsIEdlb3JnaW5hPC9hdXRob3I+PGF1dGhvcj5TY2hp

cHBlciwgSmFuPC9hdXRob3I+PGF1dGhvcj5TZWxmLVN1bGxpdmFuLCBDYXJ5bjwvYXV0aG9yPjxh

dXRob3I+U2hpLCBZaWNodWFuPC9hdXRob3I+PGF1dGhvcj5TaG9lbWFrZXIsIEFsYW48L2F1dGhv

cj48YXV0aG9yPlNob3J0LCBGcmVkZXJpY2sgVC48L2F1dGhvcj48YXV0aG9yPlNpbGxlcm8tWnVi

aXJpLCBDbGF1ZGlvPC9hdXRob3I+PGF1dGhvcj5TaWx2YW5vLCBEZWJvcmEgTC48L2F1dGhvcj48

YXV0aG9yPlNtaXRoLCBLZXZpbiBHLjwvYXV0aG9yPjxhdXRob3I+U21pdGgsIEFuZHJldyBULjwv

YXV0aG9yPjxhdXRob3I+U25vZWtzLCBKb3M8L2F1dGhvcj48YXV0aG9yPlN0YXR0ZXJzZmllbGQs

IEFsaXNvbiBKLjwvYXV0aG9yPjxhdXRob3I+U3ltZXMsIEFuZHJldyBKLjwvYXV0aG9yPjxhdXRo

b3I+VGFiZXIsIEFuZHJldyBCLjwvYXV0aG9yPjxhdXRob3I+VGFsdWtkYXIsIEJpYmhhYiBLLjwv

YXV0aG9yPjxhdXRob3I+VGVtcGxlLCBIZWxlbiBKLjwvYXV0aG9yPjxhdXRob3I+VGltbWlucywg

Um9iPC9hdXRob3I+PGF1dGhvcj5Ub2JpYXMsIEpvc2VwaCBBLjwvYXV0aG9yPjxhdXRob3I+VHN5

dHN1bGluYSwgS2F0ZXJpbmE8L2F1dGhvcj48YXV0aG9yPlR3ZWRkbGUsIERlbmlzPC9hdXRob3I+

PGF1dGhvcj5VYmVkYSwgQ2FybWVuPC9hdXRob3I+PGF1dGhvcj5WYWxlbnRpLCBTYXJhaCBWLjwv

YXV0aG9yPjxhdXRob3I+dmFuIERpamssIFBldGVyIFBhdWw8L2F1dGhvcj48YXV0aG9yPlZlaWdh

LCBMaXphIE0uPC9hdXRob3I+PGF1dGhvcj5WZWxvc28sIEFsYmVydG88L2F1dGhvcj48YXV0aG9y

PldlZ2UsIERhdmlkIEMuPC9hdXRob3I+PGF1dGhvcj5XaWxraW5zb24sIE1hcms8L2F1dGhvcj48

YXV0aG9yPldpbGxpYW1zb24sIEVsaXphYmV0aCBBLjwvYXV0aG9yPjxhdXRob3I+WGllLCBGZW5n

PC9hdXRob3I+PGF1dGhvcj5Zb3VuZywgQnJ1Y2UgRS48L2F1dGhvcj48YXV0aG9yPkFrY2FrYXlh

LCBILiBSZXNpdDwvYXV0aG9yPjxhdXRob3I+QmVubnVuLCBMZW9uPC9hdXRob3I+PGF1dGhvcj5C

bGFja2J1cm4sIFRpbSBNLjwvYXV0aG9yPjxhdXRob3I+Qm9pdGFuaSwgTHVpZ2k8L2F1dGhvcj48

YXV0aG9yPkR1YmxpbiwgSG9sbHkgVC48L2F1dGhvcj48YXV0aG9yPmRhIEZvbnNlY2EsIEd1c3Rh

dm8gQS4gQi48L2F1dGhvcj48YXV0aG9yPkdhc2NvbiwgQ2xhdWRlPC9hdXRob3I+PGF1dGhvcj5M

YWNoZXIsIFRob21hcyBFLiwgSnIuPC9hdXRob3I+PGF1dGhvcj5NYWNlLCBHZW9yZ2luYSBNLjwv

YXV0aG9yPjxhdXRob3I+TWFpbmthLCBTdXNhbiBBLjwvYXV0aG9yPjxhdXRob3I+TWNOZWVseSwg

SmVmZmVyeSBBLjwvYXV0aG9yPjxhdXRob3I+TWl0dGVybWVpZXIsIFJ1c3NlbGwgQS48L2F1dGhv

cj48YXV0aG9yPlJlaWQsIEdvcmRvbiBNY0dyZWdvcjwvYXV0aG9yPjxhdXRob3I+UGF1bCBSb2Ry

aWd1ZXosIEpvbjwvYXV0aG9yPjxhdXRob3I+Um9zZW5iZXJnLCBBbmRyZXcgQS48L2F1dGhvcj48

YXV0aG9yPlNhbXdheXMsIE1pY2hhZWwgSi48L2F1dGhvcj48YXV0aG9yPlNtYXJ0LCBKYW5lPC9h

dXRob3I+PGF1dGhvcj5TdGVpbiwgQnJ1Y2UgQS48L2F1dGhvcj48YXV0aG9yPlN0dWFydCwgU2lt

b24gTi48L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PHRpdGxlcz48dGl0bGU+VGhl

IEltcGFjdCBvZiBDb25zZXJ2YXRpb24gb24gdGhlIFN0YXR1cyBvZiB0aGUgV29ybGQmYXBvcztz

IFZlcnRlYnJhdGVzPC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPlNjaWVuY2U8L3NlY29uZGFyeS10

aXRsZT48L3RpdGxlcz48cGVyaW9kaWNhbD48ZnVsbC10aXRsZT5TY2llbmNlPC9mdWxsLXRpdGxl

PjwvcGVyaW9kaWNhbD48cGFnZXM+MTUwMy0xNTA5PC9wYWdlcz48dm9sdW1lPjMzMDwvdm9sdW1l

PjxudW1iZXI+NjAxMDwvbnVtYmVyPjxkYXRlcz48eWVhcj4yMDEwPC95ZWFyPjxwdWItZGF0ZXM+

PGRhdGU+RGVjIDEwPC9kYXRlPjwvcHViLWRhdGVzPjwvZGF0ZXM+PGlzYm4+MDAzNi04MDc1PC9p

c2JuPjxhY2Nlc3Npb24tbnVtPldPUzowMDAyODUxNTM1MDAwNTU8L2FjY2Vzc2lvbi1udW0+PHVy

bHM+PHJlbGF0ZWQtdXJscz48dXJsPiZsdDtHbyB0byBJU0kmZ3Q7Oi8vV09TOjAwMDI4NTE1MzUw

MDA1NTwvdXJsPjwvcmVsYXRlZC11cmxzPjwvdXJscz48ZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+

MTAuMTEyNi9zY2llbmNlLjExOTQ0NDI8L2VsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjwvcmVjb3Jk

PjwvQ2l0ZT48L0VuZE5vdGU+AG==

ADDIN EN.CITE PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5Ib2ZmbWFubjwvQXV0aG9yPjxZZWFyPjIwMTA8L1llYXI+

PFJlY051bT40ODY8L1JlY051bT48RGlzcGxheVRleHQ+PHN0eWxlIGZhY2U9InN1cGVyc2NyaXB0

Ij45PC9zdHlsZT48L0Rpc3BsYXlUZXh0PjxyZWNvcmQ+PHJlYy1udW1iZXI+NDg2PC9yZWMtbnVt

YmVyPjxmb3JlaWduLWtleXM+PGtleSBhcHA9IkVOIiBkYi1pZD0iMjllNTJ2NWZuZHZzdzdlczV2

YnA5djV3dmE1eHJweHhhOTVlIiB0aW1lc3RhbXA9IjEzODQ1NTMxMjkiPjQ4Njwva2V5PjwvZm9y

ZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJKb3VybmFsIEFydGljbGUiPjE3PC9yZWYtdHlwZT48

Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+SG9mZm1hbm4sIE1pY2hhZWw8L2F1dGhvcj48

YXV0aG9yPkhpbHRvbi1UYXlsb3IsIENyYWlnPC9hdXRob3I+PGF1dGhvcj5Bbmd1bG8sIEFyaWFk

bmU8L2F1dGhvcj48YXV0aG9yPkJvZWhtLCBNb25pa2E8L2F1dGhvcj48YXV0aG9yPkJyb29rcywg

VGhvbWFzIE0uPC9hdXRob3I+PGF1dGhvcj5CdXRjaGFydCwgU3R1YXJ0IEguIE0uPC9hdXRob3I+

PGF1dGhvcj5DYXJwZW50ZXIsIEtlbnQgRS48L2F1dGhvcj48YXV0aG9yPkNoYW5zb24sIEphbmlj

ZTwvYXV0aG9yPjxhdXRob3I+Q29sbGVuLCBCZW48L2F1dGhvcj48YXV0aG9yPkNveCwgTmVpbCBB

LjwvYXV0aG9yPjxhdXRob3I+RGFyd2FsbCwgV2lsbGlhbSBSLiBULjwvYXV0aG9yPjxhdXRob3I+

RHVsdnksIE5pY2hvbGFzIEsuPC9hdXRob3I+PGF1dGhvcj5IYXJyaXNvbiwgTHVjeSBSLjwvYXV0

aG9yPjxhdXRob3I+S2F0YXJpeWEsIFZpbmVldDwvYXV0aG9yPjxhdXRob3I+UG9sbG9jaywgQ2Fy

b2xpbmUgTS48L2F1dGhvcj48YXV0aG9yPlF1YWRlciwgU3VoZWw8L2F1dGhvcj48YXV0aG9yPlJp

Y2htYW4sIE5hZGlhIEkuPC9hdXRob3I+PGF1dGhvcj5Sb2RyaWd1ZXMsIEFuYSBTLiBMLjwvYXV0

aG9yPjxhdXRob3I+VG9nbmVsbGksIE1hcmNlbG8gRi48L2F1dGhvcj48YXV0aG9yPlZpZSwgSmVh

bi1DaHJpc3RvcGhlPC9hdXRob3I+PGF1dGhvcj5BZ3VpYXIsIEpvaG4gTS48L2F1dGhvcj48YXV0

aG9yPkFsbGVuLCBEYXZpZCBKLjwvYXV0aG9yPjxhdXRob3I+QWxsZW4sIEdlcmFsZCBSLjwvYXV0

aG9yPjxhdXRob3I+QW1vcmksIEdpb3Zhbm5pPC9hdXRob3I+PGF1dGhvcj5BbmFuamV2YSwgTmF0

YWxpYSBCLjwvYXV0aG9yPjxhdXRob3I+QW5kcmVvbmUsIEZyYW5jbzwvYXV0aG9yPjxhdXRob3I+

QW5kcmV3LCBQYXVsPC9hdXRob3I+PGF1dGhvcj5BcXVpbm8gT3J0aXosIEFpZGEgTHV6PC9hdXRo

b3I+PGF1dGhvcj5CYWlsbGllLCBKb25hdGhhbiBFLiBNLjwvYXV0aG9yPjxhdXRob3I+QmFsZGks

IFJpY2FyZG88L2F1dGhvcj48YXV0aG9yPkJlbGwsIEJlbiBELjwvYXV0aG9yPjxhdXRob3I+Qmlq

dSwgUy4gRC48L2F1dGhvcj48YXV0aG9yPkJpcmQsIEplcmVteSBQLjwvYXV0aG9yPjxhdXRob3I+

QmxhY2stRGVjaW1hLCBQYXRyaWNpYTwvYXV0aG9yPjxhdXRob3I+QmxhbmMsIEouIEp1bGlhbjwv

YXV0aG9yPjxhdXRob3I+Qm9sYW5vcywgRmVkZXJpY288L2F1dGhvcj48YXV0aG9yPkJvbGl2YXIt

RywgV2lsbWFyPC9hdXRob3I+PGF1dGhvcj5CdXJmaWVsZCwgSWFuIEouPC9hdXRob3I+PGF1dGhv

cj5CdXJ0b24sIEphbWVzIEEuPC9hdXRob3I+PGF1dGhvcj5DYXBwZXIsIERhdmlkIFIuPC9hdXRo

b3I+PGF1dGhvcj5DYXN0cm8sIEZlcm5hbmRvPC9hdXRob3I+PGF1dGhvcj5DYXR1bGxvLCBHaWFu

bHVjYTwvYXV0aG9yPjxhdXRob3I+Q2F2YW5hZ2gsIFJhY2hlbCBELjwvYXV0aG9yPjxhdXRob3I+

Q2hhbm5pbmcsIEFsYW48L2F1dGhvcj48YXV0aG9yPkNoYW8sIE5pbmcgTGFiYmlzaDwvYXV0aG9y

PjxhdXRob3I+Q2hlbmVyeSwgQW5uYSBNLjwvYXV0aG9yPjxhdXRob3I+Q2hpb3p6YSwgRmVkZXJp

Y2E8L2F1dGhvcj48YXV0aG9yPkNsYXVzbml0emVyLCBWaW9sYTwvYXV0aG9yPjxhdXRob3I+Q29s

bGFyLCBOaWdlbCBKLjwvYXV0aG9yPjxhdXRob3I+Q29sbGV0dCwgTGVhaCBDLjwvYXV0aG9yPjxh

dXRob3I+Q29sbGV0dGUsIEJydWNlIEIuPC9hdXRob3I+PGF1dGhvcj5GZXJuYW5kZXosIENsYXVk

aWEgRi4gQ29ydGV6PC9hdXRob3I+PGF1dGhvcj5DcmFpZywgTWF0dGhldyBULjwvYXV0aG9yPjxh

dXRob3I+Q3Jvc2J5LCBNaWNoYWVsIEouPC9hdXRob3I+PGF1dGhvcj5DdW1iZXJsaWRnZSwgTmVp

bDwvYXV0aG9yPjxhdXRob3I+Q3V0dGVsb2QsIEFubmFiZWxsZTwvYXV0aG9yPjxhdXRob3I+RGVy

b2NoZXIsIEFuZHJldyBFLjwvYXV0aG9yPjxhdXRob3I+RGllc21vcywgQXJ2aW4gQy48L2F1dGhv

cj48YXV0aG9yPkRvbmFsZHNvbiwgSm9obiBTLjwvYXV0aG9yPjxhdXRob3I+RHVja3dvcnRoLCBK

LiBXLjwvYXV0aG9yPjxhdXRob3I+RHV0c29uLCBHdXk8L2F1dGhvcj48YXV0aG9yPkR1dHRhLCBT

LiBLLjwvYXV0aG9yPjxhdXRob3I+RW1zbGllLCBSaWNoYXJkIEguPC9hdXRob3I+PGF1dGhvcj5G

YXJqb24sIEFsam9zPC9hdXRob3I+PGF1dGhvcj5Gb3dsZXIsIFNhcmFoPC9hdXRob3I+PGF1dGhv

cj5GcmV5aG9mLCBKb2VyZzwvYXV0aG9yPjxhdXRob3I+R2Fyc2hlbGlzLCBEYXZpZCBMLjwvYXV0

aG9yPjxhdXRob3I+R2VybGFjaCwgSnVzdGluPC9hdXRob3I+PGF1dGhvcj5Hb3dlciwgRGF2aWQg

Si48L2F1dGhvcj48YXV0aG9yPkdyYW50LCBUYW5kb3JhIEQuPC9hdXRob3I+PGF1dGhvcj5IYW1t

ZXJzb24sIEdlb2ZmcmV5IEEuPC9hdXRob3I+PGF1dGhvcj5IYXJyaXMsIFJpY2hhcmQgQi48L2F1

dGhvcj48YXV0aG9yPkhlYW5leSwgTGF3cmVuY2UgUi48L2F1dGhvcj48YXV0aG9yPkhlZGdlcywg

Uy4gQmxhaXI8L2F1dGhvcj48YXV0aG9yPkhlcm8sIEplYW4tTWFyYzwvYXV0aG9yPjxhdXRob3I+

SHVnaGVzLCBCYXo8L2F1dGhvcj48YXV0aG9yPkh1c3NhaW4sIFN5ZWQgQWludWw8L2F1dGhvcj48

YXV0aG9yPkljb2NoZWEgTSwgSmF2aWVyPC9hdXRob3I+PGF1dGhvcj5JbmdlciwgUm9iZXJ0IEYu

PC9hdXRob3I+PGF1dGhvcj5Jc2hpaSwgTm9idW88L2F1dGhvcj48YXV0aG9yPklza2FuZGFyLCBE

am9rbyBULjwvYXV0aG9yPjxhdXRob3I+SmVua2lucywgUmljaGFyZCBLLiBCLjwvYXV0aG9yPjxh

dXRob3I+S2FuZWtvLCBZb3NoaW88L2F1dGhvcj48YXV0aG9yPktvdHRlbGF0LCBNYXVyaWNlPC9h

dXRob3I+PGF1dGhvcj5Lb3ZhY3MsIEtpdCBNLjwvYXV0aG9yPjxhdXRob3I+S3V6bWluLCBTZXJn

aXVzIEwuPC9hdXRob3I+PGF1dGhvcj5MYSBNYXJjYSwgRW5yaXF1ZTwvYXV0aG9yPjxhdXRob3I+

TGFtb3JldXgsIEpvaG4gRi48L2F1dGhvcj48YXV0aG9yPkxhdSwgTWljaGFlbCBXLiBOLjwvYXV0

aG9yPjxhdXRob3I+TGF2aWxsYSwgRXN0ZWJhbiBPLjwvYXV0aG9yPjxhdXRob3I+TGV1cywgS3Jp

c3RpbjwvYXV0aG9yPjxhdXRob3I+TGV3aXNvbiwgUmViZWNjYSBMLjwvYXV0aG9yPjxhdXRob3I+

TGljaHRlbnN0ZWluLCBHYWJyaWVsYTwvYXV0aG9yPjxhdXRob3I+TGl2aW5nc3RvbmUsIFN1emFu

bmUgUi48L2F1dGhvcj48YXV0aG9yPkx1a29zY2hlaywgVmltb2tzYWxlaGk8L2F1dGhvcj48YXV0

aG9yPk1hbGxvbiwgRGF2aWQgUC48L2F1dGhvcj48YXV0aG9yPk1jR293YW4sIFBoaWxpcCBKLiBL

LjwvYXV0aG9yPjxhdXRob3I+TWNJdm9yLCBBbm5hPC9hdXRob3I+PGF1dGhvcj5Nb2VobG1hbiwg

UGF0cmljaWEgRC48L2F1dGhvcj48YXV0aG9yPk1vbHVyLCBTYW5qYXk8L2F1dGhvcj48YXV0aG9y

Pk11bm96IEFsb25zbywgQW50b25pbzwvYXV0aG9yPjxhdXRob3I+TXVzaWNrLCBKb2huIEEuPC9h

dXRob3I+PGF1dGhvcj5Ob3dlbGwsIEtyaXN0aW48L2F1dGhvcj48YXV0aG9yPk51c3NiYXVtLCBS

b25hbGQgQS48L2F1dGhvcj48YXV0aG9yPk9sZWNoLCBXYW5kYTwvYXV0aG9yPjxhdXRob3I+T3Js

b3YsIE5pa29sYXkgTC48L2F1dGhvcj48YXV0aG9yPlBhcGVuZnVzcywgVGhlb2RvcmUgSi48L2F1

dGhvcj48YXV0aG9yPlBhcnJhLU9sZWEsIEdhYnJpZWxhPC9hdXRob3I+PGF1dGhvcj5QZXJyaW4s

IFdpbGxpYW0gRi48L2F1dGhvcj48YXV0aG9yPlBvbGlkb3JvLCBCZXRoIEEuPC9hdXRob3I+PGF1

dGhvcj5Qb3Vya2F6ZW1pLCBNb2hhbW1hZDwvYXV0aG9yPjxhdXRob3I+UmFjZXksIFBhdWwgQS48

L2F1dGhvcj48YXV0aG9yPlJhZ2xlLCBKYW1lcyBTLjwvYXV0aG9yPjxhdXRob3I+UmFtLCBNYWxh

PC9hdXRob3I+PGF1dGhvcj5SYXRoYnVuLCBHYWxlbjwvYXV0aG9yPjxhdXRob3I+UmV5bm9sZHMs

IFJvYmVydCBQLjwvYXV0aG9yPjxhdXRob3I+UmhvZGluLCBBbmRlcnMgRy4gSi48L2F1dGhvcj48

YXV0aG9yPlJpY2hhcmRzLCBTdGVwaGVuIEouPC9hdXRob3I+PGF1dGhvcj5Sb2RyaWd1ZXosIExp

bHkgTy48L2F1dGhvcj48YXV0aG9yPlJvbiwgU2FudGlhZ28gUi48L2F1dGhvcj48YXV0aG9yPlJv

bmRpbmluaSwgQ2FybG88L2F1dGhvcj48YXV0aG9yPlJ5bGFuZHMsIEFudGhvbnkgQi48L2F1dGhv

cj48YXV0aG9yPmRlIE1pdGNoZXNvbiwgWXZvbm5lIFNhZG92eTwvYXV0aG9yPjxhdXRob3I+U2Fu

Y2lhbmdjbywgSm9ubmVsbCBDLjwvYXV0aG9yPjxhdXRob3I+U2FuZGVycywgS2F0ZSBMLjwvYXV0

aG9yPjxhdXRob3I+U2FudG9zLUJhcnJlcmEsIEdlb3JnaW5hPC9hdXRob3I+PGF1dGhvcj5TY2hp

cHBlciwgSmFuPC9hdXRob3I+PGF1dGhvcj5TZWxmLVN1bGxpdmFuLCBDYXJ5bjwvYXV0aG9yPjxh

dXRob3I+U2hpLCBZaWNodWFuPC9hdXRob3I+PGF1dGhvcj5TaG9lbWFrZXIsIEFsYW48L2F1dGhv

cj48YXV0aG9yPlNob3J0LCBGcmVkZXJpY2sgVC48L2F1dGhvcj48YXV0aG9yPlNpbGxlcm8tWnVi

aXJpLCBDbGF1ZGlvPC9hdXRob3I+PGF1dGhvcj5TaWx2YW5vLCBEZWJvcmEgTC48L2F1dGhvcj48

YXV0aG9yPlNtaXRoLCBLZXZpbiBHLjwvYXV0aG9yPjxhdXRob3I+U21pdGgsIEFuZHJldyBULjwv

YXV0aG9yPjxhdXRob3I+U25vZWtzLCBKb3M8L2F1dGhvcj48YXV0aG9yPlN0YXR0ZXJzZmllbGQs

IEFsaXNvbiBKLjwvYXV0aG9yPjxhdXRob3I+U3ltZXMsIEFuZHJldyBKLjwvYXV0aG9yPjxhdXRo

b3I+VGFiZXIsIEFuZHJldyBCLjwvYXV0aG9yPjxhdXRob3I+VGFsdWtkYXIsIEJpYmhhYiBLLjwv

YXV0aG9yPjxhdXRob3I+VGVtcGxlLCBIZWxlbiBKLjwvYXV0aG9yPjxhdXRob3I+VGltbWlucywg

Um9iPC9hdXRob3I+PGF1dGhvcj5Ub2JpYXMsIEpvc2VwaCBBLjwvYXV0aG9yPjxhdXRob3I+VHN5

dHN1bGluYSwgS2F0ZXJpbmE8L2F1dGhvcj48YXV0aG9yPlR3ZWRkbGUsIERlbmlzPC9hdXRob3I+

PGF1dGhvcj5VYmVkYSwgQ2FybWVuPC9hdXRob3I+PGF1dGhvcj5WYWxlbnRpLCBTYXJhaCBWLjwv

YXV0aG9yPjxhdXRob3I+dmFuIERpamssIFBldGVyIFBhdWw8L2F1dGhvcj48YXV0aG9yPlZlaWdh

LCBMaXphIE0uPC9hdXRob3I+PGF1dGhvcj5WZWxvc28sIEFsYmVydG88L2F1dGhvcj48YXV0aG9y

PldlZ2UsIERhdmlkIEMuPC9hdXRob3I+PGF1dGhvcj5XaWxraW5zb24sIE1hcms8L2F1dGhvcj48

YXV0aG9yPldpbGxpYW1zb24sIEVsaXphYmV0aCBBLjwvYXV0aG9yPjxhdXRob3I+WGllLCBGZW5n

PC9hdXRob3I+PGF1dGhvcj5Zb3VuZywgQnJ1Y2UgRS48L2F1dGhvcj48YXV0aG9yPkFrY2FrYXlh

LCBILiBSZXNpdDwvYXV0aG9yPjxhdXRob3I+QmVubnVuLCBMZW9uPC9hdXRob3I+PGF1dGhvcj5C

bGFja2J1cm4sIFRpbSBNLjwvYXV0aG9yPjxhdXRob3I+Qm9pdGFuaSwgTHVpZ2k8L2F1dGhvcj48

YXV0aG9yPkR1YmxpbiwgSG9sbHkgVC48L2F1dGhvcj48YXV0aG9yPmRhIEZvbnNlY2EsIEd1c3Rh

dm8gQS4gQi48L2F1dGhvcj48YXV0aG9yPkdhc2NvbiwgQ2xhdWRlPC9hdXRob3I+PGF1dGhvcj5M

YWNoZXIsIFRob21hcyBFLiwgSnIuPC9hdXRob3I+PGF1dGhvcj5NYWNlLCBHZW9yZ2luYSBNLjwv

YXV0aG9yPjxhdXRob3I+TWFpbmthLCBTdXNhbiBBLjwvYXV0aG9yPjxhdXRob3I+TWNOZWVseSwg

SmVmZmVyeSBBLjwvYXV0aG9yPjxhdXRob3I+TWl0dGVybWVpZXIsIFJ1c3NlbGwgQS48L2F1dGhv

cj48YXV0aG9yPlJlaWQsIEdvcmRvbiBNY0dyZWdvcjwvYXV0aG9yPjxhdXRob3I+UGF1bCBSb2Ry

aWd1ZXosIEpvbjwvYXV0aG9yPjxhdXRob3I+Um9zZW5iZXJnLCBBbmRyZXcgQS48L2F1dGhvcj48

YXV0aG9yPlNhbXdheXMsIE1pY2hhZWwgSi48L2F1dGhvcj48YXV0aG9yPlNtYXJ0LCBKYW5lPC9h

dXRob3I+PGF1dGhvcj5TdGVpbiwgQnJ1Y2UgQS48L2F1dGhvcj48YXV0aG9yPlN0dWFydCwgU2lt

b24gTi48L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PHRpdGxlcz48dGl0bGU+VGhl

IEltcGFjdCBvZiBDb25zZXJ2YXRpb24gb24gdGhlIFN0YXR1cyBvZiB0aGUgV29ybGQmYXBvcztz

IFZlcnRlYnJhdGVzPC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPlNjaWVuY2U8L3NlY29uZGFyeS10

aXRsZT48L3RpdGxlcz48cGVyaW9kaWNhbD48ZnVsbC10aXRsZT5TY2llbmNlPC9mdWxsLXRpdGxl

PjwvcGVyaW9kaWNhbD48cGFnZXM+MTUwMy0xNTA5PC9wYWdlcz48dm9sdW1lPjMzMDwvdm9sdW1l

PjxudW1iZXI+NjAxMDwvbnVtYmVyPjxkYXRlcz48eWVhcj4yMDEwPC95ZWFyPjxwdWItZGF0ZXM+

PGRhdGU+RGVjIDEwPC9kYXRlPjwvcHViLWRhdGVzPjwvZGF0ZXM+PGlzYm4+MDAzNi04MDc1PC9p

c2JuPjxhY2Nlc3Npb24tbnVtPldPUzowMDAyODUxNTM1MDAwNTU8L2FjY2Vzc2lvbi1udW0+PHVy

bHM+PHJlbGF0ZWQtdXJscz48dXJsPiZsdDtHbyB0byBJU0kmZ3Q7Oi8vV09TOjAwMDI4NTE1MzUw

MDA1NTwvdXJsPjwvcmVsYXRlZC11cmxzPjwvdXJscz48ZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+

MTAuMTEyNi9zY2llbmNlLjExOTQ0NDI8L2VsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjwvcmVjb3Jk

PjwvQ2l0ZT48L0VuZE5vdGU+AG==

ADDIN EN.CITE.DATA 9, and/or delimit centers of speciation or extinction. These indices, however, are not independent of one another. For instance, species turnover across an area is closely related to the numbers of endemic species within each geographical unit or community, which in turn is often used to estimate areas of endemism (AOE). These represent the coincident restrictedness of taxaPEVuZE5vdGU+PENpdGU+PEF1dGhvcj5QbGF0bmljazwvQXV0aG9yPjxZZWFyPjE5OTE8L1llYXI+

PFJlY051bT41MDg8L1JlY051bT48RGlzcGxheVRleHQ+PHN0eWxlIGZhY2U9InN1cGVyc2NyaXB0

Ij4xMC0xMjwvc3R5bGU+PC9EaXNwbGF5VGV4dD48cmVjb3JkPjxyZWMtbnVtYmVyPjUwODwvcmVj

LW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9IjI5ZTUydjVmbmR2c3c3

ZXM1dmJwOXY1d3ZhNXhycHh4YTk1ZSIgdGltZXN0YW1wPSIxMzg0NTU0MzA0Ij41MDg8L2tleT48

L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwvcmVmLXR5

cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPlBsYXRuaWNrLCBOLiBJLjwvYXV0aG9y

PjwvYXV0aG9ycz48L2NvbnRyaWJ1dG9ycz48dGl0bGVzPjx0aXRsZT5PbiBhcmVhcyBvZiBlbmRl

bWlzbTwvdGl0bGU+PHNlY29uZGFyeS10aXRsZT5BdXN0cmFsaWFuIFN5c3RlbWF0aWMgQm90YW55

PC9zZWNvbmRhcnktdGl0bGU+PC90aXRsZXM+PHBlcmlvZGljYWw+PGZ1bGwtdGl0bGU+QXVzdHJh

bGlhbiBTeXN0ZW1hdGljIEJvdGFueTwvZnVsbC10aXRsZT48L3BlcmlvZGljYWw+PHBhZ2VzPjJw

cC4tMnBwLjwvcGFnZXM+PHZvbHVtZT40PC92b2x1bWU+PG51bWJlcj4xPC9udW1iZXI+PGRhdGVz

Pjx5ZWFyPjE5OTE8L3llYXI+PHB1Yi1kYXRlcz48ZGF0ZT4xOTkxPC9kYXRlPjwvcHViLWRhdGVz

PjwvZGF0ZXM+PGlzYm4+MTAzMC0xODg3PC9pc2JuPjxhY2Nlc3Npb24tbnVtPlpPT1JFQzpaT09S

MTI4MDAwMzc4MTI8L2FjY2Vzc2lvbi1udW0+PHVybHM+PHJlbGF0ZWQtdXJscz48dXJsPiZsdDtH

byB0byBJU0kmZ3Q7Oi8vWk9PUkVDOlpPT1IxMjgwMDAzNzgxMjwvdXJsPjwvcmVsYXRlZC11cmxz

PjwvdXJscz48L3JlY29yZD48L0NpdGU+PENpdGU+PEF1dGhvcj5IYXJvbGQ8L0F1dGhvcj48WWVh

cj4xOTk0PC9ZZWFyPjxSZWNOdW0+NDgzPC9SZWNOdW0+PHJlY29yZD48cmVjLW51bWJlcj40ODM8

L3JlYy1udW1iZXI+PGZvcmVpZ24ta2V5cz48a2V5IGFwcD0iRU4iIGRiLWlkPSIyOWU1MnY1Zm5k

dnN3N2VzNXZicDl2NXd2YTV4cnB4eGE5NWUiIHRpbWVzdGFtcD0iMTM4NDU1Mjk3MCI+NDgzPC9r

ZXk+PC9mb3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3Jl

Zi10eXBlPjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5IYXJvbGQsIEEuIFMuPC9hdXRo

b3I+PGF1dGhvcj5Nb29pLCBSLiBELjwvYXV0aG9yPjwvYXV0aG9ycz48L2NvbnRyaWJ1dG9ycz48

dGl0bGVzPjx0aXRsZT5BcmVhcyBvZiBlbmRlbWlzbTogZGVmaW5pdGlvbiBhbmQgcmVjb2duaXRp

b24gY3JpdGVyaWE8L3RpdGxlPjxzZWNvbmRhcnktdGl0bGU+U3lzdGVtYXRpYyBCaW9sb2d5PC9z

ZWNvbmRhcnktdGl0bGU+PC90aXRsZXM+PHBlcmlvZGljYWw+PGZ1bGwtdGl0bGU+U3lzdGVtYXRp

YyBCaW9sb2d5PC9mdWxsLXRpdGxlPjwvcGVyaW9kaWNhbD48cGFnZXM+MjYxLTI2NjwvcGFnZXM+

PHZvbHVtZT40Mzwvdm9sdW1lPjxudW1iZXI+MjwvbnVtYmVyPjxkYXRlcz48eWVhcj4xOTk0PC95

ZWFyPjxwdWItZGF0ZXM+PGRhdGU+SnVuPC9kYXRlPjwvcHViLWRhdGVzPjwvZGF0ZXM+PGlzYm4+

MTA2My01MTU3PC9pc2JuPjxhY2Nlc3Npb24tbnVtPldPUzpBMTk5NFBEODQwMDAwMDg8L2FjY2Vz

c2lvbi1udW0+PHVybHM+PHJlbGF0ZWQtdXJscz48dXJsPiZsdDtHbyB0byBJU0kmZ3Q7Oi8vV09T

OkExOTk0UEQ4NDAwMDAwODwvdXJsPjwvcmVsYXRlZC11cmxzPjwvdXJscz48ZWxlY3Ryb25pYy1y

ZXNvdXJjZS1udW0+MTAuMjMwNy8yNDEzNDY2PC9lbGVjdHJvbmljLXJlc291cmNlLW51bT48L3Jl

Y29yZD48L0NpdGU+PENpdGU+PEF1dGhvcj5DcmlzcDwvQXV0aG9yPjxZZWFyPjIwMDE8L1llYXI+

PFJlY051bT40NzI8L1JlY051bT48cmVjb3JkPjxyZWMtbnVtYmVyPjQ3MjwvcmVjLW51bWJlcj48

Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9IjI5ZTUydjVmbmR2c3c3ZXM1dmJwOXY1

d3ZhNXhycHh4YTk1ZSIgdGltZXN0YW1wPSIxMzg0NTUxNzYzIj40NzI8L2tleT48L2ZvcmVpZ24t

a2V5cz48cmVmLXR5cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwvcmVmLXR5cGU+PGNvbnRy

aWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPkNyaXNwLCBNLiBELjwvYXV0aG9yPjxhdXRob3I+TGFm

ZmFuLCBTLjwvYXV0aG9yPjxhdXRob3I+TGluZGVyLCBILiBQLjwvYXV0aG9yPjxhdXRob3I+TW9u

cm8sIEEuPC9hdXRob3I+PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjx0aXRsZXM+PHRpdGxlPkVu

ZGVtaXNtIGluIHRoZSBBdXN0cmFsaWFuIGZsb3JhPC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPkpv

dXJuYWwgb2YgQmlvZ2VvZ3JhcGh5PC9zZWNvbmRhcnktdGl0bGU+PC90aXRsZXM+PHBlcmlvZGlj

YWw+PGZ1bGwtdGl0bGU+Sm91cm5hbCBvZiBCaW9nZW9ncmFwaHk8L2Z1bGwtdGl0bGU+PC9wZXJp

b2RpY2FsPjxwYWdlcz4xODMtMTk4PC9wYWdlcz48dm9sdW1lPjI4PC92b2x1bWU+PG51bWJlcj4y

PC9udW1iZXI+PGRhdGVzPjx5ZWFyPjIwMDE8L3llYXI+PHB1Yi1kYXRlcz48ZGF0ZT5GZWI8L2Rh

dGU+PC9wdWItZGF0ZXM+PC9kYXRlcz48aXNibj4wMzA1LTAyNzA8L2lzYm4+PGFjY2Vzc2lvbi1u

dW0+V09TOjAwMDE2OTU0NzAwMDAwNDwvYWNjZXNzaW9uLW51bT48dXJscz48cmVsYXRlZC11cmxz

Pjx1cmw+Jmx0O0dvIHRvIElTSSZndDs6Ly9XT1M6MDAwMTY5NTQ3MDAwMDA0PC91cmw+PC9yZWxh

dGVkLXVybHM+PC91cmxzPjwvcmVjb3JkPjwvQ2l0ZT48L0VuZE5vdGU+AG==

ADDIN EN.CITE PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5QbGF0bmljazwvQXV0aG9yPjxZZWFyPjE5OTE8L1llYXI+

PFJlY051bT41MDg8L1JlY051bT48RGlzcGxheVRleHQ+PHN0eWxlIGZhY2U9InN1cGVyc2NyaXB0

Ij4xMC0xMjwvc3R5bGU+PC9EaXNwbGF5VGV4dD48cmVjb3JkPjxyZWMtbnVtYmVyPjUwODwvcmVj

LW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9IjI5ZTUydjVmbmR2c3c3

ZXM1dmJwOXY1d3ZhNXhycHh4YTk1ZSIgdGltZXN0YW1wPSIxMzg0NTU0MzA0Ij41MDg8L2tleT48

L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwvcmVmLXR5

cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPlBsYXRuaWNrLCBOLiBJLjwvYXV0aG9y

PjwvYXV0aG9ycz48L2NvbnRyaWJ1dG9ycz48dGl0bGVzPjx0aXRsZT5PbiBhcmVhcyBvZiBlbmRl

bWlzbTwvdGl0bGU+PHNlY29uZGFyeS10aXRsZT5BdXN0cmFsaWFuIFN5c3RlbWF0aWMgQm90YW55

PC9zZWNvbmRhcnktdGl0bGU+PC90aXRsZXM+PHBlcmlvZGljYWw+PGZ1bGwtdGl0bGU+QXVzdHJh

bGlhbiBTeXN0ZW1hdGljIEJvdGFueTwvZnVsbC10aXRsZT48L3BlcmlvZGljYWw+PHBhZ2VzPjJw

cC4tMnBwLjwvcGFnZXM+PHZvbHVtZT40PC92b2x1bWU+PG51bWJlcj4xPC9udW1iZXI+PGRhdGVz

Pjx5ZWFyPjE5OTE8L3llYXI+PHB1Yi1kYXRlcz48ZGF0ZT4xOTkxPC9kYXRlPjwvcHViLWRhdGVz

PjwvZGF0ZXM+PGlzYm4+MTAzMC0xODg3PC9pc2JuPjxhY2Nlc3Npb24tbnVtPlpPT1JFQzpaT09S

MTI4MDAwMzc4MTI8L2FjY2Vzc2lvbi1udW0+PHVybHM+PHJlbGF0ZWQtdXJscz48dXJsPiZsdDtH

byB0byBJU0kmZ3Q7Oi8vWk9PUkVDOlpPT1IxMjgwMDAzNzgxMjwvdXJsPjwvcmVsYXRlZC11cmxz

PjwvdXJscz48L3JlY29yZD48L0NpdGU+PENpdGU+PEF1dGhvcj5IYXJvbGQ8L0F1dGhvcj48WWVh

cj4xOTk0PC9ZZWFyPjxSZWNOdW0+NDgzPC9SZWNOdW0+PHJlY29yZD48cmVjLW51bWJlcj40ODM8

L3JlYy1udW1iZXI+PGZvcmVpZ24ta2V5cz48a2V5IGFwcD0iRU4iIGRiLWlkPSIyOWU1MnY1Zm5k

dnN3N2VzNXZicDl2NXd2YTV4cnB4eGE5NWUiIHRpbWVzdGFtcD0iMTM4NDU1Mjk3MCI+NDgzPC9r

ZXk+PC9mb3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3Jl

Zi10eXBlPjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5IYXJvbGQsIEEuIFMuPC9hdXRo

b3I+PGF1dGhvcj5Nb29pLCBSLiBELjwvYXV0aG9yPjwvYXV0aG9ycz48L2NvbnRyaWJ1dG9ycz48

dGl0bGVzPjx0aXRsZT5BcmVhcyBvZiBlbmRlbWlzbTogZGVmaW5pdGlvbiBhbmQgcmVjb2duaXRp

b24gY3JpdGVyaWE8L3RpdGxlPjxzZWNvbmRhcnktdGl0bGU+U3lzdGVtYXRpYyBCaW9sb2d5PC9z

ZWNvbmRhcnktdGl0bGU+PC90aXRsZXM+PHBlcmlvZGljYWw+PGZ1bGwtdGl0bGU+U3lzdGVtYXRp

YyBCaW9sb2d5PC9mdWxsLXRpdGxlPjwvcGVyaW9kaWNhbD48cGFnZXM+MjYxLTI2NjwvcGFnZXM+

PHZvbHVtZT40Mzwvdm9sdW1lPjxudW1iZXI+MjwvbnVtYmVyPjxkYXRlcz48eWVhcj4xOTk0PC95

ZWFyPjxwdWItZGF0ZXM+PGRhdGU+SnVuPC9kYXRlPjwvcHViLWRhdGVzPjwvZGF0ZXM+PGlzYm4+

MTA2My01MTU3PC9pc2JuPjxhY2Nlc3Npb24tbnVtPldPUzpBMTk5NFBEODQwMDAwMDg8L2FjY2Vz

c2lvbi1udW0+PHVybHM+PHJlbGF0ZWQtdXJscz48dXJsPiZsdDtHbyB0byBJU0kmZ3Q7Oi8vV09T

OkExOTk0UEQ4NDAwMDAwODwvdXJsPjwvcmVsYXRlZC11cmxzPjwvdXJscz48ZWxlY3Ryb25pYy1y

ZXNvdXJjZS1udW0+MTAuMjMwNy8yNDEzNDY2PC9lbGVjdHJvbmljLXJlc291cmNlLW51bT48L3Jl

Y29yZD48L0NpdGU+PENpdGU+PEF1dGhvcj5DcmlzcDwvQXV0aG9yPjxZZWFyPjIwMDE8L1llYXI+

PFJlY051bT40NzI8L1JlY051bT48cmVjb3JkPjxyZWMtbnVtYmVyPjQ3MjwvcmVjLW51bWJlcj48

Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9IjI5ZTUydjVmbmR2c3c3ZXM1dmJwOXY1

d3ZhNXhycHh4YTk1ZSIgdGltZXN0YW1wPSIxMzg0NTUxNzYzIj40NzI8L2tleT48L2ZvcmVpZ24t

a2V5cz48cmVmLXR5cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwvcmVmLXR5cGU+PGNvbnRy

aWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPkNyaXNwLCBNLiBELjwvYXV0aG9yPjxhdXRob3I+TGFm

ZmFuLCBTLjwvYXV0aG9yPjxhdXRob3I+TGluZGVyLCBILiBQLjwvYXV0aG9yPjxhdXRob3I+TW9u

cm8sIEEuPC9hdXRob3I+PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjx0aXRsZXM+PHRpdGxlPkVu

ZGVtaXNtIGluIHRoZSBBdXN0cmFsaWFuIGZsb3JhPC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPkpv

dXJuYWwgb2YgQmlvZ2VvZ3JhcGh5PC9zZWNvbmRhcnktdGl0bGU+PC90aXRsZXM+PHBlcmlvZGlj

YWw+PGZ1bGwtdGl0bGU+Sm91cm5hbCBvZiBCaW9nZW9ncmFwaHk8L2Z1bGwtdGl0bGU+PC9wZXJp

b2RpY2FsPjxwYWdlcz4xODMtMTk4PC9wYWdlcz48dm9sdW1lPjI4PC92b2x1bWU+PG51bWJlcj4y

PC9udW1iZXI+PGRhdGVzPjx5ZWFyPjIwMDE8L3llYXI+PHB1Yi1kYXRlcz48ZGF0ZT5GZWI8L2Rh

dGU+PC9wdWItZGF0ZXM+PC9kYXRlcz48aXNibj4wMzA1LTAyNzA8L2lzYm4+PGFjY2Vzc2lvbi1u

dW0+V09TOjAwMDE2OTU0NzAwMDAwNDwvYWNjZXNzaW9uLW51bT48dXJscz48cmVsYXRlZC11cmxz

Pjx1cmw+Jmx0O0dvIHRvIElTSSZndDs6Ly9XT1M6MDAwMTY5NTQ3MDAwMDA0PC91cmw+PC9yZWxh

dGVkLXVybHM+PC91cmxzPjwvcmVjb3JkPjwvQ2l0ZT48L0VuZE5vdGU+AG==

ADDIN EN.CITE.DATA 10-12 and are often used to identify unique geographic areas for biodiversity conservation or biogeography studies ADDIN EN.CITE <EndNote><Cite><Author>Terborgh</Author><Year>1983</Year><RecNum>541</RecNum><DisplayText><style face="superscript">13,14</style></DisplayText><record><rec-number>541</rec-number><foreign-keys><key app="EN" db-id="29e52v5fndvsw7es5vbp9v5wva5xrpxxa95e" timestamp="1384719895">541</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Terborgh, J.</author><author>Winter, B.</author></authors></contributors><titles><title>A method for siting parks and reserves with special reference to Columbia and Ecuador</title><secondary-title>Biological Conservation </secondary-title></titles><periodical><full-title>Biological Conservation</full-title></periodical><pages>45-58</pages><volume>27</volume><dates><year>1983</year></dates><urls></urls></record></Cite><Cite><Author>Ackery</Author><Year>1984</Year><RecNum>528</RecNum><record><rec-number>528</rec-number><foreign-keys><key app="EN" db-id="29e52v5fndvsw7es5vbp9v5wva5xrpxxa95e" timestamp="1384717980">528</key></foreign-keys><ref-type name="Book">6</ref-type><contributors><authors><author>Ackery, P. R. </author><author>Vane-Wright, R.I. </author></authors></contributors><titles><title> Milkweed butterflies: Their cladistics and biology</title></titles><dates><year>1984</year></dates><pub-location> London, UK and Ithaca, NY</pub-location><publisher>British Museum of Natural History and Cornell University Press</publisher><urls></urls></record></Cite></EndNote>13,14. Clearly, there is an inescapable circularity to these measures, and thus also to the consequent inferences made regarding biogeographic processes.Inferences of speciation mechanism fall prey to similar limitations. For example, it is generally assumed that species formation and diversification of a range of co-distributed taxa will be triggered or inhibited by similar barriers to gene flow, topographical and geological settings, climatic conditions and shifts, and competition. Accordingly, it is the default expectation that similar barriers (e.g., rivers, ecotones, climatic transitions) will lead to similar patterns of species endemism, turnover, and richness; again, with the underlying assumption that the observation of similar patterns among diverse species reveals a general causal mechanism of diversification across all taxa. But there are additional processes by which species richness may be generated. For example, climatic factors, environmental stability, land area, habitat heterogeneity, paleogeography, and energy available all could be spatially correlated with geographical barriers. Thus, any of these mechanisms might be indirectly, but not causally related to diversification ADDIN EN.CITE <EndNote><Cite><Author>Hawkins</Author><Year>2003</Year><RecNum>484</RecNum><DisplayText><style face="superscript">15</style></DisplayText><record><rec-number>484</rec-number><foreign-keys><key app="EN" db-id="29e52v5fndvsw7es5vbp9v5wva5xrpxxa95e" timestamp="1384553015">484</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Hawkins, B. A.</author><author>Field, R.</author><author>Cornell, H. V.</author><author>Currie, D. J.</author><author>Guegan, J. F.</author><author>Kaufman, D. M.</author><author>Kerr, J. T.</author><author>Mittelbach, G. G.</author><author>Oberdorff, T.</author><author>O&apos;Brien, E. M.</author><author>Porter, E. E.</author><author>Turner, J. R. G.</author></authors></contributors><titles><title>Energy, water, and broad-scale geographic patterns of species richness</title><secondary-title>Ecology</secondary-title></titles><periodical><full-title>Ecology</full-title></periodical><pages>3105-3117</pages><volume>84</volume><number>12</number><dates><year>2003</year><pub-dates><date>Dec</date></pub-dates></dates><isbn>0012-9658</isbn><accession-num>WOS:000187973500001</accession-num><urls><related-urls><url>&lt;Go to ISI&gt;://WOS:000187973500001</url></related-urls></urls><electronic-resource-num>10.1890/03-8006</electronic-resource-num></record></Cite></EndNote>15. Patterns of endemism, on the other hand, are generally considered to reflect a particular evolutionary history, with areas of endemism corresponding to centers of diversification ADDIN EN.CITE <EndNote><Cite><Author>Jetz</Author><Year>2004</Year><RecNum>488</RecNum><DisplayText><style face="superscript">16</style></DisplayText><record><rec-number>488</rec-number><foreign-keys><key app="EN" db-id="29e52v5fndvsw7es5vbp9v5wva5xrpxxa95e" timestamp="1384553275">488</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Jetz, W.</author><author>Rahbek, C.</author><author>Colwell, R. K.</author></authors></contributors><titles><title>The coincidence of rarity and richness and the potential signature of history in centres of endemism</title><secondary-title>Ecology Letters</secondary-title></titles><periodical><full-title>Ecology Letters</full-title></periodical><pages>1180-1191</pages><volume>7</volume><number>12</number><dates><year>2004</year><pub-dates><date>Dec</date></pub-dates></dates><isbn>1461-023X</isbn><accession-num>WOS:000225078000008</accession-num><urls><related-urls><url>&lt;Go to ISI&gt;://WOS:000225078000008</url></related-urls></urls><electronic-resource-num>10.1111/j.1461-0248.2004.00678.x</electronic-resource-num></record></Cite></EndNote>16 and often including some element of stochasticity. Consequently, it can be the case that areas of high endemism often are also characterized by high species richness, though the inverse is not necessarily true. Species distribution models (SDMs) allow sophisticated calculations of centers of historical habitat stability ADDIN EN.CITE <EndNote><Cite><Author>Carnaval</Author><Year>2009</Year><RecNum>470</RecNum><DisplayText><style face="superscript">17</style></DisplayText><record><rec-number>470</rec-number><foreign-keys><key app="EN" db-id="29e52v5fndvsw7es5vbp9v5wva5xrpxxa95e" timestamp="1384551676">470</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Carnaval, Ana Carolina</author><author>Hickerson, Michael J.</author><author>Haddad, Celio F. B.</author><author>Rodrigues, Miguel T.</author><author>Moritz, Craig</author></authors></contributors><titles><title>Stability Predicts Genetic Diversity in the Brazilian Atlantic Forest Hotspot</title><secondary-title>Science</secondary-title></titles><periodical><full-title>Science</full-title></periodical><pages>785-789</pages><volume>323</volume><number>5915</number><dates><year>2009</year><pub-dates><date>Feb 6</date></pub-dates></dates><isbn>0036-8075</isbn><accession-num>WOS:000263066800048</accession-num><urls><related-urls><url>&lt;Go to ISI&gt;://WOS:000263066800048</url></related-urls></urls><electronic-resource-num>10.1126/science.1166955</electronic-resource-num></record></Cite></EndNote>17. Yet, their spatial comparison with current patterns usually follows narrative approaches and is similar to classical hypotheses of diversification mechanisms, with no accounting for autocorrelation among the different explanatory variables. Based on either a single explanatory variable or without employing statistics at all, often biogeography researchers rely on ad-hoc comparisons with spatial distributions of single environmental factors such as climate, topography, vegetation, or assumed barriers to dispersal. As a sign of progress, many methodological advances are being developed to address the various problems described here. For example, assessments of spatial biodiversity have typically used simple geographic measures as the unit of analysis, such as the distribution range of individual species, though recent methodological refinements include the inclusion of phylogenetic relationships among species and their evolutionary agePEVuZE5vdGU+PENpdGU+PEF1dGhvcj5CZWNrPC9BdXRob3I+PFllYXI+MjAxMjwvWWVhcj48UmVj

TnVtPjQ2NzwvUmVjTnVtPjxEaXNwbGF5VGV4dD48c3R5bGUgZmFjZT0ic3VwZXJzY3JpcHQiPjIs

Nzwvc3R5bGU+PC9EaXNwbGF5VGV4dD48cmVjb3JkPjxyZWMtbnVtYmVyPjQ2NzwvcmVjLW51bWJl

cj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9IjI5ZTUydjVmbmR2c3c3ZXM1dmJw

OXY1d3ZhNXhycHh4YTk1ZSIgdGltZXN0YW1wPSIxMzg0NTUxNTEwIj40Njc8L2tleT48L2ZvcmVp

Z24ta2V5cz48cmVmLXR5cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwvcmVmLXR5cGU+PGNv

bnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPkJlY2ssIEphbjwvYXV0aG9yPjxhdXRob3I+QmFs

bGVzdGVyb3MtTWVqaWEsIExpbGlhbmE8L2F1dGhvcj48YXV0aG9yPkJ1Y2htYW5uLCBDYXJzdGVu

IE0uPC9hdXRob3I+PGF1dGhvcj5EZW5nbGVyLCBKdWVyZ2VuPC9hdXRob3I+PGF1dGhvcj5Gcml0

eiwgU3VzYW5uZSBBLjwvYXV0aG9yPjxhdXRob3I+R3J1YmVyLCBCZXJuZDwvYXV0aG9yPjxhdXRo

b3I+SG9mLCBDaHJpc3RpYW48L2F1dGhvcj48YXV0aG9yPkphbnNlbiwgRmxvcmlhbjwvYXV0aG9y

PjxhdXRob3I+S25hcHAsIFNvbmphPC9hdXRob3I+PGF1dGhvcj5LcmVmdCwgSG9sZ2VyPC9hdXRo

b3I+PGF1dGhvcj5TY2huZWlkZXIsIEFubmUtS2F0aHJpbjwvYXV0aG9yPjxhdXRob3I+V2ludGVy

LCBNYXJ0ZW48L2F1dGhvcj48YXV0aG9yPkRvcm1hbm4sIENhcnN0ZW4gRi48L2F1dGhvcj48L2F1

dGhvcnM+PC9jb250cmlidXRvcnM+PHRpdGxlcz48dGl0bGU+V2hhdCZhcG9zO3Mgb24gdGhlIGhv

cml6b24gZm9yIG1hY3JvZWNvbG9neT88L3RpdGxlPjxzZWNvbmRhcnktdGl0bGU+RWNvZ3JhcGh5

PC9zZWNvbmRhcnktdGl0bGU+PC90aXRsZXM+PHBlcmlvZGljYWw+PGZ1bGwtdGl0bGU+RWNvZ3Jh

cGh5PC9mdWxsLXRpdGxlPjwvcGVyaW9kaWNhbD48cGFnZXM+NjczLTY4MzwvcGFnZXM+PHZvbHVt

ZT4zNTwvdm9sdW1lPjxudW1iZXI+ODwvbnVtYmVyPjxkYXRlcz48eWVhcj4yMDEyPC95ZWFyPjxw

dWItZGF0ZXM+PGRhdGU+QXVnPC9kYXRlPjwvcHViLWRhdGVzPjwvZGF0ZXM+PGlzYm4+MDkwNi03

NTkwPC9pc2JuPjxhY2Nlc3Npb24tbnVtPldPUzowMDAzMDU4OTIzMDAwMDE8L2FjY2Vzc2lvbi1u

dW0+PHVybHM+PHJlbGF0ZWQtdXJscz48dXJsPiZsdDtHbyB0byBJU0kmZ3Q7Oi8vV09TOjAwMDMw

NTg5MjMwMDAwMTwvdXJsPjwvcmVsYXRlZC11cmxzPjwvdXJscz48ZWxlY3Ryb25pYy1yZXNvdXJj

ZS1udW0+MTAuMTExMS9qLjE2MDAtMDU4Ny4yMDEyLjA3MzY0Lng8L2VsZWN0cm9uaWMtcmVzb3Vy

Y2UtbnVtPjwvcmVjb3JkPjwvQ2l0ZT48Q2l0ZT48QXV0aG9yPkhvbHQ8L0F1dGhvcj48WWVhcj4y

MDEzPC9ZZWFyPjxSZWNOdW0+NDg3PC9SZWNOdW0+PHJlY29yZD48cmVjLW51bWJlcj40ODc8L3Jl

Yy1udW1iZXI+PGZvcmVpZ24ta2V5cz48a2V5IGFwcD0iRU4iIGRiLWlkPSIyOWU1MnY1Zm5kdnN3

N2VzNXZicDl2NXd2YTV4cnB4eGE5NWUiIHRpbWVzdGFtcD0iMTM4NDU1MzE5OCI+NDg3PC9rZXk+

PC9mb3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10

eXBlPjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5Ib2x0LCBCZW4gRy48L2F1dGhvcj48

YXV0aG9yPkxlc3NhcmQsIEplYW4tUGhpbGlwcGU8L2F1dGhvcj48YXV0aG9yPkJvcnJlZ2FhcmQs

IE1pY2hhZWwgSy48L2F1dGhvcj48YXV0aG9yPkZyaXR6LCBTdXNhbm5lIEEuPC9hdXRob3I+PGF1

dGhvcj5BcmF1am8sIE1pZ3VlbCBCLjwvYXV0aG9yPjxhdXRob3I+RGltaXRyb3YsIERpbWl0YXI8

L2F1dGhvcj48YXV0aG9yPkZhYnJlLCBQaWVycmUtSGVucmk8L2F1dGhvcj48YXV0aG9yPkdyYWhh

bSwgQ2F0aGVyaW5lIEguPC9hdXRob3I+PGF1dGhvcj5HcmF2ZXMsIEdhcnkgUi48L2F1dGhvcj48

YXV0aG9yPkpvbnNzb24sIEtudWQgQS48L2F1dGhvcj48YXV0aG9yPk5vZ3Vlcy1CcmF2bywgRGF2

aWQ8L2F1dGhvcj48YXV0aG9yPldhbmcsIFpoaWhlbmc8L2F1dGhvcj48YXV0aG9yPldoaXR0YWtl

ciwgUm9iZXJ0IEouPC9hdXRob3I+PGF1dGhvcj5GamVsZHNhLCBKb248L2F1dGhvcj48YXV0aG9y

PlJhaGJlaywgQ2Fyc3RlbjwvYXV0aG9yPjwvYXV0aG9ycz48L2NvbnRyaWJ1dG9ycz48dGl0bGVz

Pjx0aXRsZT5BbiBVcGRhdGUgb2YgV2FsbGFjZSZhcG9zO3MgWm9vZ2VvZ3JhcGhpYyBSZWdpb25z

IG9mIHRoZSBXb3JsZDwvdGl0bGU+PHNlY29uZGFyeS10aXRsZT5TY2llbmNlPC9zZWNvbmRhcnkt

dGl0bGU+PC90aXRsZXM+PHBlcmlvZGljYWw+PGZ1bGwtdGl0bGU+U2NpZW5jZTwvZnVsbC10aXRs

ZT48L3BlcmlvZGljYWw+PHBhZ2VzPjc0LTc4PC9wYWdlcz48dm9sdW1lPjMzOTwvdm9sdW1lPjxu

dW1iZXI+NjExNTwvbnVtYmVyPjxkYXRlcz48eWVhcj4yMDEzPC95ZWFyPjxwdWItZGF0ZXM+PGRh

dGU+SmFuIDQ8L2RhdGU+PC9wdWItZGF0ZXM+PC9kYXRlcz48aXNibj4wMDM2LTgwNzU8L2lzYm4+

PGFjY2Vzc2lvbi1udW0+V09TOjAwMDMxMjk4NTgwMDA1NDwvYWNjZXNzaW9uLW51bT48dXJscz48

cmVsYXRlZC11cmxzPjx1cmw+Jmx0O0dvIHRvIElTSSZndDs6Ly9XT1M6MDAwMzEyOTg1ODAwMDU0

PC91cmw+PC9yZWxhdGVkLXVybHM+PC91cmxzPjxlbGVjdHJvbmljLXJlc291cmNlLW51bT4xMC4x

MTI2L3NjaWVuY2UuMTIyODI4MjwvZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+PC9yZWNvcmQ+PC9D

aXRlPjwvRW5kTm90ZT4A

ADDIN EN.CITE PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5CZWNrPC9BdXRob3I+PFllYXI+MjAxMjwvWWVhcj48UmVj

TnVtPjQ2NzwvUmVjTnVtPjxEaXNwbGF5VGV4dD48c3R5bGUgZmFjZT0ic3VwZXJzY3JpcHQiPjIs

Nzwvc3R5bGU+PC9EaXNwbGF5VGV4dD48cmVjb3JkPjxyZWMtbnVtYmVyPjQ2NzwvcmVjLW51bWJl

cj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9IjI5ZTUydjVmbmR2c3c3ZXM1dmJw

OXY1d3ZhNXhycHh4YTk1ZSIgdGltZXN0YW1wPSIxMzg0NTUxNTEwIj40Njc8L2tleT48L2ZvcmVp

Z24ta2V5cz48cmVmLXR5cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwvcmVmLXR5cGU+PGNv

bnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPkJlY2ssIEphbjwvYXV0aG9yPjxhdXRob3I+QmFs

bGVzdGVyb3MtTWVqaWEsIExpbGlhbmE8L2F1dGhvcj48YXV0aG9yPkJ1Y2htYW5uLCBDYXJzdGVu

IE0uPC9hdXRob3I+PGF1dGhvcj5EZW5nbGVyLCBKdWVyZ2VuPC9hdXRob3I+PGF1dGhvcj5Gcml0

eiwgU3VzYW5uZSBBLjwvYXV0aG9yPjxhdXRob3I+R3J1YmVyLCBCZXJuZDwvYXV0aG9yPjxhdXRo

b3I+SG9mLCBDaHJpc3RpYW48L2F1dGhvcj48YXV0aG9yPkphbnNlbiwgRmxvcmlhbjwvYXV0aG9y

PjxhdXRob3I+S25hcHAsIFNvbmphPC9hdXRob3I+PGF1dGhvcj5LcmVmdCwgSG9sZ2VyPC9hdXRo

b3I+PGF1dGhvcj5TY2huZWlkZXIsIEFubmUtS2F0aHJpbjwvYXV0aG9yPjxhdXRob3I+V2ludGVy

LCBNYXJ0ZW48L2F1dGhvcj48YXV0aG9yPkRvcm1hbm4sIENhcnN0ZW4gRi48L2F1dGhvcj48L2F1

dGhvcnM+PC9jb250cmlidXRvcnM+PHRpdGxlcz48dGl0bGU+V2hhdCZhcG9zO3Mgb24gdGhlIGhv

cml6b24gZm9yIG1hY3JvZWNvbG9neT88L3RpdGxlPjxzZWNvbmRhcnktdGl0bGU+RWNvZ3JhcGh5

PC9zZWNvbmRhcnktdGl0bGU+PC90aXRsZXM+PHBlcmlvZGljYWw+PGZ1bGwtdGl0bGU+RWNvZ3Jh

cGh5PC9mdWxsLXRpdGxlPjwvcGVyaW9kaWNhbD48cGFnZXM+NjczLTY4MzwvcGFnZXM+PHZvbHVt

ZT4zNTwvdm9sdW1lPjxudW1iZXI+ODwvbnVtYmVyPjxkYXRlcz48eWVhcj4yMDEyPC95ZWFyPjxw

dWItZGF0ZXM+PGRhdGU+QXVnPC9kYXRlPjwvcHViLWRhdGVzPjwvZGF0ZXM+PGlzYm4+MDkwNi03

NTkwPC9pc2JuPjxhY2Nlc3Npb24tbnVtPldPUzowMDAzMDU4OTIzMDAwMDE8L2FjY2Vzc2lvbi1u

dW0+PHVybHM+PHJlbGF0ZWQtdXJscz48dXJsPiZsdDtHbyB0byBJU0kmZ3Q7Oi8vV09TOjAwMDMw

NTg5MjMwMDAwMTwvdXJsPjwvcmVsYXRlZC11cmxzPjwvdXJscz48ZWxlY3Ryb25pYy1yZXNvdXJj

ZS1udW0+MTAuMTExMS9qLjE2MDAtMDU4Ny4yMDEyLjA3MzY0Lng8L2VsZWN0cm9uaWMtcmVzb3Vy

Y2UtbnVtPjwvcmVjb3JkPjwvQ2l0ZT48Q2l0ZT48QXV0aG9yPkhvbHQ8L0F1dGhvcj48WWVhcj4y

MDEzPC9ZZWFyPjxSZWNOdW0+NDg3PC9SZWNOdW0+PHJlY29yZD48cmVjLW51bWJlcj40ODc8L3Jl

Yy1udW1iZXI+PGZvcmVpZ24ta2V5cz48a2V5IGFwcD0iRU4iIGRiLWlkPSIyOWU1MnY1Zm5kdnN3

N2VzNXZicDl2NXd2YTV4cnB4eGE5NWUiIHRpbWVzdGFtcD0iMTM4NDU1MzE5OCI+NDg3PC9rZXk+

PC9mb3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10

eXBlPjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5Ib2x0LCBCZW4gRy48L2F1dGhvcj48

YXV0aG9yPkxlc3NhcmQsIEplYW4tUGhpbGlwcGU8L2F1dGhvcj48YXV0aG9yPkJvcnJlZ2FhcmQs

IE1pY2hhZWwgSy48L2F1dGhvcj48YXV0aG9yPkZyaXR6LCBTdXNhbm5lIEEuPC9hdXRob3I+PGF1

dGhvcj5BcmF1am8sIE1pZ3VlbCBCLjwvYXV0aG9yPjxhdXRob3I+RGltaXRyb3YsIERpbWl0YXI8

L2F1dGhvcj48YXV0aG9yPkZhYnJlLCBQaWVycmUtSGVucmk8L2F1dGhvcj48YXV0aG9yPkdyYWhh

bSwgQ2F0aGVyaW5lIEguPC9hdXRob3I+PGF1dGhvcj5HcmF2ZXMsIEdhcnkgUi48L2F1dGhvcj48

YXV0aG9yPkpvbnNzb24sIEtudWQgQS48L2F1dGhvcj48YXV0aG9yPk5vZ3Vlcy1CcmF2bywgRGF2

aWQ8L2F1dGhvcj48YXV0aG9yPldhbmcsIFpoaWhlbmc8L2F1dGhvcj48YXV0aG9yPldoaXR0YWtl

ciwgUm9iZXJ0IEouPC9hdXRob3I+PGF1dGhvcj5GamVsZHNhLCBKb248L2F1dGhvcj48YXV0aG9y

PlJhaGJlaywgQ2Fyc3RlbjwvYXV0aG9yPjwvYXV0aG9ycz48L2NvbnRyaWJ1dG9ycz48dGl0bGVz

Pjx0aXRsZT5BbiBVcGRhdGUgb2YgV2FsbGFjZSZhcG9zO3MgWm9vZ2VvZ3JhcGhpYyBSZWdpb25z

IG9mIHRoZSBXb3JsZDwvdGl0bGU+PHNlY29uZGFyeS10aXRsZT5TY2llbmNlPC9zZWNvbmRhcnkt

dGl0bGU+PC90aXRsZXM+PHBlcmlvZGljYWw+PGZ1bGwtdGl0bGU+U2NpZW5jZTwvZnVsbC10aXRs

ZT48L3BlcmlvZGljYWw+PHBhZ2VzPjc0LTc4PC9wYWdlcz48dm9sdW1lPjMzOTwvdm9sdW1lPjxu

dW1iZXI+NjExNTwvbnVtYmVyPjxkYXRlcz48eWVhcj4yMDEzPC95ZWFyPjxwdWItZGF0ZXM+PGRh

dGU+SmFuIDQ8L2RhdGU+PC9wdWItZGF0ZXM+PC9kYXRlcz48aXNibj4wMDM2LTgwNzU8L2lzYm4+

PGFjY2Vzc2lvbi1udW0+V09TOjAwMDMxMjk4NTgwMDA1NDwvYWNjZXNzaW9uLW51bT48dXJscz48

cmVsYXRlZC11cmxzPjx1cmw+Jmx0O0dvIHRvIElTSSZndDs6Ly9XT1M6MDAwMzEyOTg1ODAwMDU0

PC91cmw+PC9yZWxhdGVkLXVybHM+PC91cmxzPjxlbGVjdHJvbmljLXJlc291cmNlLW51bT4xMC4x

MTI2L3NjaWVuY2UuMTIyODI4MjwvZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+PC9yZWNvcmQ+PC9D

aXRlPjwvRW5kTm90ZT4A

ADDIN EN.CITE.DATA 2,7. Moreover, carefully parameterized SDMs can generate accurate estimates of distribution ranges ADDIN EN.CITE <EndNote><Cite><Author>Kozak</Author><Year>2008</Year><RecNum>495</RecNum><DisplayText><style face="superscript">18</style></DisplayText><record><rec-number>495</rec-number><foreign-keys><key app="EN" db-id="29e52v5fndvsw7es5vbp9v5wva5xrpxxa95e" timestamp="1384553647">495</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Kozak, Kenneth H.</author><author>Graham, Catherine H.</author><author>Wiens, John J.</author></authors></contributors><titles><title>Integrating GIS-based environmental data into evolutionary biology</title><secondary-title>Trends in Ecology &amp; Evolution</secondary-title></titles><periodical><full-title>Trends in Ecology &amp; Evolution</full-title></periodical><pages>141-148</pages><volume>23</volume><number>3</number><dates><year>2008</year><pub-dates><date>Mar</date></pub-dates></dates><isbn>0169-5347</isbn><accession-num>WOS:000254721800005</accession-num><urls><related-urls><url>&lt;Go to ISI&gt;://WOS:000254721800005</url></related-urls></urls><electronic-resource-num>10.1016/j.tree.2008.02.001</electronic-resource-num></record></Cite></EndNote>18 and novel approaches are being developed to translate patterns of species richness, endemism and turnover more objectively for determining those biogeographic regions in greatest need for conservation and protectionPEVuZE5vdGU+PENpdGU+PEF1dGhvcj5MYW1vcmV1eDwvQXV0aG9yPjxZZWFyPjIwMDY8L1llYXI+

PFJlY051bT40OTY8L1JlY051bT48RGlzcGxheVRleHQ+PHN0eWxlIGZhY2U9InN1cGVyc2NyaXB0

Ij4yLDcsOCwxOS0yMTwvc3R5bGU+PC9EaXNwbGF5VGV4dD48cmVjb3JkPjxyZWMtbnVtYmVyPjQ5

NjwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9IjI5ZTUydjVm

bmR2c3c3ZXM1dmJwOXY1d3ZhNXhycHh4YTk1ZSIgdGltZXN0YW1wPSIxMzg0NTUzNjk5Ij40OTY8

L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwv

cmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPkxhbW9yZXV4LCBKLiBGLjwv

YXV0aG9yPjxhdXRob3I+TW9ycmlzb24sIEouIEMuPC9hdXRob3I+PGF1dGhvcj5SaWNrZXR0cywg

VC4gSC48L2F1dGhvcj48YXV0aG9yPk9sc29uLCBELiBNLjwvYXV0aG9yPjxhdXRob3I+RGluZXJz

dGVpbiwgRS48L2F1dGhvcj48YXV0aG9yPk1jS25pZ2h0LCBNLiBXLjwvYXV0aG9yPjxhdXRob3I+

U2h1Z2FydCwgSC4gSC48L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PHRpdGxlcz48

dGl0bGU+R2xvYmFsIHRlc3RzIG9mIGJpb2RpdmVyc2l0eSBjb25jb3JkYW5jZSBhbmQgdGhlIGlt

cG9ydGFuY2Ugb2YgZW5kZW1pc208L3RpdGxlPjxzZWNvbmRhcnktdGl0bGU+TmF0dXJlPC9zZWNv

bmRhcnktdGl0bGU+PC90aXRsZXM+PHBlcmlvZGljYWw+PGZ1bGwtdGl0bGU+TmF0dXJlPC9mdWxs

LXRpdGxlPjwvcGVyaW9kaWNhbD48cGFnZXM+MjEyLTIxNDwvcGFnZXM+PHZvbHVtZT40NDA8L3Zv

bHVtZT48bnVtYmVyPjcwODE8L251bWJlcj48ZGF0ZXM+PHllYXI+MjAwNjwveWVhcj48cHViLWRh

dGVzPjxkYXRlPk1hciA5PC9kYXRlPjwvcHViLWRhdGVzPjwvZGF0ZXM+PGlzYm4+MDAyOC0wODM2

PC9pc2JuPjxhY2Nlc3Npb24tbnVtPldPUzowMDAyMzU4Mzk1MDAwNDY8L2FjY2Vzc2lvbi1udW0+

PHVybHM+PHJlbGF0ZWQtdXJscz48dXJsPiZsdDtHbyB0byBJU0kmZ3Q7Oi8vV09TOjAwMDIzNTgz

OTUwMDA0NjwvdXJsPjwvcmVsYXRlZC11cmxzPjwvdXJscz48ZWxlY3Ryb25pYy1yZXNvdXJjZS1u

dW0+MTAuMTAzOC9uYXR1cmUwNDI5MTwvZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+PC9yZWNvcmQ+

PC9DaXRlPjxDaXRlPjxBdXRob3I+S3JlbWVuPC9BdXRob3I+PFllYXI+MjAwODwvWWVhcj48UmVj

TnVtPjU8L1JlY051bT48cmVjb3JkPjxyZWMtbnVtYmVyPjU8L3JlYy1udW1iZXI+PGZvcmVpZ24t

a2V5cz48a2V5IGFwcD0iRU4iIGRiLWlkPSIyOWU1MnY1Zm5kdnN3N2VzNXZicDl2NXd2YTV4cnB4

eGE5NWUiIHRpbWVzdGFtcD0iMTM3OTM2MTMwMCI+NTwva2V5PjwvZm9yZWlnbi1rZXlzPjxyZWYt

dHlwZSBuYW1lPSJKb3VybmFsIEFydGljbGUiPjE3PC9yZWYtdHlwZT48Y29udHJpYnV0b3JzPjxh

dXRob3JzPjxhdXRob3I+S3JlbWVuLCBDLjwvYXV0aG9yPjxhdXRob3I+Q2FtZXJvbiwgQS48L2F1

dGhvcj48YXV0aG9yPk1vaWxhbmVuLCBBLjwvYXV0aG9yPjxhdXRob3I+UGhpbGxpcHMsIFMuIEou

PC9hdXRob3I+PGF1dGhvcj5UaG9tYXMsIEMuIEQuPC9hdXRob3I+PGF1dGhvcj5CZWVudGplLCBI

LjwvYXV0aG9yPjxhdXRob3I+RHJhbnNmaWVsZCwgSi48L2F1dGhvcj48YXV0aG9yPkZpc2hlciwg

Qi4gTC48L2F1dGhvcj48YXV0aG9yPkdsYXcsIEYuPC9hdXRob3I+PGF1dGhvcj5Hb29kLCBULiBD

LjwvYXV0aG9yPjxhdXRob3I+SGFycGVyLCBHLiBKLjwvYXV0aG9yPjxhdXRob3I+SGlqbWFucywg

Ui4gSi48L2F1dGhvcj48YXV0aG9yPkxlZXMsIEQuIEMuPC9hdXRob3I+PGF1dGhvcj5Mb3Vpcywg

RS4sIEpyLjwvYXV0aG9yPjxhdXRob3I+TnVzc2JhdW0sIFIuIEEuPC9hdXRob3I+PGF1dGhvcj5S

YXh3b3J0aHksIEMuIEouPC9hdXRob3I+PGF1dGhvcj5SYXphZmltcGFoYW5hbmEsIEEuPC9hdXRo

b3I+PGF1dGhvcj5TY2hhdHosIEcuIEUuPC9hdXRob3I+PGF1dGhvcj5WZW5jZXMsIE0uPC9hdXRo

b3I+PGF1dGhvcj5WaWVpdGVzLCBELiBSLjwvYXV0aG9yPjxhdXRob3I+V3JpZ2h0LCBQLiBDLjwv

YXV0aG9yPjxhdXRob3I+WmpocmEsIE0uIEwuPC9hdXRob3I+PC9hdXRob3JzPjwvY29udHJpYnV0

b3JzPjx0aXRsZXM+PHRpdGxlPkFsaWduaW5nIGNvbnNlcnZhdGlvbiBwcmlvcml0aWVzIGFjcm9z

cyB0YXhhIGluIE1hZGFnYXNjYXIgd2l0aCBoaWdoLXJlc29sdXRpb24gcGxhbm5pbmcgdG9vbHM8

L3RpdGxlPjxzZWNvbmRhcnktdGl0bGU+U2NpZW5jZTwvc2Vjb25kYXJ5LXRpdGxlPjwvdGl0bGVz

PjxwZXJpb2RpY2FsPjxmdWxsLXRpdGxlPlNjaWVuY2U8L2Z1bGwtdGl0bGU+PC9wZXJpb2RpY2Fs

PjxwYWdlcz4yMjItMjI2PC9wYWdlcz48dm9sdW1lPjMyMDwvdm9sdW1lPjxudW1iZXI+NTg3Mzwv

bnVtYmVyPjxkYXRlcz48eWVhcj4yMDA4PC95ZWFyPjxwdWItZGF0ZXM+PGRhdGU+QXByIDExPC9k

YXRlPjwvcHViLWRhdGVzPjwvZGF0ZXM+PGlzYm4+MDAzNi04MDc1PC9pc2JuPjxhY2Nlc3Npb24t

bnVtPldPUzowMDAyNTQ4MzY3MDAwNDE8L2FjY2Vzc2lvbi1udW0+PHVybHM+PHJlbGF0ZWQtdXJs

cz48dXJsPiZsdDtHbyB0byBJU0kmZ3Q7Oi8vV09TOjAwMDI1NDgzNjcwMDA0MTwvdXJsPjwvcmVs

YXRlZC11cmxzPjwvdXJscz48ZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+MTAuMTEyNi9zY2llbmNl

LjExNTUxOTM8L2VsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjwvcmVjb3JkPjwvQ2l0ZT48Q2l0ZT48

QXV0aG9yPktyZW1lbjwvQXV0aG9yPjxZZWFyPjIwMDg8L1llYXI+PFJlY051bT40OTQ8L1JlY051

bT48cmVjb3JkPjxyZWMtbnVtYmVyPjQ5NDwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkg

YXBwPSJFTiIgZGItaWQ9IjI5ZTUydjVmbmR2c3c3ZXM1dmJwOXY1d3ZhNXhycHh4YTk1ZSIgdGlt

ZXN0YW1wPSIxMzg0NTUzNjEwIj40OTQ8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFt

ZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48

YXV0aG9yPktyZW1lbiwgQy48L2F1dGhvcj48YXV0aG9yPkNhbWVyb24sIEEuPC9hdXRob3I+PGF1

dGhvcj5Nb2lsYW5lbiwgQS48L2F1dGhvcj48YXV0aG9yPlBoaWxsaXBzLCBTLiBKLjwvYXV0aG9y

PjxhdXRob3I+VGhvbWFzLCBDLiBELjwvYXV0aG9yPjxhdXRob3I+QmVlbnRqZSwgSC48L2F1dGhv

cj48YXV0aG9yPkRyYW5zZmllbGQsIEouPC9hdXRob3I+PGF1dGhvcj5GaXNoZXIsIEIuIEwuPC9h

dXRob3I+PGF1dGhvcj5HbGF3LCBGLjwvYXV0aG9yPjxhdXRob3I+R29vZCwgVC4gQy48L2F1dGhv

cj48YXV0aG9yPkhhcnBlciwgRy4gSi48L2F1dGhvcj48YXV0aG9yPkhpam1hbnMsIFIuIEouPC9h

dXRob3I+PGF1dGhvcj5MZWVzLCBELiBDLjwvYXV0aG9yPjxhdXRob3I+TG91aXMsIEUuLCBKci48

L2F1dGhvcj48YXV0aG9yPk51c3NiYXVtLCBSLiBBLjwvYXV0aG9yPjxhdXRob3I+UmF4d29ydGh5

LCBDLiBKLjwvYXV0aG9yPjxhdXRob3I+UmF6YWZpbXBhaGFuYW5hLCBBLjwvYXV0aG9yPjxhdXRo

b3I+U2NoYXR6LCBHLiBFLjwvYXV0aG9yPjxhdXRob3I+VmVuY2VzLCBNLjwvYXV0aG9yPjxhdXRo

b3I+VmllaXRlcywgRC4gUi48L2F1dGhvcj48YXV0aG9yPldyaWdodCwgUC4gQy48L2F1dGhvcj48

YXV0aG9yPlpqaHJhLCBNLiBMLjwvYXV0aG9yPjwvYXV0aG9ycz48L2NvbnRyaWJ1dG9ycz48dGl0

bGVzPjx0aXRsZT5BbGlnbmluZyBjb25zZXJ2YXRpb24gcHJpb3JpdGllcyBhY3Jvc3MgdGF4YSBp

biBNYWRhZ2FzY2FyIHdpdGggaGlnaC1yZXNvbHV0aW9uIHBsYW5uaW5nIHRvb2xzPC90aXRsZT48

c2Vjb25kYXJ5LXRpdGxlPlNjaWVuY2U8L3NlY29uZGFyeS10aXRsZT48L3RpdGxlcz48cGVyaW9k

aWNhbD48ZnVsbC10aXRsZT5TY2llbmNlPC9mdWxsLXRpdGxlPjwvcGVyaW9kaWNhbD48cGFnZXM+

MjIyLTIyNjwvcGFnZXM+PHZvbHVtZT4zMjA8L3ZvbHVtZT48bnVtYmVyPjU4NzM8L251bWJlcj48

ZGF0ZXM+PHllYXI+MjAwODwveWVhcj48cHViLWRhdGVzPjxkYXRlPkFwciAxMTwvZGF0ZT48L3B1

Yi1kYXRlcz48L2RhdGVzPjxpc2JuPjAwMzYtODA3NTwvaXNibj48YWNjZXNzaW9uLW51bT5XT1M6

MDAwMjU0ODM2NzAwMDQxPC9hY2Nlc3Npb24tbnVtPjx1cmxzPjxyZWxhdGVkLXVybHM+PHVybD4m

bHQ7R28gdG8gSVNJJmd0OzovL1dPUzowMDAyNTQ4MzY3MDAwNDE8L3VybD48L3JlbGF0ZWQtdXJs

cz48L3VybHM+PGVsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjEwLjExMjYvc2NpZW5jZS4xMTU1MTkz

PC9lbGVjdHJvbmljLXJlc291cmNlLW51bT48L3JlY29yZD48L0NpdGU+PENpdGU+PEF1dGhvcj5L

cmVtZW48L0F1dGhvcj48WWVhcj4yMDA4PC9ZZWFyPjxSZWNOdW0+NTwvUmVjTnVtPjxyZWNvcmQ+

PHJlYy1udW1iZXI+NTwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGIt

aWQ9IjI5ZTUydjVmbmR2c3c3ZXM1dmJwOXY1d3ZhNXhycHh4YTk1ZSIgdGltZXN0YW1wPSIxMzc5

MzYxMzAwIj41PC9rZXk+PC9mb3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0

aWNsZSI+MTc8L3JlZi10eXBlPjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5LcmVtZW4s

IEMuPC9hdXRob3I+PGF1dGhvcj5DYW1lcm9uLCBBLjwvYXV0aG9yPjxhdXRob3I+TW9pbGFuZW4s

IEEuPC9hdXRob3I+PGF1dGhvcj5QaGlsbGlwcywgUy4gSi48L2F1dGhvcj48YXV0aG9yPlRob21h

cywgQy4gRC48L2F1dGhvcj48YXV0aG9yPkJlZW50amUsIEguPC9hdXRob3I+PGF1dGhvcj5EcmFu

c2ZpZWxkLCBKLjwvYXV0aG9yPjxhdXRob3I+RmlzaGVyLCBCLiBMLjwvYXV0aG9yPjxhdXRob3I+

R2xhdywgRi48L2F1dGhvcj48YXV0aG9yPkdvb2QsIFQuIEMuPC9hdXRob3I+PGF1dGhvcj5IYXJw

ZXIsIEcuIEouPC9hdXRob3I+PGF1dGhvcj5IaWptYW5zLCBSLiBKLjwvYXV0aG9yPjxhdXRob3I+

TGVlcywgRC4gQy48L2F1dGhvcj48YXV0aG9yPkxvdWlzLCBFLiwgSnIuPC9hdXRob3I+PGF1dGhv

cj5OdXNzYmF1bSwgUi4gQS48L2F1dGhvcj48YXV0aG9yPlJheHdvcnRoeSwgQy4gSi48L2F1dGhv

cj48YXV0aG9yPlJhemFmaW1wYWhhbmFuYSwgQS48L2F1dGhvcj48YXV0aG9yPlNjaGF0eiwgRy4g

RS48L2F1dGhvcj48YXV0aG9yPlZlbmNlcywgTS48L2F1dGhvcj48YXV0aG9yPlZpZWl0ZXMsIEQu

IFIuPC9hdXRob3I+PGF1dGhvcj5XcmlnaHQsIFAuIEMuPC9hdXRob3I+PGF1dGhvcj5aamhyYSwg

TS4gTC48L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PHRpdGxlcz48dGl0bGU+QWxp

Z25pbmcgY29uc2VydmF0aW9uIHByaW9yaXRpZXMgYWNyb3NzIHRheGEgaW4gTWFkYWdhc2NhciB3

aXRoIGhpZ2gtcmVzb2x1dGlvbiBwbGFubmluZyB0b29sczwvdGl0bGU+PHNlY29uZGFyeS10aXRs

ZT5TY2llbmNlPC9zZWNvbmRhcnktdGl0bGU+PC90aXRsZXM+PHBlcmlvZGljYWw+PGZ1bGwtdGl0

bGU+U2NpZW5jZTwvZnVsbC10aXRsZT48L3BlcmlvZGljYWw+PHBhZ2VzPjIyMi0yMjY8L3BhZ2Vz

Pjx2b2x1bWU+MzIwPC92b2x1bWU+PG51bWJlcj41ODczPC9udW1iZXI+PGRhdGVzPjx5ZWFyPjIw

MDg8L3llYXI+PHB1Yi1kYXRlcz48ZGF0ZT5BcHIgMTE8L2RhdGU+PC9wdWItZGF0ZXM+PC9kYXRl

cz48aXNibj4wMDM2LTgwNzU8L2lzYm4+PGFjY2Vzc2lvbi1udW0+V09TOjAwMDI1NDgzNjcwMDA0

MTwvYWNjZXNzaW9uLW51bT48dXJscz48cmVsYXRlZC11cmxzPjx1cmw+Jmx0O0dvIHRvIElTSSZn

dDs6Ly9XT1M6MDAwMjU0ODM2NzAwMDQxPC91cmw+PC9yZWxhdGVkLXVybHM+PC91cmxzPjxlbGVj

dHJvbmljLXJlc291cmNlLW51bT4xMC4xMTI2L3NjaWVuY2UuMTE1NTE5MzwvZWxlY3Ryb25pYy1y

ZXNvdXJjZS1udW0+PC9yZWNvcmQ+PC9DaXRlPjxDaXRlPjxBdXRob3I+QmVjazwvQXV0aG9yPjxZ

ZWFyPjIwMTI8L1llYXI+PFJlY051bT40Njc8L1JlY051bT48cmVjb3JkPjxyZWMtbnVtYmVyPjQ2

NzwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9IjI5ZTUydjVm

bmR2c3c3ZXM1dmJwOXY1d3ZhNXhycHh4YTk1ZSIgdGltZXN0YW1wPSIxMzg0NTUxNTEwIj40Njc8

L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwv

cmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPkJlY2ssIEphbjwvYXV0aG9y

PjxhdXRob3I+QmFsbGVzdGVyb3MtTWVqaWEsIExpbGlhbmE8L2F1dGhvcj48YXV0aG9yPkJ1Y2ht

YW5uLCBDYXJzdGVuIE0uPC9hdXRob3I+PGF1dGhvcj5EZW5nbGVyLCBKdWVyZ2VuPC9hdXRob3I+

PGF1dGhvcj5Gcml0eiwgU3VzYW5uZSBBLjwvYXV0aG9yPjxhdXRob3I+R3J1YmVyLCBCZXJuZDwv

YXV0aG9yPjxhdXRob3I+SG9mLCBDaHJpc3RpYW48L2F1dGhvcj48YXV0aG9yPkphbnNlbiwgRmxv

cmlhbjwvYXV0aG9yPjxhdXRob3I+S25hcHAsIFNvbmphPC9hdXRob3I+PGF1dGhvcj5LcmVmdCwg

SG9sZ2VyPC9hdXRob3I+PGF1dGhvcj5TY2huZWlkZXIsIEFubmUtS2F0aHJpbjwvYXV0aG9yPjxh

dXRob3I+V2ludGVyLCBNYXJ0ZW48L2F1dGhvcj48YXV0aG9yPkRvcm1hbm4sIENhcnN0ZW4gRi48

L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PHRpdGxlcz48dGl0bGU+V2hhdCZhcG9z

O3Mgb24gdGhlIGhvcml6b24gZm9yIG1hY3JvZWNvbG9neT88L3RpdGxlPjxzZWNvbmRhcnktdGl0

bGU+RWNvZ3JhcGh5PC9zZWNvbmRhcnktdGl0bGU+PC90aXRsZXM+PHBlcmlvZGljYWw+PGZ1bGwt

dGl0bGU+RWNvZ3JhcGh5PC9mdWxsLXRpdGxlPjwvcGVyaW9kaWNhbD48cGFnZXM+NjczLTY4Mzwv

cGFnZXM+PHZvbHVtZT4zNTwvdm9sdW1lPjxudW1iZXI+ODwvbnVtYmVyPjxkYXRlcz48eWVhcj4y

MDEyPC95ZWFyPjxwdWItZGF0ZXM+PGRhdGU+QXVnPC9kYXRlPjwvcHViLWRhdGVzPjwvZGF0ZXM+

PGlzYm4+MDkwNi03NTkwPC9pc2JuPjxhY2Nlc3Npb24tbnVtPldPUzowMDAzMDU4OTIzMDAwMDE8

L2FjY2Vzc2lvbi1udW0+PHVybHM+PHJlbGF0ZWQtdXJscz48dXJsPiZsdDtHbyB0byBJU0kmZ3Q7

Oi8vV09TOjAwMDMwNTg5MjMwMDAwMTwvdXJsPjwvcmVsYXRlZC11cmxzPjwvdXJscz48ZWxlY3Ry

b25pYy1yZXNvdXJjZS1udW0+MTAuMTExMS9qLjE2MDAtMDU4Ny4yMDEyLjA3MzY0Lng8L2VsZWN0

cm9uaWMtcmVzb3VyY2UtbnVtPjwvcmVjb3JkPjwvQ2l0ZT48Q2l0ZT48QXV0aG9yPkxpbmRlcjwv

QXV0aG9yPjxZZWFyPjIwMTI8L1llYXI+PFJlY051bT40OTc8L1JlY051bT48cmVjb3JkPjxyZWMt

bnVtYmVyPjQ5NzwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9

IjI5ZTUydjVmbmR2c3c3ZXM1dmJwOXY1d3ZhNXhycHh4YTk1ZSIgdGltZXN0YW1wPSIxMzg0NTUz

ODUzIj40OTc8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iSm91cm5hbCBBcnRp

Y2xlIj4xNzwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPkxpbmRlciwg

SC4gUGV0ZXI8L2F1dGhvcj48YXV0aG9yPmRlIEtsZXJrLCBIZWxlbiBNLjwvYXV0aG9yPjxhdXRo

b3I+Qm9ybiwgSnVsaWE8L2F1dGhvcj48YXV0aG9yPkJ1cmdlc3MsIE5laWwgRC48L2F1dGhvcj48

YXV0aG9yPkZqZWxkc2EsIEpvbjwvYXV0aG9yPjxhdXRob3I+UmFoYmVrLCBDYXJzdGVuPC9hdXRo

b3I+PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjx0aXRsZXM+PHRpdGxlPlRoZSBwYXJ0aXRpb25p

bmcgb2YgQWZyaWNhOiBzdGF0aXN0aWNhbGx5IGRlZmluZWQgYmlvZ2VvZ3JhcGhpY2FsIHJlZ2lv

bnMgaW4gc3ViLVNhaGFyYW4gQWZyaWNhPC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPkpvdXJuYWwg

b2YgQmlvZ2VvZ3JhcGh5PC9zZWNvbmRhcnktdGl0bGU+PC90aXRsZXM+PHBlcmlvZGljYWw+PGZ1

bGwtdGl0bGU+Sm91cm5hbCBvZiBCaW9nZW9ncmFwaHk8L2Z1bGwtdGl0bGU+PC9wZXJpb2RpY2Fs

PjxwYWdlcz4xMTg5LTEyMDU8L3BhZ2VzPjx2b2x1bWU+Mzk8L3ZvbHVtZT48bnVtYmVyPjc8L251

bWJlcj48ZGF0ZXM+PHllYXI+MjAxMjwveWVhcj48cHViLWRhdGVzPjxkYXRlPkp1bDwvZGF0ZT48

L3B1Yi1kYXRlcz48L2RhdGVzPjxpc2JuPjAzMDUtMDI3MDwvaXNibj48YWNjZXNzaW9uLW51bT5X

T1M6MDAwMzA1NDUyNTAwMDAxPC9hY2Nlc3Npb24tbnVtPjx1cmxzPjxyZWxhdGVkLXVybHM+PHVy

bD4mbHQ7R28gdG8gSVNJJmd0OzovL1dPUzowMDAzMDU0NTI1MDAwMDE8L3VybD48L3JlbGF0ZWQt

dXJscz48L3VybHM+PGVsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjEwLjExMTEvai4xMzY1LTI2OTku

MjAxMi4wMjcyOC54PC9lbGVjdHJvbmljLXJlc291cmNlLW51bT48L3JlY29yZD48L0NpdGU+PENp

dGU+PEF1dGhvcj5Ib2x0PC9BdXRob3I+PFllYXI+MjAxMzwvWWVhcj48UmVjTnVtPjQ4NzwvUmVj

TnVtPjxyZWNvcmQ+PHJlYy1udW1iZXI+NDg3PC9yZWMtbnVtYmVyPjxmb3JlaWduLWtleXM+PGtl

eSBhcHA9IkVOIiBkYi1pZD0iMjllNTJ2NWZuZHZzdzdlczV2YnA5djV3dmE1eHJweHhhOTVlIiB0

aW1lc3RhbXA9IjEzODQ1NTMxOTgiPjQ4Nzwva2V5PjwvZm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBu

YW1lPSJKb3VybmFsIEFydGljbGUiPjE3PC9yZWYtdHlwZT48Y29udHJpYnV0b3JzPjxhdXRob3Jz

PjxhdXRob3I+SG9sdCwgQmVuIEcuPC9hdXRob3I+PGF1dGhvcj5MZXNzYXJkLCBKZWFuLVBoaWxp

cHBlPC9hdXRob3I+PGF1dGhvcj5Cb3JyZWdhYXJkLCBNaWNoYWVsIEsuPC9hdXRob3I+PGF1dGhv

cj5Gcml0eiwgU3VzYW5uZSBBLjwvYXV0aG9yPjxhdXRob3I+QXJhdWpvLCBNaWd1ZWwgQi48L2F1

dGhvcj48YXV0aG9yPkRpbWl0cm92LCBEaW1pdGFyPC9hdXRob3I+PGF1dGhvcj5GYWJyZSwgUGll

cnJlLUhlbnJpPC9hdXRob3I+PGF1dGhvcj5HcmFoYW0sIENhdGhlcmluZSBILjwvYXV0aG9yPjxh

dXRob3I+R3JhdmVzLCBHYXJ5IFIuPC9hdXRob3I+PGF1dGhvcj5Kb25zc29uLCBLbnVkIEEuPC9h

dXRob3I+PGF1dGhvcj5Ob2d1ZXMtQnJhdm8sIERhdmlkPC9hdXRob3I+PGF1dGhvcj5XYW5nLCBa

aGloZW5nPC9hdXRob3I+PGF1dGhvcj5XaGl0dGFrZXIsIFJvYmVydCBKLjwvYXV0aG9yPjxhdXRo

b3I+RmplbGRzYSwgSm9uPC9hdXRob3I+PGF1dGhvcj5SYWhiZWssIENhcnN0ZW48L2F1dGhvcj48

L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PHRpdGxlcz48dGl0bGU+QW4gVXBkYXRlIG9mIFdhbGxh

Y2UmYXBvcztzIFpvb2dlb2dyYXBoaWMgUmVnaW9ucyBvZiB0aGUgV29ybGQ8L3RpdGxlPjxzZWNv

bmRhcnktdGl0bGU+U2NpZW5jZTwvc2Vjb25kYXJ5LXRpdGxlPjwvdGl0bGVzPjxwZXJpb2RpY2Fs

PjxmdWxsLXRpdGxlPlNjaWVuY2U8L2Z1bGwtdGl0bGU+PC9wZXJpb2RpY2FsPjxwYWdlcz43NC03

ODwvcGFnZXM+PHZvbHVtZT4zMzk8L3ZvbHVtZT48bnVtYmVyPjYxMTU8L251bWJlcj48ZGF0ZXM+

PHllYXI+MjAxMzwveWVhcj48cHViLWRhdGVzPjxkYXRlPkphbiA0PC9kYXRlPjwvcHViLWRhdGVz

PjwvZGF0ZXM+PGlzYm4+MDAzNi04MDc1PC9pc2JuPjxhY2Nlc3Npb24tbnVtPldPUzowMDAzMTI5

ODU4MDAwNTQ8L2FjY2Vzc2lvbi1udW0+PHVybHM+PHJlbGF0ZWQtdXJscz48dXJsPiZsdDtHbyB0

byBJU0kmZ3Q7Oi8vV09TOjAwMDMxMjk4NTgwMDA1NDwvdXJsPjwvcmVsYXRlZC11cmxzPjwvdXJs

cz48ZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+MTAuMTEyNi9zY2llbmNlLjEyMjgyODI8L2VsZWN0

cm9uaWMtcmVzb3VyY2UtbnVtPjwvcmVjb3JkPjwvQ2l0ZT48Q2l0ZT48QXV0aG9yPk9saXZlcm88

L0F1dGhvcj48WWVhcj4yMDEzPC9ZZWFyPjxSZWNOdW0+NTQ0PC9SZWNOdW0+PHJlY29yZD48cmVj

LW51bWJlcj41NDQ8L3JlYy1udW1iZXI+PGZvcmVpZ24ta2V5cz48a2V5IGFwcD0iRU4iIGRiLWlk

PSIyOWU1MnY1Zm5kdnN3N2VzNXZicDl2NXd2YTV4cnB4eGE5NWUiIHRpbWVzdGFtcD0iMTM4NDcz

MDE2MyI+NTQ0PC9rZXk+PC9mb3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0

aWNsZSI+MTc8L3JlZi10eXBlPjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5PbGl2ZXJv

LCBKZXPDunM8L2F1dGhvcj48YXV0aG9yPk3DoXJxdWV6LCBBbmEgTDwvYXV0aG9yPjxhdXRob3I+

UmVhbCwgUmFpbXVuZG88L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PHRpdGxlcz48

dGl0bGU+SW50ZWdyYXRpbmcgZnV6enkgbG9naWMgYW5kIHN0YXRpc3RpY3MgdG8gaW1wcm92ZSB0

aGUgcmVsaWFibGUgZGVsaW1pdGF0aW9uIG9mIGJpb2dlb2dyYXBoaWMgcmVnaW9ucyBhbmQgdHJh

bnNpdGlvbiB6b25lczwvdGl0bGU+PHNlY29uZGFyeS10aXRsZT5TeXN0ZW1hdGljIGJpb2xvZ3k8

L3NlY29uZGFyeS10aXRsZT48L3RpdGxlcz48cGVyaW9kaWNhbD48ZnVsbC10aXRsZT5TeXN0ZW1h

dGljIEJpb2xvZ3k8L2Z1bGwtdGl0bGU+PC9wZXJpb2RpY2FsPjxwYWdlcz4xLTIxPC9wYWdlcz48

dm9sdW1lPjYyPC92b2x1bWU+PG51bWJlcj4xPC9udW1iZXI+PGRhdGVzPjx5ZWFyPjIwMTM8L3ll

YXI+PC9kYXRlcz48aXNibj4xMDYzLTUxNTc8L2lzYm4+PHVybHM+PC91cmxzPjwvcmVjb3JkPjwv

Q2l0ZT48L0VuZE5vdGU+

ADDIN EN.CITE PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5MYW1vcmV1eDwvQXV0aG9yPjxZZWFyPjIwMDY8L1llYXI+

PFJlY051bT40OTY8L1JlY051bT48RGlzcGxheVRleHQ+PHN0eWxlIGZhY2U9InN1cGVyc2NyaXB0

Ij4yLDcsOCwxOS0yMTwvc3R5bGU+PC9EaXNwbGF5VGV4dD48cmVjb3JkPjxyZWMtbnVtYmVyPjQ5

NjwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9IjI5ZTUydjVm

bmR2c3c3ZXM1dmJwOXY1d3ZhNXhycHh4YTk1ZSIgdGltZXN0YW1wPSIxMzg0NTUzNjk5Ij40OTY8

L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwv

cmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPkxhbW9yZXV4LCBKLiBGLjwv

YXV0aG9yPjxhdXRob3I+TW9ycmlzb24sIEouIEMuPC9hdXRob3I+PGF1dGhvcj5SaWNrZXR0cywg

VC4gSC48L2F1dGhvcj48YXV0aG9yPk9sc29uLCBELiBNLjwvYXV0aG9yPjxhdXRob3I+RGluZXJz

dGVpbiwgRS48L2F1dGhvcj48YXV0aG9yPk1jS25pZ2h0LCBNLiBXLjwvYXV0aG9yPjxhdXRob3I+

U2h1Z2FydCwgSC4gSC48L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PHRpdGxlcz48

dGl0bGU+R2xvYmFsIHRlc3RzIG9mIGJpb2RpdmVyc2l0eSBjb25jb3JkYW5jZSBhbmQgdGhlIGlt

cG9ydGFuY2Ugb2YgZW5kZW1pc208L3RpdGxlPjxzZWNvbmRhcnktdGl0bGU+TmF0dXJlPC9zZWNv

bmRhcnktdGl0bGU+PC90aXRsZXM+PHBlcmlvZGljYWw+PGZ1bGwtdGl0bGU+TmF0dXJlPC9mdWxs

LXRpdGxlPjwvcGVyaW9kaWNhbD48cGFnZXM+MjEyLTIxNDwvcGFnZXM+PHZvbHVtZT40NDA8L3Zv

bHVtZT48bnVtYmVyPjcwODE8L251bWJlcj48ZGF0ZXM+PHllYXI+MjAwNjwveWVhcj48cHViLWRh

dGVzPjxkYXRlPk1hciA5PC9kYXRlPjwvcHViLWRhdGVzPjwvZGF0ZXM+PGlzYm4+MDAyOC0wODM2

PC9pc2JuPjxhY2Nlc3Npb24tbnVtPldPUzowMDAyMzU4Mzk1MDAwNDY8L2FjY2Vzc2lvbi1udW0+

PHVybHM+PHJlbGF0ZWQtdXJscz48dXJsPiZsdDtHbyB0byBJU0kmZ3Q7Oi8vV09TOjAwMDIzNTgz

OTUwMDA0NjwvdXJsPjwvcmVsYXRlZC11cmxzPjwvdXJscz48ZWxlY3Ryb25pYy1yZXNvdXJjZS1u

dW0+MTAuMTAzOC9uYXR1cmUwNDI5MTwvZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+PC9yZWNvcmQ+

PC9DaXRlPjxDaXRlPjxBdXRob3I+S3JlbWVuPC9BdXRob3I+PFllYXI+MjAwODwvWWVhcj48UmVj

TnVtPjU8L1JlY051bT48cmVjb3JkPjxyZWMtbnVtYmVyPjU8L3JlYy1udW1iZXI+PGZvcmVpZ24t

a2V5cz48a2V5IGFwcD0iRU4iIGRiLWlkPSIyOWU1MnY1Zm5kdnN3N2VzNXZicDl2NXd2YTV4cnB4

eGE5NWUiIHRpbWVzdGFtcD0iMTM3OTM2MTMwMCI+NTwva2V5PjwvZm9yZWlnbi1rZXlzPjxyZWYt

dHlwZSBuYW1lPSJKb3VybmFsIEFydGljbGUiPjE3PC9yZWYtdHlwZT48Y29udHJpYnV0b3JzPjxh

dXRob3JzPjxhdXRob3I+S3JlbWVuLCBDLjwvYXV0aG9yPjxhdXRob3I+Q2FtZXJvbiwgQS48L2F1

dGhvcj48YXV0aG9yPk1vaWxhbmVuLCBBLjwvYXV0aG9yPjxhdXRob3I+UGhpbGxpcHMsIFMuIEou

PC9hdXRob3I+PGF1dGhvcj5UaG9tYXMsIEMuIEQuPC9hdXRob3I+PGF1dGhvcj5CZWVudGplLCBI

LjwvYXV0aG9yPjxhdXRob3I+RHJhbnNmaWVsZCwgSi48L2F1dGhvcj48YXV0aG9yPkZpc2hlciwg

Qi4gTC48L2F1dGhvcj48YXV0aG9yPkdsYXcsIEYuPC9hdXRob3I+PGF1dGhvcj5Hb29kLCBULiBD

LjwvYXV0aG9yPjxhdXRob3I+SGFycGVyLCBHLiBKLjwvYXV0aG9yPjxhdXRob3I+SGlqbWFucywg

Ui4gSi48L2F1dGhvcj48YXV0aG9yPkxlZXMsIEQuIEMuPC9hdXRob3I+PGF1dGhvcj5Mb3Vpcywg

RS4sIEpyLjwvYXV0aG9yPjxhdXRob3I+TnVzc2JhdW0sIFIuIEEuPC9hdXRob3I+PGF1dGhvcj5S

YXh3b3J0aHksIEMuIEouPC9hdXRob3I+PGF1dGhvcj5SYXphZmltcGFoYW5hbmEsIEEuPC9hdXRo

b3I+PGF1dGhvcj5TY2hhdHosIEcuIEUuPC9hdXRob3I+PGF1dGhvcj5WZW5jZXMsIE0uPC9hdXRo

b3I+PGF1dGhvcj5WaWVpdGVzLCBELiBSLjwvYXV0aG9yPjxhdXRob3I+V3JpZ2h0LCBQLiBDLjwv

YXV0aG9yPjxhdXRob3I+WmpocmEsIE0uIEwuPC9hdXRob3I+PC9hdXRob3JzPjwvY29udHJpYnV0

b3JzPjx0aXRsZXM+PHRpdGxlPkFsaWduaW5nIGNvbnNlcnZhdGlvbiBwcmlvcml0aWVzIGFjcm9z

cyB0YXhhIGluIE1hZGFnYXNjYXIgd2l0aCBoaWdoLXJlc29sdXRpb24gcGxhbm5pbmcgdG9vbHM8

L3RpdGxlPjxzZWNvbmRhcnktdGl0bGU+U2NpZW5jZTwvc2Vjb25kYXJ5LXRpdGxlPjwvdGl0bGVz

PjxwZXJpb2RpY2FsPjxmdWxsLXRpdGxlPlNjaWVuY2U8L2Z1bGwtdGl0bGU+PC9wZXJpb2RpY2Fs

PjxwYWdlcz4yMjItMjI2PC9wYWdlcz48dm9sdW1lPjMyMDwvdm9sdW1lPjxudW1iZXI+NTg3Mzwv

bnVtYmVyPjxkYXRlcz48eWVhcj4yMDA4PC95ZWFyPjxwdWItZGF0ZXM+PGRhdGU+QXByIDExPC9k

YXRlPjwvcHViLWRhdGVzPjwvZGF0ZXM+PGlzYm4+MDAzNi04MDc1PC9pc2JuPjxhY2Nlc3Npb24t

bnVtPldPUzowMDAyNTQ4MzY3MDAwNDE8L2FjY2Vzc2lvbi1udW0+PHVybHM+PHJlbGF0ZWQtdXJs

cz48dXJsPiZsdDtHbyB0byBJU0kmZ3Q7Oi8vV09TOjAwMDI1NDgzNjcwMDA0MTwvdXJsPjwvcmVs

YXRlZC11cmxzPjwvdXJscz48ZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+MTAuMTEyNi9zY2llbmNl

LjExNTUxOTM8L2VsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjwvcmVjb3JkPjwvQ2l0ZT48Q2l0ZT48

QXV0aG9yPktyZW1lbjwvQXV0aG9yPjxZZWFyPjIwMDg8L1llYXI+PFJlY051bT40OTQ8L1JlY051

bT48cmVjb3JkPjxyZWMtbnVtYmVyPjQ5NDwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkg

YXBwPSJFTiIgZGItaWQ9IjI5ZTUydjVmbmR2c3c3ZXM1dmJwOXY1d3ZhNXhycHh4YTk1ZSIgdGlt

ZXN0YW1wPSIxMzg0NTUzNjEwIj40OTQ8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFt

ZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48

YXV0aG9yPktyZW1lbiwgQy48L2F1dGhvcj48YXV0aG9yPkNhbWVyb24sIEEuPC9hdXRob3I+PGF1

dGhvcj5Nb2lsYW5lbiwgQS48L2F1dGhvcj48YXV0aG9yPlBoaWxsaXBzLCBTLiBKLjwvYXV0aG9y

PjxhdXRob3I+VGhvbWFzLCBDLiBELjwvYXV0aG9yPjxhdXRob3I+QmVlbnRqZSwgSC48L2F1dGhv

cj48YXV0aG9yPkRyYW5zZmllbGQsIEouPC9hdXRob3I+PGF1dGhvcj5GaXNoZXIsIEIuIEwuPC9h

dXRob3I+PGF1dGhvcj5HbGF3LCBGLjwvYXV0aG9yPjxhdXRob3I+R29vZCwgVC4gQy48L2F1dGhv

cj48YXV0aG9yPkhhcnBlciwgRy4gSi48L2F1dGhvcj48YXV0aG9yPkhpam1hbnMsIFIuIEouPC9h

dXRob3I+PGF1dGhvcj5MZWVzLCBELiBDLjwvYXV0aG9yPjxhdXRob3I+TG91aXMsIEUuLCBKci48

L2F1dGhvcj48YXV0aG9yPk51c3NiYXVtLCBSLiBBLjwvYXV0aG9yPjxhdXRob3I+UmF4d29ydGh5

LCBDLiBKLjwvYXV0aG9yPjxhdXRob3I+UmF6YWZpbXBhaGFuYW5hLCBBLjwvYXV0aG9yPjxhdXRo

b3I+U2NoYXR6LCBHLiBFLjwvYXV0aG9yPjxhdXRob3I+VmVuY2VzLCBNLjwvYXV0aG9yPjxhdXRo

b3I+VmllaXRlcywgRC4gUi48L2F1dGhvcj48YXV0aG9yPldyaWdodCwgUC4gQy48L2F1dGhvcj48

YXV0aG9yPlpqaHJhLCBNLiBMLjwvYXV0aG9yPjwvYXV0aG9ycz48L2NvbnRyaWJ1dG9ycz48dGl0

bGVzPjx0aXRsZT5BbGlnbmluZyBjb25zZXJ2YXRpb24gcHJpb3JpdGllcyBhY3Jvc3MgdGF4YSBp

biBNYWRhZ2FzY2FyIHdpdGggaGlnaC1yZXNvbHV0aW9uIHBsYW5uaW5nIHRvb2xzPC90aXRsZT48

c2Vjb25kYXJ5LXRpdGxlPlNjaWVuY2U8L3NlY29uZGFyeS10aXRsZT48L3RpdGxlcz48cGVyaW9k

aWNhbD48ZnVsbC10aXRsZT5TY2llbmNlPC9mdWxsLXRpdGxlPjwvcGVyaW9kaWNhbD48cGFnZXM+

MjIyLTIyNjwvcGFnZXM+PHZvbHVtZT4zMjA8L3ZvbHVtZT48bnVtYmVyPjU4NzM8L251bWJlcj48

ZGF0ZXM+PHllYXI+MjAwODwveWVhcj48cHViLWRhdGVzPjxkYXRlPkFwciAxMTwvZGF0ZT48L3B1

Yi1kYXRlcz48L2RhdGVzPjxpc2JuPjAwMzYtODA3NTwvaXNibj48YWNjZXNzaW9uLW51bT5XT1M6

MDAwMjU0ODM2NzAwMDQxPC9hY2Nlc3Npb24tbnVtPjx1cmxzPjxyZWxhdGVkLXVybHM+PHVybD4m

bHQ7R28gdG8gSVNJJmd0OzovL1dPUzowMDAyNTQ4MzY3MDAwNDE8L3VybD48L3JlbGF0ZWQtdXJs

cz48L3VybHM+PGVsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjEwLjExMjYvc2NpZW5jZS4xMTU1MTkz

PC9lbGVjdHJvbmljLXJlc291cmNlLW51bT48L3JlY29yZD48L0NpdGU+PENpdGU+PEF1dGhvcj5L

cmVtZW48L0F1dGhvcj48WWVhcj4yMDA4PC9ZZWFyPjxSZWNOdW0+NTwvUmVjTnVtPjxyZWNvcmQ+

PHJlYy1udW1iZXI+NTwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGIt

aWQ9IjI5ZTUydjVmbmR2c3c3ZXM1dmJwOXY1d3ZhNXhycHh4YTk1ZSIgdGltZXN0YW1wPSIxMzc5

MzYxMzAwIj41PC9rZXk+PC9mb3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0

aWNsZSI+MTc8L3JlZi10eXBlPjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5LcmVtZW4s

IEMuPC9hdXRob3I+PGF1dGhvcj5DYW1lcm9uLCBBLjwvYXV0aG9yPjxhdXRob3I+TW9pbGFuZW4s

IEEuPC9hdXRob3I+PGF1dGhvcj5QaGlsbGlwcywgUy4gSi48L2F1dGhvcj48YXV0aG9yPlRob21h

cywgQy4gRC48L2F1dGhvcj48YXV0aG9yPkJlZW50amUsIEguPC9hdXRob3I+PGF1dGhvcj5EcmFu

c2ZpZWxkLCBKLjwvYXV0aG9yPjxhdXRob3I+RmlzaGVyLCBCLiBMLjwvYXV0aG9yPjxhdXRob3I+

R2xhdywgRi48L2F1dGhvcj48YXV0aG9yPkdvb2QsIFQuIEMuPC9hdXRob3I+PGF1dGhvcj5IYXJw

ZXIsIEcuIEouPC9hdXRob3I+PGF1dGhvcj5IaWptYW5zLCBSLiBKLjwvYXV0aG9yPjxhdXRob3I+

TGVlcywgRC4gQy48L2F1dGhvcj48YXV0aG9yPkxvdWlzLCBFLiwgSnIuPC9hdXRob3I+PGF1dGhv

cj5OdXNzYmF1bSwgUi4gQS48L2F1dGhvcj48YXV0aG9yPlJheHdvcnRoeSwgQy4gSi48L2F1dGhv

cj48YXV0aG9yPlJhemFmaW1wYWhhbmFuYSwgQS48L2F1dGhvcj48YXV0aG9yPlNjaGF0eiwgRy4g

RS48L2F1dGhvcj48YXV0aG9yPlZlbmNlcywgTS48L2F1dGhvcj48YXV0aG9yPlZpZWl0ZXMsIEQu

IFIuPC9hdXRob3I+PGF1dGhvcj5XcmlnaHQsIFAuIEMuPC9hdXRob3I+PGF1dGhvcj5aamhyYSwg

TS4gTC48L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PHRpdGxlcz48dGl0bGU+QWxp

Z25pbmcgY29uc2VydmF0aW9uIHByaW9yaXRpZXMgYWNyb3NzIHRheGEgaW4gTWFkYWdhc2NhciB3

aXRoIGhpZ2gtcmVzb2x1dGlvbiBwbGFubmluZyB0b29sczwvdGl0bGU+PHNlY29uZGFyeS10aXRs

ZT5TY2llbmNlPC9zZWNvbmRhcnktdGl0bGU+PC90aXRsZXM+PHBlcmlvZGljYWw+PGZ1bGwtdGl0

bGU+U2NpZW5jZTwvZnVsbC10aXRsZT48L3BlcmlvZGljYWw+PHBhZ2VzPjIyMi0yMjY8L3BhZ2Vz

Pjx2b2x1bWU+MzIwPC92b2x1bWU+PG51bWJlcj41ODczPC9udW1iZXI+PGRhdGVzPjx5ZWFyPjIw

MDg8L3llYXI+PHB1Yi1kYXRlcz48ZGF0ZT5BcHIgMTE8L2RhdGU+PC9wdWItZGF0ZXM+PC9kYXRl

cz48aXNibj4wMDM2LTgwNzU8L2lzYm4+PGFjY2Vzc2lvbi1udW0+V09TOjAwMDI1NDgzNjcwMDA0

MTwvYWNjZXNzaW9uLW51bT48dXJscz48cmVsYXRlZC11cmxzPjx1cmw+Jmx0O0dvIHRvIElTSSZn

dDs6Ly9XT1M6MDAwMjU0ODM2NzAwMDQxPC91cmw+PC9yZWxhdGVkLXVybHM+PC91cmxzPjxlbGVj

dHJvbmljLXJlc291cmNlLW51bT4xMC4xMTI2L3NjaWVuY2UuMTE1NTE5MzwvZWxlY3Ryb25pYy1y

ZXNvdXJjZS1udW0+PC9yZWNvcmQ+PC9DaXRlPjxDaXRlPjxBdXRob3I+QmVjazwvQXV0aG9yPjxZ

ZWFyPjIwMTI8L1llYXI+PFJlY051bT40Njc8L1JlY051bT48cmVjb3JkPjxyZWMtbnVtYmVyPjQ2

NzwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9IjI5ZTUydjVm

bmR2c3c3ZXM1dmJwOXY1d3ZhNXhycHh4YTk1ZSIgdGltZXN0YW1wPSIxMzg0NTUxNTEwIj40Njc8

L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwv

cmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPkJlY2ssIEphbjwvYXV0aG9y

PjxhdXRob3I+QmFsbGVzdGVyb3MtTWVqaWEsIExpbGlhbmE8L2F1dGhvcj48YXV0aG9yPkJ1Y2ht

YW5uLCBDYXJzdGVuIE0uPC9hdXRob3I+PGF1dGhvcj5EZW5nbGVyLCBKdWVyZ2VuPC9hdXRob3I+

PGF1dGhvcj5Gcml0eiwgU3VzYW5uZSBBLjwvYXV0aG9yPjxhdXRob3I+R3J1YmVyLCBCZXJuZDwv

YXV0aG9yPjxhdXRob3I+SG9mLCBDaHJpc3RpYW48L2F1dGhvcj48YXV0aG9yPkphbnNlbiwgRmxv

cmlhbjwvYXV0aG9yPjxhdXRob3I+S25hcHAsIFNvbmphPC9hdXRob3I+PGF1dGhvcj5LcmVmdCwg

SG9sZ2VyPC9hdXRob3I+PGF1dGhvcj5TY2huZWlkZXIsIEFubmUtS2F0aHJpbjwvYXV0aG9yPjxh

dXRob3I+V2ludGVyLCBNYXJ0ZW48L2F1dGhvcj48YXV0aG9yPkRvcm1hbm4sIENhcnN0ZW4gRi48

L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PHRpdGxlcz48dGl0bGU+V2hhdCZhcG9z

O3Mgb24gdGhlIGhvcml6b24gZm9yIG1hY3JvZWNvbG9neT88L3RpdGxlPjxzZWNvbmRhcnktdGl0

bGU+RWNvZ3JhcGh5PC9zZWNvbmRhcnktdGl0bGU+PC90aXRsZXM+PHBlcmlvZGljYWw+PGZ1bGwt

dGl0bGU+RWNvZ3JhcGh5PC9mdWxsLXRpdGxlPjwvcGVyaW9kaWNhbD48cGFnZXM+NjczLTY4Mzwv

cGFnZXM+PHZvbHVtZT4zNTwvdm9sdW1lPjxudW1iZXI+ODwvbnVtYmVyPjxkYXRlcz48eWVhcj4y

MDEyPC95ZWFyPjxwdWItZGF0ZXM+PGRhdGU+QXVnPC9kYXRlPjwvcHViLWRhdGVzPjwvZGF0ZXM+

PGlzYm4+MDkwNi03NTkwPC9pc2JuPjxhY2Nlc3Npb24tbnVtPldPUzowMDAzMDU4OTIzMDAwMDE8

L2FjY2Vzc2lvbi1udW0+PHVybHM+PHJlbGF0ZWQtdXJscz48dXJsPiZsdDtHbyB0byBJU0kmZ3Q7

Oi8vV09TOjAwMDMwNTg5MjMwMDAwMTwvdXJsPjwvcmVsYXRlZC11cmxzPjwvdXJscz48ZWxlY3Ry

b25pYy1yZXNvdXJjZS1udW0+MTAuMTExMS9qLjE2MDAtMDU4Ny4yMDEyLjA3MzY0Lng8L2VsZWN0

cm9uaWMtcmVzb3VyY2UtbnVtPjwvcmVjb3JkPjwvQ2l0ZT48Q2l0ZT48QXV0aG9yPkxpbmRlcjwv

QXV0aG9yPjxZZWFyPjIwMTI8L1llYXI+PFJlY051bT40OTc8L1JlY051bT48cmVjb3JkPjxyZWMt

bnVtYmVyPjQ5NzwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9

IjI5ZTUydjVmbmR2c3c3ZXM1dmJwOXY1d3ZhNXhycHh4YTk1ZSIgdGltZXN0YW1wPSIxMzg0NTUz

ODUzIj40OTc8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iSm91cm5hbCBBcnRp

Y2xlIj4xNzwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPkxpbmRlciwg

SC4gUGV0ZXI8L2F1dGhvcj48YXV0aG9yPmRlIEtsZXJrLCBIZWxlbiBNLjwvYXV0aG9yPjxhdXRo

b3I+Qm9ybiwgSnVsaWE8L2F1dGhvcj48YXV0aG9yPkJ1cmdlc3MsIE5laWwgRC48L2F1dGhvcj48

YXV0aG9yPkZqZWxkc2EsIEpvbjwvYXV0aG9yPjxhdXRob3I+UmFoYmVrLCBDYXJzdGVuPC9hdXRo

b3I+PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjx0aXRsZXM+PHRpdGxlPlRoZSBwYXJ0aXRpb25p

bmcgb2YgQWZyaWNhOiBzdGF0aXN0aWNhbGx5IGRlZmluZWQgYmlvZ2VvZ3JhcGhpY2FsIHJlZ2lv

bnMgaW4gc3ViLVNhaGFyYW4gQWZyaWNhPC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPkpvdXJuYWwg

b2YgQmlvZ2VvZ3JhcGh5PC9zZWNvbmRhcnktdGl0bGU+PC90aXRsZXM+PHBlcmlvZGljYWw+PGZ1

bGwtdGl0bGU+Sm91cm5hbCBvZiBCaW9nZW9ncmFwaHk8L2Z1bGwtdGl0bGU+PC9wZXJpb2RpY2Fs

PjxwYWdlcz4xMTg5LTEyMDU8L3BhZ2VzPjx2b2x1bWU+Mzk8L3ZvbHVtZT48bnVtYmVyPjc8L251

bWJlcj48ZGF0ZXM+PHllYXI+MjAxMjwveWVhcj48cHViLWRhdGVzPjxkYXRlPkp1bDwvZGF0ZT48

L3B1Yi1kYXRlcz48L2RhdGVzPjxpc2JuPjAzMDUtMDI3MDwvaXNibj48YWNjZXNzaW9uLW51bT5X

T1M6MDAwMzA1NDUyNTAwMDAxPC9hY2Nlc3Npb24tbnVtPjx1cmxzPjxyZWxhdGVkLXVybHM+PHVy

bD4mbHQ7R28gdG8gSVNJJmd0OzovL1dPUzowMDAzMDU0NTI1MDAwMDE8L3VybD48L3JlbGF0ZWQt

dXJscz48L3VybHM+PGVsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjEwLjExMTEvai4xMzY1LTI2OTku

MjAxMi4wMjcyOC54PC9lbGVjdHJvbmljLXJlc291cmNlLW51bT48L3JlY29yZD48L0NpdGU+PENp

dGU+PEF1dGhvcj5Ib2x0PC9BdXRob3I+PFllYXI+MjAxMzwvWWVhcj48UmVjTnVtPjQ4NzwvUmVj

TnVtPjxyZWNvcmQ+PHJlYy1udW1iZXI+NDg3PC9yZWMtbnVtYmVyPjxmb3JlaWduLWtleXM+PGtl

eSBhcHA9IkVOIiBkYi1pZD0iMjllNTJ2NWZuZHZzdzdlczV2YnA5djV3dmE1eHJweHhhOTVlIiB0

aW1lc3RhbXA9IjEzODQ1NTMxOTgiPjQ4Nzwva2V5PjwvZm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBu

YW1lPSJKb3VybmFsIEFydGljbGUiPjE3PC9yZWYtdHlwZT48Y29udHJpYnV0b3JzPjxhdXRob3Jz

PjxhdXRob3I+SG9sdCwgQmVuIEcuPC9hdXRob3I+PGF1dGhvcj5MZXNzYXJkLCBKZWFuLVBoaWxp

cHBlPC9hdXRob3I+PGF1dGhvcj5Cb3JyZWdhYXJkLCBNaWNoYWVsIEsuPC9hdXRob3I+PGF1dGhv

cj5Gcml0eiwgU3VzYW5uZSBBLjwvYXV0aG9yPjxhdXRob3I+QXJhdWpvLCBNaWd1ZWwgQi48L2F1

dGhvcj48YXV0aG9yPkRpbWl0cm92LCBEaW1pdGFyPC9hdXRob3I+PGF1dGhvcj5GYWJyZSwgUGll

cnJlLUhlbnJpPC9hdXRob3I+PGF1dGhvcj5HcmFoYW0sIENhdGhlcmluZSBILjwvYXV0aG9yPjxh

dXRob3I+R3JhdmVzLCBHYXJ5IFIuPC9hdXRob3I+PGF1dGhvcj5Kb25zc29uLCBLbnVkIEEuPC9h

dXRob3I+PGF1dGhvcj5Ob2d1ZXMtQnJhdm8sIERhdmlkPC9hdXRob3I+PGF1dGhvcj5XYW5nLCBa

aGloZW5nPC9hdXRob3I+PGF1dGhvcj5XaGl0dGFrZXIsIFJvYmVydCBKLjwvYXV0aG9yPjxhdXRo

b3I+RmplbGRzYSwgSm9uPC9hdXRob3I+PGF1dGhvcj5SYWhiZWssIENhcnN0ZW48L2F1dGhvcj48

L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PHRpdGxlcz48dGl0bGU+QW4gVXBkYXRlIG9mIFdhbGxh

Y2UmYXBvcztzIFpvb2dlb2dyYXBoaWMgUmVnaW9ucyBvZiB0aGUgV29ybGQ8L3RpdGxlPjxzZWNv

bmRhcnktdGl0bGU+U2NpZW5jZTwvc2Vjb25kYXJ5LXRpdGxlPjwvdGl0bGVzPjxwZXJpb2RpY2Fs

PjxmdWxsLXRpdGxlPlNjaWVuY2U8L2Z1bGwtdGl0bGU+PC9wZXJpb2RpY2FsPjxwYWdlcz43NC03

ODwvcGFnZXM+PHZvbHVtZT4zMzk8L3ZvbHVtZT48bnVtYmVyPjYxMTU8L251bWJlcj48ZGF0ZXM+

PHllYXI+MjAxMzwveWVhcj48cHViLWRhdGVzPjxkYXRlPkphbiA0PC9kYXRlPjwvcHViLWRhdGVz

PjwvZGF0ZXM+PGlzYm4+MDAzNi04MDc1PC9pc2JuPjxhY2Nlc3Npb24tbnVtPldPUzowMDAzMTI5

ODU4MDAwNTQ8L2FjY2Vzc2lvbi1udW0+PHVybHM+PHJlbGF0ZWQtdXJscz48dXJsPiZsdDtHbyB0

byBJU0kmZ3Q7Oi8vV09TOjAwMDMxMjk4NTgwMDA1NDwvdXJsPjwvcmVsYXRlZC11cmxzPjwvdXJs

cz48ZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+MTAuMTEyNi9zY2llbmNlLjEyMjgyODI8L2VsZWN0

cm9uaWMtcmVzb3VyY2UtbnVtPjwvcmVjb3JkPjwvQ2l0ZT48Q2l0ZT48QXV0aG9yPk9saXZlcm88

L0F1dGhvcj48WWVhcj4yMDEzPC9ZZWFyPjxSZWNOdW0+NTQ0PC9SZWNOdW0+PHJlY29yZD48cmVj

LW51bWJlcj41NDQ8L3JlYy1udW1iZXI+PGZvcmVpZ24ta2V5cz48a2V5IGFwcD0iRU4iIGRiLWlk

PSIyOWU1MnY1Zm5kdnN3N2VzNXZicDl2NXd2YTV4cnB4eGE5NWUiIHRpbWVzdGFtcD0iMTM4NDcz

MDE2MyI+NTQ0PC9rZXk+PC9mb3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0

aWNsZSI+MTc8L3JlZi10eXBlPjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5PbGl2ZXJv

LCBKZXPDunM8L2F1dGhvcj48YXV0aG9yPk3DoXJxdWV6LCBBbmEgTDwvYXV0aG9yPjxhdXRob3I+

UmVhbCwgUmFpbXVuZG88L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PHRpdGxlcz48

dGl0bGU+SW50ZWdyYXRpbmcgZnV6enkgbG9naWMgYW5kIHN0YXRpc3RpY3MgdG8gaW1wcm92ZSB0

aGUgcmVsaWFibGUgZGVsaW1pdGF0aW9uIG9mIGJpb2dlb2dyYXBoaWMgcmVnaW9ucyBhbmQgdHJh

bnNpdGlvbiB6b25lczwvdGl0bGU+PHNlY29uZGFyeS10aXRsZT5TeXN0ZW1hdGljIGJpb2xvZ3k8

L3NlY29uZGFyeS10aXRsZT48L3RpdGxlcz48cGVyaW9kaWNhbD48ZnVsbC10aXRsZT5TeXN0ZW1h

dGljIEJpb2xvZ3k8L2Z1bGwtdGl0bGU+PC9wZXJpb2RpY2FsPjxwYWdlcz4xLTIxPC9wYWdlcz48

dm9sdW1lPjYyPC92b2x1bWU+PG51bWJlcj4xPC9udW1iZXI+PGRhdGVzPjx5ZWFyPjIwMTM8L3ll

YXI+PC9kYXRlcz48aXNibj4xMDYzLTUxNTc8L2lzYm4+PHVybHM+PC91cmxzPjwvcmVjb3JkPjwv

Q2l0ZT48L0VuZE5vdGU+

ADDIN EN.CITE.DATA 2,7,8,19-21. Despite this progress in conceptual and statistical tools, biological explanation of these patterns is still in its methodological infancy. Here we aim to employ the latest techniques for sophisticated and improved statistical methods for identifying the causal mechanisms that have determined the spatial distribution of Madagascar's herpetofauna. Though the search for the drivers of biological diversification was initially focused on the Neotropics, considerable attention has more recently been focused on other areas such as the Australian wet tropics ADDIN EN.CITE <EndNote><Cite><Author>Graham</Author><Year>2006</Year><RecNum>480</RecNum><DisplayText><style face="superscript">22</style></DisplayText><record><rec-number>480</rec-number><foreign-keys><key app="EN" db-id="29e52v5fndvsw7es5vbp9v5wva5xrpxxa95e" timestamp="1384552724">480</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Graham, C. H.</author><author>Moritz, C.</author><author>Williams, S. E.</author></authors></contributors><titles><title>Habitat history improves prediction of biodiversity in rainforest fauna</title><secondary-title>Proceedings of the National Academy of Sciences of the United States of America</secondary-title></titles><periodical><full-title>Proceedings of the National Academy of Sciences of the United States of America</full-title></periodical><pages>632-636</pages><volume>103</volume><number>3</number><dates><year>2006</year><pub-dates><date>Jan 17</date></pub-dates></dates><isbn>0027-8424</isbn><accession-num>WOS:000234727800025</accession-num><urls><related-urls><url>&lt;Go to ISI&gt;://WOS:000234727800025</url></related-urls></urls><electronic-resource-num>10.1073/pnas.0505754103</electronic-resource-num></record></Cite></EndNote>22 and Madagascar ADDIN EN.CITE <EndNote><Cite><Author>Vences</Author><Year>2009</Year><RecNum>514</RecNum><DisplayText><style face="superscript">23</style></DisplayText><record><rec-number>514</rec-number><foreign-keys><key app="EN" db-id="29e52v5fndvsw7es5vbp9v5wva5xrpxxa95e" timestamp="1384554592">514</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Vences, Miguel</author><author>Wollenberg, Katharina C.</author><author>Vieites, David R.</author><author>Lees, David C.</author></authors></contributors><titles><title>Madagascar as a model region of species diversification</title><secondary-title>Trends in Ecology &amp; Evolution</secondary-title></titles><periodical><full-title>Trends in Ecology &amp; Evolution</full-title></periodical><pages>456-465</pages><volume>24</volume><number>8</number><dates><year>2009</year><pub-dates><date>Aug</date></pub-dates></dates><isbn>0169-5347</isbn><accession-num>WOS:000269051400010</accession-num><urls><related-urls><url>&lt;Go to ISI&gt;://WOS:000269051400010</url></related-urls></urls><electronic-resource-num>10.1016/j.tree.2009.03.011</electronic-resource-num></record></Cite></EndNote>23. Madagascar is the world's fourth largest island and hosts an extraordinary number of endemic flora and fauna. For example, 100% of the native species of amphibians and terrestrial mammals, 92% of reptiles, 44% of birds, and >90% of flowering plants occur nowhere else ADDIN EN.CITE <EndNote><Cite><Author>Goodman</Author><Year>2003</Year><RecNum>457</RecNum><DisplayText><style face="superscript">24</style></DisplayText><record><rec-number>457</rec-number><foreign-keys><key app="EN" db-id="29e52v5fndvsw7es5vbp9v5wva5xrpxxa95e" timestamp="1381172526">457</key></foreign-keys><ref-type name="Book">6</ref-type><contributors><authors><author>Goodman, Steven M</author><author>Benstead, Jonathan P</author></authors></contributors><titles><title>The natural history of Madagascar</title></titles><dates><year>2003</year></dates><publisher>University of Chicago Press Chicago</publisher><isbn>0226303063</isbn><urls></urls></record></Cite></EndNote>24. This mega diverse micro-continent, initially part of Gondwana, has been isolated from other continents since the Mesozoic. Its current vertebrate fauna is a mix of only a few ancient Gondwanan clades and numerous endemic radiations, originating from Cenozoic overseas colonizers arriving mainly from AfricaPEVuZE5vdGU+PENpdGU+PEF1dGhvcj5Zb2RlcjwvQXV0aG9yPjxZZWFyPjIwMDY8L1llYXI+PFJl

Y051bT41NDU8L1JlY051bT48RGlzcGxheVRleHQ+PHN0eWxlIGZhY2U9InN1cGVyc2NyaXB0Ij4y

NS0yNzwvc3R5bGU+PC9EaXNwbGF5VGV4dD48cmVjb3JkPjxyZWMtbnVtYmVyPjU0NTwvcmVjLW51

bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9IjI5ZTUydjVmbmR2c3c3ZXM1

dmJwOXY1d3ZhNXhycHh4YTk1ZSIgdGltZXN0YW1wPSIxMzg0NzMwNTYyIj41NDU8L2tleT48L2Zv

cmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwvcmVmLXR5cGU+

PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPllvZGVyLCBBbm5lIEQ8L2F1dGhvcj48YXV0

aG9yPk5vd2FrLCBNaWNoYWVsIEQ8L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PHRp

dGxlcz48dGl0bGU+SGFzIHZpY2FyaWFuY2Ugb3IgZGlzcGVyc2FsIGJlZW4gdGhlIHByZWRvbWlu

YW50IGJpb2dlb2dyYXBoaWMgZm9yY2UgaW4gTWFkYWdhc2Nhcj8gT25seSB0aW1lIHdpbGwgdGVs

bDwvdGl0bGU+PHNlY29uZGFyeS10aXRsZT5Bbm51YWwgUmV2aWV3IG9mIEVjb2xvZ3ksIEV2b2x1

dGlvbiwgYW5kIFN5c3RlbWF0aWNzPC9zZWNvbmRhcnktdGl0bGU+PC90aXRsZXM+PHBlcmlvZGlj

YWw+PGZ1bGwtdGl0bGU+QW5udWFsIFJldmlldyBvZiBFY29sb2d5LCBFdm9sdXRpb24sIGFuZCBT

eXN0ZW1hdGljczwvZnVsbC10aXRsZT48L3BlcmlvZGljYWw+PHBhZ2VzPjQwNS00MzE8L3BhZ2Vz

PjxkYXRlcz48eWVhcj4yMDA2PC95ZWFyPjwvZGF0ZXM+PGlzYm4+MTU0My01OTJYPC9pc2JuPjx1

cmxzPjwvdXJscz48L3JlY29yZD48L0NpdGU+PENpdGU+PEF1dGhvcj5Dcm90dGluaTwvQXV0aG9y

PjxZZWFyPjIwMTI8L1llYXI+PFJlY051bT40NzM8L1JlY051bT48cmVjb3JkPjxyZWMtbnVtYmVy

PjQ3MzwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9IjI5ZTUy

djVmbmR2c3c3ZXM1dmJwOXY1d3ZhNXhycHh4YTk1ZSIgdGltZXN0YW1wPSIxMzg0NTUxODE1Ij40

NzM8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xlIj4x

NzwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPkNyb3R0aW5pLCBBbmdl

bGljYTwvYXV0aG9yPjxhdXRob3I+TWFkc2VuLCBPbGU8L2F1dGhvcj48YXV0aG9yPlBvdXgsIENl

bGluZTwvYXV0aG9yPjxhdXRob3I+U3RyYXVzcywgQXhlbDwvYXV0aG9yPjxhdXRob3I+VmllaXRl

cywgRGF2aWQgUi48L2F1dGhvcj48YXV0aG9yPlZlbmNlcywgTWlndWVsPC9hdXRob3I+PC9hdXRo

b3JzPjwvY29udHJpYnV0b3JzPjx0aXRsZXM+PHRpdGxlPlZlcnRlYnJhdGUgdGltZS10cmVlIGVs

dWNpZGF0ZXMgdGhlIGJpb2dlb2dyYXBoaWMgcGF0dGVybiBvZiBhIG1ham9yIGJpb3RpYyBjaGFu

Z2UgYXJvdW5kIHRoZSBLLVQgYm91bmRhcnkgaW4gTWFkYWdhc2NhcjwvdGl0bGU+PHNlY29uZGFy

eS10aXRsZT5Qcm9jZWVkaW5ncyBvZiB0aGUgTmF0aW9uYWwgQWNhZGVteSBvZiBTY2llbmNlcyBv

ZiB0aGUgVW5pdGVkIFN0YXRlcyBvZiBBbWVyaWNhPC9zZWNvbmRhcnktdGl0bGU+PC90aXRsZXM+

PHBlcmlvZGljYWw+PGZ1bGwtdGl0bGU+UHJvY2VlZGluZ3Mgb2YgdGhlIE5hdGlvbmFsIEFjYWRl

bXkgb2YgU2NpZW5jZXMgb2YgdGhlIFVuaXRlZCBTdGF0ZXMgb2YgQW1lcmljYTwvZnVsbC10aXRs

ZT48L3BlcmlvZGljYWw+PHBhZ2VzPjUzNTgtNTM2MzwvcGFnZXM+PHZvbHVtZT4xMDk8L3ZvbHVt

ZT48bnVtYmVyPjE0PC9udW1iZXI+PGRhdGVzPjx5ZWFyPjIwMTI8L3llYXI+PHB1Yi1kYXRlcz48

ZGF0ZT5BcHIgMzwvZGF0ZT48L3B1Yi1kYXRlcz48L2RhdGVzPjxpc2JuPjAwMjctODQyNDwvaXNi

bj48YWNjZXNzaW9uLW51bT5XT1M6MDAwMzAyMjk0NzAwMDUzPC9hY2Nlc3Npb24tbnVtPjx1cmxz

PjxyZWxhdGVkLXVybHM+PHVybD4mbHQ7R28gdG8gSVNJJmd0OzovL1dPUzowMDAzMDIyOTQ3MDAw

NTM8L3VybD48L3JlbGF0ZWQtdXJscz48L3VybHM+PGVsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjEw

LjEwNzMvcG5hcy4xMTEyNDg3MTA5PC9lbGVjdHJvbmljLXJlc291cmNlLW51bT48L3JlY29yZD48

L0NpdGU+PENpdGU+PEF1dGhvcj5TYW1vbmRzPC9BdXRob3I+PFllYXI+MjAxMjwvWWVhcj48UmVj

TnVtPjUxMjwvUmVjTnVtPjxyZWNvcmQ+PHJlYy1udW1iZXI+NTEyPC9yZWMtbnVtYmVyPjxmb3Jl

aWduLWtleXM+PGtleSBhcHA9IkVOIiBkYi1pZD0iMjllNTJ2NWZuZHZzdzdlczV2YnA5djV3dmE1

eHJweHhhOTVlIiB0aW1lc3RhbXA9IjEzODQ1NTQ0NTUiPjUxMjwva2V5PjwvZm9yZWlnbi1rZXlz

PjxyZWYtdHlwZSBuYW1lPSJKb3VybmFsIEFydGljbGUiPjE3PC9yZWYtdHlwZT48Y29udHJpYnV0

b3JzPjxhdXRob3JzPjxhdXRob3I+U2Ftb25kcywgS2FyZW4gRS48L2F1dGhvcj48YXV0aG9yPkdv

ZGZyZXksIExhdXJpZSBSLjwvYXV0aG9yPjxhdXRob3I+QWxpLCBKYXNvbiBSLjwvYXV0aG9yPjxh

dXRob3I+R29vZG1hbmQsIFN0ZXZlbiBNLjwvYXV0aG9yPjxhdXRob3I+VmVuY2VzLCBNaWd1ZWw8

L2F1dGhvcj48YXV0aG9yPlN1dGhlcmxhbmQsIE1pY2hhZWwgUi48L2F1dGhvcj48YXV0aG9yPkly

d2luLCBNaXRjaGVsbCBULjwvYXV0aG9yPjxhdXRob3I+S3JhdXNlLCBEYXZpZCBXLjwvYXV0aG9y

PjwvYXV0aG9ycz48L2NvbnRyaWJ1dG9ycz48dGl0bGVzPjx0aXRsZT5TcGF0aWFsIGFuZCB0ZW1w

b3JhbCBhcnJpdmFsIHBhdHRlcm5zIG9mIE1hZGFnYXNjYXImYXBvcztzIHZlcnRlYnJhdGUgZmF1

bmEgZXhwbGFpbmVkIGJ5IGRpc3RhbmNlLCBvY2VhbiBjdXJyZW50cywgYW5kIGFuY2VzdG9yIHR5

cGU8L3RpdGxlPjxzZWNvbmRhcnktdGl0bGU+UHJvY2VlZGluZ3Mgb2YgdGhlIE5hdGlvbmFsIEFj

YWRlbXkgb2YgU2NpZW5jZXMgb2YgdGhlIFVuaXRlZCBTdGF0ZXMgb2YgQW1lcmljYTwvc2Vjb25k

YXJ5LXRpdGxlPjwvdGl0bGVzPjxwZXJpb2RpY2FsPjxmdWxsLXRpdGxlPlByb2NlZWRpbmdzIG9m

IHRoZSBOYXRpb25hbCBBY2FkZW15IG9mIFNjaWVuY2VzIG9mIHRoZSBVbml0ZWQgU3RhdGVzIG9m

IEFtZXJpY2E8L2Z1bGwtdGl0bGU+PC9wZXJpb2RpY2FsPjxwYWdlcz41MzUyLTUzNTc8L3BhZ2Vz

Pjx2b2x1bWU+MTA5PC92b2x1bWU+PG51bWJlcj4xNDwvbnVtYmVyPjxkYXRlcz48eWVhcj4yMDEy

PC95ZWFyPjxwdWItZGF0ZXM+PGRhdGU+QXByIDM8L2RhdGU+PC9wdWItZGF0ZXM+PC9kYXRlcz48

aXNibj4wMDI3LTg0MjQ8L2lzYm4+PGFjY2Vzc2lvbi1udW0+V09TOjAwMDMwMjI5NDcwMDA1Mjwv

YWNjZXNzaW9uLW51bT48dXJscz48cmVsYXRlZC11cmxzPjx1cmw+Jmx0O0dvIHRvIElTSSZndDs6

Ly9XT1M6MDAwMzAyMjk0NzAwMDUyPC91cmw+PC9yZWxhdGVkLXVybHM+PC91cmxzPjxlbGVjdHJv

bmljLXJlc291cmNlLW51bT4xMC4xMDczL3BuYXMuMTExMzk5MzEwOTwvZWxlY3Ryb25pYy1yZXNv

dXJjZS1udW0+PC9yZWNvcmQ+PC9DaXRlPjwvRW5kTm90ZT4A

ADDIN EN.CITE PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5Zb2RlcjwvQXV0aG9yPjxZZWFyPjIwMDY8L1llYXI+PFJl

Y051bT41NDU8L1JlY051bT48RGlzcGxheVRleHQ+PHN0eWxlIGZhY2U9InN1cGVyc2NyaXB0Ij4y

NS0yNzwvc3R5bGU+PC9EaXNwbGF5VGV4dD48cmVjb3JkPjxyZWMtbnVtYmVyPjU0NTwvcmVjLW51

bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9IjI5ZTUydjVmbmR2c3c3ZXM1

dmJwOXY1d3ZhNXhycHh4YTk1ZSIgdGltZXN0YW1wPSIxMzg0NzMwNTYyIj41NDU8L2tleT48L2Zv

cmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwvcmVmLXR5cGU+

PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPllvZGVyLCBBbm5lIEQ8L2F1dGhvcj48YXV0

aG9yPk5vd2FrLCBNaWNoYWVsIEQ8L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PHRp

dGxlcz48dGl0bGU+SGFzIHZpY2FyaWFuY2Ugb3IgZGlzcGVyc2FsIGJlZW4gdGhlIHByZWRvbWlu

YW50IGJpb2dlb2dyYXBoaWMgZm9yY2UgaW4gTWFkYWdhc2Nhcj8gT25seSB0aW1lIHdpbGwgdGVs

bDwvdGl0bGU+PHNlY29uZGFyeS10aXRsZT5Bbm51YWwgUmV2aWV3IG9mIEVjb2xvZ3ksIEV2b2x1

dGlvbiwgYW5kIFN5c3RlbWF0aWNzPC9zZWNvbmRhcnktdGl0bGU+PC90aXRsZXM+PHBlcmlvZGlj

YWw+PGZ1bGwtdGl0bGU+QW5udWFsIFJldmlldyBvZiBFY29sb2d5LCBFdm9sdXRpb24sIGFuZCBT

eXN0ZW1hdGljczwvZnVsbC10aXRsZT48L3BlcmlvZGljYWw+PHBhZ2VzPjQwNS00MzE8L3BhZ2Vz

PjxkYXRlcz48eWVhcj4yMDA2PC95ZWFyPjwvZGF0ZXM+PGlzYm4+MTU0My01OTJYPC9pc2JuPjx1

cmxzPjwvdXJscz48L3JlY29yZD48L0NpdGU+PENpdGU+PEF1dGhvcj5Dcm90dGluaTwvQXV0aG9y

PjxZZWFyPjIwMTI8L1llYXI+PFJlY051bT40NzM8L1JlY051bT48cmVjb3JkPjxyZWMtbnVtYmVy

PjQ3MzwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9IjI5ZTUy

djVmbmR2c3c3ZXM1dmJwOXY1d3ZhNXhycHh4YTk1ZSIgdGltZXN0YW1wPSIxMzg0NTUxODE1Ij40

NzM8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xlIj4x

NzwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPkNyb3R0aW5pLCBBbmdl

bGljYTwvYXV0aG9yPjxhdXRob3I+TWFkc2VuLCBPbGU8L2F1dGhvcj48YXV0aG9yPlBvdXgsIENl

bGluZTwvYXV0aG9yPjxhdXRob3I+U3RyYXVzcywgQXhlbDwvYXV0aG9yPjxhdXRob3I+VmllaXRl

cywgRGF2aWQgUi48L2F1dGhvcj48YXV0aG9yPlZlbmNlcywgTWlndWVsPC9hdXRob3I+PC9hdXRo

b3JzPjwvY29udHJpYnV0b3JzPjx0aXRsZXM+PHRpdGxlPlZlcnRlYnJhdGUgdGltZS10cmVlIGVs

dWNpZGF0ZXMgdGhlIGJpb2dlb2dyYXBoaWMgcGF0dGVybiBvZiBhIG1ham9yIGJpb3RpYyBjaGFu

Z2UgYXJvdW5kIHRoZSBLLVQgYm91bmRhcnkgaW4gTWFkYWdhc2NhcjwvdGl0bGU+PHNlY29uZGFy

eS10aXRsZT5Qcm9jZWVkaW5ncyBvZiB0aGUgTmF0aW9uYWwgQWNhZGVteSBvZiBTY2llbmNlcyBv

ZiB0aGUgVW5pdGVkIFN0YXRlcyBvZiBBbWVyaWNhPC9zZWNvbmRhcnktdGl0bGU+PC90aXRsZXM+

PHBlcmlvZGljYWw+PGZ1bGwtdGl0bGU+UHJvY2VlZGluZ3Mgb2YgdGhlIE5hdGlvbmFsIEFjYWRl

bXkgb2YgU2NpZW5jZXMgb2YgdGhlIFVuaXRlZCBTdGF0ZXMgb2YgQW1lcmljYTwvZnVsbC10aXRs

ZT48L3BlcmlvZGljYWw+PHBhZ2VzPjUzNTgtNTM2MzwvcGFnZXM+PHZvbHVtZT4xMDk8L3ZvbHVt

ZT48bnVtYmVyPjE0PC9udW1iZXI+PGRhdGVzPjx5ZWFyPjIwMTI8L3llYXI+PHB1Yi1kYXRlcz48

ZGF0ZT5BcHIgMzwvZGF0ZT48L3B1Yi1kYXRlcz48L2RhdGVzPjxpc2JuPjAwMjctODQyNDwvaXNi

bj48YWNjZXNzaW9uLW51bT5XT1M6MDAwMzAyMjk0NzAwMDUzPC9hY2Nlc3Npb24tbnVtPjx1cmxz

PjxyZWxhdGVkLXVybHM+PHVybD4mbHQ7R28gdG8gSVNJJmd0OzovL1dPUzowMDAzMDIyOTQ3MDAw

NTM8L3VybD48L3JlbGF0ZWQtdXJscz48L3VybHM+PGVsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjEw

LjEwNzMvcG5hcy4xMTEyNDg3MTA5PC9lbGVjdHJvbmljLXJlc291cmNlLW51bT48L3JlY29yZD48

L0NpdGU+PENpdGU+PEF1dGhvcj5TYW1vbmRzPC9BdXRob3I+PFllYXI+MjAxMjwvWWVhcj48UmVj

TnVtPjUxMjwvUmVjTnVtPjxyZWNvcmQ+PHJlYy1udW1iZXI+NTEyPC9yZWMtbnVtYmVyPjxmb3Jl

aWduLWtleXM+PGtleSBhcHA9IkVOIiBkYi1pZD0iMjllNTJ2NWZuZHZzdzdlczV2YnA5djV3dmE1

eHJweHhhOTVlIiB0aW1lc3RhbXA9IjEzODQ1NTQ0NTUiPjUxMjwva2V5PjwvZm9yZWlnbi1rZXlz

PjxyZWYtdHlwZSBuYW1lPSJKb3VybmFsIEFydGljbGUiPjE3PC9yZWYtdHlwZT48Y29udHJpYnV0

b3JzPjxhdXRob3JzPjxhdXRob3I+U2Ftb25kcywgS2FyZW4gRS48L2F1dGhvcj48YXV0aG9yPkdv

ZGZyZXksIExhdXJpZSBSLjwvYXV0aG9yPjxhdXRob3I+QWxpLCBKYXNvbiBSLjwvYXV0aG9yPjxh

dXRob3I+R29vZG1hbmQsIFN0ZXZlbiBNLjwvYXV0aG9yPjxhdXRob3I+VmVuY2VzLCBNaWd1ZWw8

L2F1dGhvcj48YXV0aG9yPlN1dGhlcmxhbmQsIE1pY2hhZWwgUi48L2F1dGhvcj48YXV0aG9yPkly

d2luLCBNaXRjaGVsbCBULjwvYXV0aG9yPjxhdXRob3I+S3JhdXNlLCBEYXZpZCBXLjwvYXV0aG9y

PjwvYXV0aG9ycz48L2NvbnRyaWJ1dG9ycz48dGl0bGVzPjx0aXRsZT5TcGF0aWFsIGFuZCB0ZW1w

b3JhbCBhcnJpdmFsIHBhdHRlcm5zIG9mIE1hZGFnYXNjYXImYXBvcztzIHZlcnRlYnJhdGUgZmF1

bmEgZXhwbGFpbmVkIGJ5IGRpc3RhbmNlLCBvY2VhbiBjdXJyZW50cywgYW5kIGFuY2VzdG9yIHR5

cGU8L3RpdGxlPjxzZWNvbmRhcnktdGl0bGU+UHJvY2VlZGluZ3Mgb2YgdGhlIE5hdGlvbmFsIEFj

YWRlbXkgb2YgU2NpZW5jZXMgb2YgdGhlIFVuaXRlZCBTdGF0ZXMgb2YgQW1lcmljYTwvc2Vjb25k

YXJ5LXRpdGxlPjwvdGl0bGVzPjxwZXJpb2RpY2FsPjxmdWxsLXRpdGxlPlByb2NlZWRpbmdzIG9m

IHRoZSBOYXRpb25hbCBBY2FkZW15IG9mIFNjaWVuY2VzIG9mIHRoZSBVbml0ZWQgU3RhdGVzIG9m

IEFtZXJpY2E8L2Z1bGwtdGl0bGU+PC9wZXJpb2RpY2FsPjxwYWdlcz41MzUyLTUzNTc8L3BhZ2Vz

Pjx2b2x1bWU+MTA5PC92b2x1bWU+PG51bWJlcj4xNDwvbnVtYmVyPjxkYXRlcz48eWVhcj4yMDEy

PC95ZWFyPjxwdWItZGF0ZXM+PGRhdGU+QXByIDM8L2RhdGU+PC9wdWItZGF0ZXM+PC9kYXRlcz48

aXNibj4wMDI3LTg0MjQ8L2lzYm4+PGFjY2Vzc2lvbi1udW0+V09TOjAwMDMwMjI5NDcwMDA1Mjwv

YWNjZXNzaW9uLW51bT48dXJscz48cmVsYXRlZC11cmxzPjx1cmw+Jmx0O0dvIHRvIElTSSZndDs6

Ly9XT1M6MDAwMzAyMjk0NzAwMDUyPC91cmw+PC9yZWxhdGVkLXVybHM+PC91cmxzPjxlbGVjdHJv

bmljLXJlc291cmNlLW51bT4xMC4xMDczL3BuYXMuMTExMzk5MzEwOTwvZWxlY3Ryb25pYy1yZXNv

dXJjZS1udW0+PC9yZWNvcmQ+PC9DaXRlPjwvRW5kTm90ZT4A

ADDIN EN.CITE.DATA 25-27.The extraordinary levels of endemism at the level of entire clades in Madagascar, and their long isolation from their sister lineages, provide a unique opportunity to study the mechanisms driving divergence and diversification in situ ADDIN EN.CITE <EndNote><Cite><Author>Yoder</Author><Year>2005</Year><RecNum>527</RecNum><DisplayText><style face="superscript">28</style></DisplayText><record><rec-number>527</rec-number><foreign-keys><key app="EN" db-id="29e52v5fndvsw7es5vbp9v5wva5xrpxxa95e" timestamp="1384555350">527</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Yoder, A. D.</author><author>Olson, L. E.</author><author>Hanley, C.</author><author>Heckman, K. L.</author><author>Rasoloarison, R.</author><author>Russell, A. L.</author><author>Ranivo, J.</author><author>Soarimalala, V.</author><author>Karanth, K. P.</author><author>Raselimanana, A. P.</author><author>Goodman, S. M.</author></authors></contributors><titles><title>A multidimensional approach for detecting species patterns in Malagasy vertebrates</title><secondary-title>Proceedings of the National Academy of Sciences of the United States of America</secondary-title></titles><periodical><full-title>Proceedings of the National Academy of Sciences of the United States of America</full-title></periodical><pages>6587-6594</pages><volume>102</volume><dates><year>2005</year><pub-dates><date>May 3</date></pub-dates></dates><isbn>0027-8424</isbn><accession-num>WOS:000229023700012</accession-num><urls><related-urls><url>&lt;Go to ISI&gt;://WOS:000229023700012</url></related-urls></urls><electronic-resource-num>10.1073/pnas.0502092102</electronic-resource-num></record></Cite></EndNote>28. Over the past decade, numerous general mechanisms and models have been formulated to explain biodiversity distribution patterns and species diversification in Madagascar, pertaining to environmental stability (or instability), solar energy input, geographic vicariance triggered by topographic or habitat complexity, intrinsic traits of organisms, or stochastic effectsPEVuZE5vdGU+PENpdGU+PEF1dGhvcj5QYXN0b3Jpbmk8L0F1dGhvcj48WWVhcj4yMDAzPC9ZZWFy

PjxSZWNOdW0+NTA0PC9SZWNOdW0+PERpc3BsYXlUZXh0PjxzdHlsZSBmYWNlPSJzdXBlcnNjcmlw

dCI+MjMsMjktMzY8L3N0eWxlPjwvRGlzcGxheVRleHQ+PHJlY29yZD48cmVjLW51bWJlcj41MDQ8

L3JlYy1udW1iZXI+PGZvcmVpZ24ta2V5cz48a2V5IGFwcD0iRU4iIGRiLWlkPSIyOWU1MnY1Zm5k

dnN3N2VzNXZicDl2NXd2YTV4cnB4eGE5NWUiIHRpbWVzdGFtcD0iMTM4NDU1NDEyMSI+NTA0PC9r

ZXk+PC9mb3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3Jl

Zi10eXBlPjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5QYXN0b3JpbmksIEouPC9hdXRo

b3I+PGF1dGhvcj5UaGFsbWFubiwgVS48L2F1dGhvcj48YXV0aG9yPk1hcnRpbiwgUi4gRC48L2F1

dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PHRpdGxlcz48dGl0bGU+QSBtb2xlY3VsYXIg

YXBwcm9hY2ggdG8gY29tcGFyYXRpdmUgcGh5bG9nZW9ncmFwaHkgb2YgZXh0YW50IE1hbGFnYXN5

IGxlbXVyczwvdGl0bGU+PHNlY29uZGFyeS10aXRsZT5Qcm9jZWVkaW5ncyBvZiB0aGUgTmF0aW9u

YWwgQWNhZGVteSBvZiBTY2llbmNlcyBvZiB0aGUgVW5pdGVkIFN0YXRlcyBvZiBBbWVyaWNhPC9z

ZWNvbmRhcnktdGl0bGU+PC90aXRsZXM+PHBlcmlvZGljYWw+PGZ1bGwtdGl0bGU+UHJvY2VlZGlu

Z3Mgb2YgdGhlIE5hdGlvbmFsIEFjYWRlbXkgb2YgU2NpZW5jZXMgb2YgdGhlIFVuaXRlZCBTdGF0

ZXMgb2YgQW1lcmljYTwvZnVsbC10aXRsZT48L3BlcmlvZGljYWw+PHBhZ2VzPjU4NzktNTg4NDwv

cGFnZXM+PHZvbHVtZT4xMDA8L3ZvbHVtZT48bnVtYmVyPjEwPC9udW1iZXI+PGRhdGVzPjx5ZWFy

PjIwMDM8L3llYXI+PHB1Yi1kYXRlcz48ZGF0ZT5NYXkgMTM8L2RhdGU+PC9wdWItZGF0ZXM+PC9k

YXRlcz48aXNibj4wMDI3LTg0MjQ8L2lzYm4+PGFjY2Vzc2lvbi1udW0+V09TOjAwMDE4MjkzOTQw

MDA1ODwvYWNjZXNzaW9uLW51bT48dXJscz48cmVsYXRlZC11cmxzPjx1cmw+Jmx0O0dvIHRvIElT

SSZndDs6Ly9XT1M6MDAwMTgyOTM5NDAwMDU4PC91cmw+PC9yZWxhdGVkLXVybHM+PC91cmxzPjxl

bGVjdHJvbmljLXJlc291cmNlLW51bT4xMC4xMDczL3BuYXMuMTAzMTY3MzEwMDwvZWxlY3Ryb25p

Yy1yZXNvdXJjZS1udW0+PC9yZWNvcmQ+PC9DaXRlPjxDaXRlPjxBdXRob3I+R29vZG1hbjwvQXV0

aG9yPjxZZWFyPjIwMDQ8L1llYXI+PFJlY051bT40Nzk8L1JlY051bT48cmVjb3JkPjxyZWMtbnVt

YmVyPjQ3OTwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9IjI5

ZTUydjVmbmR2c3c3ZXM1dmJwOXY1d3ZhNXhycHh4YTk1ZSIgdGltZXN0YW1wPSIxMzg0NTUyNjcz

Ij40Nzk8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xl

Ij4xNzwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPkdvb2RtYW4sIFMu

IE0uPC9hdXRob3I+PGF1dGhvcj5HYW56aG9ybiwgSi4gVS48L2F1dGhvcj48L2F1dGhvcnM+PC9j

b250cmlidXRvcnM+PHRpdGxlcz48dGl0bGU+QmlvZ2VvZ3JhcGh5IG9mIGxlbXVycyBpbiB0aGUg

aHVtaWQgZm9yZXN0cyBvZiBNYWRhZ2FzY2FyOiB0aGUgcm9sZSBvZiBlbGV2YXRpb25hbCBkaXN0

cmlidXRpb24gYW5kIHJpdmVyczwvdGl0bGU+PHNlY29uZGFyeS10aXRsZT5Kb3VybmFsIG9mIEJp

b2dlb2dyYXBoeTwvc2Vjb25kYXJ5LXRpdGxlPjwvdGl0bGVzPjxwZXJpb2RpY2FsPjxmdWxsLXRp

dGxlPkpvdXJuYWwgb2YgQmlvZ2VvZ3JhcGh5PC9mdWxsLXRpdGxlPjwvcGVyaW9kaWNhbD48cGFn

ZXM+NDctNTU8L3BhZ2VzPjx2b2x1bWU+MzE8L3ZvbHVtZT48bnVtYmVyPjE8L251bWJlcj48ZGF0

ZXM+PHllYXI+MjAwNDwveWVhcj48cHViLWRhdGVzPjxkYXRlPkphbjwvZGF0ZT48L3B1Yi1kYXRl

cz48L2RhdGVzPjxpc2JuPjAzMDUtMDI3MDwvaXNibj48YWNjZXNzaW9uLW51bT5XT1M6MDAwMTg3

NTQ5NzAwMDA1PC9hY2Nlc3Npb24tbnVtPjx1cmxzPjxyZWxhdGVkLXVybHM+PHVybD4mbHQ7R28g

dG8gSVNJJmd0OzovL1dPUzowMDAxODc1NDk3MDAwMDU8L3VybD48L3JlbGF0ZWQtdXJscz48L3Vy

bHM+PGVsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjEwLjExMTEvai4xMzY1LTI2OTkuMjAwNC4wMDk1

My54PC9lbGVjdHJvbmljLXJlc291cmNlLW51bT48L3JlY29yZD48L0NpdGU+PENpdGU+PEF1dGhv

cj5Zb2RlcjwvQXV0aG9yPjxZZWFyPjIwMDY8L1llYXI+PFJlY051bT41MjY8L1JlY051bT48cmVj

b3JkPjxyZWMtbnVtYmVyPjUyNjwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJF

TiIgZGItaWQ9IjI5ZTUydjVmbmR2c3c3ZXM1dmJwOXY1d3ZhNXhycHh4YTk1ZSIgdGltZXN0YW1w

PSIxMzg0NTU1MTEyIj41MjY8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iQm9v

ayI+NjwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPllvZGVyLCBBbm5l

IEQuPC9hdXRob3I+PGF1dGhvcj5IZWNrbWFuLCBLZWxsaWUgTC48L2F1dGhvcj48L2F1dGhvcnM+

PHNlY29uZGFyeS1hdXRob3JzPjxhdXRob3I+TGVobWFuLCBTaGF3biBNLjwvYXV0aG9yPjxhdXRo

b3I+RmxlYWdsZSwgSm9obiBHLjwvYXV0aG9yPjwvc2Vjb25kYXJ5LWF1dGhvcnM+PC9jb250cmli

dXRvcnM+PHRpdGxlcz48dGl0bGU+TW91c2UgbGVtdXIgcGh5bG9nZW9ncmFwaHkgcmV2aXNlcyBh

IG1vZGVsIG9mIGVjb2dlb2dyYXBoaWMgY29uc3RyYWludCBpbiBNYWRhZ2FzY2FyPC90aXRsZT48

c2Vjb25kYXJ5LXRpdGxlPlByaW1hdGUgYmlvZ2VvZ3JhcGh5OiBwcm9ncmVzcyBhbmQgcHJvc3Bl

Y3RzLiBbRGV2ZWxvcG1lbnRzIGluIFByaW1hdG9sb2d5OiBQcm9ncmVzcyBhbmQgUHJvc3BlY3Rz

Ll0uPC9zZWNvbmRhcnktdGl0bGU+PC90aXRsZXM+PHBhZ2VzPjI1NS0yNjg8L3BhZ2VzPjxkYXRl

cz48eWVhcj4yMDA2PC95ZWFyPjwvZGF0ZXM+PGlzYm4+MC0zODctMjk4NzEtMTwvaXNibj48YWNj

ZXNzaW9uLW51bT5aT09SRUM6Wk9PUjE0MjEyMDc2MTI4PC9hY2Nlc3Npb24tbnVtPjx1cmxzPjxy

ZWxhdGVkLXVybHM+PHVybD4mbHQ7R28gdG8gSVNJJmd0OzovL1pPT1JFQzpaT09SMTQyMTIwNzYx

Mjg8L3VybD48L3JlbGF0ZWQtdXJscz48L3VybHM+PGVsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjEw

LjEwMDcvMC0zODctMzE3MTAtNF85PC9lbGVjdHJvbmljLXJlc291cmNlLW51bT48L3JlY29yZD48

L0NpdGU+PENpdGU+PEF1dGhvcj5EZXdhcjwvQXV0aG9yPjxZZWFyPjIwMDc8L1llYXI+PFJlY051

bT40NzQ8L1JlY051bT48cmVjb3JkPjxyZWMtbnVtYmVyPjQ3NDwvcmVjLW51bWJlcj48Zm9yZWln

bi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9IjI5ZTUydjVmbmR2c3c3ZXM1dmJwOXY1d3ZhNXhy

cHh4YTk1ZSIgdGltZXN0YW1wPSIxMzg0NTUxODcyIj40NzQ8L2tleT48L2ZvcmVpZ24ta2V5cz48

cmVmLXR5cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9y

cz48YXV0aG9ycz48YXV0aG9yPkRld2FyLCBSb2JlcnQgRS48L2F1dGhvcj48YXV0aG9yPlJpY2hh

cmQsIEFsaXNvbiBGLjwvYXV0aG9yPjwvYXV0aG9ycz48L2NvbnRyaWJ1dG9ycz48dGl0bGVzPjx0

aXRsZT5Fdm9sdXRpb24gaW4gdGhlIGh5cGVydmFyaWFibGUgZW52aXJvbm1lbnQgb2YgTWFkYWdh

c2NhcjwvdGl0bGU+PHNlY29uZGFyeS10aXRsZT5Qcm9jZWVkaW5ncyBvZiB0aGUgTmF0aW9uYWwg

QWNhZGVteSBvZiBTY2llbmNlcyBvZiB0aGUgVW5pdGVkIFN0YXRlcyBvZiBBbWVyaWNhPC9zZWNv

bmRhcnktdGl0bGU+PC90aXRsZXM+PHBlcmlvZGljYWw+PGZ1bGwtdGl0bGU+UHJvY2VlZGluZ3Mg

b2YgdGhlIE5hdGlvbmFsIEFjYWRlbXkgb2YgU2NpZW5jZXMgb2YgdGhlIFVuaXRlZCBTdGF0ZXMg

b2YgQW1lcmljYTwvZnVsbC10aXRsZT48L3BlcmlvZGljYWw+PHBhZ2VzPjEzNzIzLTEzNzI3PC9w

YWdlcz48dm9sdW1lPjEwNDwvdm9sdW1lPjxudW1iZXI+MzQ8L251bWJlcj48ZGF0ZXM+PHllYXI+

MjAwNzwveWVhcj48cHViLWRhdGVzPjxkYXRlPkF1ZyAyMTwvZGF0ZT48L3B1Yi1kYXRlcz48L2Rh

dGVzPjxpc2JuPjAwMjctODQyNDwvaXNibj48YWNjZXNzaW9uLW51bT5XT1M6MDAwMjQ5MDY0NzAw

MDM3PC9hY2Nlc3Npb24tbnVtPjx1cmxzPjxyZWxhdGVkLXVybHM+PHVybD4mbHQ7R28gdG8gSVNJ

Jmd0OzovL1dPUzowMDAyNDkwNjQ3MDAwMzc8L3VybD48L3JlbGF0ZWQtdXJscz48L3VybHM+PGVs

ZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjEwLjEwNzMvcG5hcy4wNzA0MzQ2MTA0PC9lbGVjdHJvbmlj

LXJlc291cmNlLW51bT48L3JlY29yZD48L0NpdGU+PENpdGU+PEF1dGhvcj5XaWxtZTwvQXV0aG9y

PjxZZWFyPjIwMDY8L1llYXI+PFJlY051bT41MjM8L1JlY051bT48cmVjb3JkPjxyZWMtbnVtYmVy

PjUyMzwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9IjI5ZTUy

djVmbmR2c3c3ZXM1dmJwOXY1d3ZhNXhycHh4YTk1ZSIgdGltZXN0YW1wPSIxMzg0NTU1MDEyIj41

MjM8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xlIj4x

NzwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPldpbG1lLCBMLjwvYXV0

aG9yPjxhdXRob3I+R29vZG1hbiwgUy4gTS48L2F1dGhvcj48YXV0aG9yPkdhbnpob3JuLCBKLiBV

LjwvYXV0aG9yPjwvYXV0aG9ycz48L2NvbnRyaWJ1dG9ycz48dGl0bGVzPjx0aXRsZT5CaW9nZW9n

cmFwaGljIGV2b2x1dGlvbiBvZiBNYWRhZ2FzY2FyJmFwb3M7cyBtaWNyb2VuZGVtaWMgYmlvdGE8

L3RpdGxlPjxzZWNvbmRhcnktdGl0bGU+U2NpZW5jZTwvc2Vjb25kYXJ5LXRpdGxlPjwvdGl0bGVz

PjxwZXJpb2RpY2FsPjxmdWxsLXRpdGxlPlNjaWVuY2U8L2Z1bGwtdGl0bGU+PC9wZXJpb2RpY2Fs

PjxwYWdlcz4xMDYzLTEwNjU8L3BhZ2VzPjx2b2x1bWU+MzEyPC92b2x1bWU+PG51bWJlcj41Nzc2

PC9udW1iZXI+PGRhdGVzPjx5ZWFyPjIwMDY8L3llYXI+PHB1Yi1kYXRlcz48ZGF0ZT5NYXkgMTk8

L2RhdGU+PC9wdWItZGF0ZXM+PC9kYXRlcz48aXNibj4wMDM2LTgwNzU8L2lzYm4+PGFjY2Vzc2lv

bi1udW0+V09TOjAwMDIzNzYyODgwMDA0ODwvYWNjZXNzaW9uLW51bT48dXJscz48cmVsYXRlZC11

cmxzPjx1cmw+Jmx0O0dvIHRvIElTSSZndDs6Ly9XT1M6MDAwMjM3NjI4ODAwMDQ4PC91cmw+PC9y

ZWxhdGVkLXVybHM+PC91cmxzPjxlbGVjdHJvbmljLXJlc291cmNlLW51bT4xMC4xMTI2L3NjaWVu

Y2UuMTEyMjgwNjwvZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+PC9yZWNvcmQ+PC9DaXRlPjxDaXRl

PjxBdXRob3I+V29sbGVuYmVyZzwvQXV0aG9yPjxZZWFyPjIwMTE8L1llYXI+PFJlY051bT41MjQ8

L1JlY051bT48cmVjb3JkPjxyZWMtbnVtYmVyPjUyNDwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlz

PjxrZXkgYXBwPSJFTiIgZGItaWQ9IjI5ZTUydjVmbmR2c3c3ZXM1dmJwOXY1d3ZhNXhycHh4YTk1

ZSIgdGltZXN0YW1wPSIxMzg0NTU1MDQzIj41MjQ8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5

cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0

aG9ycz48YXV0aG9yPldvbGxlbmJlcmcsIEthdGhhcmluYSBDLjwvYXV0aG9yPjxhdXRob3I+Vmll

aXRlcywgRGF2aWQgUi48L2F1dGhvcj48YXV0aG9yPkdsYXcsIEZyYW5rPC9hdXRob3I+PGF1dGhv

cj5WZW5jZXMsIE1pZ3VlbDwvYXV0aG9yPjwvYXV0aG9ycz48L2NvbnRyaWJ1dG9ycz48dGl0bGVz

Pjx0aXRsZT5TcGVjaWF0aW9uIGluIGxpdHRsZTogdGhlIHJvbGUgb2YgcmFuZ2UgYW5kIGJvZHkg

c2l6ZSBpbiB0aGUgZGl2ZXJzaWZpY2F0aW9uIG9mIE1hbGFnYXN5IG1hbnRlbGxpZCBmcm9nczwv

dGl0bGU+PHNlY29uZGFyeS10aXRsZT5CbWMgRXZvbHV0aW9uYXJ5IEJpb2xvZ3k8L3NlY29uZGFy

eS10aXRsZT48L3RpdGxlcz48cGVyaW9kaWNhbD48ZnVsbC10aXRsZT5CbWMgRXZvbHV0aW9uYXJ5

IEJpb2xvZ3k8L2Z1bGwtdGl0bGU+PC9wZXJpb2RpY2FsPjx2b2x1bWU+MTE8L3ZvbHVtZT48ZGF0

ZXM+PHllYXI+MjAxMTwveWVhcj48cHViLWRhdGVzPjxkYXRlPkp1bCAyMTwvZGF0ZT48L3B1Yi1k

YXRlcz48L2RhdGVzPjxpc2JuPjE0NzEtMjE0ODwvaXNibj48YWNjZXNzaW9uLW51bT5XT1M6MDAw

Mjk0NDIyNjAwMDAxPC9hY2Nlc3Npb24tbnVtPjx1cmxzPjxyZWxhdGVkLXVybHM+PHVybD4mbHQ7

R28gdG8gSVNJJmd0OzovL1dPUzowMDAyOTQ0MjI2MDAwMDE8L3VybD48L3JlbGF0ZWQtdXJscz48

L3VybHM+PGN1c3RvbTc+MjE3PC9jdXN0b203PjxlbGVjdHJvbmljLXJlc291cmNlLW51bT4xMC4x

MTg2LzE0NzEtMjE0OC0xMS0yMTc8L2VsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjwvcmVjb3JkPjwv

Q2l0ZT48Q2l0ZT48QXV0aG9yPldvbGxlbmJlcmc8L0F1dGhvcj48WWVhcj4yMDA4PC9ZZWFyPjxS

ZWNOdW0+NTI1PC9SZWNOdW0+PHJlY29yZD48cmVjLW51bWJlcj41MjU8L3JlYy1udW1iZXI+PGZv

cmVpZ24ta2V5cz48a2V5IGFwcD0iRU4iIGRiLWlkPSIyOWU1MnY1Zm5kdnN3N2VzNXZicDl2NXd2

YTV4cnB4eGE5NWUiIHRpbWVzdGFtcD0iMTM4NDU1NTA3OCI+NTI1PC9rZXk+PC9mb3JlaWduLWtl

eXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBlPjxjb250cmli

dXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5Xb2xsZW5iZXJnLCBLYXRoYXJpbmEgQy48L2F1dGhvcj48

YXV0aG9yPlZpZWl0ZXMsIERhdmlkIFIuPC9hdXRob3I+PGF1dGhvcj52YW4gZGVyIE1laWpkZW4s

IEFyaWU8L2F1dGhvcj48YXV0aG9yPkdsYXcsIEZyYW5rPC9hdXRob3I+PGF1dGhvcj5DYW5uYXRl

bGxhLCBEYXZpZCBDLjwvYXV0aG9yPjxhdXRob3I+VmVuY2VzLCBNaWd1ZWw8L2F1dGhvcj48L2F1

dGhvcnM+PC9jb250cmlidXRvcnM+PHRpdGxlcz48dGl0bGU+UGF0dGVybnMgb2YgZW5kZW1pc20g

YW5kIHNwZWNpZXMgcmljaG5lc3MgaW4gTWFsYWdhc3kgY29waHlsaW5lIGZyb2dzIHN1cHBvcnQg

YSBrZXkgcm9sZSBvZiBtb3VudGFpbm91cyBhcmVhcyBmb3Igc3BlY2lhdGlvbjwvdGl0bGU+PHNl

Y29uZGFyeS10aXRsZT5Fdm9sdXRpb248L3NlY29uZGFyeS10aXRsZT48L3RpdGxlcz48cGVyaW9k

aWNhbD48ZnVsbC10aXRsZT5Fdm9sdXRpb248L2Z1bGwtdGl0bGU+PGFiYnItMT5Fdm9sdXRpb247

IGludGVybmF0aW9uYWwgam91cm5hbCBvZiBvcmdhbmljIGV2b2x1dGlvbjwvYWJici0xPjwvcGVy

aW9kaWNhbD48cGFnZXM+MTg5MC0xOTA3PC9wYWdlcz48dm9sdW1lPjYyPC92b2x1bWU+PG51bWJl

cj44PC9udW1iZXI+PGRhdGVzPjx5ZWFyPjIwMDg8L3llYXI+PHB1Yi1kYXRlcz48ZGF0ZT5BdWc8

L2RhdGU+PC9wdWItZGF0ZXM+PC9kYXRlcz48aXNibj4wMDE0LTM4MjA8L2lzYm4+PGFjY2Vzc2lv

bi1udW0+V09TOjAwMDI1ODI2MTcwMDAwNzwvYWNjZXNzaW9uLW51bT48dXJscz48cmVsYXRlZC11

cmxzPjx1cmw+Jmx0O0dvIHRvIElTSSZndDs6Ly9XT1M6MDAwMjU4MjYxNzAwMDA3PC91cmw+PC9y

ZWxhdGVkLXVybHM+PC91cmxzPjxlbGVjdHJvbmljLXJlc291cmNlLW51bT4xMC4xMTExL2ouMTU1

OC01NjQ2LjIwMDguMDA0MjAueDwvZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+PC9yZWNvcmQ+PC9D

aXRlPjxDaXRlPjxBdXRob3I+UGFiaWphbjwvQXV0aG9yPjxZZWFyPjIwMTI8L1llYXI+PFJlY051

bT41MDM8L1JlY051bT48cmVjb3JkPjxyZWMtbnVtYmVyPjUwMzwvcmVjLW51bWJlcj48Zm9yZWln

bi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9IjI5ZTUydjVmbmR2c3c3ZXM1dmJwOXY1d3ZhNXhy

cHh4YTk1ZSIgdGltZXN0YW1wPSIxMzg0NTU0MDgxIj41MDM8L2tleT48L2ZvcmVpZ24ta2V5cz48

cmVmLXR5cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9y

cz48YXV0aG9ycz48YXV0aG9yPlBhYmlqYW4sIE0uPC9hdXRob3I+PGF1dGhvcj5Xb2xsZW5iZXJn

LCBLLiBDLjwvYXV0aG9yPjxhdXRob3I+VmVuY2VzLCBNLjwvYXV0aG9yPjwvYXV0aG9ycz48L2Nv

bnRyaWJ1dG9ycz48dGl0bGVzPjx0aXRsZT5TbWFsbCBib2R5IHNpemUgaW5jcmVhc2VzIHRoZSBy

ZWdpb25hbCBkaWZmZXJlbnRpYXRpb24gb2YgcG9wdWxhdGlvbnMgb2YgdHJvcGljYWwgbWFudGVs

bGlkIGZyb2dzIChBbnVyYTogTWFudGVsbGlkYWUpPC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPkpv

dXJuYWwgb2YgRXZvbHV0aW9uYXJ5IEJpb2xvZ3k8L3NlY29uZGFyeS10aXRsZT48L3RpdGxlcz48

cGVyaW9kaWNhbD48ZnVsbC10aXRsZT5KIEV2b2wgQmlvbDwvZnVsbC10aXRsZT48YWJici0xPkpv

dXJuYWwgb2YgZXZvbHV0aW9uYXJ5IGJpb2xvZ3k8L2FiYnItMT48L3BlcmlvZGljYWw+PHBhZ2Vz

PjIzMTAtMjMyNDwvcGFnZXM+PHZvbHVtZT4yNTwvdm9sdW1lPjxudW1iZXI+MTE8L251bWJlcj48

ZGF0ZXM+PHllYXI+MjAxMjwveWVhcj48cHViLWRhdGVzPjxkYXRlPk5vdjwvZGF0ZT48L3B1Yi1k

YXRlcz48L2RhdGVzPjxpc2JuPjEwMTAtMDYxWDwvaXNibj48YWNjZXNzaW9uLW51bT5XT1M6MDAw

MzEwNTUwNDAwMDE0PC9hY2Nlc3Npb24tbnVtPjx1cmxzPjxyZWxhdGVkLXVybHM+PHVybD4mbHQ7

R28gdG8gSVNJJmd0OzovL1dPUzowMDAzMTA1NTA0MDAwMTQ8L3VybD48L3JlbGF0ZWQtdXJscz48

L3VybHM+PGVsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjEwLjExMTEvai4xNDIwLTkxMDEuMjAxMi4w

MjYxMy54PC9lbGVjdHJvbmljLXJlc291cmNlLW51bT48L3JlY29yZD48L0NpdGU+PENpdGU+PEF1

dGhvcj5WZW5jZXM8L0F1dGhvcj48WWVhcj4yMDA5PC9ZZWFyPjxSZWNOdW0+NTE0PC9SZWNOdW0+

PHJlY29yZD48cmVjLW51bWJlcj41MTQ8L3JlYy1udW1iZXI+PGZvcmVpZ24ta2V5cz48a2V5IGFw

cD0iRU4iIGRiLWlkPSIyOWU1MnY1Zm5kdnN3N2VzNXZicDl2NXd2YTV4cnB4eGE5NWUiIHRpbWVz

dGFtcD0iMTM4NDU1NDU5MiI+NTE0PC9rZXk+PC9mb3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9

IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBlPjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1

dGhvcj5WZW5jZXMsIE1pZ3VlbDwvYXV0aG9yPjxhdXRob3I+V29sbGVuYmVyZywgS2F0aGFyaW5h

IEMuPC9hdXRob3I+PGF1dGhvcj5WaWVpdGVzLCBEYXZpZCBSLjwvYXV0aG9yPjxhdXRob3I+TGVl

cywgRGF2aWQgQy48L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PHRpdGxlcz48dGl0

bGU+TWFkYWdhc2NhciBhcyBhIG1vZGVsIHJlZ2lvbiBvZiBzcGVjaWVzIGRpdmVyc2lmaWNhdGlv

bjwvdGl0bGU+PHNlY29uZGFyeS10aXRsZT5UcmVuZHMgaW4gRWNvbG9neSAmYW1wOyBFdm9sdXRp

b248L3NlY29uZGFyeS10aXRsZT48L3RpdGxlcz48cGVyaW9kaWNhbD48ZnVsbC10aXRsZT5UcmVu

ZHMgaW4gRWNvbG9neSAmYW1wOyBFdm9sdXRpb248L2Z1bGwtdGl0bGU+PC9wZXJpb2RpY2FsPjxw

YWdlcz40NTYtNDY1PC9wYWdlcz48dm9sdW1lPjI0PC92b2x1bWU+PG51bWJlcj44PC9udW1iZXI+

PGRhdGVzPjx5ZWFyPjIwMDk8L3llYXI+PHB1Yi1kYXRlcz48ZGF0ZT5BdWc8L2RhdGU+PC9wdWIt

ZGF0ZXM+PC9kYXRlcz48aXNibj4wMTY5LTUzNDc8L2lzYm4+PGFjY2Vzc2lvbi1udW0+V09TOjAw

MDI2OTA1MTQwMDAxMDwvYWNjZXNzaW9uLW51bT48dXJscz48cmVsYXRlZC11cmxzPjx1cmw+Jmx0

O0dvIHRvIElTSSZndDs6Ly9XT1M6MDAwMjY5MDUxNDAwMDEwPC91cmw+PC9yZWxhdGVkLXVybHM+

PC91cmxzPjxlbGVjdHJvbmljLXJlc291cmNlLW51bT4xMC4xMDE2L2oudHJlZS4yMDA5LjAzLjAx

MTwvZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+PC9yZWNvcmQ+PC9DaXRlPjwvRW5kTm90ZT4A

ADDIN EN.CITE PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5QYXN0b3Jpbmk8L0F1dGhvcj48WWVhcj4yMDAzPC9ZZWFy

PjxSZWNOdW0+NTA0PC9SZWNOdW0+PERpc3BsYXlUZXh0PjxzdHlsZSBmYWNlPSJzdXBlcnNjcmlw

dCI+MjMsMjktMzY8L3N0eWxlPjwvRGlzcGxheVRleHQ+PHJlY29yZD48cmVjLW51bWJlcj41MDQ8

L3JlYy1udW1iZXI+PGZvcmVpZ24ta2V5cz48a2V5IGFwcD0iRU4iIGRiLWlkPSIyOWU1MnY1Zm5k

dnN3N2VzNXZicDl2NXd2YTV4cnB4eGE5NWUiIHRpbWVzdGFtcD0iMTM4NDU1NDEyMSI+NTA0PC9r

ZXk+PC9mb3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3Jl

Zi10eXBlPjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5QYXN0b3JpbmksIEouPC9hdXRo

b3I+PGF1dGhvcj5UaGFsbWFubiwgVS48L2F1dGhvcj48YXV0aG9yPk1hcnRpbiwgUi4gRC48L2F1

dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PHRpdGxlcz48dGl0bGU+QSBtb2xlY3VsYXIg

YXBwcm9hY2ggdG8gY29tcGFyYXRpdmUgcGh5bG9nZW9ncmFwaHkgb2YgZXh0YW50IE1hbGFnYXN5

IGxlbXVyczwvdGl0bGU+PHNlY29uZGFyeS10aXRsZT5Qcm9jZWVkaW5ncyBvZiB0aGUgTmF0aW9u

YWwgQWNhZGVteSBvZiBTY2llbmNlcyBvZiB0aGUgVW5pdGVkIFN0YXRlcyBvZiBBbWVyaWNhPC9z

ZWNvbmRhcnktdGl0bGU+PC90aXRsZXM+PHBlcmlvZGljYWw+PGZ1bGwtdGl0bGU+UHJvY2VlZGlu

Z3Mgb2YgdGhlIE5hdGlvbmFsIEFjYWRlbXkgb2YgU2NpZW5jZXMgb2YgdGhlIFVuaXRlZCBTdGF0

ZXMgb2YgQW1lcmljYTwvZnVsbC10aXRsZT48L3BlcmlvZGljYWw+PHBhZ2VzPjU4NzktNTg4NDwv

cGFnZXM+PHZvbHVtZT4xMDA8L3ZvbHVtZT48bnVtYmVyPjEwPC9udW1iZXI+PGRhdGVzPjx5ZWFy

PjIwMDM8L3llYXI+PHB1Yi1kYXRlcz48ZGF0ZT5NYXkgMTM8L2RhdGU+PC9wdWItZGF0ZXM+PC9k

YXRlcz48aXNibj4wMDI3LTg0MjQ8L2lzYm4+PGFjY2Vzc2lvbi1udW0+V09TOjAwMDE4MjkzOTQw

MDA1ODwvYWNjZXNzaW9uLW51bT48dXJscz48cmVsYXRlZC11cmxzPjx1cmw+Jmx0O0dvIHRvIElT

SSZndDs6Ly9XT1M6MDAwMTgyOTM5NDAwMDU4PC91cmw+PC9yZWxhdGVkLXVybHM+PC91cmxzPjxl

bGVjdHJvbmljLXJlc291cmNlLW51bT4xMC4xMDczL3BuYXMuMTAzMTY3MzEwMDwvZWxlY3Ryb25p

Yy1yZXNvdXJjZS1udW0+PC9yZWNvcmQ+PC9DaXRlPjxDaXRlPjxBdXRob3I+R29vZG1hbjwvQXV0

aG9yPjxZZWFyPjIwMDQ8L1llYXI+PFJlY051bT40Nzk8L1JlY051bT48cmVjb3JkPjxyZWMtbnVt

YmVyPjQ3OTwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9IjI5

ZTUydjVmbmR2c3c3ZXM1dmJwOXY1d3ZhNXhycHh4YTk1ZSIgdGltZXN0YW1wPSIxMzg0NTUyNjcz

Ij40Nzk8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xl

Ij4xNzwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPkdvb2RtYW4sIFMu

IE0uPC9hdXRob3I+PGF1dGhvcj5HYW56aG9ybiwgSi4gVS48L2F1dGhvcj48L2F1dGhvcnM+PC9j

b250cmlidXRvcnM+PHRpdGxlcz48dGl0bGU+QmlvZ2VvZ3JhcGh5IG9mIGxlbXVycyBpbiB0aGUg

aHVtaWQgZm9yZXN0cyBvZiBNYWRhZ2FzY2FyOiB0aGUgcm9sZSBvZiBlbGV2YXRpb25hbCBkaXN0

cmlidXRpb24gYW5kIHJpdmVyczwvdGl0bGU+PHNlY29uZGFyeS10aXRsZT5Kb3VybmFsIG9mIEJp

b2dlb2dyYXBoeTwvc2Vjb25kYXJ5LXRpdGxlPjwvdGl0bGVzPjxwZXJpb2RpY2FsPjxmdWxsLXRp

dGxlPkpvdXJuYWwgb2YgQmlvZ2VvZ3JhcGh5PC9mdWxsLXRpdGxlPjwvcGVyaW9kaWNhbD48cGFn

ZXM+NDctNTU8L3BhZ2VzPjx2b2x1bWU+MzE8L3ZvbHVtZT48bnVtYmVyPjE8L251bWJlcj48ZGF0

ZXM+PHllYXI+MjAwNDwveWVhcj48cHViLWRhdGVzPjxkYXRlPkphbjwvZGF0ZT48L3B1Yi1kYXRl

cz48L2RhdGVzPjxpc2JuPjAzMDUtMDI3MDwvaXNibj48YWNjZXNzaW9uLW51bT5XT1M6MDAwMTg3

NTQ5NzAwMDA1PC9hY2Nlc3Npb24tbnVtPjx1cmxzPjxyZWxhdGVkLXVybHM+PHVybD4mbHQ7R28g

dG8gSVNJJmd0OzovL1dPUzowMDAxODc1NDk3MDAwMDU8L3VybD48L3JlbGF0ZWQtdXJscz48L3Vy

bHM+PGVsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjEwLjExMTEvai4xMzY1LTI2OTkuMjAwNC4wMDk1

My54PC9lbGVjdHJvbmljLXJlc291cmNlLW51bT48L3JlY29yZD48L0NpdGU+PENpdGU+PEF1dGhv

cj5Zb2RlcjwvQXV0aG9yPjxZZWFyPjIwMDY8L1llYXI+PFJlY051bT41MjY8L1JlY051bT48cmVj

b3JkPjxyZWMtbnVtYmVyPjUyNjwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJF

TiIgZGItaWQ9IjI5ZTUydjVmbmR2c3c3ZXM1dmJwOXY1d3ZhNXhycHh4YTk1ZSIgdGltZXN0YW1w

PSIxMzg0NTU1MTEyIj41MjY8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iQm9v

ayI+NjwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPllvZGVyLCBBbm5l

IEQuPC9hdXRob3I+PGF1dGhvcj5IZWNrbWFuLCBLZWxsaWUgTC48L2F1dGhvcj48L2F1dGhvcnM+

PHNlY29uZGFyeS1hdXRob3JzPjxhdXRob3I+TGVobWFuLCBTaGF3biBNLjwvYXV0aG9yPjxhdXRo

b3I+RmxlYWdsZSwgSm9obiBHLjwvYXV0aG9yPjwvc2Vjb25kYXJ5LWF1dGhvcnM+PC9jb250cmli

dXRvcnM+PHRpdGxlcz48dGl0bGU+TW91c2UgbGVtdXIgcGh5bG9nZW9ncmFwaHkgcmV2aXNlcyBh

IG1vZGVsIG9mIGVjb2dlb2dyYXBoaWMgY29uc3RyYWludCBpbiBNYWRhZ2FzY2FyPC90aXRsZT48

c2Vjb25kYXJ5LXRpdGxlPlByaW1hdGUgYmlvZ2VvZ3JhcGh5OiBwcm9ncmVzcyBhbmQgcHJvc3Bl

Y3RzLiBbRGV2ZWxvcG1lbnRzIGluIFByaW1hdG9sb2d5OiBQcm9ncmVzcyBhbmQgUHJvc3BlY3Rz

Ll0uPC9zZWNvbmRhcnktdGl0bGU+PC90aXRsZXM+PHBhZ2VzPjI1NS0yNjg8L3BhZ2VzPjxkYXRl

cz48eWVhcj4yMDA2PC95ZWFyPjwvZGF0ZXM+PGlzYm4+MC0zODctMjk4NzEtMTwvaXNibj48YWNj

ZXNzaW9uLW51bT5aT09SRUM6Wk9PUjE0MjEyMDc2MTI4PC9hY2Nlc3Npb24tbnVtPjx1cmxzPjxy

ZWxhdGVkLXVybHM+PHVybD4mbHQ7R28gdG8gSVNJJmd0OzovL1pPT1JFQzpaT09SMTQyMTIwNzYx

Mjg8L3VybD48L3JlbGF0ZWQtdXJscz48L3VybHM+PGVsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjEw

LjEwMDcvMC0zODctMzE3MTAtNF85PC9lbGVjdHJvbmljLXJlc291cmNlLW51bT48L3JlY29yZD48

L0NpdGU+PENpdGU+PEF1dGhvcj5EZXdhcjwvQXV0aG9yPjxZZWFyPjIwMDc8L1llYXI+PFJlY051

bT40NzQ8L1JlY051bT48cmVjb3JkPjxyZWMtbnVtYmVyPjQ3NDwvcmVjLW51bWJlcj48Zm9yZWln

bi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9IjI5ZTUydjVmbmR2c3c3ZXM1dmJwOXY1d3ZhNXhy

cHh4YTk1ZSIgdGltZXN0YW1wPSIxMzg0NTUxODcyIj40NzQ8L2tleT48L2ZvcmVpZ24ta2V5cz48

cmVmLXR5cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9y

cz48YXV0aG9ycz48YXV0aG9yPkRld2FyLCBSb2JlcnQgRS48L2F1dGhvcj48YXV0aG9yPlJpY2hh

cmQsIEFsaXNvbiBGLjwvYXV0aG9yPjwvYXV0aG9ycz48L2NvbnRyaWJ1dG9ycz48dGl0bGVzPjx0

aXRsZT5Fdm9sdXRpb24gaW4gdGhlIGh5cGVydmFyaWFibGUgZW52aXJvbm1lbnQgb2YgTWFkYWdh

c2NhcjwvdGl0bGU+PHNlY29uZGFyeS10aXRsZT5Qcm9jZWVkaW5ncyBvZiB0aGUgTmF0aW9uYWwg

QWNhZGVteSBvZiBTY2llbmNlcyBvZiB0aGUgVW5pdGVkIFN0YXRlcyBvZiBBbWVyaWNhPC9zZWNv

bmRhcnktdGl0bGU+PC90aXRsZXM+PHBlcmlvZGljYWw+PGZ1bGwtdGl0bGU+UHJvY2VlZGluZ3Mg

b2YgdGhlIE5hdGlvbmFsIEFjYWRlbXkgb2YgU2NpZW5jZXMgb2YgdGhlIFVuaXRlZCBTdGF0ZXMg

b2YgQW1lcmljYTwvZnVsbC10aXRsZT48L3BlcmlvZGljYWw+PHBhZ2VzPjEzNzIzLTEzNzI3PC9w

YWdlcz48dm9sdW1lPjEwNDwvdm9sdW1lPjxudW1iZXI+MzQ8L251bWJlcj48ZGF0ZXM+PHllYXI+

MjAwNzwveWVhcj48cHViLWRhdGVzPjxkYXRlPkF1ZyAyMTwvZGF0ZT48L3B1Yi1kYXRlcz48L2Rh

dGVzPjxpc2JuPjAwMjctODQyNDwvaXNibj48YWNjZXNzaW9uLW51bT5XT1M6MDAwMjQ5MDY0NzAw

MDM3PC9hY2Nlc3Npb24tbnVtPjx1cmxzPjxyZWxhdGVkLXVybHM+PHVybD4mbHQ7R28gdG8gSVNJ

Jmd0OzovL1dPUzowMDAyNDkwNjQ3MDAwMzc8L3VybD48L3JlbGF0ZWQtdXJscz48L3VybHM+PGVs

ZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjEwLjEwNzMvcG5hcy4wNzA0MzQ2MTA0PC9lbGVjdHJvbmlj

LXJlc291cmNlLW51bT48L3JlY29yZD48L0NpdGU+PENpdGU+PEF1dGhvcj5XaWxtZTwvQXV0aG9y

PjxZZWFyPjIwMDY8L1llYXI+PFJlY051bT41MjM8L1JlY051bT48cmVjb3JkPjxyZWMtbnVtYmVy

PjUyMzwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9IjI5ZTUy

djVmbmR2c3c3ZXM1dmJwOXY1d3ZhNXhycHh4YTk1ZSIgdGltZXN0YW1wPSIxMzg0NTU1MDEyIj41

MjM8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xlIj4x

NzwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPldpbG1lLCBMLjwvYXV0

aG9yPjxhdXRob3I+R29vZG1hbiwgUy4gTS48L2F1dGhvcj48YXV0aG9yPkdhbnpob3JuLCBKLiBV

LjwvYXV0aG9yPjwvYXV0aG9ycz48L2NvbnRyaWJ1dG9ycz48dGl0bGVzPjx0aXRsZT5CaW9nZW9n

cmFwaGljIGV2b2x1dGlvbiBvZiBNYWRhZ2FzY2FyJmFwb3M7cyBtaWNyb2VuZGVtaWMgYmlvdGE8

L3RpdGxlPjxzZWNvbmRhcnktdGl0bGU+U2NpZW5jZTwvc2Vjb25kYXJ5LXRpdGxlPjwvdGl0bGVz

PjxwZXJpb2RpY2FsPjxmdWxsLXRpdGxlPlNjaWVuY2U8L2Z1bGwtdGl0bGU+PC9wZXJpb2RpY2Fs

PjxwYWdlcz4xMDYzLTEwNjU8L3BhZ2VzPjx2b2x1bWU+MzEyPC92b2x1bWU+PG51bWJlcj41Nzc2

PC9udW1iZXI+PGRhdGVzPjx5ZWFyPjIwMDY8L3llYXI+PHB1Yi1kYXRlcz48ZGF0ZT5NYXkgMTk8

L2RhdGU+PC9wdWItZGF0ZXM+PC9kYXRlcz48aXNibj4wMDM2LTgwNzU8L2lzYm4+PGFjY2Vzc2lv

bi1udW0+V09TOjAwMDIzNzYyODgwMDA0ODwvYWNjZXNzaW9uLW51bT48dXJscz48cmVsYXRlZC11

cmxzPjx1cmw+Jmx0O0dvIHRvIElTSSZndDs6Ly9XT1M6MDAwMjM3NjI4ODAwMDQ4PC91cmw+PC9y

ZWxhdGVkLXVybHM+PC91cmxzPjxlbGVjdHJvbmljLXJlc291cmNlLW51bT4xMC4xMTI2L3NjaWVu

Y2UuMTEyMjgwNjwvZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+PC9yZWNvcmQ+PC9DaXRlPjxDaXRl

PjxBdXRob3I+V29sbGVuYmVyZzwvQXV0aG9yPjxZZWFyPjIwMTE8L1llYXI+PFJlY051bT41MjQ8

L1JlY051bT48cmVjb3JkPjxyZWMtbnVtYmVyPjUyNDwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlz

PjxrZXkgYXBwPSJFTiIgZGItaWQ9IjI5ZTUydjVmbmR2c3c3ZXM1dmJwOXY1d3ZhNXhycHh4YTk1

ZSIgdGltZXN0YW1wPSIxMzg0NTU1MDQzIj41MjQ8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5

cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0

aG9ycz48YXV0aG9yPldvbGxlbmJlcmcsIEthdGhhcmluYSBDLjwvYXV0aG9yPjxhdXRob3I+Vmll

aXRlcywgRGF2aWQgUi48L2F1dGhvcj48YXV0aG9yPkdsYXcsIEZyYW5rPC9hdXRob3I+PGF1dGhv

cj5WZW5jZXMsIE1pZ3VlbDwvYXV0aG9yPjwvYXV0aG9ycz48L2NvbnRyaWJ1dG9ycz48dGl0bGVz

Pjx0aXRsZT5TcGVjaWF0aW9uIGluIGxpdHRsZTogdGhlIHJvbGUgb2YgcmFuZ2UgYW5kIGJvZHkg

c2l6ZSBpbiB0aGUgZGl2ZXJzaWZpY2F0aW9uIG9mIE1hbGFnYXN5IG1hbnRlbGxpZCBmcm9nczwv

dGl0bGU+PHNlY29uZGFyeS10aXRsZT5CbWMgRXZvbHV0aW9uYXJ5IEJpb2xvZ3k8L3NlY29uZGFy

eS10aXRsZT48L3RpdGxlcz48cGVyaW9kaWNhbD48ZnVsbC10aXRsZT5CbWMgRXZvbHV0aW9uYXJ5

IEJpb2xvZ3k8L2Z1bGwtdGl0bGU+PC9wZXJpb2RpY2FsPjx2b2x1bWU+MTE8L3ZvbHVtZT48ZGF0

ZXM+PHllYXI+MjAxMTwveWVhcj48cHViLWRhdGVzPjxkYXRlPkp1bCAyMTwvZGF0ZT48L3B1Yi1k

YXRlcz48L2RhdGVzPjxpc2JuPjE0NzEtMjE0ODwvaXNibj48YWNjZXNzaW9uLW51bT5XT1M6MDAw

Mjk0NDIyNjAwMDAxPC9hY2Nlc3Npb24tbnVtPjx1cmxzPjxyZWxhdGVkLXVybHM+PHVybD4mbHQ7

R28gdG8gSVNJJmd0OzovL1dPUzowMDAyOTQ0MjI2MDAwMDE8L3VybD48L3JlbGF0ZWQtdXJscz48

L3VybHM+PGN1c3RvbTc+MjE3PC9jdXN0b203PjxlbGVjdHJvbmljLXJlc291cmNlLW51bT4xMC4x

MTg2LzE0NzEtMjE0OC0xMS0yMTc8L2VsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjwvcmVjb3JkPjwv

Q2l0ZT48Q2l0ZT48QXV0aG9yPldvbGxlbmJlcmc8L0F1dGhvcj48WWVhcj4yMDA4PC9ZZWFyPjxS

ZWNOdW0+NTI1PC9SZWNOdW0+PHJlY29yZD48cmVjLW51bWJlcj41MjU8L3JlYy1udW1iZXI+PGZv

cmVpZ24ta2V5cz48a2V5IGFwcD0iRU4iIGRiLWlkPSIyOWU1MnY1Zm5kdnN3N2VzNXZicDl2NXd2

YTV4cnB4eGE5NWUiIHRpbWVzdGFtcD0iMTM4NDU1NTA3OCI+NTI1PC9rZXk+PC9mb3JlaWduLWtl

eXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBlPjxjb250cmli

dXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5Xb2xsZW5iZXJnLCBLYXRoYXJpbmEgQy48L2F1dGhvcj48

YXV0aG9yPlZpZWl0ZXMsIERhdmlkIFIuPC9hdXRob3I+PGF1dGhvcj52YW4gZGVyIE1laWpkZW4s

IEFyaWU8L2F1dGhvcj48YXV0aG9yPkdsYXcsIEZyYW5rPC9hdXRob3I+PGF1dGhvcj5DYW5uYXRl

bGxhLCBEYXZpZCBDLjwvYXV0aG9yPjxhdXRob3I+VmVuY2VzLCBNaWd1ZWw8L2F1dGhvcj48L2F1

dGhvcnM+PC9jb250cmlidXRvcnM+PHRpdGxlcz48dGl0bGU+UGF0dGVybnMgb2YgZW5kZW1pc20g

YW5kIHNwZWNpZXMgcmljaG5lc3MgaW4gTWFsYWdhc3kgY29waHlsaW5lIGZyb2dzIHN1cHBvcnQg

YSBrZXkgcm9sZSBvZiBtb3VudGFpbm91cyBhcmVhcyBmb3Igc3BlY2lhdGlvbjwvdGl0bGU+PHNl

Y29uZGFyeS10aXRsZT5Fdm9sdXRpb248L3NlY29uZGFyeS10aXRsZT48L3RpdGxlcz48cGVyaW9k

aWNhbD48ZnVsbC10aXRsZT5Fdm9sdXRpb248L2Z1bGwtdGl0bGU+PGFiYnItMT5Fdm9sdXRpb247

IGludGVybmF0aW9uYWwgam91cm5hbCBvZiBvcmdhbmljIGV2b2x1dGlvbjwvYWJici0xPjwvcGVy

aW9kaWNhbD48cGFnZXM+MTg5MC0xOTA3PC9wYWdlcz48dm9sdW1lPjYyPC92b2x1bWU+PG51bWJl

cj44PC9udW1iZXI+PGRhdGVzPjx5ZWFyPjIwMDg8L3llYXI+PHB1Yi1kYXRlcz48ZGF0ZT5BdWc8

L2RhdGU+PC9wdWItZGF0ZXM+PC9kYXRlcz48aXNibj4wMDE0LTM4MjA8L2lzYm4+PGFjY2Vzc2lv

bi1udW0+V09TOjAwMDI1ODI2MTcwMDAwNzwvYWNjZXNzaW9uLW51bT48dXJscz48cmVsYXRlZC11

cmxzPjx1cmw+Jmx0O0dvIHRvIElTSSZndDs6Ly9XT1M6MDAwMjU4MjYxNzAwMDA3PC91cmw+PC9y

ZWxhdGVkLXVybHM+PC91cmxzPjxlbGVjdHJvbmljLXJlc291cmNlLW51bT4xMC4xMTExL2ouMTU1

OC01NjQ2LjIwMDguMDA0MjAueDwvZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+PC9yZWNvcmQ+PC9D

aXRlPjxDaXRlPjxBdXRob3I+UGFiaWphbjwvQXV0aG9yPjxZZWFyPjIwMTI8L1llYXI+PFJlY051

bT41MDM8L1JlY051bT48cmVjb3JkPjxyZWMtbnVtYmVyPjUwMzwvcmVjLW51bWJlcj48Zm9yZWln

bi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9IjI5ZTUydjVmbmR2c3c3ZXM1dmJwOXY1d3ZhNXhy

cHh4YTk1ZSIgdGltZXN0YW1wPSIxMzg0NTU0MDgxIj41MDM8L2tleT48L2ZvcmVpZ24ta2V5cz48

cmVmLXR5cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9y

cz48YXV0aG9ycz48YXV0aG9yPlBhYmlqYW4sIE0uPC9hdXRob3I+PGF1dGhvcj5Xb2xsZW5iZXJn

LCBLLiBDLjwvYXV0aG9yPjxhdXRob3I+VmVuY2VzLCBNLjwvYXV0aG9yPjwvYXV0aG9ycz48L2Nv

bnRyaWJ1dG9ycz48dGl0bGVzPjx0aXRsZT5TbWFsbCBib2R5IHNpemUgaW5jcmVhc2VzIHRoZSBy

ZWdpb25hbCBkaWZmZXJlbnRpYXRpb24gb2YgcG9wdWxhdGlvbnMgb2YgdHJvcGljYWwgbWFudGVs

bGlkIGZyb2dzIChBbnVyYTogTWFudGVsbGlkYWUpPC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPkpv

dXJuYWwgb2YgRXZvbHV0aW9uYXJ5IEJpb2xvZ3k8L3NlY29uZGFyeS10aXRsZT48L3RpdGxlcz48

cGVyaW9kaWNhbD48ZnVsbC10aXRsZT5KIEV2b2wgQmlvbDwvZnVsbC10aXRsZT48YWJici0xPkpv

dXJuYWwgb2YgZXZvbHV0aW9uYXJ5IGJpb2xvZ3k8L2FiYnItMT48L3BlcmlvZGljYWw+PHBhZ2Vz

PjIzMTAtMjMyNDwvcGFnZXM+PHZvbHVtZT4yNTwvdm9sdW1lPjxudW1iZXI+MTE8L251bWJlcj48

ZGF0ZXM+PHllYXI+MjAxMjwveWVhcj48cHViLWRhdGVzPjxkYXRlPk5vdjwvZGF0ZT48L3B1Yi1k

YXRlcz48L2RhdGVzPjxpc2JuPjEwMTAtMDYxWDwvaXNibj48YWNjZXNzaW9uLW51bT5XT1M6MDAw

MzEwNTUwNDAwMDE0PC9hY2Nlc3Npb24tbnVtPjx1cmxzPjxyZWxhdGVkLXVybHM+PHVybD4mbHQ7

R28gdG8gSVNJJmd0OzovL1dPUzowMDAzMTA1NTA0MDAwMTQ8L3VybD48L3JlbGF0ZWQtdXJscz48

L3VybHM+PGVsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjEwLjExMTEvai4xNDIwLTkxMDEuMjAxMi4w

MjYxMy54PC9lbGVjdHJvbmljLXJlc291cmNlLW51bT48L3JlY29yZD48L0NpdGU+PENpdGU+PEF1

dGhvcj5WZW5jZXM8L0F1dGhvcj48WWVhcj4yMDA5PC9ZZWFyPjxSZWNOdW0+NTE0PC9SZWNOdW0+

PHJlY29yZD48cmVjLW51bWJlcj41MTQ8L3JlYy1udW1iZXI+PGZvcmVpZ24ta2V5cz48a2V5IGFw

cD0iRU4iIGRiLWlkPSIyOWU1MnY1Zm5kdnN3N2VzNXZicDl2NXd2YTV4cnB4eGE5NWUiIHRpbWVz

dGFtcD0iMTM4NDU1NDU5MiI+NTE0PC9rZXk+PC9mb3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9

IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBlPjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1

dGhvcj5WZW5jZXMsIE1pZ3VlbDwvYXV0aG9yPjxhdXRob3I+V29sbGVuYmVyZywgS2F0aGFyaW5h

IEMuPC9hdXRob3I+PGF1dGhvcj5WaWVpdGVzLCBEYXZpZCBSLjwvYXV0aG9yPjxhdXRob3I+TGVl

cywgRGF2aWQgQy48L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PHRpdGxlcz48dGl0

bGU+TWFkYWdhc2NhciBhcyBhIG1vZGVsIHJlZ2lvbiBvZiBzcGVjaWVzIGRpdmVyc2lmaWNhdGlv

bjwvdGl0bGU+PHNlY29uZGFyeS10aXRsZT5UcmVuZHMgaW4gRWNvbG9neSAmYW1wOyBFdm9sdXRp

b248L3NlY29uZGFyeS10aXRsZT48L3RpdGxlcz48cGVyaW9kaWNhbD48ZnVsbC10aXRsZT5UcmVu

ZHMgaW4gRWNvbG9neSAmYW1wOyBFdm9sdXRpb248L2Z1bGwtdGl0bGU+PC9wZXJpb2RpY2FsPjxw

YWdlcz40NTYtNDY1PC9wYWdlcz48dm9sdW1lPjI0PC92b2x1bWU+PG51bWJlcj44PC9udW1iZXI+

PGRhdGVzPjx5ZWFyPjIwMDk8L3llYXI+PHB1Yi1kYXRlcz48ZGF0ZT5BdWc8L2RhdGU+PC9wdWIt

ZGF0ZXM+PC9kYXRlcz48aXNibj4wMTY5LTUzNDc8L2lzYm4+PGFjY2Vzc2lvbi1udW0+V09TOjAw

MDI2OTA1MTQwMDAxMDwvYWNjZXNzaW9uLW51bT48dXJscz48cmVsYXRlZC11cmxzPjx1cmw+Jmx0

O0dvIHRvIElTSSZndDs6Ly9XT1M6MDAwMjY5MDUxNDAwMDEwPC91cmw+PC9yZWxhdGVkLXVybHM+

PC91cmxzPjxlbGVjdHJvbmljLXJlc291cmNlLW51bT4xMC4xMDE2L2oudHJlZS4yMDA5LjAzLjAx

MTwvZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+PC9yZWNvcmQ+PC9DaXRlPjwvRW5kTm90ZT4A

ADDIN EN.CITE.DATA 23,29-36. Evidence has supported numerous hypotheses, though the evidence has typically been marshalled from limited or phylogenetically-constrained taxa. Comprehensive statistical approaches comparing their relative importance are rare ADDIN EN.CITE <EndNote><Cite><Author>Pearson</Author><Year>2009</Year><RecNum>505</RecNum><DisplayText><style face="superscript">37</style></DisplayText><record><rec-number>505</rec-number><foreign-keys><key app="EN" db-id="29e52v5fndvsw7es5vbp9v5wva5xrpxxa95e" timestamp="1384554169">505</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Pearson, Richard G.</author><author>Raxworthy, Christopher J.</author></authors></contributors><titles><title>The evolution of local endemism in madagascar: watershed versus climatic gradient hypotheses evaluated by null biogeographic models.</title><secondary-title>Evolution</secondary-title></titles><periodical><full-title>Evolution</full-title><abbr-1>Evolution; international journal of organic evolution</abbr-1></periodical><pages>959-967</pages><volume>63</volume><number>4</number><dates><year>2009</year><pub-dates><date>Apr</date></pub-dates></dates><isbn>0014-3820</isbn><accession-num>WOS:000264379200013</accession-num><urls><related-urls><url>&lt;Go to ISI&gt;://WOS:000264379200013</url></related-urls></urls><electronic-resource-num>10.1111/j.1558-5646.2008.00596.x</electronic-resource-num></record></Cite></EndNote>37. In this paper we apply an integrative approach to simultaneously test which of several competing and complementary hypotheses are most strongly correlated with empirical biodiversity patterns (Fig. 1). We first translate a total of 12 diversification mechanisms or diversity models into explicit spatial representations. We then use diverse statistical approaches to assess spatial concordance of these predictor variables with species richness, endemism and turnover as calculated from original occurrence data of Madagascar's amphibians and reptiles, with full species-level coverage. Our results best agree with the hypothesis that various assemblages of species are under the influence of differing causal mechanisms. The clear message is that the distribution of diverse organismal lineages will depend upon idiosyncratic factors determined by their specific organismal life-history traits combined with stochastic historical factors. Thus, any model that endeavors to explain island-wide patterns must necessarily be complex.ResultsTo understand spatial distribution patterns in Madagascar's herpetofauna, we first compared range sizes, and computed species richness and endemism from the modeled distribution areas of amphibians and non-avian reptiles (hereafter reptiles). Mean range size (± standard deviation) in our data set is smaller in amphibians than reptiles taking into account all species (41,673 ± 55,413 km2 vs. 50,205 ± 84,078 km2; t= 3.981, p< 0.001; df=649.7) and after excluding species known from only 1 or 2 localities (64,106 ± 57,532 km2 vs. 95,294 ± 87,495 km2; t= 4.511, p<0.001; df=427.4). Microendemics (species with distributions less than 1000km2) constitute 36.5% of all amphibian and 33.6 % of all reptile species in Madagascar (difference not significant; Z =0.411, p=0.682).Spatial patterns of species richness are quite similar between the two groups (Fig 2A & E) and reach highest values in the eastern rainforest; in amphibians, richness peaks in the central east, whereas in reptiles, it is more evenly distributed across the rainforest biome, with some areas of high diversity also in the north, west, and southwest. Spatial patterns of endemism in both groups (Fig 2B & F) reveal two centers in the north around the Tsaratanana Massif and in the central east. Endemism values for reptiles are also high in southwestern Madagascar, the most arid region of the island. We applied Generalized Dissimilarity Modelling (GDM)PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5GZXJyaWVyPC9BdXRob3I+PFllYXI+MjAwNzwvWWVhcj48

UmVjTnVtPjQ3ODwvUmVjTnVtPjxEaXNwbGF5VGV4dD48c3R5bGUgZmFjZT0ic3VwZXJzY3JpcHQi

PjM4LDM5PC9zdHlsZT48L0Rpc3BsYXlUZXh0PjxyZWNvcmQ+PHJlYy1udW1iZXI+NDc4PC9yZWMt

bnVtYmVyPjxmb3JlaWduLWtleXM+PGtleSBhcHA9IkVOIiBkYi1pZD0iMjllNTJ2NWZuZHZzdzdl

czV2YnA5djV3dmE1eHJweHhhOTVlIiB0aW1lc3RhbXA9IjEzODQ1NTI0MDMiPjQ3ODwva2V5Pjwv

Zm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJKb3VybmFsIEFydGljbGUiPjE3PC9yZWYtdHlw

ZT48Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+RmVycmllciwgU2ltb248L2F1dGhvcj48

YXV0aG9yPk1hbmlvbiwgR2xlbm48L2F1dGhvcj48YXV0aG9yPkVsaXRoLCBKYW5lPC9hdXRob3I+

PGF1dGhvcj5SaWNoYXJkc29uLCBLYXJlbjwvYXV0aG9yPjwvYXV0aG9ycz48L2NvbnRyaWJ1dG9y

cz48dGl0bGVzPjx0aXRsZT5Vc2luZyBnZW5lcmFsaXplZCBkaXNzaW1pbGFyaXR5IG1vZGVsbGlu

ZyB0byBhbmFseXNlIGFuZCBwcmVkaWN0IHBhdHRlcm5zIG9mIGJldGEgZGl2ZXJzaXR5IGluIHJl

Z2lvbmFsIGJpb2RpdmVyc2l0eSBhc3Nlc3NtZW50PC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPkRp

dmVyc2l0eSBhbmQgRGlzdHJpYnV0aW9uczwvc2Vjb25kYXJ5LXRpdGxlPjwvdGl0bGVzPjxwZXJp

b2RpY2FsPjxmdWxsLXRpdGxlPkRpdmVyc2l0eSBhbmQgRGlzdHJpYnV0aW9uczwvZnVsbC10aXRs

ZT48L3BlcmlvZGljYWw+PHBhZ2VzPjI1Mi0yNjQ8L3BhZ2VzPjx2b2x1bWU+MTM8L3ZvbHVtZT48

bnVtYmVyPjM8L251bWJlcj48ZGF0ZXM+PHllYXI+MjAwNzwveWVhcj48cHViLWRhdGVzPjxkYXRl

Pk1heTwvZGF0ZT48L3B1Yi1kYXRlcz48L2RhdGVzPjxpc2JuPjEzNjYtOTUxNjwvaXNibj48YWNj

ZXNzaW9uLW51bT5XT1M6MDAwMjQ1ODEyMTAwMDAyPC9hY2Nlc3Npb24tbnVtPjx1cmxzPjxyZWxh

dGVkLXVybHM+PHVybD4mbHQ7R28gdG8gSVNJJmd0OzovL1dPUzowMDAyNDU4MTIxMDAwMDI8L3Vy

bD48L3JlbGF0ZWQtdXJscz48L3VybHM+PGVsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjEwLjExMTEv

ai4xNDcyLTQ2NDIuMjAwNy4wMDM0MS54PC9lbGVjdHJvbmljLXJlc291cmNlLW51bT48L3JlY29y

ZD48L0NpdGU+PENpdGU+PEF1dGhvcj5BbGxudXR0PC9BdXRob3I+PFllYXI+MjAwODwvWWVhcj48

UmVjTnVtPjQ2NDwvUmVjTnVtPjxyZWNvcmQ+PHJlYy1udW1iZXI+NDY0PC9yZWMtbnVtYmVyPjxm

b3JlaWduLWtleXM+PGtleSBhcHA9IkVOIiBkYi1pZD0iMjllNTJ2NWZuZHZzdzdlczV2YnA5djV3

dmE1eHJweHhhOTVlIiB0aW1lc3RhbXA9IjEzODQ1NTEyMjkiPjQ2NDwva2V5PjwvZm9yZWlnbi1r

ZXlzPjxyZWYtdHlwZSBuYW1lPSJKb3VybmFsIEFydGljbGUiPjE3PC9yZWYtdHlwZT48Y29udHJp

YnV0b3JzPjxhdXRob3JzPjxhdXRob3I+QWxsbnV0dCwgVGhvbWFzIEYuPC9hdXRob3I+PGF1dGhv

cj5GZXJyaWVyLCBTaW1vbjwvYXV0aG9yPjxhdXRob3I+TWFuaW9uLCBHbGVubjwvYXV0aG9yPjxh

dXRob3I+UG93ZWxsLCBHZW9yZ2UgVi4gTi48L2F1dGhvcj48YXV0aG9yPlJpY2tldHRzLCBUYXls

b3IgSC48L2F1dGhvcj48YXV0aG9yPkZpc2hlciwgQnJpYW4gTC48L2F1dGhvcj48YXV0aG9yPkhh

cnBlciwgR3JhZHkgSi48L2F1dGhvcj48YXV0aG9yPklyd2luLCBNaWNoYWVsIEUuPC9hdXRob3I+

PGF1dGhvcj5LcmVtZW4sIENsYWlyZTwvYXV0aG9yPjxhdXRob3I+TGFiYXQsIEplYW4tTm9lbDwv

YXV0aG9yPjxhdXRob3I+TGVlcywgRGF2aWQgQy48L2F1dGhvcj48YXV0aG9yPlBlYXJjZSwgVGlt

b3RoeSBBLjwvYXV0aG9yPjxhdXRob3I+UmFrb3RvbmRyYWluaWJlLCBGcmFuY2U8L2F1dGhvcj48

L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PHRpdGxlcz48dGl0bGU+QSBtZXRob2QgZm9yIHF1YW50

aWZ5aW5nIGJpb2RpdmVyc2l0eSBsb3NzIGFuZCBpdHMgYXBwbGljYXRpb24gdG8gYSA1MC15ZWFy

IHJlY29yZCBvZiBkZWZvcmVzdGF0aW9uIGFjcm9zcyBNYWRhZ2FzY2FyPC90aXRsZT48c2Vjb25k

YXJ5LXRpdGxlPkNvbnNlcnZhdGlvbiBMZXR0ZXJzPC9zZWNvbmRhcnktdGl0bGU+PC90aXRsZXM+

PHBlcmlvZGljYWw+PGZ1bGwtdGl0bGU+Q29uc2VydmF0aW9uIExldHRlcnM8L2Z1bGwtdGl0bGU+

PC9wZXJpb2RpY2FsPjxwYWdlcz4xNzMtMTgxPC9wYWdlcz48dm9sdW1lPjE8L3ZvbHVtZT48bnVt

YmVyPjQ8L251bWJlcj48ZGF0ZXM+PHllYXI+MjAwODwveWVhcj48cHViLWRhdGVzPjxkYXRlPk9j

dDwvZGF0ZT48L3B1Yi1kYXRlcz48L2RhdGVzPjxpc2JuPjE3NTUtMjYzWDwvaXNibj48YWNjZXNz

aW9uLW51bT5XT1M6MDAwMjA3NTg3MTAwMDAzPC9hY2Nlc3Npb24tbnVtPjx1cmxzPjxyZWxhdGVk

LXVybHM+PHVybD4mbHQ7R28gdG8gSVNJJmd0OzovL1dPUzowMDAyMDc1ODcxMDAwMDM8L3VybD48

L3JlbGF0ZWQtdXJscz48L3VybHM+PGVsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjEwLjExMTEvai4x

NzU1LTI2M1guMjAwOC4wMDAyNy54PC9lbGVjdHJvbmljLXJlc291cmNlLW51bT48L3JlY29yZD48

L0NpdGU+PC9FbmROb3RlPn==

ADDIN EN.CITE PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5GZXJyaWVyPC9BdXRob3I+PFllYXI+MjAwNzwvWWVhcj48

UmVjTnVtPjQ3ODwvUmVjTnVtPjxEaXNwbGF5VGV4dD48c3R5bGUgZmFjZT0ic3VwZXJzY3JpcHQi

PjM4LDM5PC9zdHlsZT48L0Rpc3BsYXlUZXh0PjxyZWNvcmQ+PHJlYy1udW1iZXI+NDc4PC9yZWMt

bnVtYmVyPjxmb3JlaWduLWtleXM+PGtleSBhcHA9IkVOIiBkYi1pZD0iMjllNTJ2NWZuZHZzdzdl

czV2YnA5djV3dmE1eHJweHhhOTVlIiB0aW1lc3RhbXA9IjEzODQ1NTI0MDMiPjQ3ODwva2V5Pjwv

Zm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJKb3VybmFsIEFydGljbGUiPjE3PC9yZWYtdHlw

ZT48Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+RmVycmllciwgU2ltb248L2F1dGhvcj48

YXV0aG9yPk1hbmlvbiwgR2xlbm48L2F1dGhvcj48YXV0aG9yPkVsaXRoLCBKYW5lPC9hdXRob3I+

PGF1dGhvcj5SaWNoYXJkc29uLCBLYXJlbjwvYXV0aG9yPjwvYXV0aG9ycz48L2NvbnRyaWJ1dG9y

cz48dGl0bGVzPjx0aXRsZT5Vc2luZyBnZW5lcmFsaXplZCBkaXNzaW1pbGFyaXR5IG1vZGVsbGlu

ZyB0byBhbmFseXNlIGFuZCBwcmVkaWN0IHBhdHRlcm5zIG9mIGJldGEgZGl2ZXJzaXR5IGluIHJl

Z2lvbmFsIGJpb2RpdmVyc2l0eSBhc3Nlc3NtZW50PC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPkRp

dmVyc2l0eSBhbmQgRGlzdHJpYnV0aW9uczwvc2Vjb25kYXJ5LXRpdGxlPjwvdGl0bGVzPjxwZXJp

b2RpY2FsPjxmdWxsLXRpdGxlPkRpdmVyc2l0eSBhbmQgRGlzdHJpYnV0aW9uczwvZnVsbC10aXRs

ZT48L3BlcmlvZGljYWw+PHBhZ2VzPjI1Mi0yNjQ8L3BhZ2VzPjx2b2x1bWU+MTM8L3ZvbHVtZT48

bnVtYmVyPjM8L251bWJlcj48ZGF0ZXM+PHllYXI+MjAwNzwveWVhcj48cHViLWRhdGVzPjxkYXRl

Pk1heTwvZGF0ZT48L3B1Yi1kYXRlcz48L2RhdGVzPjxpc2JuPjEzNjYtOTUxNjwvaXNibj48YWNj

ZXNzaW9uLW51bT5XT1M6MDAwMjQ1ODEyMTAwMDAyPC9hY2Nlc3Npb24tbnVtPjx1cmxzPjxyZWxh

dGVkLXVybHM+PHVybD4mbHQ7R28gdG8gSVNJJmd0OzovL1dPUzowMDAyNDU4MTIxMDAwMDI8L3Vy

bD48L3JlbGF0ZWQtdXJscz48L3VybHM+PGVsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjEwLjExMTEv

ai4xNDcyLTQ2NDIuMjAwNy4wMDM0MS54PC9lbGVjdHJvbmljLXJlc291cmNlLW51bT48L3JlY29y

ZD48L0NpdGU+PENpdGU+PEF1dGhvcj5BbGxudXR0PC9BdXRob3I+PFllYXI+MjAwODwvWWVhcj48

UmVjTnVtPjQ2NDwvUmVjTnVtPjxyZWNvcmQ+PHJlYy1udW1iZXI+NDY0PC9yZWMtbnVtYmVyPjxm

b3JlaWduLWtleXM+PGtleSBhcHA9IkVOIiBkYi1pZD0iMjllNTJ2NWZuZHZzdzdlczV2YnA5djV3

dmE1eHJweHhhOTVlIiB0aW1lc3RhbXA9IjEzODQ1NTEyMjkiPjQ2NDwva2V5PjwvZm9yZWlnbi1r

ZXlzPjxyZWYtdHlwZSBuYW1lPSJKb3VybmFsIEFydGljbGUiPjE3PC9yZWYtdHlwZT48Y29udHJp

YnV0b3JzPjxhdXRob3JzPjxhdXRob3I+QWxsbnV0dCwgVGhvbWFzIEYuPC9hdXRob3I+PGF1dGhv

cj5GZXJyaWVyLCBTaW1vbjwvYXV0aG9yPjxhdXRob3I+TWFuaW9uLCBHbGVubjwvYXV0aG9yPjxh

dXRob3I+UG93ZWxsLCBHZW9yZ2UgVi4gTi48L2F1dGhvcj48YXV0aG9yPlJpY2tldHRzLCBUYXls

b3IgSC48L2F1dGhvcj48YXV0aG9yPkZpc2hlciwgQnJpYW4gTC48L2F1dGhvcj48YXV0aG9yPkhh

cnBlciwgR3JhZHkgSi48L2F1dGhvcj48YXV0aG9yPklyd2luLCBNaWNoYWVsIEUuPC9hdXRob3I+

PGF1dGhvcj5LcmVtZW4sIENsYWlyZTwvYXV0aG9yPjxhdXRob3I+TGFiYXQsIEplYW4tTm9lbDwv

YXV0aG9yPjxhdXRob3I+TGVlcywgRGF2aWQgQy48L2F1dGhvcj48YXV0aG9yPlBlYXJjZSwgVGlt

b3RoeSBBLjwvYXV0aG9yPjxhdXRob3I+UmFrb3RvbmRyYWluaWJlLCBGcmFuY2U8L2F1dGhvcj48

L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PHRpdGxlcz48dGl0bGU+QSBtZXRob2QgZm9yIHF1YW50

aWZ5aW5nIGJpb2RpdmVyc2l0eSBsb3NzIGFuZCBpdHMgYXBwbGljYXRpb24gdG8gYSA1MC15ZWFy

IHJlY29yZCBvZiBkZWZvcmVzdGF0aW9uIGFjcm9zcyBNYWRhZ2FzY2FyPC90aXRsZT48c2Vjb25k

YXJ5LXRpdGxlPkNvbnNlcnZhdGlvbiBMZXR0ZXJzPC9zZWNvbmRhcnktdGl0bGU+PC90aXRsZXM+

PHBlcmlvZGljYWw+PGZ1bGwtdGl0bGU+Q29uc2VydmF0aW9uIExldHRlcnM8L2Z1bGwtdGl0bGU+

PC9wZXJpb2RpY2FsPjxwYWdlcz4xNzMtMTgxPC9wYWdlcz48dm9sdW1lPjE8L3ZvbHVtZT48bnVt

YmVyPjQ8L251bWJlcj48ZGF0ZXM+PHllYXI+MjAwODwveWVhcj48cHViLWRhdGVzPjxkYXRlPk9j

dDwvZGF0ZT48L3B1Yi1kYXRlcz48L2RhdGVzPjxpc2JuPjE3NTUtMjYzWDwvaXNibj48YWNjZXNz

aW9uLW51bT5XT1M6MDAwMjA3NTg3MTAwMDAzPC9hY2Nlc3Npb24tbnVtPjx1cmxzPjxyZWxhdGVk

LXVybHM+PHVybD4mbHQ7R28gdG8gSVNJJmd0OzovL1dPUzowMDAyMDc1ODcxMDAwMDM8L3VybD48

L3JlbGF0ZWQtdXJscz48L3VybHM+PGVsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjEwLjExMTEvai4x

NzU1LTI2M1guMjAwOC4wMDAyNy54PC9lbGVjdHJvbmljLXJlc291cmNlLW51bT48L3JlY29yZD48

L0NpdGU+PC9FbmROb3RlPn==

ADDIN EN.CITE.DATA 38,39 to identify areas of endemism on the basis of turnover patterns for non-avian reptiles and amphibians together. The major AOE obtained in a 4-class categorization of the originally continuous GDM results (Figure 2C & H) largely mirrors the bioclimatic regions of Cornet (1974). Our test includes a total of 12 predictor hypotheses, some of which focus on the geographical pattern in which species diversity is distributed, but without making any clear assumption about how the species originated (e.g., the mid-domain or topography heterogeneity hypotheses). Others explicitly refer to mechanisms of diversification and make predictions about how these processes affected the distribution of species diversity over geographical space (see Supplementary Documents for detailed accounts). We divided all the hypotheses into two categories: one in which predictions for continuous two-dimensional spatial richness and endemism can be derived, and another in which nominal AOE predictions can be derived. The first category includes (1) the Mid-domain Effect, (2) Topographic Heterogeneity, (3) Climatic Refugia, (4) Museum (montane refugia), (5) Disturbance-Vicariance, (6) Climate Stability, (7) Sanctuary and (8) Montane Species Pump. The second category includes (9) the River-Refuge (large river model), (10) Riverine Barrier (minor and major rivers), (11) Climatic Gradient and (12) Watershed. All these hypotheses were transformed into explicit spatial representations (Supplementary Materials) and used as predictor variables for further analyses. We calculated unbiased correlation of the continuous predictor and test variables following the method of Dutilleul ADDIN EN.CITE <EndNote><Cite><Author>Dutilleul</Author><Year>1993</Year><RecNum>475</RecNum><DisplayText><style face="superscript">40</style></DisplayText><record><rec-number>475</rec-number><foreign-keys><key app="EN" db-id="29e52v5fndvsw7es5vbp9v5wva5xrpxxa95e" timestamp="1384552155">475</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Dutilleul, Pierre</author><author>Clifford, Peter</author><author>Richardson, Sylvia</author><author>Hemon, Denis</author></authors></contributors><titles><title>Modifying the t test for assessing the correlation between two spatial processes</title><secondary-title>Biometrics</secondary-title></titles><periodical><full-title>Biometrics</full-title></periodical><pages>305-314</pages><dates><year>1993</year></dates><isbn>0006-341X</isbn><urls></urls></record></Cite></EndNote>40, which reduces the degrees of freedom according to the level of spatial autocorrelation between two variables (detailed results in Supplementary Materials Table S3). We found that measures of both reptile and amphibian endemism significantly correlated to the predictor hypotheses of Topographic Heterogeneity, Disturbance-Vicariance and Museum (montane refugia). Reptile endemism (but not amphibian) is also correlated to Sanctuary. Correlations to species richness were not tied to measures of endemisms. Whereas reptile species richness is correlated to the Mid-domain Effect (distance) and Sanctuary hypotheses, amphibian richness is correlated to the Sanctuary hypothesis as well as to the Topographic Heterogeneity, Montane Species Pump, Disturbance-Vicariance, Museum, and River-Refuge hypotheses. In the univariate correlation analyses of nominal geospatial data (those related to AOE predictions) we compared the biogeographic zonation of Madagascar as suggested by the GDM analysis of amphibian and reptile distributions with zonations derived from five predictor hypotheses. We found all predictor variables (corresponding to the hypotheses Riverine-major and Riverine-minor, Gradient, River-refuge, and Watershed) to be significantly correlated to the 15-class GDM, and all but watershed with the 4-class GDM zonation (Table 1). Both GDM classifications share the most overlap with the Riverine and Gradient hypotheses (between 40.9–54.3% and 56.2–71.1%, respectively; Table 1). Given the significant correlation of each of the spatial amphibian and reptile biodiversity patterns with various predictor variables we used mixed conditional autoregressive spatial models (CAR models) to test the influences of various predictors simultaneously. To avoid over-parameterization we used AICc (corrected Akaike Information Criterion), an information-theoretical approach, to compare models with different sets of predictors. We found that complex models including most of the biogeography hypotheses (continuous predictor variables) performed best, based on the lowest AICc values, and consequently used these for further analysis. Detailed contributions of each predictor to the models of richness, endemism and GDM zonation are summarized in Supplementary Materials Table S4. The top-five variables contributed 49.4–75.9% to the models. For a more simplified graphical representation (Fig. 3), we summarized the three Mid-domain Effect hypotheses (latitude, longitude, and distance), the three principal components representing the Climate Gradient hypothesis, and three hypotheses focused on topography (Topographic Heterogeneity, Disturbance-vicariance, Montane Species Pump) were categorized together, respectively (Figs 3 & 4) . We found relevant influences of the Mid-domain Effect especially on the GDM and the species richness and endemism of reptiles (30.9%, 32.9% and 45.5%, respectively). However, it is important to point out that almost all the Mid-domain correlation coefficients were negative. Thus, indicating that Mid-domain Effects do not play a key role in determining spatial patterning. Climate Gradient effects influenced all the models of biodiversity equally, contributing roughly a quarter to each (25.1–27.7%), though in many cases the sign of the contribution varied. However in this case, a positive correlation was not expected. The topography variables contributed positively to the richness and endemism models of amphibians and reptiles, with joint influences of 9.1% and 22.4% on richness, and 6.5% and 17.3% on endemism. The two unique hypotheses, Sanctuary and Museum, each contributed positively to all models, with Museum contributing between 7.1–17.1% (one of the few hypothesis to contribute >5% and to be positively correlated to all biodiversity measurements). The Sanctuary hypothesis also contributed positively to all hypotheses, though to a lesser degree than the Museum hypothesis (which demonstrated little contribution to reptile endemism). To assess variation in biogeography patterns among major groups of the Malagasy herpetofauna, we calculated mixed CAR models using the same methods for richness and endemism of four exemplar sub-clades: the leaf chameleons (Brookesia), tree frogs (Boophis), day geckos (Phelsuma) and Oplurus iguanas (including the monotypic iguana genus Chalarodon). The top contributors to the models were drastically different for several of these clades (Fig. 4). For instance, the topography variables had strong influences on Boophis richness, with a joint contribution of 24.5%, but contributed much less to explaining the patterns of most other groups. Further, the Sanctuary hypothesis had a strong influence on the Brookesia and iguana models, though it contributed very little to the predictions of endemism in Boophis and Phelsuma. Mid-domain Effects were apparent in most models but the sign on the correlation and the contribution of each Mid-domain hypothesis varied considerably. DiscussionThe results of this study clearly demonstrate that single-mechanism explanatory hypotheses of spatial patterning in Madagascar's herpetofauna (and presumably, other Malagasy vertebrates) are inadequate. Thus, we propose a novel method for examining and synthesizing spatial parameters such as species richness, endemism, and community similarity. In this framework, biogeographic hypotheses are explanatory variables. The resulting mixed-model geospatial approach to biogeography analyses is both more robust, and more realistic. Our approach has the potential to reduce bias and subjectivity in the search for prevalent factors influencing the distribution of biodiversity, both in Madagascar and elsewhere. Currently, researchers typically approach such questions by univariate and sometimes narrative analyses that examine the fit of the observed patterns to only single explanatory models or mechanisms (e.g. in MadagascarPEVuZE5vdGU+PENpdGU+PEF1dGhvcj5Xb2xsZW5iZXJnPC9BdXRob3I+PFllYXI+MjAwODwvWWVh

cj48UmVjTnVtPjUyNTwvUmVjTnVtPjxEaXNwbGF5VGV4dD48c3R5bGUgZmFjZT0ic3VwZXJzY3Jp

cHQiPjMzLDM1LDQxPC9zdHlsZT48L0Rpc3BsYXlUZXh0PjxyZWNvcmQ+PHJlYy1udW1iZXI+NTI1

PC9yZWMtbnVtYmVyPjxmb3JlaWduLWtleXM+PGtleSBhcHA9IkVOIiBkYi1pZD0iMjllNTJ2NWZu

ZHZzdzdlczV2YnA5djV3dmE1eHJweHhhOTVlIiB0aW1lc3RhbXA9IjEzODQ1NTUwNzgiPjUyNTwv

a2V5PjwvZm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJKb3VybmFsIEFydGljbGUiPjE3PC9y

ZWYtdHlwZT48Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+V29sbGVuYmVyZywgS2F0aGFy

aW5hIEMuPC9hdXRob3I+PGF1dGhvcj5WaWVpdGVzLCBEYXZpZCBSLjwvYXV0aG9yPjxhdXRob3I+

dmFuIGRlciBNZWlqZGVuLCBBcmllPC9hdXRob3I+PGF1dGhvcj5HbGF3LCBGcmFuazwvYXV0aG9y

PjxhdXRob3I+Q2FubmF0ZWxsYSwgRGF2aWQgQy48L2F1dGhvcj48YXV0aG9yPlZlbmNlcywgTWln

dWVsPC9hdXRob3I+PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjx0aXRsZXM+PHRpdGxlPlBhdHRl

cm5zIG9mIGVuZGVtaXNtIGFuZCBzcGVjaWVzIHJpY2huZXNzIGluIE1hbGFnYXN5IGNvcGh5bGlu

ZSBmcm9ncyBzdXBwb3J0IGEga2V5IHJvbGUgb2YgbW91bnRhaW5vdXMgYXJlYXMgZm9yIHNwZWNp

YXRpb248L3RpdGxlPjxzZWNvbmRhcnktdGl0bGU+RXZvbHV0aW9uPC9zZWNvbmRhcnktdGl0bGU+

PC90aXRsZXM+PHBlcmlvZGljYWw+PGZ1bGwtdGl0bGU+RXZvbHV0aW9uPC9mdWxsLXRpdGxlPjxh

YmJyLTE+RXZvbHV0aW9uOyBpbnRlcm5hdGlvbmFsIGpvdXJuYWwgb2Ygb3JnYW5pYyBldm9sdXRp

b248L2FiYnItMT48L3BlcmlvZGljYWw+PHBhZ2VzPjE4OTAtMTkwNzwvcGFnZXM+PHZvbHVtZT42

Mjwvdm9sdW1lPjxudW1iZXI+ODwvbnVtYmVyPjxkYXRlcz48eWVhcj4yMDA4PC95ZWFyPjxwdWIt

ZGF0ZXM+PGRhdGU+QXVnPC9kYXRlPjwvcHViLWRhdGVzPjwvZGF0ZXM+PGlzYm4+MDAxNC0zODIw

PC9pc2JuPjxhY2Nlc3Npb24tbnVtPldPUzowMDAyNTgyNjE3MDAwMDc8L2FjY2Vzc2lvbi1udW0+

PHVybHM+PHJlbGF0ZWQtdXJscz48dXJsPiZsdDtHbyB0byBJU0kmZ3Q7Oi8vV09TOjAwMDI1ODI2

MTcwMDAwNzwvdXJsPjwvcmVsYXRlZC11cmxzPjwvdXJscz48ZWxlY3Ryb25pYy1yZXNvdXJjZS1u

dW0+MTAuMTExMS9qLjE1NTgtNTY0Ni4yMDA4LjAwNDIwLng8L2VsZWN0cm9uaWMtcmVzb3VyY2Ut

bnVtPjwvcmVjb3JkPjwvQ2l0ZT48Q2l0ZT48QXV0aG9yPldpbG1lPC9BdXRob3I+PFllYXI+MjAw

NjwvWWVhcj48UmVjTnVtPjUyMzwvUmVjTnVtPjxyZWNvcmQ+PHJlYy1udW1iZXI+NTIzPC9yZWMt

bnVtYmVyPjxmb3JlaWduLWtleXM+PGtleSBhcHA9IkVOIiBkYi1pZD0iMjllNTJ2NWZuZHZzdzdl

czV2YnA5djV3dmE1eHJweHhhOTVlIiB0aW1lc3RhbXA9IjEzODQ1NTUwMTIiPjUyMzwva2V5Pjwv

Zm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJKb3VybmFsIEFydGljbGUiPjE3PC9yZWYtdHlw

ZT48Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+V2lsbWUsIEwuPC9hdXRob3I+PGF1dGhv

cj5Hb29kbWFuLCBTLiBNLjwvYXV0aG9yPjxhdXRob3I+R2Fuemhvcm4sIEouIFUuPC9hdXRob3I+

PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjx0aXRsZXM+PHRpdGxlPkJpb2dlb2dyYXBoaWMgZXZv

bHV0aW9uIG9mIE1hZGFnYXNjYXImYXBvcztzIG1pY3JvZW5kZW1pYyBiaW90YTwvdGl0bGU+PHNl

Y29uZGFyeS10aXRsZT5TY2llbmNlPC9zZWNvbmRhcnktdGl0bGU+PC90aXRsZXM+PHBlcmlvZGlj

YWw+PGZ1bGwtdGl0bGU+U2NpZW5jZTwvZnVsbC10aXRsZT48L3BlcmlvZGljYWw+PHBhZ2VzPjEw

NjMtMTA2NTwvcGFnZXM+PHZvbHVtZT4zMTI8L3ZvbHVtZT48bnVtYmVyPjU3NzY8L251bWJlcj48

ZGF0ZXM+PHllYXI+MjAwNjwveWVhcj48cHViLWRhdGVzPjxkYXRlPk1heSAxOTwvZGF0ZT48L3B1

Yi1kYXRlcz48L2RhdGVzPjxpc2JuPjAwMzYtODA3NTwvaXNibj48YWNjZXNzaW9uLW51bT5XT1M6

MDAwMjM3NjI4ODAwMDQ4PC9hY2Nlc3Npb24tbnVtPjx1cmxzPjxyZWxhdGVkLXVybHM+PHVybD4m

bHQ7R28gdG8gSVNJJmd0OzovL1dPUzowMDAyMzc2Mjg4MDAwNDg8L3VybD48L3JlbGF0ZWQtdXJs

cz48L3VybHM+PGVsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjEwLjExMjYvc2NpZW5jZS4xMTIyODA2

PC9lbGVjdHJvbmljLXJlc291cmNlLW51bT48L3JlY29yZD48L0NpdGU+PENpdGU+PEF1dGhvcj5U

b3duc2VuZDwvQXV0aG9yPjxZZWFyPjIwMDk8L1llYXI+PFJlY051bT41MTM8L1JlY051bT48cmVj

b3JkPjxyZWMtbnVtYmVyPjUxMzwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJF

TiIgZGItaWQ9IjI5ZTUydjVmbmR2c3c3ZXM1dmJwOXY1d3ZhNXhycHh4YTk1ZSIgdGltZXN0YW1w

PSIxMzg0NTU0NTYwIj41MTM8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iSm91

cm5hbCBBcnRpY2xlIj4xNzwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9y

PlRvd25zZW5kLCBUZWQgTS48L2F1dGhvcj48YXV0aG9yPlZpZWl0ZXMsIERhdmlkIFIuPC9hdXRo

b3I+PGF1dGhvcj5HbGF3LCBGcmFuazwvYXV0aG9yPjxhdXRob3I+VmVuY2VzLCBNaWd1ZWw8L2F1

dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PHRpdGxlcz48dGl0bGU+VGVzdGluZyBTcGVj

aWVzLUxldmVsIERpdmVyc2lmaWNhdGlvbiBIeXBvdGhlc2VzIGluIE1hZGFnYXNjYXI6IFRoZSBD

YXNlIG9mIE1pY3JvZW5kZW1pYyBCcm9va2VzaWEgTGVhZiBDaGFtZWxlb25zPC90aXRsZT48c2Vj

b25kYXJ5LXRpdGxlPlN5c3RlbWF0aWMgQmlvbG9neTwvc2Vjb25kYXJ5LXRpdGxlPjwvdGl0bGVz

PjxwZXJpb2RpY2FsPjxmdWxsLXRpdGxlPlN5c3RlbWF0aWMgQmlvbG9neTwvZnVsbC10aXRsZT48

L3BlcmlvZGljYWw+PHBhZ2VzPjY0MS02NTY8L3BhZ2VzPjx2b2x1bWU+NTg8L3ZvbHVtZT48bnVt

YmVyPjY8L251bWJlcj48ZGF0ZXM+PHllYXI+MjAwOTwveWVhcj48cHViLWRhdGVzPjxkYXRlPkRl

YzwvZGF0ZT48L3B1Yi1kYXRlcz48L2RhdGVzPjxpc2JuPjEwNjMtNTE1NzwvaXNibj48YWNjZXNz

aW9uLW51bT5XT1M6MDAwMjcyMDcyNzAwMDA4PC9hY2Nlc3Npb24tbnVtPjx1cmxzPjxyZWxhdGVk

LXVybHM+PHVybD4mbHQ7R28gdG8gSVNJJmd0OzovL1dPUzowMDAyNzIwNzI3MDAwMDg8L3VybD48

L3JlbGF0ZWQtdXJscz48L3VybHM+PGVsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjEwLjEwOTMvc3lz

YmlvL3N5cDA3MzwvZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+PC9yZWNvcmQ+PC9DaXRlPjwvRW5k

Tm90ZT4A

ADDIN EN.CITE PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5Xb2xsZW5iZXJnPC9BdXRob3I+PFllYXI+MjAwODwvWWVh

cj48UmVjTnVtPjUyNTwvUmVjTnVtPjxEaXNwbGF5VGV4dD48c3R5bGUgZmFjZT0ic3VwZXJzY3Jp

cHQiPjMzLDM1LDQxPC9zdHlsZT48L0Rpc3BsYXlUZXh0PjxyZWNvcmQ+PHJlYy1udW1iZXI+NTI1

PC9yZWMtbnVtYmVyPjxmb3JlaWduLWtleXM+PGtleSBhcHA9IkVOIiBkYi1pZD0iMjllNTJ2NWZu

ZHZzdzdlczV2YnA5djV3dmE1eHJweHhhOTVlIiB0aW1lc3RhbXA9IjEzODQ1NTUwNzgiPjUyNTwv

a2V5PjwvZm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJKb3VybmFsIEFydGljbGUiPjE3PC9y

ZWYtdHlwZT48Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+V29sbGVuYmVyZywgS2F0aGFy

aW5hIEMuPC9hdXRob3I+PGF1dGhvcj5WaWVpdGVzLCBEYXZpZCBSLjwvYXV0aG9yPjxhdXRob3I+

dmFuIGRlciBNZWlqZGVuLCBBcmllPC9hdXRob3I+PGF1dGhvcj5HbGF3LCBGcmFuazwvYXV0aG9y

PjxhdXRob3I+Q2FubmF0ZWxsYSwgRGF2aWQgQy48L2F1dGhvcj48YXV0aG9yPlZlbmNlcywgTWln

dWVsPC9hdXRob3I+PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjx0aXRsZXM+PHRpdGxlPlBhdHRl

cm5zIG9mIGVuZGVtaXNtIGFuZCBzcGVjaWVzIHJpY2huZXNzIGluIE1hbGFnYXN5IGNvcGh5bGlu

ZSBmcm9ncyBzdXBwb3J0IGEga2V5IHJvbGUgb2YgbW91bnRhaW5vdXMgYXJlYXMgZm9yIHNwZWNp

YXRpb248L3RpdGxlPjxzZWNvbmRhcnktdGl0bGU+RXZvbHV0aW9uPC9zZWNvbmRhcnktdGl0bGU+

PC90aXRsZXM+PHBlcmlvZGljYWw+PGZ1bGwtdGl0bGU+RXZvbHV0aW9uPC9mdWxsLXRpdGxlPjxh

YmJyLTE+RXZvbHV0aW9uOyBpbnRlcm5hdGlvbmFsIGpvdXJuYWwgb2Ygb3JnYW5pYyBldm9sdXRp

b248L2FiYnItMT48L3BlcmlvZGljYWw+PHBhZ2VzPjE4OTAtMTkwNzwvcGFnZXM+PHZvbHVtZT42

Mjwvdm9sdW1lPjxudW1iZXI+ODwvbnVtYmVyPjxkYXRlcz48eWVhcj4yMDA4PC95ZWFyPjxwdWIt

ZGF0ZXM+PGRhdGU+QXVnPC9kYXRlPjwvcHViLWRhdGVzPjwvZGF0ZXM+PGlzYm4+MDAxNC0zODIw

PC9pc2JuPjxhY2Nlc3Npb24tbnVtPldPUzowMDAyNTgyNjE3MDAwMDc8L2FjY2Vzc2lvbi1udW0+

PHVybHM+PHJlbGF0ZWQtdXJscz48dXJsPiZsdDtHbyB0byBJU0kmZ3Q7Oi8vV09TOjAwMDI1ODI2

MTcwMDAwNzwvdXJsPjwvcmVsYXRlZC11cmxzPjwvdXJscz48ZWxlY3Ryb25pYy1yZXNvdXJjZS1u

dW0+MTAuMTExMS9qLjE1NTgtNTY0Ni4yMDA4LjAwNDIwLng8L2VsZWN0cm9uaWMtcmVzb3VyY2Ut

bnVtPjwvcmVjb3JkPjwvQ2l0ZT48Q2l0ZT48QXV0aG9yPldpbG1lPC9BdXRob3I+PFllYXI+MjAw

NjwvWWVhcj48UmVjTnVtPjUyMzwvUmVjTnVtPjxyZWNvcmQ+PHJlYy1udW1iZXI+NTIzPC9yZWMt

bnVtYmVyPjxmb3JlaWduLWtleXM+PGtleSBhcHA9IkVOIiBkYi1pZD0iMjllNTJ2NWZuZHZzdzdl

czV2YnA5djV3dmE1eHJweHhhOTVlIiB0aW1lc3RhbXA9IjEzODQ1NTUwMTIiPjUyMzwva2V5Pjwv

Zm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJKb3VybmFsIEFydGljbGUiPjE3PC9yZWYtdHlw

ZT48Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+V2lsbWUsIEwuPC9hdXRob3I+PGF1dGhv

cj5Hb29kbWFuLCBTLiBNLjwvYXV0aG9yPjxhdXRob3I+R2Fuemhvcm4sIEouIFUuPC9hdXRob3I+

PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjx0aXRsZXM+PHRpdGxlPkJpb2dlb2dyYXBoaWMgZXZv

bHV0aW9uIG9mIE1hZGFnYXNjYXImYXBvcztzIG1pY3JvZW5kZW1pYyBiaW90YTwvdGl0bGU+PHNl

Y29uZGFyeS10aXRsZT5TY2llbmNlPC9zZWNvbmRhcnktdGl0bGU+PC90aXRsZXM+PHBlcmlvZGlj

YWw+PGZ1bGwtdGl0bGU+U2NpZW5jZTwvZnVsbC10aXRsZT48L3BlcmlvZGljYWw+PHBhZ2VzPjEw

NjMtMTA2NTwvcGFnZXM+PHZvbHVtZT4zMTI8L3ZvbHVtZT48bnVtYmVyPjU3NzY8L251bWJlcj48

ZGF0ZXM+PHllYXI+MjAwNjwveWVhcj48cHViLWRhdGVzPjxkYXRlPk1heSAxOTwvZGF0ZT48L3B1

Yi1kYXRlcz48L2RhdGVzPjxpc2JuPjAwMzYtODA3NTwvaXNibj48YWNjZXNzaW9uLW51bT5XT1M6

MDAwMjM3NjI4ODAwMDQ4PC9hY2Nlc3Npb24tbnVtPjx1cmxzPjxyZWxhdGVkLXVybHM+PHVybD4m

bHQ7R28gdG8gSVNJJmd0OzovL1dPUzowMDAyMzc2Mjg4MDAwNDg8L3VybD48L3JlbGF0ZWQtdXJs

cz48L3VybHM+PGVsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjEwLjExMjYvc2NpZW5jZS4xMTIyODA2

PC9lbGVjdHJvbmljLXJlc291cmNlLW51bT48L3JlY29yZD48L0NpdGU+PENpdGU+PEF1dGhvcj5U

b3duc2VuZDwvQXV0aG9yPjxZZWFyPjIwMDk8L1llYXI+PFJlY051bT41MTM8L1JlY051bT48cmVj

b3JkPjxyZWMtbnVtYmVyPjUxMzwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJF

TiIgZGItaWQ9IjI5ZTUydjVmbmR2c3c3ZXM1dmJwOXY1d3ZhNXhycHh4YTk1ZSIgdGltZXN0YW1w

PSIxMzg0NTU0NTYwIj41MTM8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iSm91

cm5hbCBBcnRpY2xlIj4xNzwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9y

PlRvd25zZW5kLCBUZWQgTS48L2F1dGhvcj48YXV0aG9yPlZpZWl0ZXMsIERhdmlkIFIuPC9hdXRo

b3I+PGF1dGhvcj5HbGF3LCBGcmFuazwvYXV0aG9yPjxhdXRob3I+VmVuY2VzLCBNaWd1ZWw8L2F1

dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PHRpdGxlcz48dGl0bGU+VGVzdGluZyBTcGVj

aWVzLUxldmVsIERpdmVyc2lmaWNhdGlvbiBIeXBvdGhlc2VzIGluIE1hZGFnYXNjYXI6IFRoZSBD

YXNlIG9mIE1pY3JvZW5kZW1pYyBCcm9va2VzaWEgTGVhZiBDaGFtZWxlb25zPC90aXRsZT48c2Vj

b25kYXJ5LXRpdGxlPlN5c3RlbWF0aWMgQmlvbG9neTwvc2Vjb25kYXJ5LXRpdGxlPjwvdGl0bGVz

PjxwZXJpb2RpY2FsPjxmdWxsLXRpdGxlPlN5c3RlbWF0aWMgQmlvbG9neTwvZnVsbC10aXRsZT48

L3BlcmlvZGljYWw+PHBhZ2VzPjY0MS02NTY8L3BhZ2VzPjx2b2x1bWU+NTg8L3ZvbHVtZT48bnVt

YmVyPjY8L251bWJlcj48ZGF0ZXM+PHllYXI+MjAwOTwveWVhcj48cHViLWRhdGVzPjxkYXRlPkRl

YzwvZGF0ZT48L3B1Yi1kYXRlcz48L2RhdGVzPjxpc2JuPjEwNjMtNTE1NzwvaXNibj48YWNjZXNz

aW9uLW51bT5XT1M6MDAwMjcyMDcyNzAwMDA4PC9hY2Nlc3Npb24tbnVtPjx1cmxzPjxyZWxhdGVk

LXVybHM+PHVybD4mbHQ7R28gdG8gSVNJJmd0OzovL1dPUzowMDAyNzIwNzI3MDAwMDg8L3VybD48

L3JlbGF0ZWQtdXJscz48L3VybHM+PGVsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjEwLjEwOTMvc3lz

YmlvL3N5cDA3MzwvZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+PC9yZWNvcmQ+PC9DaXRlPjwvRW5k

Tm90ZT4A

ADDIN EN.CITE.DATA 33,35,41) or compare a limited number of competing variables in univariate approaches ADDIN EN.CITE <EndNote><Cite><Author>Pearson</Author><Year>2009</Year><RecNum>505</RecNum><DisplayText><style face="superscript">37</style></DisplayText><record><rec-number>505</rec-number><foreign-keys><key app="EN" db-id="29e52v5fndvsw7es5vbp9v5wva5xrpxxa95e" timestamp="1384554169">505</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Pearson, Richard G.</author><author>Raxworthy, Christopher J.</author></authors></contributors><titles><title>The evolution of local endemism in madagascar: watershed versus climatic gradient hypotheses evaluated by null biogeographic models.</title><secondary-title>Evolution</secondary-title></titles><periodical><full-title>Evolution</full-title><abbr-1>Evolution; international journal of organic evolution</abbr-1></periodical><pages>959-967</pages><volume>63</volume><number>4</number><dates><year>2009</year><pub-dates><date>Apr</date></pub-dates></dates><isbn>0014-3820</isbn><accession-num>WOS:000264379200013</accession-num><urls><related-urls><url>&lt;Go to ISI&gt;://WOS:000264379200013</url></related-urls></urls><electronic-resource-num>10.1111/j.1558-5646.2008.00596.x</electronic-resource-num></record></Cite></EndNote>37. Such analyses are hampered, however, by spatial autocorrelation of biodiversity patterns and predictor variables thereby inflating type-I errors in traditional statistical testsPEVuZE5vdGU+PENpdGU+PEF1dGhvcj5LcmVmdDwvQXV0aG9yPjxZZWFyPjIwMDc8L1llYXI+PFJl

Y051bT40OTE8L1JlY051bT48RGlzcGxheVRleHQ+PHN0eWxlIGZhY2U9InN1cGVyc2NyaXB0Ij40

Miw0Mzwvc3R5bGU+PC9EaXNwbGF5VGV4dD48cmVjb3JkPjxyZWMtbnVtYmVyPjQ5MTwvcmVjLW51

bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9IjI5ZTUydjVmbmR2c3c3ZXM1

dmJwOXY1d3ZhNXhycHh4YTk1ZSIgdGltZXN0YW1wPSIxMzg0NTUzNDY1Ij40OTE8L2tleT48L2Zv

cmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwvcmVmLXR5cGU+

PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPktyZWZ0LCBIb2xnZXI8L2F1dGhvcj48YXV0

aG9yPkpldHosIFdhbHRlcjwvYXV0aG9yPjwvYXV0aG9ycz48L2NvbnRyaWJ1dG9ycz48dGl0bGVz

Pjx0aXRsZT5HbG9iYWwgcGF0dGVybnMgYW5kIGRldGVybWluYW50cyBvZiB2YXNjdWxhciBwbGFu

dCBkaXZlcnNpdHk8L3RpdGxlPjxzZWNvbmRhcnktdGl0bGU+UHJvY2VlZGluZ3Mgb2YgdGhlIE5h

dGlvbmFsIEFjYWRlbXkgb2YgU2NpZW5jZXMgb2YgdGhlIFVuaXRlZCBTdGF0ZXMgb2YgQW1lcmlj

YTwvc2Vjb25kYXJ5LXRpdGxlPjwvdGl0bGVzPjxwZXJpb2RpY2FsPjxmdWxsLXRpdGxlPlByb2Nl

ZWRpbmdzIG9mIHRoZSBOYXRpb25hbCBBY2FkZW15IG9mIFNjaWVuY2VzIG9mIHRoZSBVbml0ZWQg

U3RhdGVzIG9mIEFtZXJpY2E8L2Z1bGwtdGl0bGU+PC9wZXJpb2RpY2FsPjxwYWdlcz41OTI1LTU5

MzA8L3BhZ2VzPjx2b2x1bWU+MTA0PC92b2x1bWU+PG51bWJlcj4xNDwvbnVtYmVyPjxkYXRlcz48

eWVhcj4yMDA3PC95ZWFyPjxwdWItZGF0ZXM+PGRhdGU+QXByIDM8L2RhdGU+PC9wdWItZGF0ZXM+

PC9kYXRlcz48aXNibj4wMDI3LTg0MjQ8L2lzYm4+PGFjY2Vzc2lvbi1udW0+V09TOjAwMDI0NTY1

NzYwMDA0MTwvYWNjZXNzaW9uLW51bT48dXJscz48cmVsYXRlZC11cmxzPjx1cmw+Jmx0O0dvIHRv

IElTSSZndDs6Ly9XT1M6MDAwMjQ1NjU3NjAwMDQxPC91cmw+PC9yZWxhdGVkLXVybHM+PC91cmxz

PjxlbGVjdHJvbmljLXJlc291cmNlLW51bT4xMC4xMDczL3BuYXMuMDYwODM2MTEwNDwvZWxlY3Ry

b25pYy1yZXNvdXJjZS1udW0+PC9yZWNvcmQ+PC9DaXRlPjxDaXRlPjxBdXRob3I+SG9ldGluZzwv

QXV0aG9yPjxZZWFyPjIwMDk8L1llYXI+PFJlY051bT40ODU8L1JlY051bT48cmVjb3JkPjxyZWMt

bnVtYmVyPjQ4NTwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9

IjI5ZTUydjVmbmR2c3c3ZXM1dmJwOXY1d3ZhNXhycHh4YTk1ZSIgdGltZXN0YW1wPSIxMzg0NTUz

MDkyIj40ODU8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iSm91cm5hbCBBcnRp

Y2xlIj4xNzwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPkhvZXRpbmcs

IEplbm5pZmVyIEEuPC9hdXRob3I+PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjx0aXRsZXM+PHRp

dGxlPlRoZSBpbXBvcnRhbmNlIG9mIGFjY291bnRpbmcgZm9yIHNwYXRpYWwgYW5kIHRlbXBvcmFs

IGNvcnJlbGF0aW9uIGluIGFuYWx5c2VzIG9mIGVjb2xvZ2ljYWwgZGF0YTwvdGl0bGU+PHNlY29u

ZGFyeS10aXRsZT5FY29sb2dpY2FsIEFwcGxpY2F0aW9uczwvc2Vjb25kYXJ5LXRpdGxlPjwvdGl0

bGVzPjxwZXJpb2RpY2FsPjxmdWxsLXRpdGxlPkVjb2xvZ2ljYWwgQXBwbGljYXRpb25zPC9mdWxs

LXRpdGxlPjwvcGVyaW9kaWNhbD48cGFnZXM+NTc0LTU3NzwvcGFnZXM+PHZvbHVtZT4xOTwvdm9s

dW1lPjxudW1iZXI+MzwvbnVtYmVyPjxkYXRlcz48eWVhcj4yMDA5PC95ZWFyPjxwdWItZGF0ZXM+

PGRhdGU+QXByPC9kYXRlPjwvcHViLWRhdGVzPjwvZGF0ZXM+PGlzYm4+MTA1MS0wNzYxPC9pc2Ju

PjxhY2Nlc3Npb24tbnVtPldPUzowMDAyNjQzMDk1MDAwMDQ8L2FjY2Vzc2lvbi1udW0+PHVybHM+

PHJlbGF0ZWQtdXJscz48dXJsPiZsdDtHbyB0byBJU0kmZ3Q7Oi8vV09TOjAwMDI2NDMwOTUwMDAw

NDwvdXJsPjwvcmVsYXRlZC11cmxzPjwvdXJscz48ZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+MTAu

MTg5MC8wOC0wODM2LjE8L2VsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjwvcmVjb3JkPjwvQ2l0ZT48

L0VuZE5vdGU+AG==

ADDIN EN.CITE PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5LcmVmdDwvQXV0aG9yPjxZZWFyPjIwMDc8L1llYXI+PFJl

Y051bT40OTE8L1JlY051bT48RGlzcGxheVRleHQ+PHN0eWxlIGZhY2U9InN1cGVyc2NyaXB0Ij40

Miw0Mzwvc3R5bGU+PC9EaXNwbGF5VGV4dD48cmVjb3JkPjxyZWMtbnVtYmVyPjQ5MTwvcmVjLW51

bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9IjI5ZTUydjVmbmR2c3c3ZXM1

dmJwOXY1d3ZhNXhycHh4YTk1ZSIgdGltZXN0YW1wPSIxMzg0NTUzNDY1Ij40OTE8L2tleT48L2Zv

cmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwvcmVmLXR5cGU+

PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPktyZWZ0LCBIb2xnZXI8L2F1dGhvcj48YXV0

aG9yPkpldHosIFdhbHRlcjwvYXV0aG9yPjwvYXV0aG9ycz48L2NvbnRyaWJ1dG9ycz48dGl0bGVz

Pjx0aXRsZT5HbG9iYWwgcGF0dGVybnMgYW5kIGRldGVybWluYW50cyBvZiB2YXNjdWxhciBwbGFu

dCBkaXZlcnNpdHk8L3RpdGxlPjxzZWNvbmRhcnktdGl0bGU+UHJvY2VlZGluZ3Mgb2YgdGhlIE5h

dGlvbmFsIEFjYWRlbXkgb2YgU2NpZW5jZXMgb2YgdGhlIFVuaXRlZCBTdGF0ZXMgb2YgQW1lcmlj

YTwvc2Vjb25kYXJ5LXRpdGxlPjwvdGl0bGVzPjxwZXJpb2RpY2FsPjxmdWxsLXRpdGxlPlByb2Nl

ZWRpbmdzIG9mIHRoZSBOYXRpb25hbCBBY2FkZW15IG9mIFNjaWVuY2VzIG9mIHRoZSBVbml0ZWQg

U3RhdGVzIG9mIEFtZXJpY2E8L2Z1bGwtdGl0bGU+PC9wZXJpb2RpY2FsPjxwYWdlcz41OTI1LTU5

MzA8L3BhZ2VzPjx2b2x1bWU+MTA0PC92b2x1bWU+PG51bWJlcj4xNDwvbnVtYmVyPjxkYXRlcz48

eWVhcj4yMDA3PC95ZWFyPjxwdWItZGF0ZXM+PGRhdGU+QXByIDM8L2RhdGU+PC9wdWItZGF0ZXM+

PC9kYXRlcz48aXNibj4wMDI3LTg0MjQ8L2lzYm4+PGFjY2Vzc2lvbi1udW0+V09TOjAwMDI0NTY1

NzYwMDA0MTwvYWNjZXNzaW9uLW51bT48dXJscz48cmVsYXRlZC11cmxzPjx1cmw+Jmx0O0dvIHRv

IElTSSZndDs6Ly9XT1M6MDAwMjQ1NjU3NjAwMDQxPC91cmw+PC9yZWxhdGVkLXVybHM+PC91cmxz

PjxlbGVjdHJvbmljLXJlc291cmNlLW51bT4xMC4xMDczL3BuYXMuMDYwODM2MTEwNDwvZWxlY3Ry

b25pYy1yZXNvdXJjZS1udW0+PC9yZWNvcmQ+PC9DaXRlPjxDaXRlPjxBdXRob3I+SG9ldGluZzwv

QXV0aG9yPjxZZWFyPjIwMDk8L1llYXI+PFJlY051bT40ODU8L1JlY051bT48cmVjb3JkPjxyZWMt

bnVtYmVyPjQ4NTwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9

IjI5ZTUydjVmbmR2c3c3ZXM1dmJwOXY1d3ZhNXhycHh4YTk1ZSIgdGltZXN0YW1wPSIxMzg0NTUz

MDkyIj40ODU8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iSm91cm5hbCBBcnRp

Y2xlIj4xNzwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPkhvZXRpbmcs

IEplbm5pZmVyIEEuPC9hdXRob3I+PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjx0aXRsZXM+PHRp

dGxlPlRoZSBpbXBvcnRhbmNlIG9mIGFjY291bnRpbmcgZm9yIHNwYXRpYWwgYW5kIHRlbXBvcmFs

IGNvcnJlbGF0aW9uIGluIGFuYWx5c2VzIG9mIGVjb2xvZ2ljYWwgZGF0YTwvdGl0bGU+PHNlY29u

ZGFyeS10aXRsZT5FY29sb2dpY2FsIEFwcGxpY2F0aW9uczwvc2Vjb25kYXJ5LXRpdGxlPjwvdGl0

bGVzPjxwZXJpb2RpY2FsPjxmdWxsLXRpdGxlPkVjb2xvZ2ljYWwgQXBwbGljYXRpb25zPC9mdWxs

LXRpdGxlPjwvcGVyaW9kaWNhbD48cGFnZXM+NTc0LTU3NzwvcGFnZXM+PHZvbHVtZT4xOTwvdm9s

dW1lPjxudW1iZXI+MzwvbnVtYmVyPjxkYXRlcz48eWVhcj4yMDA5PC95ZWFyPjxwdWItZGF0ZXM+

PGRhdGU+QXByPC9kYXRlPjwvcHViLWRhdGVzPjwvZGF0ZXM+PGlzYm4+MTA1MS0wNzYxPC9pc2Ju

PjxhY2Nlc3Npb24tbnVtPldPUzowMDAyNjQzMDk1MDAwMDQ8L2FjY2Vzc2lvbi1udW0+PHVybHM+

PHJlbGF0ZWQtdXJscz48dXJsPiZsdDtHbyB0byBJU0kmZ3Q7Oi8vV09TOjAwMDI2NDMwOTUwMDAw

NDwvdXJsPjwvcmVsYXRlZC11cmxzPjwvdXJscz48ZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+MTAu

MTg5MC8wOC0wODM2LjE8L2VsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjwvcmVjb3JkPjwvQ2l0ZT48

L0VuZE5vdGU+AG==

ADDIN EN.CITE.DATA 42,43. Several solutions have been proposed for this problem. Some authors attempt to exclude spatial autocorrelation from models ADDIN EN.CITE <EndNote><Cite><Author>Ohlemuller</Author><Year>2006</Year><RecNum>499</RecNum><DisplayText><style face="superscript">44</style></DisplayText><record><rec-number>499</rec-number><foreign-keys><key app="EN" db-id="29e52v5fndvsw7es5vbp9v5wva5xrpxxa95e" timestamp="1384553931">499</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Ohlemuller, R.</author><author>Walker, S.</author><author>Wilson, J. B.</author></authors></contributors><titles><title>Local vs regional factors as determinants of the invasibility of indigenous forest fragments by alien plant species</title><secondary-title>Oikos</secondary-title></titles><periodical><full-title>Oikos</full-title></periodical><pages>493-501</pages><volume>112</volume><number>3</number><dates><year>2006</year><pub-dates><date>Mar</date></pub-dates></dates><isbn>0030-1299</isbn><accession-num>WOS:000234800800002</accession-num><urls><related-urls><url>&lt;Go to ISI&gt;://WOS:000234800800002</url></related-urls></urls><electronic-resource-num>10.1111/j.0030-1299.2006.13887.x</electronic-resource-num></record></Cite></EndNote>44, whereas others incorporate spatial autocorrelation as a predictive parameter in geospatial modelsPEVuZE5vdGU+PENpdGU+PEF1dGhvcj5CYWNhcm88L0F1dGhvcj48WWVhcj4yMDA3PC9ZZWFyPjxS

ZWNOdW0+NTQ3PC9SZWNOdW0+PERpc3BsYXlUZXh0PjxzdHlsZSBmYWNlPSJzdXBlcnNjcmlwdCI+

NDUtNDc8L3N0eWxlPjwvRGlzcGxheVRleHQ+PHJlY29yZD48cmVjLW51bWJlcj41NDc8L3JlYy1u

dW1iZXI+PGZvcmVpZ24ta2V5cz48a2V5IGFwcD0iRU4iIGRiLWlkPSIyOWU1MnY1Zm5kdnN3N2Vz

NXZicDl2NXd2YTV4cnB4eGE5NWUiIHRpbWVzdGFtcD0iMTM4NDczNzE3MiI+NTQ3PC9rZXk+PC9m

b3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBl

Pjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5CYWNhcm8sIEc8L2F1dGhvcj48YXV0aG9y

PlJpY290dGEsIEM8L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PHRpdGxlcz48dGl0

bGU+QSBzcGF0aWFsbHkgZXhwbGljaXQgbWVhc3VyZSBvZiBiZXRhIGRpdmVyc2l0eTwvdGl0bGU+

PHNlY29uZGFyeS10aXRsZT5Db21tdW5pdHkgRWNvbG9neTwvc2Vjb25kYXJ5LXRpdGxlPjwvdGl0

bGVzPjxwZXJpb2RpY2FsPjxmdWxsLXRpdGxlPkNvbW11bml0eSBFY29sb2d5PC9mdWxsLXRpdGxl

PjwvcGVyaW9kaWNhbD48cGFnZXM+NDEtNDY8L3BhZ2VzPjx2b2x1bWU+ODwvdm9sdW1lPjxudW1i

ZXI+MTwvbnVtYmVyPjxkYXRlcz48eWVhcj4yMDA3PC95ZWFyPjwvZGF0ZXM+PGlzYm4+MTU4NS04

NTUzPC9pc2JuPjx1cmxzPjwvdXJscz48L3JlY29yZD48L0NpdGU+PENpdGU+PEF1dGhvcj5CYWNh

cm88L0F1dGhvcj48WWVhcj4yMDExPC9ZZWFyPjxSZWNOdW0+NTQ2PC9SZWNOdW0+PHJlY29yZD48

cmVjLW51bWJlcj41NDY8L3JlYy1udW1iZXI+PGZvcmVpZ24ta2V5cz48a2V5IGFwcD0iRU4iIGRi

LWlkPSIyOWU1MnY1Zm5kdnN3N2VzNXZicDl2NXd2YTV4cnB4eGE5NWUiIHRpbWVzdGFtcD0iMTM4

NDczNzExMSI+NTQ2PC9rZXk+PC9mb3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwg

QXJ0aWNsZSI+MTc8L3JlZi10eXBlPjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5CYWNh

cm8sIEdpb3Zhbm5pPC9hdXRob3I+PGF1dGhvcj5TYW50aSwgRWxpc2E8L2F1dGhvcj48YXV0aG9y

PlJvY2NoaW5pLCBEdWNjaW88L2F1dGhvcj48YXV0aG9yPlBlenpvLCBGcmFuY2VzY288L2F1dGhv

cj48YXV0aG9yPlB1Z2xpc2ksIEx1Y2E8L2F1dGhvcj48YXV0aG9yPkNoaWFydWNjaSwgQWxlc3Nh

bmRybzwvYXV0aG9yPjwvYXV0aG9ycz48L2NvbnRyaWJ1dG9ycz48dGl0bGVzPjx0aXRsZT5HZW9z

dGF0aXN0aWNhbCBtb2RlbGxpbmcgb2YgcmVnaW9uYWwgYmlyZCBzcGVjaWVzIHJpY2huZXNzOiBl

eHBsb3JpbmcgZW52aXJvbm1lbnRhbCBwcm94aWVzIGZvciBjb25zZXJ2YXRpb24gcHVycG9zZTwv

dGl0bGU+PHNlY29uZGFyeS10aXRsZT5CaW9kaXZlcnNpdHkgYW5kIENvbnNlcnZhdGlvbjwvc2Vj

b25kYXJ5LXRpdGxlPjwvdGl0bGVzPjxwZXJpb2RpY2FsPjxmdWxsLXRpdGxlPkJpb2RpdmVyc2l0

eSBhbmQgQ29uc2VydmF0aW9uPC9mdWxsLXRpdGxlPjwvcGVyaW9kaWNhbD48cGFnZXM+MTY3Ny0x

Njk0PC9wYWdlcz48dm9sdW1lPjIwPC92b2x1bWU+PG51bWJlcj44PC9udW1iZXI+PGRhdGVzPjx5

ZWFyPjIwMTE8L3llYXI+PC9kYXRlcz48aXNibj4wOTYwLTMxMTU8L2lzYm4+PHVybHM+PC91cmxz

PjwvcmVjb3JkPjwvQ2l0ZT48Q2l0ZT48QXV0aG9yPkRpZ2dsZTwvQXV0aG9yPjxZZWFyPiAyMDA3

PC9ZZWFyPjxSZWNOdW0+NTMwPC9SZWNOdW0+PHJlY29yZD48cmVjLW51bWJlcj41MzA8L3JlYy1u

dW1iZXI+PGZvcmVpZ24ta2V5cz48a2V5IGFwcD0iRU4iIGRiLWlkPSIyOWU1MnY1Zm5kdnN3N2Vz

NXZicDl2NXd2YTV4cnB4eGE5NWUiIHRpbWVzdGFtcD0iMTM4NDcxODIyOCI+NTMwPC9rZXk+PC9m

b3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkJvb2siPjY8L3JlZi10eXBlPjxjb250cmlidXRv

cnM+PGF1dGhvcnM+PGF1dGhvcj5EaWdnbGUsIFAuSi48L2F1dGhvcj48YXV0aG9yPlJpYmVpcm8s

IFAuSi4gSnIuPC9hdXRob3I+PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjx0aXRsZXM+PHRpdGxl

Pk1vZGVsLWJhc2VkIEdlb3N0YXRpc3RpY3M8L3RpdGxlPjwvdGl0bGVzPjxkYXRlcz48eWVhcj4g

MjAwNzwveWVhcj48L2RhdGVzPjxwdWItbG9jYXRpb24+TmV3IFlvcmssIFVTQTwvcHViLWxvY2F0

aW9uPjxwdWJsaXNoZXI+U3ByaW5nZXI8L3B1Ymxpc2hlcj48dXJscz48L3VybHM+PC9yZWNvcmQ+

PC9DaXRlPjwvRW5kTm90ZT4A

ADDIN EN.CITE PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5CYWNhcm88L0F1dGhvcj48WWVhcj4yMDA3PC9ZZWFyPjxS

ZWNOdW0+NTQ3PC9SZWNOdW0+PERpc3BsYXlUZXh0PjxzdHlsZSBmYWNlPSJzdXBlcnNjcmlwdCI+

NDUtNDc8L3N0eWxlPjwvRGlzcGxheVRleHQ+PHJlY29yZD48cmVjLW51bWJlcj41NDc8L3JlYy1u

dW1iZXI+PGZvcmVpZ24ta2V5cz48a2V5IGFwcD0iRU4iIGRiLWlkPSIyOWU1MnY1Zm5kdnN3N2Vz

NXZicDl2NXd2YTV4cnB4eGE5NWUiIHRpbWVzdGFtcD0iMTM4NDczNzE3MiI+NTQ3PC9rZXk+PC9m

b3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBl

Pjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5CYWNhcm8sIEc8L2F1dGhvcj48YXV0aG9y

PlJpY290dGEsIEM8L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PHRpdGxlcz48dGl0

bGU+QSBzcGF0aWFsbHkgZXhwbGljaXQgbWVhc3VyZSBvZiBiZXRhIGRpdmVyc2l0eTwvdGl0bGU+

PHNlY29uZGFyeS10aXRsZT5Db21tdW5pdHkgRWNvbG9neTwvc2Vjb25kYXJ5LXRpdGxlPjwvdGl0

bGVzPjxwZXJpb2RpY2FsPjxmdWxsLXRpdGxlPkNvbW11bml0eSBFY29sb2d5PC9mdWxsLXRpdGxl

PjwvcGVyaW9kaWNhbD48cGFnZXM+NDEtNDY8L3BhZ2VzPjx2b2x1bWU+ODwvdm9sdW1lPjxudW1i

ZXI+MTwvbnVtYmVyPjxkYXRlcz48eWVhcj4yMDA3PC95ZWFyPjwvZGF0ZXM+PGlzYm4+MTU4NS04

NTUzPC9pc2JuPjx1cmxzPjwvdXJscz48L3JlY29yZD48L0NpdGU+PENpdGU+PEF1dGhvcj5CYWNh

cm88L0F1dGhvcj48WWVhcj4yMDExPC9ZZWFyPjxSZWNOdW0+NTQ2PC9SZWNOdW0+PHJlY29yZD48

cmVjLW51bWJlcj41NDY8L3JlYy1udW1iZXI+PGZvcmVpZ24ta2V5cz48a2V5IGFwcD0iRU4iIGRi

LWlkPSIyOWU1MnY1Zm5kdnN3N2VzNXZicDl2NXd2YTV4cnB4eGE5NWUiIHRpbWVzdGFtcD0iMTM4

NDczNzExMSI+NTQ2PC9rZXk+PC9mb3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwg

QXJ0aWNsZSI+MTc8L3JlZi10eXBlPjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5CYWNh

cm8sIEdpb3Zhbm5pPC9hdXRob3I+PGF1dGhvcj5TYW50aSwgRWxpc2E8L2F1dGhvcj48YXV0aG9y

PlJvY2NoaW5pLCBEdWNjaW88L2F1dGhvcj48YXV0aG9yPlBlenpvLCBGcmFuY2VzY288L2F1dGhv

cj48YXV0aG9yPlB1Z2xpc2ksIEx1Y2E8L2F1dGhvcj48YXV0aG9yPkNoaWFydWNjaSwgQWxlc3Nh

bmRybzwvYXV0aG9yPjwvYXV0aG9ycz48L2NvbnRyaWJ1dG9ycz48dGl0bGVzPjx0aXRsZT5HZW9z

dGF0aXN0aWNhbCBtb2RlbGxpbmcgb2YgcmVnaW9uYWwgYmlyZCBzcGVjaWVzIHJpY2huZXNzOiBl

eHBsb3JpbmcgZW52aXJvbm1lbnRhbCBwcm94aWVzIGZvciBjb25zZXJ2YXRpb24gcHVycG9zZTwv

dGl0bGU+PHNlY29uZGFyeS10aXRsZT5CaW9kaXZlcnNpdHkgYW5kIENvbnNlcnZhdGlvbjwvc2Vj

b25kYXJ5LXRpdGxlPjwvdGl0bGVzPjxwZXJpb2RpY2FsPjxmdWxsLXRpdGxlPkJpb2RpdmVyc2l0

eSBhbmQgQ29uc2VydmF0aW9uPC9mdWxsLXRpdGxlPjwvcGVyaW9kaWNhbD48cGFnZXM+MTY3Ny0x

Njk0PC9wYWdlcz48dm9sdW1lPjIwPC92b2x1bWU+PG51bWJlcj44PC9udW1iZXI+PGRhdGVzPjx5

ZWFyPjIwMTE8L3llYXI+PC9kYXRlcz48aXNibj4wOTYwLTMxMTU8L2lzYm4+PHVybHM+PC91cmxz

PjwvcmVjb3JkPjwvQ2l0ZT48Q2l0ZT48QXV0aG9yPkRpZ2dsZTwvQXV0aG9yPjxZZWFyPiAyMDA3

PC9ZZWFyPjxSZWNOdW0+NTMwPC9SZWNOdW0+PHJlY29yZD48cmVjLW51bWJlcj41MzA8L3JlYy1u

dW1iZXI+PGZvcmVpZ24ta2V5cz48a2V5IGFwcD0iRU4iIGRiLWlkPSIyOWU1MnY1Zm5kdnN3N2Vz

NXZicDl2NXd2YTV4cnB4eGE5NWUiIHRpbWVzdGFtcD0iMTM4NDcxODIyOCI+NTMwPC9rZXk+PC9m

b3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkJvb2siPjY8L3JlZi10eXBlPjxjb250cmlidXRv

cnM+PGF1dGhvcnM+PGF1dGhvcj5EaWdnbGUsIFAuSi48L2F1dGhvcj48YXV0aG9yPlJpYmVpcm8s

IFAuSi4gSnIuPC9hdXRob3I+PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjx0aXRsZXM+PHRpdGxl

Pk1vZGVsLWJhc2VkIEdlb3N0YXRpc3RpY3M8L3RpdGxlPjwvdGl0bGVzPjxkYXRlcz48eWVhcj4g

MjAwNzwveWVhcj48L2RhdGVzPjxwdWItbG9jYXRpb24+TmV3IFlvcmssIFVTQTwvcHViLWxvY2F0

aW9uPjxwdWJsaXNoZXI+U3ByaW5nZXI8L3B1Ymxpc2hlcj48dXJscz48L3VybHM+PC9yZWNvcmQ+

PC9DaXRlPjwvRW5kTm90ZT4A

ADDIN EN.CITE.DATA 45-47, as was applied in this study. The results obtained here for some sub-clades are in agreement with previous analyses, while others are not. For example, the high influence of the mid-domain effect on Boophis treefrogs, one of the most species-rich frog genera in Madagascar, agrees with a previous analysis performed by Colwell & Lees ADDIN EN.CITE <EndNote><Cite><Author>Colwell</Author><Year>2000</Year><RecNum>471</RecNum><DisplayText><style face="superscript">48</style></DisplayText><record><rec-number>471</rec-number><foreign-keys><key app="EN" db-id="29e52v5fndvsw7es5vbp9v5wva5xrpxxa95e" timestamp="1384551713">471</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Colwell, R. K.</author><author>Lees, D. C.</author></authors></contributors><titles><title>The mid-domain effect: geometric constraints on the geography of species richness</title><secondary-title>Trends in Ecology &amp; Evolution</secondary-title></titles><periodical><full-title>Trends in Ecology &amp; Evolution</full-title></periodical><pages>70-76</pages><volume>15</volume><number>2</number><dates><year>2000</year><pub-dates><date>Feb</date></pub-dates></dates><isbn>0169-5347</isbn><accession-num>WOS:000085525200011</accession-num><urls><related-urls><url>&lt;Go to ISI&gt;://WOS:000085525200011</url></related-urls></urls><electronic-resource-num>10.1016/s0169-5347(99)01767-x</electronic-resource-num></record></Cite></EndNote>48 for all Malagasy amphibians (with a high representation of Boophis). On the contrary, the negative contributions of the mid-domain effects on the biodiversity patterns of the other genera in the analysis are obvious given that their centers of richness and endemism are in either southern or northern Madagascar, but not in central parts of the island. Previous studies postulated a high influence of topography on the diversification of leaf chameleons (Brookesia),PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5SYXh3b3J0aHk8L0F1dGhvcj48WWVhcj4xOTk1PC9ZZWFy

PjxSZWNOdW0+NTExPC9SZWNOdW0+PERpc3BsYXlUZXh0PjxzdHlsZSBmYWNlPSJzdXBlcnNjcmlw

dCI+NDEsNDk8L3N0eWxlPjwvRGlzcGxheVRleHQ+PHJlY29yZD48cmVjLW51bWJlcj41MTE8L3Jl

Yy1udW1iZXI+PGZvcmVpZ24ta2V5cz48a2V5IGFwcD0iRU4iIGRiLWlkPSIyOWU1MnY1Zm5kdnN3

N2VzNXZicDl2NXd2YTV4cnB4eGE5NWUiIHRpbWVzdGFtcD0iMTM4NDU1NDQxOSI+NTExPC9rZXk+

PC9mb3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10

eXBlPjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5SYXh3b3J0aHksIEMuIEouPC9hdXRo

b3I+PGF1dGhvcj5OdXNzYmF1bSwgUi4gQS48L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRv

cnM+PHRpdGxlcz48dGl0bGU+U3lzdGVtYXRpY3MsIHNwZWNpYXRpb24gYW5kIGJpb2dlb2dyYXBo

eSBvZiB0aGUgZHdhcmYgY2hhbWVsZW9ucyAoQnJvb2tlc2lhOyBSZXB0aWxpYSwgU3F1YW1hdGEs

IENoYW1hZWxlb250aWRhZSkgb2Ygbm9ydGhlcm4gTWFkYWdhc2NhcjwvdGl0bGU+PHNlY29uZGFy

eS10aXRsZT5Kb3VybmFsIG9mIFpvb2xvZ3k8L3NlY29uZGFyeS10aXRsZT48L3RpdGxlcz48cGVy

aW9kaWNhbD48ZnVsbC10aXRsZT5Kb3VybmFsIG9mIFpvb2xvZ3k8L2Z1bGwtdGl0bGU+PC9wZXJp

b2RpY2FsPjxwYWdlcz41MjUtNTU4PC9wYWdlcz48dm9sdW1lPjIzNTwvdm9sdW1lPjxkYXRlcz48

eWVhcj4xOTk1PC95ZWFyPjxwdWItZGF0ZXM+PGRhdGU+QXByPC9kYXRlPjwvcHViLWRhdGVzPjwv

ZGF0ZXM+PGlzYm4+MDk1Mi04MzY5PC9pc2JuPjxhY2Nlc3Npb24tbnVtPldPUzpBMTk5NVFXNjc1

MDAwMDE8L2FjY2Vzc2lvbi1udW0+PHVybHM+PHJlbGF0ZWQtdXJscz48dXJsPiZsdDtHbyB0byBJ

U0kmZ3Q7Oi8vV09TOkExOTk1UVc2NzUwMDAwMTwvdXJsPjwvcmVsYXRlZC11cmxzPjwvdXJscz48

L3JlY29yZD48L0NpdGU+PENpdGU+PEF1dGhvcj5Ub3duc2VuZDwvQXV0aG9yPjxZZWFyPjIwMDk8

L1llYXI+PFJlY051bT41MTM8L1JlY051bT48cmVjb3JkPjxyZWMtbnVtYmVyPjUxMzwvcmVjLW51

bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9IjI5ZTUydjVmbmR2c3c3ZXM1

dmJwOXY1d3ZhNXhycHh4YTk1ZSIgdGltZXN0YW1wPSIxMzg0NTU0NTYwIj41MTM8L2tleT48L2Zv

cmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwvcmVmLXR5cGU+

PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPlRvd25zZW5kLCBUZWQgTS48L2F1dGhvcj48

YXV0aG9yPlZpZWl0ZXMsIERhdmlkIFIuPC9hdXRob3I+PGF1dGhvcj5HbGF3LCBGcmFuazwvYXV0

aG9yPjxhdXRob3I+VmVuY2VzLCBNaWd1ZWw8L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRv

cnM+PHRpdGxlcz48dGl0bGU+VGVzdGluZyBTcGVjaWVzLUxldmVsIERpdmVyc2lmaWNhdGlvbiBI

eXBvdGhlc2VzIGluIE1hZGFnYXNjYXI6IFRoZSBDYXNlIG9mIE1pY3JvZW5kZW1pYyBCcm9va2Vz

aWEgTGVhZiBDaGFtZWxlb25zPC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPlN5c3RlbWF0aWMgQmlv

bG9neTwvc2Vjb25kYXJ5LXRpdGxlPjwvdGl0bGVzPjxwZXJpb2RpY2FsPjxmdWxsLXRpdGxlPlN5

c3RlbWF0aWMgQmlvbG9neTwvZnVsbC10aXRsZT48L3BlcmlvZGljYWw+PHBhZ2VzPjY0MS02NTY8

L3BhZ2VzPjx2b2x1bWU+NTg8L3ZvbHVtZT48bnVtYmVyPjY8L251bWJlcj48ZGF0ZXM+PHllYXI+

MjAwOTwveWVhcj48cHViLWRhdGVzPjxkYXRlPkRlYzwvZGF0ZT48L3B1Yi1kYXRlcz48L2RhdGVz

Pjxpc2JuPjEwNjMtNTE1NzwvaXNibj48YWNjZXNzaW9uLW51bT5XT1M6MDAwMjcyMDcyNzAwMDA4

PC9hY2Nlc3Npb24tbnVtPjx1cmxzPjxyZWxhdGVkLXVybHM+PHVybD4mbHQ7R28gdG8gSVNJJmd0

OzovL1dPUzowMDAyNzIwNzI3MDAwMDg8L3VybD48L3JlbGF0ZWQtdXJscz48L3VybHM+PGVsZWN0

cm9uaWMtcmVzb3VyY2UtbnVtPjEwLjEwOTMvc3lzYmlvL3N5cDA3MzwvZWxlY3Ryb25pYy1yZXNv

dXJjZS1udW0+PC9yZWNvcmQ+PC9DaXRlPjwvRW5kTm90ZT5=

ADDIN EN.CITE PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5SYXh3b3J0aHk8L0F1dGhvcj48WWVhcj4xOTk1PC9ZZWFy

PjxSZWNOdW0+NTExPC9SZWNOdW0+PERpc3BsYXlUZXh0PjxzdHlsZSBmYWNlPSJzdXBlcnNjcmlw

dCI+NDEsNDk8L3N0eWxlPjwvRGlzcGxheVRleHQ+PHJlY29yZD48cmVjLW51bWJlcj41MTE8L3Jl

Yy1udW1iZXI+PGZvcmVpZ24ta2V5cz48a2V5IGFwcD0iRU4iIGRiLWlkPSIyOWU1MnY1Zm5kdnN3

N2VzNXZicDl2NXd2YTV4cnB4eGE5NWUiIHRpbWVzdGFtcD0iMTM4NDU1NDQxOSI+NTExPC9rZXk+

PC9mb3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10

eXBlPjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5SYXh3b3J0aHksIEMuIEouPC9hdXRo

b3I+PGF1dGhvcj5OdXNzYmF1bSwgUi4gQS48L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRv

cnM+PHRpdGxlcz48dGl0bGU+U3lzdGVtYXRpY3MsIHNwZWNpYXRpb24gYW5kIGJpb2dlb2dyYXBo

eSBvZiB0aGUgZHdhcmYgY2hhbWVsZW9ucyAoQnJvb2tlc2lhOyBSZXB0aWxpYSwgU3F1YW1hdGEs

IENoYW1hZWxlb250aWRhZSkgb2Ygbm9ydGhlcm4gTWFkYWdhc2NhcjwvdGl0bGU+PHNlY29uZGFy

eS10aXRsZT5Kb3VybmFsIG9mIFpvb2xvZ3k8L3NlY29uZGFyeS10aXRsZT48L3RpdGxlcz48cGVy

aW9kaWNhbD48ZnVsbC10aXRsZT5Kb3VybmFsIG9mIFpvb2xvZ3k8L2Z1bGwtdGl0bGU+PC9wZXJp

b2RpY2FsPjxwYWdlcz41MjUtNTU4PC9wYWdlcz48dm9sdW1lPjIzNTwvdm9sdW1lPjxkYXRlcz48

eWVhcj4xOTk1PC95ZWFyPjxwdWItZGF0ZXM+PGRhdGU+QXByPC9kYXRlPjwvcHViLWRhdGVzPjwv

ZGF0ZXM+PGlzYm4+MDk1Mi04MzY5PC9pc2JuPjxhY2Nlc3Npb24tbnVtPldPUzpBMTk5NVFXNjc1

MDAwMDE8L2FjY2Vzc2lvbi1udW0+PHVybHM+PHJlbGF0ZWQtdXJscz48dXJsPiZsdDtHbyB0byBJ

U0kmZ3Q7Oi8vV09TOkExOTk1UVc2NzUwMDAwMTwvdXJsPjwvcmVsYXRlZC11cmxzPjwvdXJscz48

L3JlY29yZD48L0NpdGU+PENpdGU+PEF1dGhvcj5Ub3duc2VuZDwvQXV0aG9yPjxZZWFyPjIwMDk8

L1llYXI+PFJlY051bT41MTM8L1JlY051bT48cmVjb3JkPjxyZWMtbnVtYmVyPjUxMzwvcmVjLW51

bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9IjI5ZTUydjVmbmR2c3c3ZXM1

dmJwOXY1d3ZhNXhycHh4YTk1ZSIgdGltZXN0YW1wPSIxMzg0NTU0NTYwIj41MTM8L2tleT48L2Zv

cmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwvcmVmLXR5cGU+

PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPlRvd25zZW5kLCBUZWQgTS48L2F1dGhvcj48

YXV0aG9yPlZpZWl0ZXMsIERhdmlkIFIuPC9hdXRob3I+PGF1dGhvcj5HbGF3LCBGcmFuazwvYXV0

aG9yPjxhdXRob3I+VmVuY2VzLCBNaWd1ZWw8L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRv

cnM+PHRpdGxlcz48dGl0bGU+VGVzdGluZyBTcGVjaWVzLUxldmVsIERpdmVyc2lmaWNhdGlvbiBI

eXBvdGhlc2VzIGluIE1hZGFnYXNjYXI6IFRoZSBDYXNlIG9mIE1pY3JvZW5kZW1pYyBCcm9va2Vz

aWEgTGVhZiBDaGFtZWxlb25zPC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPlN5c3RlbWF0aWMgQmlv

bG9neTwvc2Vjb25kYXJ5LXRpdGxlPjwvdGl0bGVzPjxwZXJpb2RpY2FsPjxmdWxsLXRpdGxlPlN5

c3RlbWF0aWMgQmlvbG9neTwvZnVsbC10aXRsZT48L3BlcmlvZGljYWw+PHBhZ2VzPjY0MS02NTY8

L3BhZ2VzPjx2b2x1bWU+NTg8L3ZvbHVtZT48bnVtYmVyPjY8L251bWJlcj48ZGF0ZXM+PHllYXI+

MjAwOTwveWVhcj48cHViLWRhdGVzPjxkYXRlPkRlYzwvZGF0ZT48L3B1Yi1kYXRlcz48L2RhdGVz

Pjxpc2JuPjEwNjMtNTE1NzwvaXNibj48YWNjZXNzaW9uLW51bT5XT1M6MDAwMjcyMDcyNzAwMDA4

PC9hY2Nlc3Npb24tbnVtPjx1cmxzPjxyZWxhdGVkLXVybHM+PHVybD4mbHQ7R28gdG8gSVNJJmd0

OzovL1dPUzowMDAyNzIwNzI3MDAwMDg8L3VybD48L3JlbGF0ZWQtdXJscz48L3VybHM+PGVsZWN0

cm9uaWMtcmVzb3VyY2UtbnVtPjEwLjEwOTMvc3lzYmlvL3N5cDA3MzwvZWxlY3Ryb25pYy1yZXNv

dXJjZS1udW0+PC9yZWNvcmQ+PC9DaXRlPjwvRW5kTm90ZT5=

ADDIN EN.CITE.DATA 41,49 though this is not supported by our analysis. This latter example exemplifies a dilemma of scale, inherent in all comparisons of spatial data sets. In fact, the distribution of Brookesia is highly specific to certain mountain massifs in northern Madagascar while the genus is largely absent from the equally topographically heterogeneous south-east. This absence is probably due to its evolutionary history, with a diversification mainly in the north and limited capacity for range expansion ADDIN EN.CITE <EndNote><Cite><Author>Townsend</Author><Year>2009</Year><RecNum>513</RecNum><DisplayText><style face="superscript">41</style></DisplayText><record><rec-number>513</rec-number><foreign-keys><key app="EN" db-id="29e52v5fndvsw7es5vbp9v5wva5xrpxxa95e" timestamp="1384554560">513</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Townsend, Ted M.</author><author>Vieites, David R.</author><author>Glaw, Frank</author><author>Vences, Miguel</author></authors></contributors><titles><title>Testing Species-Level Diversification Hypotheses in Madagascar: The Case of Microendemic Brookesia Leaf Chameleons</title><secondary-title>Systematic Biology</secondary-title></titles><periodical><full-title>Systematic Biology</full-title></periodical><pages>641-656</pages><volume>58</volume><number>6</number><dates><year>2009</year><pub-dates><date>Dec</date></pub-dates></dates><isbn>1063-5157</isbn><accession-num>WOS:000272072700008</accession-num><urls><related-urls><url>&lt;Go to ISI&gt;://WOS:000272072700008</url></related-urls></urls><electronic-resource-num>10.1093/sysbio/syp073</electronic-resource-num></record></Cite></EndNote>41. This historical distribution pattern probably accounts for low influence of the topographic hypotheses on Madagascar-wide Brookesia richness and endemism, while at a smaller spatial scale (northern Madagascar) these hypotheses might well have a strong predictive value. While patterns of richness and endemism of the Malagasy herpetofauna have been analyzed several times for various purposes based on partial data setsPEVuZE5vdGU+PENpdGU+PEF1dGhvcj5Db2x3ZWxsPC9BdXRob3I+PFllYXI+MjAwMDwvWWVhcj48

UmVjTnVtPjQ3MTwvUmVjTnVtPjxEaXNwbGF5VGV4dD48c3R5bGUgZmFjZT0ic3VwZXJzY3JpcHQi

PjgsMzUsMzcsNDEsNDg8L3N0eWxlPjwvRGlzcGxheVRleHQ+PHJlY29yZD48cmVjLW51bWJlcj40

NzE8L3JlYy1udW1iZXI+PGZvcmVpZ24ta2V5cz48a2V5IGFwcD0iRU4iIGRiLWlkPSIyOWU1MnY1

Zm5kdnN3N2VzNXZicDl2NXd2YTV4cnB4eGE5NWUiIHRpbWVzdGFtcD0iMTM4NDU1MTcxMyI+NDcx

PC9rZXk+PC9mb3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8

L3JlZi10eXBlPjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5Db2x3ZWxsLCBSLiBLLjwv

YXV0aG9yPjxhdXRob3I+TGVlcywgRC4gQy48L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRv

cnM+PHRpdGxlcz48dGl0bGU+VGhlIG1pZC1kb21haW4gZWZmZWN0OiBnZW9tZXRyaWMgY29uc3Ry

YWludHMgb24gdGhlIGdlb2dyYXBoeSBvZiBzcGVjaWVzIHJpY2huZXNzPC90aXRsZT48c2Vjb25k

YXJ5LXRpdGxlPlRyZW5kcyBpbiBFY29sb2d5ICZhbXA7IEV2b2x1dGlvbjwvc2Vjb25kYXJ5LXRp

dGxlPjwvdGl0bGVzPjxwZXJpb2RpY2FsPjxmdWxsLXRpdGxlPlRyZW5kcyBpbiBFY29sb2d5ICZh

bXA7IEV2b2x1dGlvbjwvZnVsbC10aXRsZT48L3BlcmlvZGljYWw+PHBhZ2VzPjcwLTc2PC9wYWdl

cz48dm9sdW1lPjE1PC92b2x1bWU+PG51bWJlcj4yPC9udW1iZXI+PGRhdGVzPjx5ZWFyPjIwMDA8

L3llYXI+PHB1Yi1kYXRlcz48ZGF0ZT5GZWI8L2RhdGU+PC9wdWItZGF0ZXM+PC9kYXRlcz48aXNi

bj4wMTY5LTUzNDc8L2lzYm4+PGFjY2Vzc2lvbi1udW0+V09TOjAwMDA4NTUyNTIwMDAxMTwvYWNj

ZXNzaW9uLW51bT48dXJscz48cmVsYXRlZC11cmxzPjx1cmw+Jmx0O0dvIHRvIElTSSZndDs6Ly9X

T1M6MDAwMDg1NTI1MjAwMDExPC91cmw+PC9yZWxhdGVkLXVybHM+PC91cmxzPjxlbGVjdHJvbmlj

LXJlc291cmNlLW51bT4xMC4xMDE2L3MwMTY5LTUzNDcoOTkpMDE3NjcteDwvZWxlY3Ryb25pYy1y

ZXNvdXJjZS1udW0+PC9yZWNvcmQ+PC9DaXRlPjxDaXRlPjxBdXRob3I+S3JlbWVuPC9BdXRob3I+

PFllYXI+MjAwODwvWWVhcj48UmVjTnVtPjU8L1JlY051bT48cmVjb3JkPjxyZWMtbnVtYmVyPjU8

L3JlYy1udW1iZXI+PGZvcmVpZ24ta2V5cz48a2V5IGFwcD0iRU4iIGRiLWlkPSIyOWU1MnY1Zm5k

dnN3N2VzNXZicDl2NXd2YTV4cnB4eGE5NWUiIHRpbWVzdGFtcD0iMTM3OTM2MTMwMCI+NTwva2V5

PjwvZm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJKb3VybmFsIEFydGljbGUiPjE3PC9yZWYt

dHlwZT48Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+S3JlbWVuLCBDLjwvYXV0aG9yPjxh

dXRob3I+Q2FtZXJvbiwgQS48L2F1dGhvcj48YXV0aG9yPk1vaWxhbmVuLCBBLjwvYXV0aG9yPjxh

dXRob3I+UGhpbGxpcHMsIFMuIEouPC9hdXRob3I+PGF1dGhvcj5UaG9tYXMsIEMuIEQuPC9hdXRo

b3I+PGF1dGhvcj5CZWVudGplLCBILjwvYXV0aG9yPjxhdXRob3I+RHJhbnNmaWVsZCwgSi48L2F1

dGhvcj48YXV0aG9yPkZpc2hlciwgQi4gTC48L2F1dGhvcj48YXV0aG9yPkdsYXcsIEYuPC9hdXRo

b3I+PGF1dGhvcj5Hb29kLCBULiBDLjwvYXV0aG9yPjxhdXRob3I+SGFycGVyLCBHLiBKLjwvYXV0

aG9yPjxhdXRob3I+SGlqbWFucywgUi4gSi48L2F1dGhvcj48YXV0aG9yPkxlZXMsIEQuIEMuPC9h

dXRob3I+PGF1dGhvcj5Mb3VpcywgRS4sIEpyLjwvYXV0aG9yPjxhdXRob3I+TnVzc2JhdW0sIFIu

IEEuPC9hdXRob3I+PGF1dGhvcj5SYXh3b3J0aHksIEMuIEouPC9hdXRob3I+PGF1dGhvcj5SYXph

ZmltcGFoYW5hbmEsIEEuPC9hdXRob3I+PGF1dGhvcj5TY2hhdHosIEcuIEUuPC9hdXRob3I+PGF1

dGhvcj5WZW5jZXMsIE0uPC9hdXRob3I+PGF1dGhvcj5WaWVpdGVzLCBELiBSLjwvYXV0aG9yPjxh

dXRob3I+V3JpZ2h0LCBQLiBDLjwvYXV0aG9yPjxhdXRob3I+WmpocmEsIE0uIEwuPC9hdXRob3I+

PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjx0aXRsZXM+PHRpdGxlPkFsaWduaW5nIGNvbnNlcnZh

dGlvbiBwcmlvcml0aWVzIGFjcm9zcyB0YXhhIGluIE1hZGFnYXNjYXIgd2l0aCBoaWdoLXJlc29s

dXRpb24gcGxhbm5pbmcgdG9vbHM8L3RpdGxlPjxzZWNvbmRhcnktdGl0bGU+U2NpZW5jZTwvc2Vj

b25kYXJ5LXRpdGxlPjwvdGl0bGVzPjxwZXJpb2RpY2FsPjxmdWxsLXRpdGxlPlNjaWVuY2U8L2Z1

bGwtdGl0bGU+PC9wZXJpb2RpY2FsPjxwYWdlcz4yMjItMjI2PC9wYWdlcz48dm9sdW1lPjMyMDwv

dm9sdW1lPjxudW1iZXI+NTg3MzwvbnVtYmVyPjxkYXRlcz48eWVhcj4yMDA4PC95ZWFyPjxwdWIt

ZGF0ZXM+PGRhdGU+QXByIDExPC9kYXRlPjwvcHViLWRhdGVzPjwvZGF0ZXM+PGlzYm4+MDAzNi04

MDc1PC9pc2JuPjxhY2Nlc3Npb24tbnVtPldPUzowMDAyNTQ4MzY3MDAwNDE8L2FjY2Vzc2lvbi1u

dW0+PHVybHM+PHJlbGF0ZWQtdXJscz48dXJsPiZsdDtHbyB0byBJU0kmZ3Q7Oi8vV09TOjAwMDI1

NDgzNjcwMDA0MTwvdXJsPjwvcmVsYXRlZC11cmxzPjwvdXJscz48ZWxlY3Ryb25pYy1yZXNvdXJj

ZS1udW0+MTAuMTEyNi9zY2llbmNlLjExNTUxOTM8L2VsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjwv

cmVjb3JkPjwvQ2l0ZT48Q2l0ZT48QXV0aG9yPldvbGxlbmJlcmc8L0F1dGhvcj48WWVhcj4yMDA4

PC9ZZWFyPjxSZWNOdW0+NTI1PC9SZWNOdW0+PHJlY29yZD48cmVjLW51bWJlcj41MjU8L3JlYy1u

dW1iZXI+PGZvcmVpZ24ta2V5cz48a2V5IGFwcD0iRU4iIGRiLWlkPSIyOWU1MnY1Zm5kdnN3N2Vz

NXZicDl2NXd2YTV4cnB4eGE5NWUiIHRpbWVzdGFtcD0iMTM4NDU1NTA3OCI+NTI1PC9rZXk+PC9m

b3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBl

Pjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5Xb2xsZW5iZXJnLCBLYXRoYXJpbmEgQy48

L2F1dGhvcj48YXV0aG9yPlZpZWl0ZXMsIERhdmlkIFIuPC9hdXRob3I+PGF1dGhvcj52YW4gZGVy

IE1laWpkZW4sIEFyaWU8L2F1dGhvcj48YXV0aG9yPkdsYXcsIEZyYW5rPC9hdXRob3I+PGF1dGhv

cj5DYW5uYXRlbGxhLCBEYXZpZCBDLjwvYXV0aG9yPjxhdXRob3I+VmVuY2VzLCBNaWd1ZWw8L2F1

dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PHRpdGxlcz48dGl0bGU+UGF0dGVybnMgb2Yg

ZW5kZW1pc20gYW5kIHNwZWNpZXMgcmljaG5lc3MgaW4gTWFsYWdhc3kgY29waHlsaW5lIGZyb2dz

IHN1cHBvcnQgYSBrZXkgcm9sZSBvZiBtb3VudGFpbm91cyBhcmVhcyBmb3Igc3BlY2lhdGlvbjwv

dGl0bGU+PHNlY29uZGFyeS10aXRsZT5Fdm9sdXRpb248L3NlY29uZGFyeS10aXRsZT48L3RpdGxl

cz48cGVyaW9kaWNhbD48ZnVsbC10aXRsZT5Fdm9sdXRpb248L2Z1bGwtdGl0bGU+PGFiYnItMT5F

dm9sdXRpb247IGludGVybmF0aW9uYWwgam91cm5hbCBvZiBvcmdhbmljIGV2b2x1dGlvbjwvYWJi

ci0xPjwvcGVyaW9kaWNhbD48cGFnZXM+MTg5MC0xOTA3PC9wYWdlcz48dm9sdW1lPjYyPC92b2x1

bWU+PG51bWJlcj44PC9udW1iZXI+PGRhdGVzPjx5ZWFyPjIwMDg8L3llYXI+PHB1Yi1kYXRlcz48

ZGF0ZT5BdWc8L2RhdGU+PC9wdWItZGF0ZXM+PC9kYXRlcz48aXNibj4wMDE0LTM4MjA8L2lzYm4+

PGFjY2Vzc2lvbi1udW0+V09TOjAwMDI1ODI2MTcwMDAwNzwvYWNjZXNzaW9uLW51bT48dXJscz48

cmVsYXRlZC11cmxzPjx1cmw+Jmx0O0dvIHRvIElTSSZndDs6Ly9XT1M6MDAwMjU4MjYxNzAwMDA3

PC91cmw+PC9yZWxhdGVkLXVybHM+PC91cmxzPjxlbGVjdHJvbmljLXJlc291cmNlLW51bT4xMC4x

MTExL2ouMTU1OC01NjQ2LjIwMDguMDA0MjAueDwvZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+PC9y

ZWNvcmQ+PC9DaXRlPjxDaXRlPjxBdXRob3I+UGVhcnNvbjwvQXV0aG9yPjxZZWFyPjIwMDk8L1ll

YXI+PFJlY051bT41MDU8L1JlY051bT48cmVjb3JkPjxyZWMtbnVtYmVyPjUwNTwvcmVjLW51bWJl

cj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9IjI5ZTUydjVmbmR2c3c3ZXM1dmJw

OXY1d3ZhNXhycHh4YTk1ZSIgdGltZXN0YW1wPSIxMzg0NTU0MTY5Ij41MDU8L2tleT48L2ZvcmVp

Z24ta2V5cz48cmVmLXR5cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwvcmVmLXR5cGU+PGNv

bnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPlBlYXJzb24sIFJpY2hhcmQgRy48L2F1dGhvcj48

YXV0aG9yPlJheHdvcnRoeSwgQ2hyaXN0b3BoZXIgSi48L2F1dGhvcj48L2F1dGhvcnM+PC9jb250

cmlidXRvcnM+PHRpdGxlcz48dGl0bGU+VGhlIGV2b2x1dGlvbiBvZiBsb2NhbCBlbmRlbWlzbSBp

biBtYWRhZ2FzY2FyOiB3YXRlcnNoZWQgdmVyc3VzIGNsaW1hdGljIGdyYWRpZW50IGh5cG90aGVz

ZXMgZXZhbHVhdGVkIGJ5IG51bGwgYmlvZ2VvZ3JhcGhpYyBtb2RlbHMuPC90aXRsZT48c2Vjb25k

YXJ5LXRpdGxlPkV2b2x1dGlvbjwvc2Vjb25kYXJ5LXRpdGxlPjwvdGl0bGVzPjxwZXJpb2RpY2Fs

PjxmdWxsLXRpdGxlPkV2b2x1dGlvbjwvZnVsbC10aXRsZT48YWJici0xPkV2b2x1dGlvbjsgaW50

ZXJuYXRpb25hbCBqb3VybmFsIG9mIG9yZ2FuaWMgZXZvbHV0aW9uPC9hYmJyLTE+PC9wZXJpb2Rp

Y2FsPjxwYWdlcz45NTktOTY3PC9wYWdlcz48dm9sdW1lPjYzPC92b2x1bWU+PG51bWJlcj40PC9u

dW1iZXI+PGRhdGVzPjx5ZWFyPjIwMDk8L3llYXI+PHB1Yi1kYXRlcz48ZGF0ZT5BcHI8L2RhdGU+

PC9wdWItZGF0ZXM+PC9kYXRlcz48aXNibj4wMDE0LTM4MjA8L2lzYm4+PGFjY2Vzc2lvbi1udW0+

V09TOjAwMDI2NDM3OTIwMDAxMzwvYWNjZXNzaW9uLW51bT48dXJscz48cmVsYXRlZC11cmxzPjx1

cmw+Jmx0O0dvIHRvIElTSSZndDs6Ly9XT1M6MDAwMjY0Mzc5MjAwMDEzPC91cmw+PC9yZWxhdGVk

LXVybHM+PC91cmxzPjxlbGVjdHJvbmljLXJlc291cmNlLW51bT4xMC4xMTExL2ouMTU1OC01NjQ2

LjIwMDguMDA1OTYueDwvZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+PC9yZWNvcmQ+PC9DaXRlPjxD

aXRlPjxBdXRob3I+VG93bnNlbmQ8L0F1dGhvcj48WWVhcj4yMDA5PC9ZZWFyPjxSZWNOdW0+NTEz

PC9SZWNOdW0+PHJlY29yZD48cmVjLW51bWJlcj41MTM8L3JlYy1udW1iZXI+PGZvcmVpZ24ta2V5

cz48a2V5IGFwcD0iRU4iIGRiLWlkPSIyOWU1MnY1Zm5kdnN3N2VzNXZicDl2NXd2YTV4cnB4eGE5

NWUiIHRpbWVzdGFtcD0iMTM4NDU1NDU2MCI+NTEzPC9rZXk+PC9mb3JlaWduLWtleXM+PHJlZi10

eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBlPjxjb250cmlidXRvcnM+PGF1

dGhvcnM+PGF1dGhvcj5Ub3duc2VuZCwgVGVkIE0uPC9hdXRob3I+PGF1dGhvcj5WaWVpdGVzLCBE

YXZpZCBSLjwvYXV0aG9yPjxhdXRob3I+R2xhdywgRnJhbms8L2F1dGhvcj48YXV0aG9yPlZlbmNl

cywgTWlndWVsPC9hdXRob3I+PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjx0aXRsZXM+PHRpdGxl

PlRlc3RpbmcgU3BlY2llcy1MZXZlbCBEaXZlcnNpZmljYXRpb24gSHlwb3RoZXNlcyBpbiBNYWRh

Z2FzY2FyOiBUaGUgQ2FzZSBvZiBNaWNyb2VuZGVtaWMgQnJvb2tlc2lhIExlYWYgQ2hhbWVsZW9u

czwvdGl0bGU+PHNlY29uZGFyeS10aXRsZT5TeXN0ZW1hdGljIEJpb2xvZ3k8L3NlY29uZGFyeS10

aXRsZT48L3RpdGxlcz48cGVyaW9kaWNhbD48ZnVsbC10aXRsZT5TeXN0ZW1hdGljIEJpb2xvZ3k8

L2Z1bGwtdGl0bGU+PC9wZXJpb2RpY2FsPjxwYWdlcz42NDEtNjU2PC9wYWdlcz48dm9sdW1lPjU4

PC92b2x1bWU+PG51bWJlcj42PC9udW1iZXI+PGRhdGVzPjx5ZWFyPjIwMDk8L3llYXI+PHB1Yi1k

YXRlcz48ZGF0ZT5EZWM8L2RhdGU+PC9wdWItZGF0ZXM+PC9kYXRlcz48aXNibj4xMDYzLTUxNTc8

L2lzYm4+PGFjY2Vzc2lvbi1udW0+V09TOjAwMDI3MjA3MjcwMDAwODwvYWNjZXNzaW9uLW51bT48

dXJscz48cmVsYXRlZC11cmxzPjx1cmw+Jmx0O0dvIHRvIElTSSZndDs6Ly9XT1M6MDAwMjcyMDcy

NzAwMDA4PC91cmw+PC9yZWxhdGVkLXVybHM+PC91cmxzPjxlbGVjdHJvbmljLXJlc291cmNlLW51

bT4xMC4xMDkzL3N5c2Jpby9zeXAwNzM8L2VsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjwvcmVjb3Jk

PjwvQ2l0ZT48L0VuZE5vdGU+

ADDIN EN.CITE PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5Db2x3ZWxsPC9BdXRob3I+PFllYXI+MjAwMDwvWWVhcj48

UmVjTnVtPjQ3MTwvUmVjTnVtPjxEaXNwbGF5VGV4dD48c3R5bGUgZmFjZT0ic3VwZXJzY3JpcHQi

PjgsMzUsMzcsNDEsNDg8L3N0eWxlPjwvRGlzcGxheVRleHQ+PHJlY29yZD48cmVjLW51bWJlcj40

NzE8L3JlYy1udW1iZXI+PGZvcmVpZ24ta2V5cz48a2V5IGFwcD0iRU4iIGRiLWlkPSIyOWU1MnY1

Zm5kdnN3N2VzNXZicDl2NXd2YTV4cnB4eGE5NWUiIHRpbWVzdGFtcD0iMTM4NDU1MTcxMyI+NDcx

PC9rZXk+PC9mb3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8

L3JlZi10eXBlPjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5Db2x3ZWxsLCBSLiBLLjwv

YXV0aG9yPjxhdXRob3I+TGVlcywgRC4gQy48L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRv

cnM+PHRpdGxlcz48dGl0bGU+VGhlIG1pZC1kb21haW4gZWZmZWN0OiBnZW9tZXRyaWMgY29uc3Ry

YWludHMgb24gdGhlIGdlb2dyYXBoeSBvZiBzcGVjaWVzIHJpY2huZXNzPC90aXRsZT48c2Vjb25k

YXJ5LXRpdGxlPlRyZW5kcyBpbiBFY29sb2d5ICZhbXA7IEV2b2x1dGlvbjwvc2Vjb25kYXJ5LXRp

dGxlPjwvdGl0bGVzPjxwZXJpb2RpY2FsPjxmdWxsLXRpdGxlPlRyZW5kcyBpbiBFY29sb2d5ICZh

bXA7IEV2b2x1dGlvbjwvZnVsbC10aXRsZT48L3BlcmlvZGljYWw+PHBhZ2VzPjcwLTc2PC9wYWdl

cz48dm9sdW1lPjE1PC92b2x1bWU+PG51bWJlcj4yPC9udW1iZXI+PGRhdGVzPjx5ZWFyPjIwMDA8

L3llYXI+PHB1Yi1kYXRlcz48ZGF0ZT5GZWI8L2RhdGU+PC9wdWItZGF0ZXM+PC9kYXRlcz48aXNi

bj4wMTY5LTUzNDc8L2lzYm4+PGFjY2Vzc2lvbi1udW0+V09TOjAwMDA4NTUyNTIwMDAxMTwvYWNj

ZXNzaW9uLW51bT48dXJscz48cmVsYXRlZC11cmxzPjx1cmw+Jmx0O0dvIHRvIElTSSZndDs6Ly9X

T1M6MDAwMDg1NTI1MjAwMDExPC91cmw+PC9yZWxhdGVkLXVybHM+PC91cmxzPjxlbGVjdHJvbmlj

LXJlc291cmNlLW51bT4xMC4xMDE2L3MwMTY5LTUzNDcoOTkpMDE3NjcteDwvZWxlY3Ryb25pYy1y

ZXNvdXJjZS1udW0+PC9yZWNvcmQ+PC9DaXRlPjxDaXRlPjxBdXRob3I+S3JlbWVuPC9BdXRob3I+

PFllYXI+MjAwODwvWWVhcj48UmVjTnVtPjU8L1JlY051bT48cmVjb3JkPjxyZWMtbnVtYmVyPjU8

L3JlYy1udW1iZXI+PGZvcmVpZ24ta2V5cz48a2V5IGFwcD0iRU4iIGRiLWlkPSIyOWU1MnY1Zm5k

dnN3N2VzNXZicDl2NXd2YTV4cnB4eGE5NWUiIHRpbWVzdGFtcD0iMTM3OTM2MTMwMCI+NTwva2V5

PjwvZm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJKb3VybmFsIEFydGljbGUiPjE3PC9yZWYt

dHlwZT48Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+S3JlbWVuLCBDLjwvYXV0aG9yPjxh

dXRob3I+Q2FtZXJvbiwgQS48L2F1dGhvcj48YXV0aG9yPk1vaWxhbmVuLCBBLjwvYXV0aG9yPjxh

dXRob3I+UGhpbGxpcHMsIFMuIEouPC9hdXRob3I+PGF1dGhvcj5UaG9tYXMsIEMuIEQuPC9hdXRo

b3I+PGF1dGhvcj5CZWVudGplLCBILjwvYXV0aG9yPjxhdXRob3I+RHJhbnNmaWVsZCwgSi48L2F1

dGhvcj48YXV0aG9yPkZpc2hlciwgQi4gTC48L2F1dGhvcj48YXV0aG9yPkdsYXcsIEYuPC9hdXRo

b3I+PGF1dGhvcj5Hb29kLCBULiBDLjwvYXV0aG9yPjxhdXRob3I+SGFycGVyLCBHLiBKLjwvYXV0

aG9yPjxhdXRob3I+SGlqbWFucywgUi4gSi48L2F1dGhvcj48YXV0aG9yPkxlZXMsIEQuIEMuPC9h

dXRob3I+PGF1dGhvcj5Mb3VpcywgRS4sIEpyLjwvYXV0aG9yPjxhdXRob3I+TnVzc2JhdW0sIFIu

IEEuPC9hdXRob3I+PGF1dGhvcj5SYXh3b3J0aHksIEMuIEouPC9hdXRob3I+PGF1dGhvcj5SYXph

ZmltcGFoYW5hbmEsIEEuPC9hdXRob3I+PGF1dGhvcj5TY2hhdHosIEcuIEUuPC9hdXRob3I+PGF1

dGhvcj5WZW5jZXMsIE0uPC9hdXRob3I+PGF1dGhvcj5WaWVpdGVzLCBELiBSLjwvYXV0aG9yPjxh

dXRob3I+V3JpZ2h0LCBQLiBDLjwvYXV0aG9yPjxhdXRob3I+WmpocmEsIE0uIEwuPC9hdXRob3I+

PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjx0aXRsZXM+PHRpdGxlPkFsaWduaW5nIGNvbnNlcnZh

dGlvbiBwcmlvcml0aWVzIGFjcm9zcyB0YXhhIGluIE1hZGFnYXNjYXIgd2l0aCBoaWdoLXJlc29s

dXRpb24gcGxhbm5pbmcgdG9vbHM8L3RpdGxlPjxzZWNvbmRhcnktdGl0bGU+U2NpZW5jZTwvc2Vj

b25kYXJ5LXRpdGxlPjwvdGl0bGVzPjxwZXJpb2RpY2FsPjxmdWxsLXRpdGxlPlNjaWVuY2U8L2Z1

bGwtdGl0bGU+PC9wZXJpb2RpY2FsPjxwYWdlcz4yMjItMjI2PC9wYWdlcz48dm9sdW1lPjMyMDwv

dm9sdW1lPjxudW1iZXI+NTg3MzwvbnVtYmVyPjxkYXRlcz48eWVhcj4yMDA4PC95ZWFyPjxwdWIt

ZGF0ZXM+PGRhdGU+QXByIDExPC9kYXRlPjwvcHViLWRhdGVzPjwvZGF0ZXM+PGlzYm4+MDAzNi04

MDc1PC9pc2JuPjxhY2Nlc3Npb24tbnVtPldPUzowMDAyNTQ4MzY3MDAwNDE8L2FjY2Vzc2lvbi1u

dW0+PHVybHM+PHJlbGF0ZWQtdXJscz48dXJsPiZsdDtHbyB0byBJU0kmZ3Q7Oi8vV09TOjAwMDI1

NDgzNjcwMDA0MTwvdXJsPjwvcmVsYXRlZC11cmxzPjwvdXJscz48ZWxlY3Ryb25pYy1yZXNvdXJj

ZS1udW0+MTAuMTEyNi9zY2llbmNlLjExNTUxOTM8L2VsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjwv

cmVjb3JkPjwvQ2l0ZT48Q2l0ZT48QXV0aG9yPldvbGxlbmJlcmc8L0F1dGhvcj48WWVhcj4yMDA4

PC9ZZWFyPjxSZWNOdW0+NTI1PC9SZWNOdW0+PHJlY29yZD48cmVjLW51bWJlcj41MjU8L3JlYy1u

dW1iZXI+PGZvcmVpZ24ta2V5cz48a2V5IGFwcD0iRU4iIGRiLWlkPSIyOWU1MnY1Zm5kdnN3N2Vz

NXZicDl2NXd2YTV4cnB4eGE5NWUiIHRpbWVzdGFtcD0iMTM4NDU1NTA3OCI+NTI1PC9rZXk+PC9m

b3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBl

Pjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5Xb2xsZW5iZXJnLCBLYXRoYXJpbmEgQy48

L2F1dGhvcj48YXV0aG9yPlZpZWl0ZXMsIERhdmlkIFIuPC9hdXRob3I+PGF1dGhvcj52YW4gZGVy

IE1laWpkZW4sIEFyaWU8L2F1dGhvcj48YXV0aG9yPkdsYXcsIEZyYW5rPC9hdXRob3I+PGF1dGhv

cj5DYW5uYXRlbGxhLCBEYXZpZCBDLjwvYXV0aG9yPjxhdXRob3I+VmVuY2VzLCBNaWd1ZWw8L2F1

dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PHRpdGxlcz48dGl0bGU+UGF0dGVybnMgb2Yg

ZW5kZW1pc20gYW5kIHNwZWNpZXMgcmljaG5lc3MgaW4gTWFsYWdhc3kgY29waHlsaW5lIGZyb2dz

IHN1cHBvcnQgYSBrZXkgcm9sZSBvZiBtb3VudGFpbm91cyBhcmVhcyBmb3Igc3BlY2lhdGlvbjwv

dGl0bGU+PHNlY29uZGFyeS10aXRsZT5Fdm9sdXRpb248L3NlY29uZGFyeS10aXRsZT48L3RpdGxl

cz48cGVyaW9kaWNhbD48ZnVsbC10aXRsZT5Fdm9sdXRpb248L2Z1bGwtdGl0bGU+PGFiYnItMT5F

dm9sdXRpb247IGludGVybmF0aW9uYWwgam91cm5hbCBvZiBvcmdhbmljIGV2b2x1dGlvbjwvYWJi

ci0xPjwvcGVyaW9kaWNhbD48cGFnZXM+MTg5MC0xOTA3PC9wYWdlcz48dm9sdW1lPjYyPC92b2x1

bWU+PG51bWJlcj44PC9udW1iZXI+PGRhdGVzPjx5ZWFyPjIwMDg8L3llYXI+PHB1Yi1kYXRlcz48

ZGF0ZT5BdWc8L2RhdGU+PC9wdWItZGF0ZXM+PC9kYXRlcz48aXNibj4wMDE0LTM4MjA8L2lzYm4+

PGFjY2Vzc2lvbi1udW0+V09TOjAwMDI1ODI2MTcwMDAwNzwvYWNjZXNzaW9uLW51bT48dXJscz48

cmVsYXRlZC11cmxzPjx1cmw+Jmx0O0dvIHRvIElTSSZndDs6Ly9XT1M6MDAwMjU4MjYxNzAwMDA3

PC91cmw+PC9yZWxhdGVkLXVybHM+PC91cmxzPjxlbGVjdHJvbmljLXJlc291cmNlLW51bT4xMC4x

MTExL2ouMTU1OC01NjQ2LjIwMDguMDA0MjAueDwvZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+PC9y

ZWNvcmQ+PC9DaXRlPjxDaXRlPjxBdXRob3I+UGVhcnNvbjwvQXV0aG9yPjxZZWFyPjIwMDk8L1ll

YXI+PFJlY051bT41MDU8L1JlY051bT48cmVjb3JkPjxyZWMtbnVtYmVyPjUwNTwvcmVjLW51bWJl

cj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9IjI5ZTUydjVmbmR2c3c3ZXM1dmJw

OXY1d3ZhNXhycHh4YTk1ZSIgdGltZXN0YW1wPSIxMzg0NTU0MTY5Ij41MDU8L2tleT48L2ZvcmVp

Z24ta2V5cz48cmVmLXR5cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwvcmVmLXR5cGU+PGNv

bnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPlBlYXJzb24sIFJpY2hhcmQgRy48L2F1dGhvcj48

YXV0aG9yPlJheHdvcnRoeSwgQ2hyaXN0b3BoZXIgSi48L2F1dGhvcj48L2F1dGhvcnM+PC9jb250

cmlidXRvcnM+PHRpdGxlcz48dGl0bGU+VGhlIGV2b2x1dGlvbiBvZiBsb2NhbCBlbmRlbWlzbSBp

biBtYWRhZ2FzY2FyOiB3YXRlcnNoZWQgdmVyc3VzIGNsaW1hdGljIGdyYWRpZW50IGh5cG90aGVz

ZXMgZXZhbHVhdGVkIGJ5IG51bGwgYmlvZ2VvZ3JhcGhpYyBtb2RlbHMuPC90aXRsZT48c2Vjb25k

YXJ5LXRpdGxlPkV2b2x1dGlvbjwvc2Vjb25kYXJ5LXRpdGxlPjwvdGl0bGVzPjxwZXJpb2RpY2Fs

PjxmdWxsLXRpdGxlPkV2b2x1dGlvbjwvZnVsbC10aXRsZT48YWJici0xPkV2b2x1dGlvbjsgaW50

ZXJuYXRpb25hbCBqb3VybmFsIG9mIG9yZ2FuaWMgZXZvbHV0aW9uPC9hYmJyLTE+PC9wZXJpb2Rp

Y2FsPjxwYWdlcz45NTktOTY3PC9wYWdlcz48dm9sdW1lPjYzPC92b2x1bWU+PG51bWJlcj40PC9u

dW1iZXI+PGRhdGVzPjx5ZWFyPjIwMDk8L3llYXI+PHB1Yi1kYXRlcz48ZGF0ZT5BcHI8L2RhdGU+

PC9wdWItZGF0ZXM+PC9kYXRlcz48aXNibj4wMDE0LTM4MjA8L2lzYm4+PGFjY2Vzc2lvbi1udW0+

V09TOjAwMDI2NDM3OTIwMDAxMzwvYWNjZXNzaW9uLW51bT48dXJscz48cmVsYXRlZC11cmxzPjx1

cmw+Jmx0O0dvIHRvIElTSSZndDs6Ly9XT1M6MDAwMjY0Mzc5MjAwMDEzPC91cmw+PC9yZWxhdGVk

LXVybHM+PC91cmxzPjxlbGVjdHJvbmljLXJlc291cmNlLW51bT4xMC4xMTExL2ouMTU1OC01NjQ2

LjIwMDguMDA1OTYueDwvZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+PC9yZWNvcmQ+PC9DaXRlPjxD

aXRlPjxBdXRob3I+VG93bnNlbmQ8L0F1dGhvcj48WWVhcj4yMDA5PC9ZZWFyPjxSZWNOdW0+NTEz

PC9SZWNOdW0+PHJlY29yZD48cmVjLW51bWJlcj41MTM8L3JlYy1udW1iZXI+PGZvcmVpZ24ta2V5

cz48a2V5IGFwcD0iRU4iIGRiLWlkPSIyOWU1MnY1Zm5kdnN3N2VzNXZicDl2NXd2YTV4cnB4eGE5

NWUiIHRpbWVzdGFtcD0iMTM4NDU1NDU2MCI+NTEzPC9rZXk+PC9mb3JlaWduLWtleXM+PHJlZi10

eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBlPjxjb250cmlidXRvcnM+PGF1

dGhvcnM+PGF1dGhvcj5Ub3duc2VuZCwgVGVkIE0uPC9hdXRob3I+PGF1dGhvcj5WaWVpdGVzLCBE

YXZpZCBSLjwvYXV0aG9yPjxhdXRob3I+R2xhdywgRnJhbms8L2F1dGhvcj48YXV0aG9yPlZlbmNl

cywgTWlndWVsPC9hdXRob3I+PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjx0aXRsZXM+PHRpdGxl

PlRlc3RpbmcgU3BlY2llcy1MZXZlbCBEaXZlcnNpZmljYXRpb24gSHlwb3RoZXNlcyBpbiBNYWRh

Z2FzY2FyOiBUaGUgQ2FzZSBvZiBNaWNyb2VuZGVtaWMgQnJvb2tlc2lhIExlYWYgQ2hhbWVsZW9u

czwvdGl0bGU+PHNlY29uZGFyeS10aXRsZT5TeXN0ZW1hdGljIEJpb2xvZ3k8L3NlY29uZGFyeS10

aXRsZT48L3RpdGxlcz48cGVyaW9kaWNhbD48ZnVsbC10aXRsZT5TeXN0ZW1hdGljIEJpb2xvZ3k8

L2Z1bGwtdGl0bGU+PC9wZXJpb2RpY2FsPjxwYWdlcz42NDEtNjU2PC9wYWdlcz48dm9sdW1lPjU4

PC92b2x1bWU+PG51bWJlcj42PC9udW1iZXI+PGRhdGVzPjx5ZWFyPjIwMDk8L3llYXI+PHB1Yi1k

YXRlcz48ZGF0ZT5EZWM8L2RhdGU+PC9wdWItZGF0ZXM+PC9kYXRlcz48aXNibj4xMDYzLTUxNTc8

L2lzYm4+PGFjY2Vzc2lvbi1udW0+V09TOjAwMDI3MjA3MjcwMDAwODwvYWNjZXNzaW9uLW51bT48

dXJscz48cmVsYXRlZC11cmxzPjx1cmw+Jmx0O0dvIHRvIElTSSZndDs6Ly9XT1M6MDAwMjcyMDcy

NzAwMDA4PC91cmw+PC9yZWxhdGVkLXVybHM+PC91cmxzPjxlbGVjdHJvbmljLXJlc291cmNlLW51

bT4xMC4xMDkzL3N5c2Jpby9zeXAwNzM8L2VsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjwvcmVjb3Jk

PjwvQ2l0ZT48L0VuZE5vdGU+

ADDIN EN.CITE.DATA 8,35,37,41,48 the analysis of turnover of species composition and the definition of biogeographic regions following from such explicit analyses are still in their infancy. For reptiles, Angel's ADDIN EN.CITE <EndNote><Cite><Author>Angel</Author><Year>1942</Year><RecNum>529</RecNum><DisplayText><style face="superscript">50</style></DisplayText><record><rec-number>529</rec-number><foreign-keys><key app="EN" db-id="29e52v5fndvsw7es5vbp9v5wva5xrpxxa95e" timestamp="1384718119">529</key></foreign-keys><ref-type name="Book">6</ref-type><contributors><authors><author>Angel, F.</author></authors></contributors><titles><title>Les Lézards de Madagascar</title></titles><dates><year>1942</year></dates><publisher>Academie Malgache</publisher><urls></urls></record></Cite></EndNote>50 proposal of biogeographic regions based on classical phytogeography, i.e., regions based on plant community composition ADDIN EN.CITE <EndNote><Cite><Author>Humbert</Author><Year>1955</Year><RecNum>535</RecNum><DisplayText><style face="superscript">51</style></DisplayText><record><rec-number>535</rec-number><foreign-keys><key app="EN" db-id="29e52v5fndvsw7es5vbp9v5wva5xrpxxa95e" timestamp="1384718902">535</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Humbert, H. </author></authors></contributors><titles><title>Les territoires phytogéographiques de Madagascar.</title><secondary-title>Année Biologique</secondary-title></titles><periodical><full-title>Année Biologique</full-title></periodical><pages>439–448</pages><volume> 31</volume><dates><year>1955</year></dates><urls></urls></record></Cite></EndNote>51, has usually been adopted ADDIN EN.CITE <EndNote><Cite><Author>Glaw</Author><Year>1994</Year><RecNum>532</RecNum><DisplayText><style face="superscript">52</style></DisplayText><record><rec-number>532</rec-number><foreign-keys><key app="EN" db-id="29e52v5fndvsw7es5vbp9v5wva5xrpxxa95e" timestamp="1384718539">532</key></foreign-keys><ref-type name="Book">6</ref-type><contributors><authors><author>Glaw, F.</author><author>Vences, M.</author></authors></contributors><titles><title>Amphibians and Reptiles of Madagascar</title></titles><dates><year>1994</year></dates><pub-location>K?ln</pub-location><publisher>Vences, M. and Glaw Verlags, F. GbR.</publisher><urls></urls></record></Cite></EndNote>52. Later, Schatz ADDIN EN.CITE <EndNote><Cite><Author>Schatz</Author><Year>2000</Year><RecNum>540</RecNum><DisplayText><style face="superscript">53</style></DisplayText><record><rec-number>540</rec-number><foreign-keys><key app="EN" db-id="29e52v5fndvsw7es5vbp9v5wva5xrpxxa95e" timestamp="1384719799">540</key></foreign-keys><ref-type name="Book Section">5</ref-type><contributors><authors><author>Schatz, G.E. </author></authors><secondary-authors><author>Louren?o, W.R.</author><author>Goodman, S.M.</author></secondary-authors></contributors><titles><title>Endemism in the Malagasy tree flora</title><secondary-title>Diversity and Endemism in Madagascar</secondary-title></titles><pages> 1–9</pages><dates><year>2000</year></dates><publisher>Société de Biogéographie, MNHN, ORSTOM</publisher><urls></urls></record></Cite></EndNote>53 refined this zonation of Madagascar based on explicit bioclimatic analyses, and Glaw & Vences ADDIN EN.CITE <EndNote><Cite><Author>Glaw</Author><Year>2007</Year><RecNum>533</RecNum><DisplayText><style face="superscript">54</style></DisplayText><record><rec-number>533</rec-number><foreign-keys><key app="EN" db-id="29e52v5fndvsw7es5vbp9v5wva5xrpxxa95e" timestamp="1384718655">533</key></foreign-keys><ref-type name="Book">6</ref-type><contributors><authors><author>Glaw, F.</author><author>Vences, M. </author></authors></contributors><titles><title>Field Guide to the Amphibians and Reptiles of Madagascar</title></titles><edition>Third Edition</edition><dates><year>2007</year></dates><pub-location>K?ln</pub-location><publisher>Vences and Glaw Verlag</publisher><urls></urls></record></Cite></EndNote>54 proposed a detailed geographical zonation based on the areas of endemism of Wilmé ADDIN EN.CITE <EndNote><Cite><Author>Wilme</Author><Year>2006</Year><RecNum>523</RecNum><DisplayText><style face="superscript">33</style></DisplayText><record><rec-number>523</rec-number><foreign-keys><key app="EN" db-id="29e52v5fndvsw7es5vbp9v5wva5xrpxxa95e" timestamp="1384555012">523</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Wilme, L.</author><author>Goodman, S. M.</author><author>Ganzhorn, J. U.</author></authors></contributors><titles><title>Biogeographic evolution of Madagascar&apos;s microendemic biota</title><secondary-title>Science</secondary-title></titles><periodical><full-title>Science</full-title></periodical><pages>1063-1065</pages><volume>312</volume><number>5776</number><dates><year>2006</year><pub-dates><date>May 19</date></pub-dates></dates><isbn>0036-8075</isbn><accession-num>WOS:000237628800048</accession-num><urls><related-urls><url>&lt;Go to ISI&gt;://WOS:000237628800048</url></related-urls></urls><electronic-resource-num>10.1126/science.1122806</electronic-resource-num></record></Cite></EndNote>33. The GDM approach herein is the first explicit analysis of a large herpetofaunal dataset to geographically delimit regions distinguished by abrupt changes in their amphibian and reptile communities. This model turned out to agree remarkably well with classical bioclimatic and phytogeographic zonations of Madagascar ADDIN EN.CITE <EndNote><Cite><Author>Humbert</Author><Year>1955</Year><RecNum>535</RecNum><DisplayText><style face="superscript">51,53</style></DisplayText><record><rec-number>535</rec-number><foreign-keys><key app="EN" db-id="29e52v5fndvsw7es5vbp9v5wva5xrpxxa95e" timestamp="1384718902">535</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Humbert, H. </author></authors></contributors><titles><title>Les territoires phytogéographiques de Madagascar.</title><secondary-title>Année Biologique</secondary-title></titles><periodical><full-title>Année Biologique</full-title></periodical><pages>439–448</pages><volume> 31</volume><dates><year>1955</year></dates><urls></urls></record></Cite><Cite><Author>Schatz</Author><Year>2000</Year><RecNum>540</RecNum><record><rec-number>540</rec-number><foreign-keys><key app="EN" db-id="29e52v5fndvsw7es5vbp9v5wva5xrpxxa95e" timestamp="1384719799">540</key></foreign-keys><ref-type name="Book Section">5</ref-type><contributors><authors><author>Schatz, G.E. </author></authors><secondary-authors><author>Louren?o, W.R.</author><author>Goodman, S.M.</author></secondary-authors></contributors><titles><title>Endemism in the Malagasy tree flora</title><secondary-title>Diversity and Endemism in Madagascar</secondary-title></titles><pages> 1–9</pages><dates><year>2000</year></dates><publisher>Société de Biogéographie, MNHN, ORSTOM</publisher><urls></urls></record></Cite></EndNote>51,53, strongly correlated to climatic explanatory variables (Fig. 3). Especially in the 4-classes GDM, the regions almost perfectly correspond with those proposed by Schatz ADDIN EN.CITE <EndNote><Cite><Author>Schatz</Author><Year>2000</Year><RecNum>540</RecNum><DisplayText><style face="superscript">53</style></DisplayText><record><rec-number>540</rec-number><foreign-keys><key app="EN" db-id="29e52v5fndvsw7es5vbp9v5wva5xrpxxa95e" timestamp="1384719799">540</key></foreign-keys><ref-type name="Book Section">5</ref-type><contributors><authors><author>Schatz, G.E. </author></authors><secondary-authors><author>Louren?o, W.R.</author><author>Goodman, S.M.</author></secondary-authors></contributors><titles><title>Endemism in the Malagasy tree flora</title><secondary-title>Diversity and Endemism in Madagascar</secondary-title></titles><pages> 1–9</pages><dates><year>2000</year></dates><publisher>Société de Biogéographie, MNHN, ORSTOM</publisher><urls></urls></record></Cite></EndNote>53 based on bioclimate, i.e., eastern humid, central highland/montane, western arid, southwestern subarid zone. Although the coincidence of the precise boundaries of these regions might be methodologically somewhat biased, as we interpolated community distribution using climate variables in the analysis, the model is still mainly based on real distributional information of species and thus provides convincing evidence that amphibian and reptile communities strongly differ among the major bioclimatic zones of Madagascar. Several authors have suggested that the current distribution of biotic diversity in the tropics resulted from a complex interplay of a variety of diversification mechanismsPEVuZE5vdGU+PENpdGU+PEF1dGhvcj5CdXNoPC9BdXRob3I+PFllYXI+MTk5NDwvWWVhcj48UmVj

TnVtPjQ2OTwvUmVjTnVtPjxEaXNwbGF5VGV4dD48c3R5bGUgZmFjZT0ic3VwZXJzY3JpcHQiPjU1

LDU2PC9zdHlsZT48L0Rpc3BsYXlUZXh0PjxyZWNvcmQ+PHJlYy1udW1iZXI+NDY5PC9yZWMtbnVt

YmVyPjxmb3JlaWduLWtleXM+PGtleSBhcHA9IkVOIiBkYi1pZD0iMjllNTJ2NWZuZHZzdzdlczV2

YnA5djV3dmE1eHJweHhhOTVlIiB0aW1lc3RhbXA9IjEzODQ1NTE1OTkiPjQ2OTwva2V5PjwvZm9y

ZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJKb3VybmFsIEFydGljbGUiPjE3PC9yZWYtdHlwZT48

Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+QnVzaCwgTS4gQi48L2F1dGhvcj48L2F1dGhv

cnM+PC9jb250cmlidXRvcnM+PHRpdGxlcz48dGl0bGU+QW1hem9uaWFuIHNwZWNpYXRpb246IGEg

bmVjZXNzYXJpbHkgY29tcGxleCBtb2RlbDwvdGl0bGU+PHNlY29uZGFyeS10aXRsZT5Kb3VybmFs

IG9mIEJpb2dlb2dyYXBoeTwvc2Vjb25kYXJ5LXRpdGxlPjwvdGl0bGVzPjxwZXJpb2RpY2FsPjxm

dWxsLXRpdGxlPkpvdXJuYWwgb2YgQmlvZ2VvZ3JhcGh5PC9mdWxsLXRpdGxlPjwvcGVyaW9kaWNh

bD48cGFnZXM+NS0xNzwvcGFnZXM+PHZvbHVtZT4yMTwvdm9sdW1lPjxudW1iZXI+MTwvbnVtYmVy

PjxkYXRlcz48eWVhcj4xOTk0PC95ZWFyPjxwdWItZGF0ZXM+PGRhdGU+SmFuPC9kYXRlPjwvcHVi

LWRhdGVzPjwvZGF0ZXM+PGlzYm4+MDMwNS0wMjcwPC9pc2JuPjxhY2Nlc3Npb24tbnVtPldPUzpB

MTk5NE5XMzYxMDAwMDE8L2FjY2Vzc2lvbi1udW0+PHVybHM+PHJlbGF0ZWQtdXJscz48dXJsPiZs

dDtHbyB0byBJU0kmZ3Q7Oi8vV09TOkExOTk0TlczNjEwMDAwMTwvdXJsPjwvcmVsYXRlZC11cmxz

PjwvdXJscz48ZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+MTAuMjMwNy8yODQ1NjAwPC9lbGVjdHJv

bmljLXJlc291cmNlLW51bT48L3JlY29yZD48L0NpdGU+PENpdGU+PEF1dGhvcj5PbmVhbDwvQXV0

aG9yPjxZZWFyPjIwMTA8L1llYXI+PFJlY051bT41MDA8L1JlY051bT48cmVjb3JkPjxyZWMtbnVt

YmVyPjUwMDwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9IjI5

ZTUydjVmbmR2c3c3ZXM1dmJwOXY1d3ZhNXhycHh4YTk1ZSIgdGltZXN0YW1wPSIxMzg0NTU0MDAw

Ij41MDA8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xl

Ij4xNzwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPk9uZWFsLCBFbGVu

PC9hdXRob3I+PGF1dGhvcj5PdHRlLCBEYW5pZWw8L2F1dGhvcj48YXV0aG9yPktub3dsZXMsIEwu

IExhY2V5PC9hdXRob3I+PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjx0aXRsZXM+PHRpdGxlPlRl

c3RpbmcgZm9yIGJpb2dlb2dyYXBoaWMgbWVjaGFuaXNtcyBwcm9tb3RpbmcgZGl2ZXJnZW5jZSBp

biBDYXJpYmJlYW4gY3JpY2tldHMgKGdlbnVzIEFtcGhpYWN1c3RhKTwvdGl0bGU+PHNlY29uZGFy

eS10aXRsZT5Kb3VybmFsIG9mIEJpb2dlb2dyYXBoeTwvc2Vjb25kYXJ5LXRpdGxlPjwvdGl0bGVz

PjxwZXJpb2RpY2FsPjxmdWxsLXRpdGxlPkpvdXJuYWwgb2YgQmlvZ2VvZ3JhcGh5PC9mdWxsLXRp

dGxlPjwvcGVyaW9kaWNhbD48cGFnZXM+NTMwLTU0MDwvcGFnZXM+PHZvbHVtZT4zNzwvdm9sdW1l

PjxudW1iZXI+MzwvbnVtYmVyPjxkYXRlcz48eWVhcj4yMDEwPC95ZWFyPjxwdWItZGF0ZXM+PGRh

dGU+TWFyPC9kYXRlPjwvcHViLWRhdGVzPjwvZGF0ZXM+PGlzYm4+MDMwNS0wMjcwPC9pc2JuPjxh

Y2Nlc3Npb24tbnVtPldPUzowMDAyNzM5NDk3MDAwMTQ8L2FjY2Vzc2lvbi1udW0+PHVybHM+PHJl

bGF0ZWQtdXJscz48dXJsPiZsdDtHbyB0byBJU0kmZ3Q7Oi8vV09TOjAwMDI3Mzk0OTcwMDAxNDwv

dXJsPjwvcmVsYXRlZC11cmxzPjwvdXJscz48ZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+MTAuMTEx

MS9qLjEzNjUtMjY5OS4yMDA5LjAyMjMxLng8L2VsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjwvcmVj

b3JkPjwvQ2l0ZT48L0VuZE5vdGU+AG==

ADDIN EN.CITE PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5CdXNoPC9BdXRob3I+PFllYXI+MTk5NDwvWWVhcj48UmVj

TnVtPjQ2OTwvUmVjTnVtPjxEaXNwbGF5VGV4dD48c3R5bGUgZmFjZT0ic3VwZXJzY3JpcHQiPjU1

LDU2PC9zdHlsZT48L0Rpc3BsYXlUZXh0PjxyZWNvcmQ+PHJlYy1udW1iZXI+NDY5PC9yZWMtbnVt

YmVyPjxmb3JlaWduLWtleXM+PGtleSBhcHA9IkVOIiBkYi1pZD0iMjllNTJ2NWZuZHZzdzdlczV2

YnA5djV3dmE1eHJweHhhOTVlIiB0aW1lc3RhbXA9IjEzODQ1NTE1OTkiPjQ2OTwva2V5PjwvZm9y

ZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJKb3VybmFsIEFydGljbGUiPjE3PC9yZWYtdHlwZT48

Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+QnVzaCwgTS4gQi48L2F1dGhvcj48L2F1dGhv

cnM+PC9jb250cmlidXRvcnM+PHRpdGxlcz48dGl0bGU+QW1hem9uaWFuIHNwZWNpYXRpb246IGEg

bmVjZXNzYXJpbHkgY29tcGxleCBtb2RlbDwvdGl0bGU+PHNlY29uZGFyeS10aXRsZT5Kb3VybmFs

IG9mIEJpb2dlb2dyYXBoeTwvc2Vjb25kYXJ5LXRpdGxlPjwvdGl0bGVzPjxwZXJpb2RpY2FsPjxm

dWxsLXRpdGxlPkpvdXJuYWwgb2YgQmlvZ2VvZ3JhcGh5PC9mdWxsLXRpdGxlPjwvcGVyaW9kaWNh

bD48cGFnZXM+NS0xNzwvcGFnZXM+PHZvbHVtZT4yMTwvdm9sdW1lPjxudW1iZXI+MTwvbnVtYmVy

PjxkYXRlcz48eWVhcj4xOTk0PC95ZWFyPjxwdWItZGF0ZXM+PGRhdGU+SmFuPC9kYXRlPjwvcHVi

LWRhdGVzPjwvZGF0ZXM+PGlzYm4+MDMwNS0wMjcwPC9pc2JuPjxhY2Nlc3Npb24tbnVtPldPUzpB

MTk5NE5XMzYxMDAwMDE8L2FjY2Vzc2lvbi1udW0+PHVybHM+PHJlbGF0ZWQtdXJscz48dXJsPiZs

dDtHbyB0byBJU0kmZ3Q7Oi8vV09TOkExOTk0TlczNjEwMDAwMTwvdXJsPjwvcmVsYXRlZC11cmxz

PjwvdXJscz48ZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+MTAuMjMwNy8yODQ1NjAwPC9lbGVjdHJv

bmljLXJlc291cmNlLW51bT48L3JlY29yZD48L0NpdGU+PENpdGU+PEF1dGhvcj5PbmVhbDwvQXV0

aG9yPjxZZWFyPjIwMTA8L1llYXI+PFJlY051bT41MDA8L1JlY051bT48cmVjb3JkPjxyZWMtbnVt

YmVyPjUwMDwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9IjI5

ZTUydjVmbmR2c3c3ZXM1dmJwOXY1d3ZhNXhycHh4YTk1ZSIgdGltZXN0YW1wPSIxMzg0NTU0MDAw

Ij41MDA8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xl

Ij4xNzwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPk9uZWFsLCBFbGVu

PC9hdXRob3I+PGF1dGhvcj5PdHRlLCBEYW5pZWw8L2F1dGhvcj48YXV0aG9yPktub3dsZXMsIEwu

IExhY2V5PC9hdXRob3I+PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjx0aXRsZXM+PHRpdGxlPlRl

c3RpbmcgZm9yIGJpb2dlb2dyYXBoaWMgbWVjaGFuaXNtcyBwcm9tb3RpbmcgZGl2ZXJnZW5jZSBp

biBDYXJpYmJlYW4gY3JpY2tldHMgKGdlbnVzIEFtcGhpYWN1c3RhKTwvdGl0bGU+PHNlY29uZGFy

eS10aXRsZT5Kb3VybmFsIG9mIEJpb2dlb2dyYXBoeTwvc2Vjb25kYXJ5LXRpdGxlPjwvdGl0bGVz

PjxwZXJpb2RpY2FsPjxmdWxsLXRpdGxlPkpvdXJuYWwgb2YgQmlvZ2VvZ3JhcGh5PC9mdWxsLXRp

dGxlPjwvcGVyaW9kaWNhbD48cGFnZXM+NTMwLTU0MDwvcGFnZXM+PHZvbHVtZT4zNzwvdm9sdW1l

PjxudW1iZXI+MzwvbnVtYmVyPjxkYXRlcz48eWVhcj4yMDEwPC95ZWFyPjxwdWItZGF0ZXM+PGRh

dGU+TWFyPC9kYXRlPjwvcHViLWRhdGVzPjwvZGF0ZXM+PGlzYm4+MDMwNS0wMjcwPC9pc2JuPjxh

Y2Nlc3Npb24tbnVtPldPUzowMDAyNzM5NDk3MDAwMTQ8L2FjY2Vzc2lvbi1udW0+PHVybHM+PHJl

bGF0ZWQtdXJscz48dXJsPiZsdDtHbyB0byBJU0kmZ3Q7Oi8vV09TOjAwMDI3Mzk0OTcwMDAxNDwv

dXJsPjwvcmVsYXRlZC11cmxzPjwvdXJscz48ZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+MTAuMTEx

MS9qLjEzNjUtMjY5OS4yMDA5LjAyMjMxLng8L2VsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjwvcmVj

b3JkPjwvQ2l0ZT48L0VuZE5vdGU+AG==

ADDIN EN.CITE.DATA 55,56. This implies that no single hypothesis adequately explains the diversification of broad taxonomic groups — our results support this assumption. Richness, endemism and turnover of large and heterogeneous groups exemplified by the all-species amphibian and reptile data sets were in all cases best explained by complex CAR models. These models have the advantage of incorporating most or all of the originally included explanatory variables. Several alternative explanations may account for this outcome. Patterns of biodiversity may not be strongly correlated to any of the predictor mechanisms simply because none of them provide the causal mechanism underlying the diversification processes. As another consideration, spatial predictions of some of the biodiversity hypotheses may have been inaccurate, though we took great care to avoid such mistakes. In any event, improvements in these methods may result in different outcomes in future analyses. Caveats aside, the results of this study almost certainly support a third explanation, that different clades of organisms are each predominantly influenced by a different set of diversification mechanisms. In turn, these are driven by intrinsic factors, such as morphological or physiological constraints, or to extrinsic factors, such as an initial diversification in an area characterized by a certain topography, climate, or biotic composition. This alternative is supported by the observation that the patterns of several of the smaller subgroups in our analysis were indeed best explained by opposing predominant variables, e.g., topographic heterogeneity and museum (Boophis endemism) vs. climate stability and sanctuary (Brookesia endemism). An overarching message is that the taxonomic scale of analysis is of extreme importance when attempting to derive global explanations of biodiversity distribution patterns. Including too many taxa will blur the existing differences among clades and lead to complex explanatory models, whereas patterns within specific clades may be best explained by simple models.The method proposed herein allows for a more objective quantification of the influences of particular diversification mechanisms on biodiversity patterns, compared to traditional, univariate approaches. Further developments of the method should especially focus on including a phylogenetic dimension, and when appropriate (for predictor hypotheses), a temporal component. Geospatial analyses of biodiversity pattern typically use species as equivalent and independent data points, though in reality, they are entities with substantial variation in parameters such as evolutionary age, dispersal capacity and population density, and with different degrees of relatedness depending on their position in the tree of life. This multilayered information can be included in various ways in the CAR/OTBC approach, e.g. by plotting richness and endemism of evolutionary history rather than taxonomic identity, calculating turnover only for sister species with adjacent ranges, or repeating the calculations for sets of species defined by particular nodes on a phylogenetic tree. This latter approach— iterating the analysis for successively more inclusive clades — appears particularly promising for identifying those moments in evolutionary history wherein shifts in prevalent diversification mechanisms have occurred. Given this perspective, we can begin to tease apart the diversification histories of individual clades versus prevailing biogeoclimatic events that shape entire biotas. Materials and MethodsBiodiversity EstimatesSpecies Distribution ModelingSpecies data consisted of 8362 occurrence records of 745 Malagasy amphibian and reptile species (325 and 420 species, respectively). Species distribution models (SDMs) were limited to species that had, at minimum, 3 unique occurrence points at the 30 arc-second spatial resolution (ca. 1 km). The reduced dataset represented 453 species (consisting of 5440 training points of 248 reptile and 205 amphibian species), with a mean of 12 training points per species (max= 131). For 107 amphibian and 119 reptile species with only 1-2 occurrence records a 10km buffer was applied to point localities in place of SDM. The species distribution models were generated in MaxEnt v3.3.3e ADDIN EN.CITE <EndNote><Cite><Author>Phillips</Author><Year>2006</Year><RecNum>506</RecNum><DisplayText><style face="superscript">57</style></DisplayText><record><rec-number>506</rec-number><foreign-keys><key app="EN" db-id="29e52v5fndvsw7es5vbp9v5wva5xrpxxa95e" timestamp="1384554205">506</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Phillips, S. J.</author><author>Anderson, R. P.</author><author>Schapire, R. E.</author></authors></contributors><titles><title>Maximum entropy modeling of species geographic distributions</title><secondary-title>Ecological Modelling</secondary-title></titles><periodical><full-title>Ecological Modelling</full-title></periodical><pages>231-259</pages><volume>190</volume><number>3-4</number><dates><year>2006</year><pub-dates><date>Jan 25</date></pub-dates></dates><isbn>0304-3800</isbn><accession-num>WOS:000233859600001</accession-num><urls><related-urls><url>&lt;Go to ISI&gt;://WOS:000233859600001</url></related-urls></urls><electronic-resource-num>10.1016/j.ecolmodel.2005.03.026</electronic-resource-num></record></Cite></EndNote>57 using the following parameters: random test percentage = 25, regularization multiplier = 1, maximum number of background points = 10000, replicates = 10, replicated run type = cross validate. One limitation of presence-only data SDM methods is the effect of sample selection bias, where some areas in the landscape are sampled more intensively than others ADDIN EN.CITE <EndNote><Cite><Author>Phillips</Author><Year>2009</Year><RecNum>507</RecNum><DisplayText><style face="superscript">58</style></DisplayText><record><rec-number>507</rec-number><foreign-keys><key app="EN" db-id="29e52v5fndvsw7es5vbp9v5wva5xrpxxa95e" timestamp="1384554247">507</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Phillips, Steven J.</author><author>Dudik, Miroslav</author><author>Elith, Jane</author><author>Graham, Catherine H.</author><author>Lehmann, Anthony</author><author>Leathwick, John</author><author>Ferrier, Simon</author></authors></contributors><titles><title>Sample selection bias and presence-only distribution models: implications for background and pseudo-absence data</title><secondary-title>Ecological Applications</secondary-title></titles><periodical><full-title>Ecological Applications</full-title></periodical><pages>181-197</pages><volume>19</volume><number>1</number><dates><year>2009</year><pub-dates><date>Jan</date></pub-dates></dates><isbn>1051-0761</isbn><accession-num>WOS:000263516200014</accession-num><urls><related-urls><url>&lt;Go to ISI&gt;://WOS:000263516200014</url></related-urls></urls><electronic-resource-num>10.1890/07-2153.1</electronic-resource-num></record></Cite></EndNote>58. MaxEnt requires an unbiased sample. To account for sampling biases, we used a bias file representing a Gaussian kernel-density of all species occurrence localities. The bias file upweighted presence-only data points with fewer neighbors in the geographic landscape ADDIN EN.CITE <EndNote><Cite><Author>Elith</Author><Year>2011</Year><RecNum>476</RecNum><DisplayText><style face="superscript">59</style></DisplayText><record><rec-number>476</rec-number><foreign-keys><key app="EN" db-id="29e52v5fndvsw7es5vbp9v5wva5xrpxxa95e" timestamp="1384552351">476</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Elith, Jane</author><author>Phillips, Steven J.</author><author>Hastie, Trevor</author><author>Dudik, Miroslav</author><author>Chee, Yung En</author><author>Yates, Colin J.</author></authors></contributors><titles><title>A statistical explanation of MaxEnt for ecologists</title><secondary-title>Diversity and Distributions</secondary-title></titles><periodical><full-title>Diversity and Distributions</full-title></periodical><pages>43-57</pages><volume>17</volume><number>1</number><dates><year>2011</year><pub-dates><date>Jan</date></pub-dates></dates><isbn>1366-9516</isbn><accession-num>WOS:000285246700005</accession-num><urls><related-urls><url>&lt;Go to ISI&gt;://WOS:000285246700005</url></related-urls></urls><electronic-resource-num>10.1111/j.1472-4642.2010.00725.x</electronic-resource-num></record></Cite></EndNote>59. Species distributions were modeled for the current climate using the 19 standard bioclimatic variables derived from interpolation of climatic records between 1950 and 2000 from weather stations around the globe (Worldclim 1.4 ADDIN EN.CITE <EndNote><Cite><Author>Hijmans</Author><Year>2005</Year><RecNum>35</RecNum><DisplayText><style face="superscript">60</style></DisplayText><record><rec-number>35</rec-number><foreign-keys><key app="EN" db-id="29e52v5fndvsw7es5vbp9v5wva5xrpxxa95e" timestamp="1379365538">35</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Hijmans, R. J.</author><author>Cameron, S. E.</author><author>Parra, J. L.</author><author>Jones, P. G.</author><author>Jarvis, A.</author></authors></contributors><titles><title>Very high resolution interpolated climate surfaces for global land areas</title><secondary-title>International Journal of Climatology</secondary-title></titles><periodical><full-title>International Journal of Climatology</full-title></periodical><pages>1965-1978</pages><volume>25</volume><number>15</number><dates><year>2005</year><pub-dates><date>Dec</date></pub-dates></dates><isbn>0899-8418</isbn><accession-num>WOS:000234519700002</accession-num><urls><related-urls><url>&lt;Go to ISI&gt;://WOS:000234519700002</url></related-urls></urls><electronic-resource-num>10.1002/joc.1276</electronic-resource-num></record></Cite></EndNote>60). Non-climatic variables geology, aspect, elevation, solar radiation, and slope were also included ADDIN EN.CITE <EndNote><Cite><Author>Moat</Author><Year>1997</Year><RecNum>539</RecNum><DisplayText><style face="superscript">61,62</style></DisplayText><record><rec-number>539</rec-number><foreign-keys><key app="EN" db-id="29e52v5fndvsw7es5vbp9v5wva5xrpxxa95e" timestamp="1384719457">539</key></foreign-keys><ref-type name="Dataset">59</ref-type><contributors><authors><author>Moat, J.</author><author>Du Puy, D.</author></authors><secondary-authors><author>Royal Botanic Gardens, Kew </author></secondary-authors></contributors><titles><title>Simplified Geology of Madagascar</title></titles><dates><year>1997</year></dates><urls><related-urls><url> app="EN" db-id="29e52v5fndvsw7es5vbp9v5wva5xrpxxa95e" timestamp="1384719256">537</key></foreign-keys><ref-type name="Dataset">59</ref-type><contributors><authors><author>Jarvis, A.</author><author>Reuter, H.I.</author><author>Nelson, A. </author><author>Guevara, E. </author></authors></contributors><titles><title>Hole-filled SRTM for the globe Version 4</title></titles><dates><year>2008</year></dates><pub-location>CGIAR-CSI SRTM 90m Database</pub-location><urls><related-urls><url> . All layers were projected to Africa Alber’s Equal-Area Cylindrical projection in ArcMap at a resolution of 0.91 km2.Correcting SDMs for Over-prediction To limit over-prediction of SDMs, a problem common with modeling distributions of Madagascar biotaPEVuZE5vdGU+PENpdGU+PEF1dGhvcj5LcmVtZW48L0F1dGhvcj48WWVhcj4yMDA4PC9ZZWFyPjxS

ZWNOdW0+NDk0PC9SZWNOdW0+PERpc3BsYXlUZXh0PjxzdHlsZSBmYWNlPSJzdXBlcnNjcmlwdCI+

OCwzNzwvc3R5bGU+PC9EaXNwbGF5VGV4dD48cmVjb3JkPjxyZWMtbnVtYmVyPjQ5NDwvcmVjLW51

bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9IjI5ZTUydjVmbmR2c3c3ZXM1

dmJwOXY1d3ZhNXhycHh4YTk1ZSIgdGltZXN0YW1wPSIxMzg0NTUzNjEwIj40OTQ8L2tleT48L2Zv

cmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwvcmVmLXR5cGU+

PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPktyZW1lbiwgQy48L2F1dGhvcj48YXV0aG9y

PkNhbWVyb24sIEEuPC9hdXRob3I+PGF1dGhvcj5Nb2lsYW5lbiwgQS48L2F1dGhvcj48YXV0aG9y

PlBoaWxsaXBzLCBTLiBKLjwvYXV0aG9yPjxhdXRob3I+VGhvbWFzLCBDLiBELjwvYXV0aG9yPjxh

dXRob3I+QmVlbnRqZSwgSC48L2F1dGhvcj48YXV0aG9yPkRyYW5zZmllbGQsIEouPC9hdXRob3I+

PGF1dGhvcj5GaXNoZXIsIEIuIEwuPC9hdXRob3I+PGF1dGhvcj5HbGF3LCBGLjwvYXV0aG9yPjxh

dXRob3I+R29vZCwgVC4gQy48L2F1dGhvcj48YXV0aG9yPkhhcnBlciwgRy4gSi48L2F1dGhvcj48

YXV0aG9yPkhpam1hbnMsIFIuIEouPC9hdXRob3I+PGF1dGhvcj5MZWVzLCBELiBDLjwvYXV0aG9y

PjxhdXRob3I+TG91aXMsIEUuLCBKci48L2F1dGhvcj48YXV0aG9yPk51c3NiYXVtLCBSLiBBLjwv

YXV0aG9yPjxhdXRob3I+UmF4d29ydGh5LCBDLiBKLjwvYXV0aG9yPjxhdXRob3I+UmF6YWZpbXBh

aGFuYW5hLCBBLjwvYXV0aG9yPjxhdXRob3I+U2NoYXR6LCBHLiBFLjwvYXV0aG9yPjxhdXRob3I+

VmVuY2VzLCBNLjwvYXV0aG9yPjxhdXRob3I+VmllaXRlcywgRC4gUi48L2F1dGhvcj48YXV0aG9y

PldyaWdodCwgUC4gQy48L2F1dGhvcj48YXV0aG9yPlpqaHJhLCBNLiBMLjwvYXV0aG9yPjwvYXV0

aG9ycz48L2NvbnRyaWJ1dG9ycz48dGl0bGVzPjx0aXRsZT5BbGlnbmluZyBjb25zZXJ2YXRpb24g

cHJpb3JpdGllcyBhY3Jvc3MgdGF4YSBpbiBNYWRhZ2FzY2FyIHdpdGggaGlnaC1yZXNvbHV0aW9u

IHBsYW5uaW5nIHRvb2xzPC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPlNjaWVuY2U8L3NlY29uZGFy

eS10aXRsZT48L3RpdGxlcz48cGVyaW9kaWNhbD48ZnVsbC10aXRsZT5TY2llbmNlPC9mdWxsLXRp

dGxlPjwvcGVyaW9kaWNhbD48cGFnZXM+MjIyLTIyNjwvcGFnZXM+PHZvbHVtZT4zMjA8L3ZvbHVt

ZT48bnVtYmVyPjU4NzM8L251bWJlcj48ZGF0ZXM+PHllYXI+MjAwODwveWVhcj48cHViLWRhdGVz

PjxkYXRlPkFwciAxMTwvZGF0ZT48L3B1Yi1kYXRlcz48L2RhdGVzPjxpc2JuPjAwMzYtODA3NTwv

aXNibj48YWNjZXNzaW9uLW51bT5XT1M6MDAwMjU0ODM2NzAwMDQxPC9hY2Nlc3Npb24tbnVtPjx1

cmxzPjxyZWxhdGVkLXVybHM+PHVybD4mbHQ7R28gdG8gSVNJJmd0OzovL1dPUzowMDAyNTQ4MzY3

MDAwNDE8L3VybD48L3JlbGF0ZWQtdXJscz48L3VybHM+PGVsZWN0cm9uaWMtcmVzb3VyY2UtbnVt

PjEwLjExMjYvc2NpZW5jZS4xMTU1MTkzPC9lbGVjdHJvbmljLXJlc291cmNlLW51bT48L3JlY29y

ZD48L0NpdGU+PENpdGU+PEF1dGhvcj5QZWFyc29uPC9BdXRob3I+PFllYXI+MjAwOTwvWWVhcj48

UmVjTnVtPjUwNTwvUmVjTnVtPjxyZWNvcmQ+PHJlYy1udW1iZXI+NTA1PC9yZWMtbnVtYmVyPjxm

b3JlaWduLWtleXM+PGtleSBhcHA9IkVOIiBkYi1pZD0iMjllNTJ2NWZuZHZzdzdlczV2YnA5djV3

dmE1eHJweHhhOTVlIiB0aW1lc3RhbXA9IjEzODQ1NTQxNjkiPjUwNTwva2V5PjwvZm9yZWlnbi1r

ZXlzPjxyZWYtdHlwZSBuYW1lPSJKb3VybmFsIEFydGljbGUiPjE3PC9yZWYtdHlwZT48Y29udHJp

YnV0b3JzPjxhdXRob3JzPjxhdXRob3I+UGVhcnNvbiwgUmljaGFyZCBHLjwvYXV0aG9yPjxhdXRo

b3I+UmF4d29ydGh5LCBDaHJpc3RvcGhlciBKLjwvYXV0aG9yPjwvYXV0aG9ycz48L2NvbnRyaWJ1

dG9ycz48dGl0bGVzPjx0aXRsZT5UaGUgZXZvbHV0aW9uIG9mIGxvY2FsIGVuZGVtaXNtIGluIG1h

ZGFnYXNjYXI6IHdhdGVyc2hlZCB2ZXJzdXMgY2xpbWF0aWMgZ3JhZGllbnQgaHlwb3RoZXNlcyBl

dmFsdWF0ZWQgYnkgbnVsbCBiaW9nZW9ncmFwaGljIG1vZGVscy48L3RpdGxlPjxzZWNvbmRhcnkt

dGl0bGU+RXZvbHV0aW9uPC9zZWNvbmRhcnktdGl0bGU+PC90aXRsZXM+PHBlcmlvZGljYWw+PGZ1

bGwtdGl0bGU+RXZvbHV0aW9uPC9mdWxsLXRpdGxlPjxhYmJyLTE+RXZvbHV0aW9uOyBpbnRlcm5h

dGlvbmFsIGpvdXJuYWwgb2Ygb3JnYW5pYyBldm9sdXRpb248L2FiYnItMT48L3BlcmlvZGljYWw+

PHBhZ2VzPjk1OS05Njc8L3BhZ2VzPjx2b2x1bWU+NjM8L3ZvbHVtZT48bnVtYmVyPjQ8L251bWJl

cj48ZGF0ZXM+PHllYXI+MjAwOTwveWVhcj48cHViLWRhdGVzPjxkYXRlPkFwcjwvZGF0ZT48L3B1

Yi1kYXRlcz48L2RhdGVzPjxpc2JuPjAwMTQtMzgyMDwvaXNibj48YWNjZXNzaW9uLW51bT5XT1M6

MDAwMjY0Mzc5MjAwMDEzPC9hY2Nlc3Npb24tbnVtPjx1cmxzPjxyZWxhdGVkLXVybHM+PHVybD4m

bHQ7R28gdG8gSVNJJmd0OzovL1dPUzowMDAyNjQzNzkyMDAwMTM8L3VybD48L3JlbGF0ZWQtdXJs

cz48L3VybHM+PGVsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjEwLjExMTEvai4xNTU4LTU2NDYuMjAw

OC4wMDU5Ni54PC9lbGVjdHJvbmljLXJlc291cmNlLW51bT48L3JlY29yZD48L0NpdGU+PC9FbmRO

b3RlPgB=

ADDIN EN.CITE PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5LcmVtZW48L0F1dGhvcj48WWVhcj4yMDA4PC9ZZWFyPjxS

ZWNOdW0+NDk0PC9SZWNOdW0+PERpc3BsYXlUZXh0PjxzdHlsZSBmYWNlPSJzdXBlcnNjcmlwdCI+

OCwzNzwvc3R5bGU+PC9EaXNwbGF5VGV4dD48cmVjb3JkPjxyZWMtbnVtYmVyPjQ5NDwvcmVjLW51

bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9IjI5ZTUydjVmbmR2c3c3ZXM1

dmJwOXY1d3ZhNXhycHh4YTk1ZSIgdGltZXN0YW1wPSIxMzg0NTUzNjEwIj40OTQ8L2tleT48L2Zv

cmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwvcmVmLXR5cGU+

PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPktyZW1lbiwgQy48L2F1dGhvcj48YXV0aG9y

PkNhbWVyb24sIEEuPC9hdXRob3I+PGF1dGhvcj5Nb2lsYW5lbiwgQS48L2F1dGhvcj48YXV0aG9y

PlBoaWxsaXBzLCBTLiBKLjwvYXV0aG9yPjxhdXRob3I+VGhvbWFzLCBDLiBELjwvYXV0aG9yPjxh

dXRob3I+QmVlbnRqZSwgSC48L2F1dGhvcj48YXV0aG9yPkRyYW5zZmllbGQsIEouPC9hdXRob3I+

PGF1dGhvcj5GaXNoZXIsIEIuIEwuPC9hdXRob3I+PGF1dGhvcj5HbGF3LCBGLjwvYXV0aG9yPjxh

dXRob3I+R29vZCwgVC4gQy48L2F1dGhvcj48YXV0aG9yPkhhcnBlciwgRy4gSi48L2F1dGhvcj48

YXV0aG9yPkhpam1hbnMsIFIuIEouPC9hdXRob3I+PGF1dGhvcj5MZWVzLCBELiBDLjwvYXV0aG9y

PjxhdXRob3I+TG91aXMsIEUuLCBKci48L2F1dGhvcj48YXV0aG9yPk51c3NiYXVtLCBSLiBBLjwv

YXV0aG9yPjxhdXRob3I+UmF4d29ydGh5LCBDLiBKLjwvYXV0aG9yPjxhdXRob3I+UmF6YWZpbXBh

aGFuYW5hLCBBLjwvYXV0aG9yPjxhdXRob3I+U2NoYXR6LCBHLiBFLjwvYXV0aG9yPjxhdXRob3I+

VmVuY2VzLCBNLjwvYXV0aG9yPjxhdXRob3I+VmllaXRlcywgRC4gUi48L2F1dGhvcj48YXV0aG9y

PldyaWdodCwgUC4gQy48L2F1dGhvcj48YXV0aG9yPlpqaHJhLCBNLiBMLjwvYXV0aG9yPjwvYXV0

aG9ycz48L2NvbnRyaWJ1dG9ycz48dGl0bGVzPjx0aXRsZT5BbGlnbmluZyBjb25zZXJ2YXRpb24g

cHJpb3JpdGllcyBhY3Jvc3MgdGF4YSBpbiBNYWRhZ2FzY2FyIHdpdGggaGlnaC1yZXNvbHV0aW9u

IHBsYW5uaW5nIHRvb2xzPC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPlNjaWVuY2U8L3NlY29uZGFy

eS10aXRsZT48L3RpdGxlcz48cGVyaW9kaWNhbD48ZnVsbC10aXRsZT5TY2llbmNlPC9mdWxsLXRp

dGxlPjwvcGVyaW9kaWNhbD48cGFnZXM+MjIyLTIyNjwvcGFnZXM+PHZvbHVtZT4zMjA8L3ZvbHVt

ZT48bnVtYmVyPjU4NzM8L251bWJlcj48ZGF0ZXM+PHllYXI+MjAwODwveWVhcj48cHViLWRhdGVz

PjxkYXRlPkFwciAxMTwvZGF0ZT48L3B1Yi1kYXRlcz48L2RhdGVzPjxpc2JuPjAwMzYtODA3NTwv

aXNibj48YWNjZXNzaW9uLW51bT5XT1M6MDAwMjU0ODM2NzAwMDQxPC9hY2Nlc3Npb24tbnVtPjx1

cmxzPjxyZWxhdGVkLXVybHM+PHVybD4mbHQ7R28gdG8gSVNJJmd0OzovL1dPUzowMDAyNTQ4MzY3

MDAwNDE8L3VybD48L3JlbGF0ZWQtdXJscz48L3VybHM+PGVsZWN0cm9uaWMtcmVzb3VyY2UtbnVt

PjEwLjExMjYvc2NpZW5jZS4xMTU1MTkzPC9lbGVjdHJvbmljLXJlc291cmNlLW51bT48L3JlY29y

ZD48L0NpdGU+PENpdGU+PEF1dGhvcj5QZWFyc29uPC9BdXRob3I+PFllYXI+MjAwOTwvWWVhcj48

UmVjTnVtPjUwNTwvUmVjTnVtPjxyZWNvcmQ+PHJlYy1udW1iZXI+NTA1PC9yZWMtbnVtYmVyPjxm

b3JlaWduLWtleXM+PGtleSBhcHA9IkVOIiBkYi1pZD0iMjllNTJ2NWZuZHZzdzdlczV2YnA5djV3

dmE1eHJweHhhOTVlIiB0aW1lc3RhbXA9IjEzODQ1NTQxNjkiPjUwNTwva2V5PjwvZm9yZWlnbi1r

ZXlzPjxyZWYtdHlwZSBuYW1lPSJKb3VybmFsIEFydGljbGUiPjE3PC9yZWYtdHlwZT48Y29udHJp

YnV0b3JzPjxhdXRob3JzPjxhdXRob3I+UGVhcnNvbiwgUmljaGFyZCBHLjwvYXV0aG9yPjxhdXRo

b3I+UmF4d29ydGh5LCBDaHJpc3RvcGhlciBKLjwvYXV0aG9yPjwvYXV0aG9ycz48L2NvbnRyaWJ1

dG9ycz48dGl0bGVzPjx0aXRsZT5UaGUgZXZvbHV0aW9uIG9mIGxvY2FsIGVuZGVtaXNtIGluIG1h

ZGFnYXNjYXI6IHdhdGVyc2hlZCB2ZXJzdXMgY2xpbWF0aWMgZ3JhZGllbnQgaHlwb3RoZXNlcyBl

dmFsdWF0ZWQgYnkgbnVsbCBiaW9nZW9ncmFwaGljIG1vZGVscy48L3RpdGxlPjxzZWNvbmRhcnkt

dGl0bGU+RXZvbHV0aW9uPC9zZWNvbmRhcnktdGl0bGU+PC90aXRsZXM+PHBlcmlvZGljYWw+PGZ1

bGwtdGl0bGU+RXZvbHV0aW9uPC9mdWxsLXRpdGxlPjxhYmJyLTE+RXZvbHV0aW9uOyBpbnRlcm5h

dGlvbmFsIGpvdXJuYWwgb2Ygb3JnYW5pYyBldm9sdXRpb248L2FiYnItMT48L3BlcmlvZGljYWw+

PHBhZ2VzPjk1OS05Njc8L3BhZ2VzPjx2b2x1bWU+NjM8L3ZvbHVtZT48bnVtYmVyPjQ8L251bWJl

cj48ZGF0ZXM+PHllYXI+MjAwOTwveWVhcj48cHViLWRhdGVzPjxkYXRlPkFwcjwvZGF0ZT48L3B1

Yi1kYXRlcz48L2RhdGVzPjxpc2JuPjAwMTQtMzgyMDwvaXNibj48YWNjZXNzaW9uLW51bT5XT1M6

MDAwMjY0Mzc5MjAwMDEzPC9hY2Nlc3Npb24tbnVtPjx1cmxzPjxyZWxhdGVkLXVybHM+PHVybD4m

bHQ7R28gdG8gSVNJJmd0OzovL1dPUzowMDAyNjQzNzkyMDAwMTM8L3VybD48L3JlbGF0ZWQtdXJs

cz48L3VybHM+PGVsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjEwLjExMTEvai4xNTU4LTU2NDYuMjAw

OC4wMDU5Ni54PC9lbGVjdHJvbmljLXJlc291cmNlLW51bT48L3JlY29yZD48L0NpdGU+PC9FbmRO

b3RlPgB=

ADDIN EN.CITE.DATA 8,37, we clipped each SDM following the approach of Kremen et al. ADDIN EN.CITE <EndNote><Cite><Author>Kremen</Author><Year>2008</Year><RecNum>5</RecNum><DisplayText><style face="superscript">8</style></DisplayText><record><rec-number>5</rec-number><foreign-keys><key app="EN" db-id="29e52v5fndvsw7es5vbp9v5wva5xrpxxa95e" timestamp="1379361300">5</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Kremen, C.</author><author>Cameron, A.</author><author>Moilanen, A.</author><author>Phillips, S. J.</author><author>Thomas, C. D.</author><author>Beentje, H.</author><author>Dransfield, J.</author><author>Fisher, B. L.</author><author>Glaw, F.</author><author>Good, T. C.</author><author>Harper, G. J.</author><author>Hijmans, R. J.</author><author>Lees, D. C.</author><author>Louis, E., Jr.</author><author>Nussbaum, R. A.</author><author>Raxworthy, C. J.</author><author>Razafimpahanana, A.</author><author>Schatz, G. E.</author><author>Vences, M.</author><author>Vieites, D. R.</author><author>Wright, P. C.</author><author>Zjhra, M. L.</author></authors></contributors><titles><title>Aligning conservation priorities across taxa in Madagascar with high-resolution planning tools</title><secondary-title>Science</secondary-title></titles><periodical><full-title>Science</full-title></periodical><pages>222-226</pages><volume>320</volume><number>5873</number><dates><year>2008</year><pub-dates><date>Apr 11</date></pub-dates></dates><isbn>0036-8075</isbn><accession-num>WOS:000254836700041</accession-num><urls><related-urls><url>&lt;Go to ISI&gt;://WOS:000254836700041</url></related-urls></urls><electronic-resource-num>10.1126/science.1155193</electronic-resource-num></record></Cite></EndNote>8. This method produces models that represent suitable habitat within an area of known occurrence (based on a buffered MCP), excluding suitable habitat greatly outside of observed range. The size of the buffer was based on the area of the MCP. We used buffer distances of 20km, 40km, and 80km, respectively, for three MCP area classes, 0-200km2, 200-1000 km2, and >1000 km2. All corrected SDMs were proofed by taxonomic experts to ensure reliability; if a model did not tightly match knowledge of areas where distributions were well documented, or if little prior information existed regarding a species distribution, or taxonomy was convoluted, and because of, its expected distribution could not be evaluated, the species was excluded from analyses (n= 71). Range Sizes, Species Richness and Corrected Weighted EndemismFor descriptive range-size statistics, distribution range-sizes were sampled for all species at 0.01 degrees2 from corrected SDMs (or buffered point data where applicable) and a student’s t-test with unequal variance was performed between amphibian and reptile species. To assess differences in the frequency of microendemics among the two groups, we converted all distributions that were > or < than 1000 km2 to a value of 0 and 1, respectively. We then calculated the mean frequency for both groups and ran a binomial test among both groups. Species richness was calculated separately for amphibians and reptiles by summing the respective corrected binary SDMs (based on a maximum training sensitivity plus specificity threshold) and, for species with 1-2 occurrence records, buffered points in ArcGIS. This provided a high resolution estimate of richness that is less affected by spatial scale and incomplete sampling than traditional measurements based solely on occurrence records. Measures of endemism are inherently dependent on spatial scale. We chose a grid scale of 82 x 63 km, separating Madagascar into 24 latitudinal and 8 longitudinal rows, to reduce problems associated with estimating endemism over too small or large areasPEVuZE5vdGU+PENpdGU+PEF1dGhvcj5DcmlzcDwvQXV0aG9yPjxZZWFyPjIwMDE8L1llYXI+PFJl

Y051bT40NTk8L1JlY051bT48RGlzcGxheVRleHQ+PHN0eWxlIGZhY2U9InN1cGVyc2NyaXB0Ij4x

MiwzNTwvc3R5bGU+PC9EaXNwbGF5VGV4dD48cmVjb3JkPjxyZWMtbnVtYmVyPjQ1OTwvcmVjLW51

bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9IjI5ZTUydjVmbmR2c3c3ZXM1

dmJwOXY1d3ZhNXhycHh4YTk1ZSIgdGltZXN0YW1wPSIxMzgxMTcyOTU3Ij40NTk8L2tleT48L2Zv

cmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwvcmVmLXR5cGU+

PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPkNyaXNwLCBNLiBELjwvYXV0aG9yPjxhdXRo

b3I+TGFmZmFuLCBTLjwvYXV0aG9yPjxhdXRob3I+TGluZGVyLCBILiBQLjwvYXV0aG9yPjxhdXRo

b3I+TW9ucm8sIEEuPC9hdXRob3I+PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjx0aXRsZXM+PHRp

dGxlPkVuZGVtaXNtIGluIHRoZSBBdXN0cmFsaWFuIGZsb3JhPC90aXRsZT48c2Vjb25kYXJ5LXRp

dGxlPkpvdXJuYWwgb2YgQmlvZ2VvZ3JhcGh5PC9zZWNvbmRhcnktdGl0bGU+PC90aXRsZXM+PHBl

cmlvZGljYWw+PGZ1bGwtdGl0bGU+Sm91cm5hbCBvZiBCaW9nZW9ncmFwaHk8L2Z1bGwtdGl0bGU+

PC9wZXJpb2RpY2FsPjxwYWdlcz4xODMtMTk4PC9wYWdlcz48dm9sdW1lPjI4PC92b2x1bWU+PG51

bWJlcj4yPC9udW1iZXI+PGtleXdvcmRzPjxrZXl3b3JkPkJpb2RpdmVyc2l0eTwva2V5d29yZD48

a2V5d29yZD5lbmRlbWlzbTwva2V5d29yZD48a2V5d29yZD5zcGVjaWVzIHJpY2huZXNzPC9rZXl3

b3JkPjxrZXl3b3JkPkF1c3RyYWxpYTwva2V5d29yZD48a2V5d29yZD5QbGVpc3RvY2VuZTwva2V5

d29yZD48a2V5d29yZD5yZWZ1Z2lhPC9rZXl3b3JkPjxrZXl3b3JkPmV4dGluY3Rpb248L2tleXdv

cmQ+PGtleXdvcmQ+Y2xpbWF0ZTwva2V5d29yZD48L2tleXdvcmRzPjxkYXRlcz48eWVhcj4yMDAx

PC95ZWFyPjwvZGF0ZXM+PHB1Ymxpc2hlcj5CbGFja3dlbGwgU2NpZW5jZSBMdGQ8L3B1Ymxpc2hl

cj48aXNibj4xMzY1LTI2OTk8L2lzYm4+PHVybHM+PHJlbGF0ZWQtdXJscz48dXJsPmh0dHA6Ly9k

eC5kb2kub3JnLzEwLjEwNDYvai4xMzY1LTI2OTkuMjAwMS4wMDUyNC54PC91cmw+PC9yZWxhdGVk

LXVybHM+PC91cmxzPjxlbGVjdHJvbmljLXJlc291cmNlLW51bT4xMC4xMDQ2L2ouMTM2NS0yNjk5

LjIwMDEuMDA1MjQueDwvZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+PC9yZWNvcmQ+PC9DaXRlPjxD

aXRlPjxBdXRob3I+V29sbGVuYmVyZzwvQXV0aG9yPjxZZWFyPjIwMDg8L1llYXI+PFJlY051bT41

MjU8L1JlY051bT48cmVjb3JkPjxyZWMtbnVtYmVyPjUyNTwvcmVjLW51bWJlcj48Zm9yZWlnbi1r

ZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9IjI5ZTUydjVmbmR2c3c3ZXM1dmJwOXY1d3ZhNXhycHh4

YTk1ZSIgdGltZXN0YW1wPSIxMzg0NTU1MDc4Ij41MjU8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVm

LXR5cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48

YXV0aG9ycz48YXV0aG9yPldvbGxlbmJlcmcsIEthdGhhcmluYSBDLjwvYXV0aG9yPjxhdXRob3I+

VmllaXRlcywgRGF2aWQgUi48L2F1dGhvcj48YXV0aG9yPnZhbiBkZXIgTWVpamRlbiwgQXJpZTwv

YXV0aG9yPjxhdXRob3I+R2xhdywgRnJhbms8L2F1dGhvcj48YXV0aG9yPkNhbm5hdGVsbGEsIERh

dmlkIEMuPC9hdXRob3I+PGF1dGhvcj5WZW5jZXMsIE1pZ3VlbDwvYXV0aG9yPjwvYXV0aG9ycz48

L2NvbnRyaWJ1dG9ycz48dGl0bGVzPjx0aXRsZT5QYXR0ZXJucyBvZiBlbmRlbWlzbSBhbmQgc3Bl

Y2llcyByaWNobmVzcyBpbiBNYWxhZ2FzeSBjb3BoeWxpbmUgZnJvZ3Mgc3VwcG9ydCBhIGtleSBy

b2xlIG9mIG1vdW50YWlub3VzIGFyZWFzIGZvciBzcGVjaWF0aW9uPC90aXRsZT48c2Vjb25kYXJ5

LXRpdGxlPkV2b2x1dGlvbjwvc2Vjb25kYXJ5LXRpdGxlPjwvdGl0bGVzPjxwZXJpb2RpY2FsPjxm

dWxsLXRpdGxlPkV2b2x1dGlvbjwvZnVsbC10aXRsZT48YWJici0xPkV2b2x1dGlvbjsgaW50ZXJu

YXRpb25hbCBqb3VybmFsIG9mIG9yZ2FuaWMgZXZvbHV0aW9uPC9hYmJyLTE+PC9wZXJpb2RpY2Fs

PjxwYWdlcz4xODkwLTE5MDc8L3BhZ2VzPjx2b2x1bWU+NjI8L3ZvbHVtZT48bnVtYmVyPjg8L251

bWJlcj48ZGF0ZXM+PHllYXI+MjAwODwveWVhcj48cHViLWRhdGVzPjxkYXRlPkF1ZzwvZGF0ZT48

L3B1Yi1kYXRlcz48L2RhdGVzPjxpc2JuPjAwMTQtMzgyMDwvaXNibj48YWNjZXNzaW9uLW51bT5X

T1M6MDAwMjU4MjYxNzAwMDA3PC9hY2Nlc3Npb24tbnVtPjx1cmxzPjxyZWxhdGVkLXVybHM+PHVy

bD4mbHQ7R28gdG8gSVNJJmd0OzovL1dPUzowMDAyNTgyNjE3MDAwMDc8L3VybD48L3JlbGF0ZWQt

dXJscz48L3VybHM+PGVsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjEwLjExMTEvai4xNTU4LTU2NDYu

MjAwOC4wMDQyMC54PC9lbGVjdHJvbmljLXJlc291cmNlLW51bT48L3JlY29yZD48L0NpdGU+PC9F

bmROb3RlPn==

ADDIN EN.CITE PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5DcmlzcDwvQXV0aG9yPjxZZWFyPjIwMDE8L1llYXI+PFJl

Y051bT40NTk8L1JlY051bT48RGlzcGxheVRleHQ+PHN0eWxlIGZhY2U9InN1cGVyc2NyaXB0Ij4x

MiwzNTwvc3R5bGU+PC9EaXNwbGF5VGV4dD48cmVjb3JkPjxyZWMtbnVtYmVyPjQ1OTwvcmVjLW51

bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9IjI5ZTUydjVmbmR2c3c3ZXM1

dmJwOXY1d3ZhNXhycHh4YTk1ZSIgdGltZXN0YW1wPSIxMzgxMTcyOTU3Ij40NTk8L2tleT48L2Zv

cmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwvcmVmLXR5cGU+

PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPkNyaXNwLCBNLiBELjwvYXV0aG9yPjxhdXRo

b3I+TGFmZmFuLCBTLjwvYXV0aG9yPjxhdXRob3I+TGluZGVyLCBILiBQLjwvYXV0aG9yPjxhdXRo

b3I+TW9ucm8sIEEuPC9hdXRob3I+PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjx0aXRsZXM+PHRp

dGxlPkVuZGVtaXNtIGluIHRoZSBBdXN0cmFsaWFuIGZsb3JhPC90aXRsZT48c2Vjb25kYXJ5LXRp

dGxlPkpvdXJuYWwgb2YgQmlvZ2VvZ3JhcGh5PC9zZWNvbmRhcnktdGl0bGU+PC90aXRsZXM+PHBl

cmlvZGljYWw+PGZ1bGwtdGl0bGU+Sm91cm5hbCBvZiBCaW9nZW9ncmFwaHk8L2Z1bGwtdGl0bGU+

PC9wZXJpb2RpY2FsPjxwYWdlcz4xODMtMTk4PC9wYWdlcz48dm9sdW1lPjI4PC92b2x1bWU+PG51

bWJlcj4yPC9udW1iZXI+PGtleXdvcmRzPjxrZXl3b3JkPkJpb2RpdmVyc2l0eTwva2V5d29yZD48

a2V5d29yZD5lbmRlbWlzbTwva2V5d29yZD48a2V5d29yZD5zcGVjaWVzIHJpY2huZXNzPC9rZXl3

b3JkPjxrZXl3b3JkPkF1c3RyYWxpYTwva2V5d29yZD48a2V5d29yZD5QbGVpc3RvY2VuZTwva2V5

d29yZD48a2V5d29yZD5yZWZ1Z2lhPC9rZXl3b3JkPjxrZXl3b3JkPmV4dGluY3Rpb248L2tleXdv

cmQ+PGtleXdvcmQ+Y2xpbWF0ZTwva2V5d29yZD48L2tleXdvcmRzPjxkYXRlcz48eWVhcj4yMDAx

PC95ZWFyPjwvZGF0ZXM+PHB1Ymxpc2hlcj5CbGFja3dlbGwgU2NpZW5jZSBMdGQ8L3B1Ymxpc2hl

cj48aXNibj4xMzY1LTI2OTk8L2lzYm4+PHVybHM+PHJlbGF0ZWQtdXJscz48dXJsPmh0dHA6Ly9k

eC5kb2kub3JnLzEwLjEwNDYvai4xMzY1LTI2OTkuMjAwMS4wMDUyNC54PC91cmw+PC9yZWxhdGVk

LXVybHM+PC91cmxzPjxlbGVjdHJvbmljLXJlc291cmNlLW51bT4xMC4xMDQ2L2ouMTM2NS0yNjk5

LjIwMDEuMDA1MjQueDwvZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+PC9yZWNvcmQ+PC9DaXRlPjxD

aXRlPjxBdXRob3I+V29sbGVuYmVyZzwvQXV0aG9yPjxZZWFyPjIwMDg8L1llYXI+PFJlY051bT41

MjU8L1JlY051bT48cmVjb3JkPjxyZWMtbnVtYmVyPjUyNTwvcmVjLW51bWJlcj48Zm9yZWlnbi1r

ZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9IjI5ZTUydjVmbmR2c3c3ZXM1dmJwOXY1d3ZhNXhycHh4

YTk1ZSIgdGltZXN0YW1wPSIxMzg0NTU1MDc4Ij41MjU8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVm

LXR5cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48

YXV0aG9ycz48YXV0aG9yPldvbGxlbmJlcmcsIEthdGhhcmluYSBDLjwvYXV0aG9yPjxhdXRob3I+

VmllaXRlcywgRGF2aWQgUi48L2F1dGhvcj48YXV0aG9yPnZhbiBkZXIgTWVpamRlbiwgQXJpZTwv

YXV0aG9yPjxhdXRob3I+R2xhdywgRnJhbms8L2F1dGhvcj48YXV0aG9yPkNhbm5hdGVsbGEsIERh

dmlkIEMuPC9hdXRob3I+PGF1dGhvcj5WZW5jZXMsIE1pZ3VlbDwvYXV0aG9yPjwvYXV0aG9ycz48

L2NvbnRyaWJ1dG9ycz48dGl0bGVzPjx0aXRsZT5QYXR0ZXJucyBvZiBlbmRlbWlzbSBhbmQgc3Bl

Y2llcyByaWNobmVzcyBpbiBNYWxhZ2FzeSBjb3BoeWxpbmUgZnJvZ3Mgc3VwcG9ydCBhIGtleSBy

b2xlIG9mIG1vdW50YWlub3VzIGFyZWFzIGZvciBzcGVjaWF0aW9uPC90aXRsZT48c2Vjb25kYXJ5

LXRpdGxlPkV2b2x1dGlvbjwvc2Vjb25kYXJ5LXRpdGxlPjwvdGl0bGVzPjxwZXJpb2RpY2FsPjxm

dWxsLXRpdGxlPkV2b2x1dGlvbjwvZnVsbC10aXRsZT48YWJici0xPkV2b2x1dGlvbjsgaW50ZXJu

YXRpb25hbCBqb3VybmFsIG9mIG9yZ2FuaWMgZXZvbHV0aW9uPC9hYmJyLTE+PC9wZXJpb2RpY2Fs

PjxwYWdlcz4xODkwLTE5MDc8L3BhZ2VzPjx2b2x1bWU+NjI8L3ZvbHVtZT48bnVtYmVyPjg8L251

bWJlcj48ZGF0ZXM+PHllYXI+MjAwODwveWVhcj48cHViLWRhdGVzPjxkYXRlPkF1ZzwvZGF0ZT48

L3B1Yi1kYXRlcz48L2RhdGVzPjxpc2JuPjAwMTQtMzgyMDwvaXNibj48YWNjZXNzaW9uLW51bT5X

T1M6MDAwMjU4MjYxNzAwMDA3PC9hY2Nlc3Npb24tbnVtPjx1cmxzPjxyZWxhdGVkLXVybHM+PHVy

bD4mbHQ7R28gdG8gSVNJJmd0OzovL1dPUzowMDAyNTgyNjE3MDAwMDc8L3VybD48L3JlbGF0ZWQt

dXJscz48L3VybHM+PGVsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjEwLjExMTEvai4xNTU4LTU2NDYu

MjAwOC4wMDQyMC54PC9lbGVjdHJvbmljLXJlc291cmNlLW51bT48L3JlY29yZD48L0NpdGU+PC9F

bmROb3RlPn==

ADDIN EN.CITE.DATA 12,35. Endemism was measured as corrected weighted endemism (CWE), where the proportion of endemics are inversely weighted by their range size (species with smaller ranges are weighted more than those with large ADDIN EN.CITE <EndNote><Cite><Author>Williams</Author><Year>2000</Year><RecNum>543</RecNum><DisplayText><style face="superscript">63</style></DisplayText><record><rec-number>543</rec-number><foreign-keys><key app="EN" db-id="29e52v5fndvsw7es5vbp9v5wva5xrpxxa95e" timestamp="1384720180">543</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Williams, P. H. </author></authors></contributors><titles><title>Some properties of rarity scores for site-quality assessment</title><secondary-title>British Journal of Entomology and Natural History</secondary-title></titles><periodical><full-title>British Journal of Entomology and Natural History</full-title></periodical><pages>73-86</pages><volume>13</volume><dates><year>2000</year></dates><urls></urls></record></Cite></EndNote>63) and this value divided by the local species richness ADDIN EN.CITE <EndNote><Cite><Author>Crisp</Author><Year>2001</Year><RecNum>459</RecNum><DisplayText><style face="superscript">12</style></DisplayText><record><rec-number>459</rec-number><foreign-keys><key app="EN" db-id="29e52v5fndvsw7es5vbp9v5wva5xrpxxa95e" timestamp="1381172957">459</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Crisp, M. D.</author><author>Laffan, S.</author><author>Linder, H. P.</author><author>Monro, A.</author></authors></contributors><titles><title>Endemism in the Australian flora</title><secondary-title>Journal of Biogeography</secondary-title></titles><periodical><full-title>Journal of Biogeography</full-title></periodical><pages>183-198</pages><volume>28</volume><number>2</number><keywords><keyword>Biodiversity</keyword><keyword>endemism</keyword><keyword>species richness</keyword><keyword>Australia</keyword><keyword>Pleistocene</keyword><keyword>refugia</keyword><keyword>extinction</keyword><keyword>climate</keyword></keywords><dates><year>2001</year></dates><publisher>Blackwell Science Ltd</publisher><isbn>1365-2699</isbn><urls><related-urls><url>. CWE emphasizes areas that have a high proportion of animals with restricted ranges, but not necessarily high species richness. We calculated CWE separately for reptiles and amphibians using SMDtoolbox v1 (Brown in review). Generalized Dissimilarity ModelingGeneralized Dissimilarity Modeling (GDM) is a statistical technique extended from matrix regressions designed to accommodate nonlinear data commonly encountered in ecological studies ADDIN EN.CITE <EndNote><Cite><Author>Ferrier</Author><Year>2007</Year><RecNum>478</RecNum><DisplayText><style face="superscript">38</style></DisplayText><record><rec-number>478</rec-number><foreign-keys><key app="EN" db-id="29e52v5fndvsw7es5vbp9v5wva5xrpxxa95e" timestamp="1384552403">478</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Ferrier, Simon</author><author>Manion, Glenn</author><author>Elith, Jane</author><author>Richardson, Karen</author></authors></contributors><titles><title>Using generalized dissimilarity modelling to analyse and predict patterns of beta diversity in regional biodiversity assessment</title><secondary-title>Diversity and Distributions</secondary-title></titles><periodical><full-title>Diversity and Distributions</full-title></periodical><pages>252-264</pages><volume>13</volume><number>3</number><dates><year>2007</year><pub-dates><date>May</date></pub-dates></dates><isbn>1366-9516</isbn><accession-num>WOS:000245812100002</accession-num><urls><related-urls><url>&lt;Go to ISI&gt;://WOS:000245812100002</url></related-urls></urls><electronic-resource-num>10.1111/j.1472-4642.2007.00341.x</electronic-resource-num></record></Cite></EndNote>38. One use of GDM is to analyze and predict spatial patterns of turnover in community composition across large areas. In short, a GDM is fitted to available biological data (the absence or presence of species at each site and environmental and geographic data) then compositional dissimilarity is predicted at unsampled localities throughout the landscape based on environmental and geographic data in the model. The result is a matrix of predicted compositional dissimilarities (PCD) between pairs of locations throughout the focal landscape. To visualize the PCD, multidimensional scaling was applied, reducing the data to three ordination axes, and in a GIS each axis was assigned a separate RGB color (red, green or blue). Due to computation limitations associated with pairwise comparisons of large datasets, we could not predict composition dissimilarities among all sites in our high resolution Madagascar dataset. To address this, we randomly sampled 2500 points throughout Madagascar from a ca. 10 km2 grid. We then measured the absence or presence of each of the 679 species at each locality. We used the same high resolution environmental and geography data used in the SDM. These 23 layers were reduced to nine vectors in a principal component analyses which represented 99.4% of the variation of the original data. These data were sampled at the same 2500 localities. Both data (species presence and environmental data) were input into a generalized dissimilarity model using the R package: GDM R distribution pack v1.1 (.au/gdm/GDM_R_Distribution_Pack_V1.1.zip). We then extrapolated the GDM into the high resolution climate dataset by assigning ordination scores using k-nearest neighbor classification (k=3, numeric Manhattan distance), calculating each ordination axes independently ADDIN EN.CITE <EndNote><Cite><Author>Ferrier</Author><Year>2007</Year><RecNum>478</RecNum><DisplayText><style face="superscript">38</style></DisplayText><record><rec-number>478</rec-number><foreign-keys><key app="EN" db-id="29e52v5fndvsw7es5vbp9v5wva5xrpxxa95e" timestamp="1384552403">478</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Ferrier, Simon</author><author>Manion, Glenn</author><author>Elith, Jane</author><author>Richardson, Karen</author></authors></contributors><titles><title>Using generalized dissimilarity modelling to analyse and predict patterns of beta diversity in regional biodiversity assessment</title><secondary-title>Diversity and Distributions</secondary-title></titles><periodical><full-title>Diversity and Distributions</full-title></periodical><pages>252-264</pages><volume>13</volume><number>3</number><dates><year>2007</year><pub-dates><date>May</date></pub-dates></dates><isbn>1366-9516</isbn><accession-num>WOS:000245812100002</accession-num><urls><related-urls><url>&lt;Go to ISI&gt;://WOS:000245812100002</url></related-urls></urls><electronic-resource-num>10.1111/j.1472-4642.2007.00341.x</electronic-resource-num></record></Cite></EndNote>38. The continuous GDM was transformed into a model with four major classes, and each of these was then classified separately into 3-5 minor classes. The numbers of major and minor classes were based on hierarchical cluster analyses in in SPSS v19 ADDIN EN.CITE <EndNote><Cite><Author>Corporation</Author><Year>2010 </Year><RecNum>536</RecNum><DisplayText><style face="superscript">64</style></DisplayText><record><rec-number>536</rec-number><foreign-keys><key app="EN" db-id="29e52v5fndvsw7es5vbp9v5wva5xrpxxa95e" timestamp="1384719075">536</key></foreign-keys><ref-type name="Computer Program">9</ref-type><contributors><authors><author>IBM Corporation </author></authors></contributors><titles><title>IBM SPSS Statistics for Windows</title></titles><edition>19.0</edition><dates><year>2010</year></dates><pub-location> Armonk, NY</pub-location><publisher>IBM Corporation</publisher><urls></urls></record></Cite></EndNote>64 using a “bottom up” approach. The number of classes equaled the number of dendrogram nodes with relative distances (scaled from 0-1) at 0.71 and 0.63 for major and minor groups, respectively. The distance cut off can be somewhat arbitrary, however in our data there were obvious discontinuities (long dendrogram branches between nodes) at these two values. The resulting classified models were interpolated into high resolution climate space using a k-nearest neighbor classification as described above. Biogeography hypotheses We examined which specific spatial predictions for the three biodiversity patterns: species richness, endemism and/or in areas of endemism (AOE- the coincident restrictedness of taxa) in Madagascar could be derived from each of 12 biogeography hypotheses, and then translated these predictions into spatial models in a GIS. In a GIS, spatially explicit predictions of the three biodiversity patterns (species richness, endemism or areas of endemism) were estimated for each biogeography hypothesis. For some of the hypotheses not all three metrics of biodiversity were calculated due to lacking, or incomplete, expectations (e.g. not all hypothesis make predictions about AOE). Because of these incomplete biodiversity pattern predictions, comparisons among hypotheses are statistically non-trivial. This is in part because few diversification hypotheses capture all facets of biodiversity (species richness, endemism, AOE). Further, many estimates of biodiversity patterns rely on components of climate or geography, thus some are based on the same data and are not entirely independent of each other. Each hypothesis was generated at the spatial resolution of 30 arc-seconds (matching the resolution of GDM and species richness estimates, later transformed to 0.91 km2). For the endemism analyses, each biogeography hypothesis was upscaled to match resolution of the endemism analyses by averaging all values encompassed in cell. Spatial Statistics The spatial predictions derived from the various biodiversity hypotheses resulted in either continuous or nominal categorical data. Conducting statistical tests between data types is nontrivial and, in some cases, not logical or impossible. Spatial data are represented in GIS by two different formats: raster and vector. Geospatial raster data are composed of equal sized squares, tessellated in a grid, with each cell representing a value (often continuous data), such as elevation. Spatial vector data (commonly called ‘shapefiles’) can be represented by points, lines, or polygons, such as: localities, roads and countries, respectively. Vector data are non-topological and represent discrete features. They are often used to depict nominal data, where the relationship of data categories to others is unknown or non-linear. Raster data can be converted to vector data (and vice versa) and the data type (i.e. nominal or continuous) may or may not change when converted. For example, in some cases continuous data can be converted to ordered categories (ordinal data) when converted from raster to polygon. However if the same data were converted back to a raster file, it would remain categorical data due to data loss in the first conversion. Regardless of GIS data format, statistical tests need be chosen according to the data types, however GIS data format remain equally important, as often a single data format is required to perform a spatial statistic of interest (i.e. software input limitations). Analyses- Continuous Data To assess a global measurement of correlation between continuous data, we calculated Pearson correlations following the unbiased correlation method of Dutilleul ADDIN EN.CITE <EndNote><Cite><Author>Dutilleul</Author><Year>1993</Year><RecNum>475</RecNum><DisplayText><style face="superscript">40</style></DisplayText><record><rec-number>475</rec-number><foreign-keys><key app="EN" db-id="29e52v5fndvsw7es5vbp9v5wva5xrpxxa95e" timestamp="1384552155">475</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Dutilleul, Pierre</author><author>Clifford, Peter</author><author>Richardson, Sylvia</author><author>Hemon, Denis</author></authors></contributors><titles><title>Modifying the t test for assessing the correlation between two spatial processes</title><secondary-title>Biometrics</secondary-title></titles><periodical><full-title>Biometrics</full-title></periodical><pages>305-314</pages><dates><year>1993</year></dates><isbn>0006-341X</isbn><urls></urls></record></Cite></EndNote>40 and using the software Spatial Analysis in Macroecology ADDIN EN.CITE <EndNote><Cite><Author>Rangel</Author><Year>2010</Year><RecNum>510</RecNum><DisplayText><style face="superscript">65</style></DisplayText><record><rec-number>510</rec-number><foreign-keys><key app="EN" db-id="29e52v5fndvsw7es5vbp9v5wva5xrpxxa95e" timestamp="1384554390">510</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Rangel, Thiago F.</author><author>Diniz-Filho, Jose Alexandre F.</author><author>Bini, Luis Mauricio</author></authors></contributors><titles><title>SAM: a comprehensive application for Spatial Analysis in Macroecology</title><secondary-title>Ecography</secondary-title></titles><periodical><full-title>Ecography</full-title></periodical><pages>46-50</pages><volume>33</volume><number>1</number><dates><year>2010</year><pub-dates><date>Feb</date></pub-dates></dates><isbn>0906-7590</isbn><accession-num>WOS:000275205200004</accession-num><urls><related-urls><url>&lt;Go to ISI&gt;://WOS:000275205200004</url></related-urls></urls><electronic-resource-num>10.1111/j.1600-0587.2009.06299.x</electronic-resource-num></record></Cite></EndNote>65. Analyses- Nominal Categorical Data Comparisons of nominal categorical spatial data (i.e. AOE predictions compared to classified GDM) focused on the spatial distributions of the borders between the subunits. We used the following methods to measure similarities and significance: (1) border overlap, and (2) Pearson correlation coefficients (r) with Dutilleul’s spatial correlation (see above). (1) Border overlap was calculated by sampling the landscape at 1 km resolution for the presence of a border. If present, a point was placed. We then measured the spatial overlap of the sampled borders of two landscapes. In all analyses, a 10 km buffer was applied to the overlap calculation, and points datasets that overlap by 10km or less are were considered overlapping boundaries. To account for differences in the level of subdivision of layers, overlap was converted to a percentage and averaged for both layers being compared. Country outline was excluded from all comparisons and thus, only intra-country boundaries were compared. (2) To assess global correlation between two polygon shapefiles, each shapefile was converted to a distance raster, measuring the closest distance from any point in the landscape to a boundary. Using these layers we measured a Pearson correlation (unbiased correlation after Dutilleul ADDIN EN.CITE <EndNote><Cite><Author>Dutilleul</Author><Year>1993</Year><RecNum>475</RecNum><DisplayText><style face="superscript">40</style></DisplayText><record><rec-number>475</rec-number><foreign-keys><key app="EN" db-id="29e52v5fndvsw7es5vbp9v5wva5xrpxxa95e" timestamp="1384552155">475</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Dutilleul, Pierre</author><author>Clifford, Peter</author><author>Richardson, Sylvia</author><author>Hemon, Denis</author></authors></contributors><titles><title>Modifying the t test for assessing the correlation between two spatial processes</title><secondary-title>Biometrics</secondary-title></titles><periodical><full-title>Biometrics</full-title></periodical><pages>305-314</pages><dates><year>1993</year></dates><isbn>0006-341X</isbn><urls></urls></record></Cite></EndNote>40), where high correlation coefficients represent two landscapes that have congruent areas that are isolated from boundaries and others congruent areas that are adjacent to boundaries. Each distance landscape was evenly sampled by 2000 points and correlations were assessed on the values of these points. Analyses- Mixed Models of Continuous Data To determine the influence of each biogeography hypothesis in predicting the observed biodiversity patterns, we integrated all continuous biogeography hypotheses into a single mixed conditional autoregression model (CAR) using the software Spatial Analysis in Macroecology ADDIN EN.CITE <EndNote><Cite><Author>Rangel</Author><Year>2010</Year><RecNum>510</RecNum><DisplayText><style face="superscript">65</style></DisplayText><record><rec-number>510</rec-number><foreign-keys><key app="EN" db-id="29e52v5fndvsw7es5vbp9v5wva5xrpxxa95e" timestamp="1384554390">510</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Rangel, Thiago F.</author><author>Diniz-Filho, Jose Alexandre F.</author><author>Bini, Luis Mauricio</author></authors></contributors><titles><title>SAM: a comprehensive application for Spatial Analysis in Macroecology</title><secondary-title>Ecography</secondary-title></titles><periodical><full-title>Ecography</full-title></periodical><pages>46-50</pages><volume>33</volume><number>1</number><dates><year>2010</year><pub-dates><date>Feb</date></pub-dates></dates><isbn>0906-7590</isbn><accession-num>WOS:000275205200004</accession-num><urls><related-urls><url>&lt;Go to ISI&gt;://WOS:000275205200004</url></related-urls></urls><electronic-resource-num>10.1111/j.1600-0587.2009.06299.x</electronic-resource-num></record></Cite></EndNote>65. To normalize the predictor variables, Box-Cox transformations (Box and Cox 1964) were performed. The lambda parameter was estimated by maximizing the log-likelihood profile in R package GeoR ADDIN EN.CITE <EndNote><Cite><Author>Diggle</Author><Year> 2007</Year><RecNum>530</RecNum><DisplayText><style face="superscript">47</style></DisplayText><record><rec-number>530</rec-number><foreign-keys><key app="EN" db-id="29e52v5fndvsw7es5vbp9v5wva5xrpxxa95e" timestamp="1384718228">530</key></foreign-keys><ref-type name="Book">6</ref-type><contributors><authors><author>Diggle, P.J.</author><author>Ribeiro, P.J. Jr.</author></authors></contributors><titles><title>Model-based Geostatistics</title></titles><dates><year> 2007</year></dates><pub-location>New York, USA</pub-location><publisher>Springer</publisher><urls></urls></record></Cite></EndNote>47. A Gabriel connection matrix was used to describe the spatial relationship among sample points ADDIN EN.CITE <EndNote><Cite><Author>Legendre</Author><Year> 1998</Year><RecNum>538</RecNum><DisplayText><style face="superscript">66</style></DisplayText><record><rec-number>538</rec-number><foreign-keys><key app="EN" db-id="29e52v5fndvsw7es5vbp9v5wva5xrpxxa95e" timestamp="1384719371">538</key></foreign-keys><ref-type name="Book">6</ref-type><contributors><authors><author>Legendre, P.</author><author>Legendre, L.</author></authors></contributors><titles><title>Numerical ecology</title></titles><volume>2nd </volume><dates><year> 1998</year></dates><publisher>Elsevier</publisher><urls></urls><language>English</language></record></Cite></EndNote>66. Using Gabriel networks, short connections between neighboring points, is preferable (i.e. more conservative ADDIN EN.CITE <EndNote><Cite><Author>Griffith</Author><Year>1996</Year><RecNum>534</RecNum><DisplayText><style face="superscript">67</style></DisplayText><record><rec-number>534</rec-number><foreign-keys><key app="EN" db-id="29e52v5fndvsw7es5vbp9v5wva5xrpxxa95e" timestamp="1384718755">534</key></foreign-keys><ref-type name="Book Section">5</ref-type><contributors><authors><author>Griffith, D.A.</author></authors><secondary-authors><author>Arlinghaus, S. L.</author></secondary-authors></contributors><titles><title> Some guidelines for specifying the geographic weights matrix contained in spatial statistical models.</title><secondary-title>Practical handbook of spatial statistics</secondary-title></titles><pages>65-82</pages><dates><year>1996</year></dates><publisher>CRC Press</publisher><urls></urls></record></Cite></EndNote>67) than using inverse-decaying distances because in most empirical datasets the residual spatial autocorrelation tends to be stronger at smaller distance classesPEVuZE5vdGU+PENpdGU+PEF1dGhvcj5CaW5pPC9BdXRob3I+PFllYXI+MjAwOTwvWWVhcj48UmVj

TnVtPjQ2ODwvUmVjTnVtPjxEaXNwbGF5VGV4dD48c3R5bGUgZmFjZT0ic3VwZXJzY3JpcHQiPjY4

PC9zdHlsZT48L0Rpc3BsYXlUZXh0PjxyZWNvcmQ+PHJlYy1udW1iZXI+NDY4PC9yZWMtbnVtYmVy

Pjxmb3JlaWduLWtleXM+PGtleSBhcHA9IkVOIiBkYi1pZD0iMjllNTJ2NWZuZHZzdzdlczV2YnA5

djV3dmE1eHJweHhhOTVlIiB0aW1lc3RhbXA9IjEzODQ1NTE1NDkiPjQ2ODwva2V5PjwvZm9yZWln

bi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJKb3VybmFsIEFydGljbGUiPjE3PC9yZWYtdHlwZT48Y29u

dHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+QmluaSwgTC4gTWF1cmljaW88L2F1dGhvcj48YXV0

aG9yPkRpbml6LUZpbGhvLCBKLiBBbGV4YW5kcmUgRi48L2F1dGhvcj48YXV0aG9yPlJhbmdlbCwg

VGhpYWdvIEYuIEwuIFYuIEIuPC9hdXRob3I+PGF1dGhvcj5Ba3JlLCBUaG9tYXMgUy4gQi48L2F1

dGhvcj48YXV0aG9yPkFsYmFsYWRlam8sIFJhZmFlbCBHLjwvYXV0aG9yPjxhdXRob3I+QWxidXF1

ZXJxdWUsIEZhYmlvIFMuPC9hdXRob3I+PGF1dGhvcj5BcGFyaWNpbywgQWJlbGFyZG88L2F1dGhv

cj48YXV0aG9yPkFyYXVqbywgTWlndWVsIEIuPC9hdXRob3I+PGF1dGhvcj5CYXNlbGdhLCBBbmRy

ZXM8L2F1dGhvcj48YXV0aG9yPkJlY2ssIEphbjwvYXV0aG9yPjxhdXRob3I+SXNhYmVsIEJlbGxv

Y3EsIE0uPC9hdXRob3I+PGF1dGhvcj5Cb2VobmluZy1HYWVzZSwgS2F0cmluPC9hdXRob3I+PGF1

dGhvcj5Cb3JnZXMsIFBhdWxvIEEuIFYuPC9hdXRob3I+PGF1dGhvcj5DYXN0cm8tUGFyZ2EsIElz

YWJlbDwvYXV0aG9yPjxhdXRob3I+Q2hleSwgVnVuIEtoZW48L2F1dGhvcj48YXV0aG9yPkNob3du

LCBTdGV2ZW4gTC48L2F1dGhvcj48YXV0aG9yPmRlIE1hcmNvLCBQYXVsbywgSnIuPC9hdXRob3I+

PGF1dGhvcj5Eb2JraW4sIERhdmlkIFMuPC9hdXRob3I+PGF1dGhvcj5GZXJyZXItQ2FzdGFuLCBE

b2xvcmVzPC9hdXRob3I+PGF1dGhvcj5GaWVsZCwgUmljaGFyZDwvYXV0aG9yPjxhdXRob3I+Rmls

bG95LCBKdWxpZXRhPC9hdXRob3I+PGF1dGhvcj5GbGVpc2htYW4sIEVyaWNhPC9hdXRob3I+PGF1

dGhvcj5Hb21leiwgSm9zZSBGLjwvYXV0aG9yPjxhdXRob3I+SG9ydGFsLCBKb2FxdWluPC9hdXRo

b3I+PGF1dGhvcj5JdmVyc29uLCBKb2huIEIuPC9hdXRob3I+PGF1dGhvcj5LZXJyLCBKZXJlbXkg

VC48L2F1dGhvcj48YXV0aG9yPktpc3NsaW5nLCBXLiBEYW5pZWw8L2F1dGhvcj48YXV0aG9yPktp

dGNoaW5nLCBJYW4gSi48L2F1dGhvcj48YXV0aG9yPkxlb24tQ29ydGVzLCBKb3JnZSBMLjwvYXV0

aG9yPjxhdXRob3I+TG9ibywgSm9yZ2UgTS48L2F1dGhvcj48YXV0aG9yPk1vbnRveWEsIERhbmll

bDwvYXV0aG9yPjxhdXRob3I+TW9yYWxlcy1DYXN0aWxsYSwgSWduYWNpbzwvYXV0aG9yPjxhdXRo

b3I+TW9yZW5vLCBKdWFuIEMuPC9hdXRob3I+PGF1dGhvcj5PYmVyZG9yZmYsIFRoaWVycnk8L2F1

dGhvcj48YXV0aG9yPk9sYWxsYS1UYXJyYWdhLCBNaWd1ZWwgQS48L2F1dGhvcj48YXV0aG9yPlBh

dXNhcywgSnVsaSBHLjwvYXV0aG9yPjxhdXRob3I+UWlhbiwgSG9uZzwvYXV0aG9yPjxhdXRob3I+

UmFoYmVrLCBDYXJzdGVuPC9hdXRob3I+PGF1dGhvcj5Sb2RyaWd1ZXosIE1pZ3VlbCBBLjwvYXV0

aG9yPjxhdXRob3I+UnVlZGEsIE1hcnRhPC9hdXRob3I+PGF1dGhvcj5SdWdnaWVybywgQWRyaWFu

YTwvYXV0aG9yPjxhdXRob3I+U2Fja21hbm4sIFBhdWxhPC9hdXRob3I+PGF1dGhvcj5TYW5kZXJz

LCBOYXRoYW4gSi48L2F1dGhvcj48YXV0aG9yPlRlcnJpYmlsZSwgTGV2aSBDYXJpbmE8L2F1dGhv

cj48YXV0aG9yPlZldGFhcywgT2xlIFIuPC9hdXRob3I+PGF1dGhvcj5IYXdraW5zLCBCcmFkZm9y

ZCBBLjwvYXV0aG9yPjwvYXV0aG9ycz48L2NvbnRyaWJ1dG9ycz48dGl0bGVzPjx0aXRsZT5Db2Vm

ZmljaWVudCBzaGlmdHMgaW4gZ2VvZ3JhcGhpY2FsIGVjb2xvZ3k6IGFuIGVtcGlyaWNhbCBldmFs

dWF0aW9uIG9mIHNwYXRpYWwgYW5kIG5vbi1zcGF0aWFsIHJlZ3Jlc3Npb248L3RpdGxlPjxzZWNv

bmRhcnktdGl0bGU+RWNvZ3JhcGh5PC9zZWNvbmRhcnktdGl0bGU+PC90aXRsZXM+PHBlcmlvZGlj

YWw+PGZ1bGwtdGl0bGU+RWNvZ3JhcGh5PC9mdWxsLXRpdGxlPjwvcGVyaW9kaWNhbD48cGFnZXM+

MTkzLTIwNDwvcGFnZXM+PHZvbHVtZT4zMjwvdm9sdW1lPjxudW1iZXI+MjwvbnVtYmVyPjxkYXRl

cz48eWVhcj4yMDA5PC95ZWFyPjxwdWItZGF0ZXM+PGRhdGU+QXByPC9kYXRlPjwvcHViLWRhdGVz

PjwvZGF0ZXM+PGlzYm4+MDkwNi03NTkwPC9pc2JuPjxhY2Nlc3Npb24tbnVtPldPUzowMDAyNjYw

MTU2MDAwMDE8L2FjY2Vzc2lvbi1udW0+PHVybHM+PHJlbGF0ZWQtdXJscz48dXJsPiZsdDtHbyB0

byBJU0kmZ3Q7Oi8vV09TOjAwMDI2NjAxNTYwMDAwMTwvdXJsPjwvcmVsYXRlZC11cmxzPjwvdXJs

cz48ZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+MTAuMTExMS9qLjE2MDAtMDU4Ny4yMDA5LjA1NzE3

Lng8L2VsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjwvcmVjb3JkPjwvQ2l0ZT48L0VuZE5vdGU+AG==

ADDIN EN.CITE PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5CaW5pPC9BdXRob3I+PFllYXI+MjAwOTwvWWVhcj48UmVj

TnVtPjQ2ODwvUmVjTnVtPjxEaXNwbGF5VGV4dD48c3R5bGUgZmFjZT0ic3VwZXJzY3JpcHQiPjY4

PC9zdHlsZT48L0Rpc3BsYXlUZXh0PjxyZWNvcmQ+PHJlYy1udW1iZXI+NDY4PC9yZWMtbnVtYmVy

Pjxmb3JlaWduLWtleXM+PGtleSBhcHA9IkVOIiBkYi1pZD0iMjllNTJ2NWZuZHZzdzdlczV2YnA5

djV3dmE1eHJweHhhOTVlIiB0aW1lc3RhbXA9IjEzODQ1NTE1NDkiPjQ2ODwva2V5PjwvZm9yZWln

bi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJKb3VybmFsIEFydGljbGUiPjE3PC9yZWYtdHlwZT48Y29u

dHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+QmluaSwgTC4gTWF1cmljaW88L2F1dGhvcj48YXV0

aG9yPkRpbml6LUZpbGhvLCBKLiBBbGV4YW5kcmUgRi48L2F1dGhvcj48YXV0aG9yPlJhbmdlbCwg

VGhpYWdvIEYuIEwuIFYuIEIuPC9hdXRob3I+PGF1dGhvcj5Ba3JlLCBUaG9tYXMgUy4gQi48L2F1

dGhvcj48YXV0aG9yPkFsYmFsYWRlam8sIFJhZmFlbCBHLjwvYXV0aG9yPjxhdXRob3I+QWxidXF1

ZXJxdWUsIEZhYmlvIFMuPC9hdXRob3I+PGF1dGhvcj5BcGFyaWNpbywgQWJlbGFyZG88L2F1dGhv

cj48YXV0aG9yPkFyYXVqbywgTWlndWVsIEIuPC9hdXRob3I+PGF1dGhvcj5CYXNlbGdhLCBBbmRy

ZXM8L2F1dGhvcj48YXV0aG9yPkJlY2ssIEphbjwvYXV0aG9yPjxhdXRob3I+SXNhYmVsIEJlbGxv

Y3EsIE0uPC9hdXRob3I+PGF1dGhvcj5Cb2VobmluZy1HYWVzZSwgS2F0cmluPC9hdXRob3I+PGF1

dGhvcj5Cb3JnZXMsIFBhdWxvIEEuIFYuPC9hdXRob3I+PGF1dGhvcj5DYXN0cm8tUGFyZ2EsIElz

YWJlbDwvYXV0aG9yPjxhdXRob3I+Q2hleSwgVnVuIEtoZW48L2F1dGhvcj48YXV0aG9yPkNob3du

LCBTdGV2ZW4gTC48L2F1dGhvcj48YXV0aG9yPmRlIE1hcmNvLCBQYXVsbywgSnIuPC9hdXRob3I+

PGF1dGhvcj5Eb2JraW4sIERhdmlkIFMuPC9hdXRob3I+PGF1dGhvcj5GZXJyZXItQ2FzdGFuLCBE

b2xvcmVzPC9hdXRob3I+PGF1dGhvcj5GaWVsZCwgUmljaGFyZDwvYXV0aG9yPjxhdXRob3I+Rmls

bG95LCBKdWxpZXRhPC9hdXRob3I+PGF1dGhvcj5GbGVpc2htYW4sIEVyaWNhPC9hdXRob3I+PGF1

dGhvcj5Hb21leiwgSm9zZSBGLjwvYXV0aG9yPjxhdXRob3I+SG9ydGFsLCBKb2FxdWluPC9hdXRo

b3I+PGF1dGhvcj5JdmVyc29uLCBKb2huIEIuPC9hdXRob3I+PGF1dGhvcj5LZXJyLCBKZXJlbXkg

VC48L2F1dGhvcj48YXV0aG9yPktpc3NsaW5nLCBXLiBEYW5pZWw8L2F1dGhvcj48YXV0aG9yPktp

dGNoaW5nLCBJYW4gSi48L2F1dGhvcj48YXV0aG9yPkxlb24tQ29ydGVzLCBKb3JnZSBMLjwvYXV0

aG9yPjxhdXRob3I+TG9ibywgSm9yZ2UgTS48L2F1dGhvcj48YXV0aG9yPk1vbnRveWEsIERhbmll

bDwvYXV0aG9yPjxhdXRob3I+TW9yYWxlcy1DYXN0aWxsYSwgSWduYWNpbzwvYXV0aG9yPjxhdXRo

b3I+TW9yZW5vLCBKdWFuIEMuPC9hdXRob3I+PGF1dGhvcj5PYmVyZG9yZmYsIFRoaWVycnk8L2F1

dGhvcj48YXV0aG9yPk9sYWxsYS1UYXJyYWdhLCBNaWd1ZWwgQS48L2F1dGhvcj48YXV0aG9yPlBh

dXNhcywgSnVsaSBHLjwvYXV0aG9yPjxhdXRob3I+UWlhbiwgSG9uZzwvYXV0aG9yPjxhdXRob3I+

UmFoYmVrLCBDYXJzdGVuPC9hdXRob3I+PGF1dGhvcj5Sb2RyaWd1ZXosIE1pZ3VlbCBBLjwvYXV0

aG9yPjxhdXRob3I+UnVlZGEsIE1hcnRhPC9hdXRob3I+PGF1dGhvcj5SdWdnaWVybywgQWRyaWFu

YTwvYXV0aG9yPjxhdXRob3I+U2Fja21hbm4sIFBhdWxhPC9hdXRob3I+PGF1dGhvcj5TYW5kZXJz

LCBOYXRoYW4gSi48L2F1dGhvcj48YXV0aG9yPlRlcnJpYmlsZSwgTGV2aSBDYXJpbmE8L2F1dGhv

cj48YXV0aG9yPlZldGFhcywgT2xlIFIuPC9hdXRob3I+PGF1dGhvcj5IYXdraW5zLCBCcmFkZm9y

ZCBBLjwvYXV0aG9yPjwvYXV0aG9ycz48L2NvbnRyaWJ1dG9ycz48dGl0bGVzPjx0aXRsZT5Db2Vm

ZmljaWVudCBzaGlmdHMgaW4gZ2VvZ3JhcGhpY2FsIGVjb2xvZ3k6IGFuIGVtcGlyaWNhbCBldmFs

dWF0aW9uIG9mIHNwYXRpYWwgYW5kIG5vbi1zcGF0aWFsIHJlZ3Jlc3Npb248L3RpdGxlPjxzZWNv

bmRhcnktdGl0bGU+RWNvZ3JhcGh5PC9zZWNvbmRhcnktdGl0bGU+PC90aXRsZXM+PHBlcmlvZGlj

YWw+PGZ1bGwtdGl0bGU+RWNvZ3JhcGh5PC9mdWxsLXRpdGxlPjwvcGVyaW9kaWNhbD48cGFnZXM+

MTkzLTIwNDwvcGFnZXM+PHZvbHVtZT4zMjwvdm9sdW1lPjxudW1iZXI+MjwvbnVtYmVyPjxkYXRl

cz48eWVhcj4yMDA5PC95ZWFyPjxwdWItZGF0ZXM+PGRhdGU+QXByPC9kYXRlPjwvcHViLWRhdGVz

PjwvZGF0ZXM+PGlzYm4+MDkwNi03NTkwPC9pc2JuPjxhY2Nlc3Npb24tbnVtPldPUzowMDAyNjYw

MTU2MDAwMDE8L2FjY2Vzc2lvbi1udW0+PHVybHM+PHJlbGF0ZWQtdXJscz48dXJsPiZsdDtHbyB0

byBJU0kmZ3Q7Oi8vV09TOjAwMDI2NjAxNTYwMDAwMTwvdXJsPjwvcmVsYXRlZC11cmxzPjwvdXJs

cz48ZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+MTAuMTExMS9qLjE2MDAtMDU4Ny4yMDA5LjA1NzE3

Lng8L2VsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPjwvcmVjb3JkPjwvQ2l0ZT48L0VuZE5vdGU+AG==

ADDIN EN.CITE.DATA 68. The main goal of our mixed spatial analyses were to determine the combination of biogeography hypotheses that best predict the observed biodiversity patterns. If each explanatory variable was incorporated natively, due to considerable multi-colinearity, often only a few variables would end up contributing to a majority of the model. To estimate the true contribution of each hypothesis in context of a mixed model (even if highly correlated to others), we developed a novel approach that removes colinearity from the response variables (but in the process explicit variable identity is temporarily lost). The transformed response variables are then run in a CAR analysis and the resulting standardized model contributions are then transformed back into original response variable identities; reflecting the relative contribution of each in the model. This process is casually referenced here as Orthogonally Transformed Beta Coefficients (OTBCs). Orthogonally Transformed Beta Coefficients Each biogeography hypothesis is standardized from zero to one. This ensured that the component loadings reflected the relative contribution of each biogeography hypothesis. A principal component analysis was performed on the standardized biogeography hypotheses using a covariance matrix. All the resulting principal components (PCs) were extracted and then loaded as explanatory variables in the CAR model. The CAR analyses were run iteratively, starting with all PCs as response variables and then excluding each PC that did not contribute significantly to the model (α = 0.05) until the final model included only PCs that contributed significantly to the model. Because each PC represented a linearly uncorrelated variable, only the relevant, independent data were incorporated into the final CAR model. The resulting standardized beta coefficients (βj from the CAR analyses, Fig. 1 and Equation 1) were then multiplied by the value of the corresponding component loadings (αij from the PCA, see Equation 1). The absolute value of the product reflects the relative contributions of each biogeography hypothesis to each PC, which are weighted by the PC’s contribution in the CAR model (herein termed the weighted component loadings or WCLif , Equation 1). The weighted component loadings (WCLif, Equation 1) were then summed for each biogeography hypothesis across all PCs (Hi) and depict the contributions of each hypothesis in the CAR model. The Hi value was then converted to percentages (HPi) to allow comparison among all CAR analyses. A positive or negative correlation was determined for each biogeography hypothesis by running a separate CAR analysis using the raw biogeography variables as a single response variable (all other parameters were matched). Equation 1 WCL ij= βj ×αij Hi=iWCLij HAll=ijWCLij HPi= HiHall*100 AcknowledgmentsWe are grateful to numerous friends and colleagues who provided invaluable assistance during fieldwork and previous discussions of Madagascar's biogeography, we would like to particularly thank Franco Andreone, Parfait Bora, Christopher Blair, Lauren Chan, Sebastian Gehring, Frank Glaw, Steve M. Goodman, J?rn K?hler, Peter Larsen, David C. Lees, Brice P. Noonan, Maciej Pabijan, Ted Townsend, Krystal Tolley, Roger Daniel Randrianiaina Fanomezana Ratsoavina, David R. Vieites, and Katharina C. Wollenberg. Fieldwork of MV was funded by the Volkswagen Foundation. JLB was supported by the National Science Foundation under Grant No. 0905905 and by Duke University start-up funds to ADY.References ADDIN EN.REFLIST 1Kent, M. Biogeography and macroecology. Progress in Physical Geography 29, 256-264, doi:10.1191/0309133305pp447pr (2005).2Beck, J. et al. What's on the horizon for macroecology? Ecography 35, 673-683, doi:10.1111/j.1600-0587.2012.07364.x (2012).3Whittaker, R. H. Vegetation of the Siskiyou Mountains, Oregon and California. Ecol Monogr 30, 279-338, doi:10.2307/1943563 (1960).4Whittaker, R. H. Evolution and Measurement of Species Diversity. Taxon 21, 213-251, doi:10.2307/1218190 (1972).5Williams, P. H. Mapping variations in the strength and breadth of biogeographic transition zones using species turnover. Proceedings of the Royal Society B-Biological Sciences 263, 579-588, doi:10.1098/rspb.1996.0087 (1996).6Kreft, H. & Jetz, W. A framework for delineating biogeographical regions based on species distributions. Journal of Biogeography 37, 2029-2053, doi:10.1111/j.1365-2699.2010.02375.x (2010).7Holt, B. G. et al. An Update of Wallace's Zoogeographic Regions of the World. Science 339, 74-78, doi:10.1126/science.1228282 (2013).8Kremen, C. et al. Aligning conservation priorities across taxa in Madagascar with high-resolution planning tools. Science 320, 222-226, doi:10.1126/science.1155193 (2008).9Hoffmann, M. et al. The Impact of Conservation on the Status of the World's Vertebrates. Science 330, 1503-1509, doi:10.1126/science.1194442 (2010).10Platnick, N. I. On areas of endemism. Australian Systematic Botany 4, 2pp.-2pp. (1991).11Harold, A. S. & Mooi, R. D. Areas of endemism: definition and recognition criteria. Systematic Biology 43, 261-266, doi:10.2307/2413466 (1994).12Crisp, M. D., Laffan, S., Linder, H. P. & Monro, A. Endemism in the Australian flora. Journal of Biogeography 28, 183-198 (2001).13Terborgh, J. & Winter, B. A method for siting parks and reserves with special reference to Columbia and Ecuador. Biological Conservation 27, 45-58 (1983).14Ackery, P. R. & Vane-Wright, R. I. Milkweed butterflies: Their cladistics and biology. (British Museum of Natural History and Cornell University Press, 1984).15Hawkins, B. A. et al. Energy, water, and broad-scale geographic patterns of species richness. Ecology 84, 3105-3117, doi:10.1890/03-8006 (2003).16Jetz, W., Rahbek, C. & Colwell, R. K. The coincidence of rarity and richness and the potential signature of history in centres of endemism. Ecology Letters 7, 1180-1191, doi:10.1111/j.1461-0248.2004.00678.x (2004).17Carnaval, A. C., Hickerson, M. J., Haddad, C. F. B., Rodrigues, M. T. & Moritz, C. Stability Predicts Genetic Diversity in the Brazilian Atlantic Forest Hotspot. Science 323, 785-789, doi:10.1126/science.1166955 (2009).18Kozak, K. H., Graham, C. H. & Wiens, J. J. Integrating GIS-based environmental data into evolutionary biology. Trends in Ecology & Evolution 23, 141-148, doi:10.1016/j.tree.2008.02.001 (2008).19Lamoreux, J. F. et al. Global tests of biodiversity concordance and the importance of endemism. Nature 440, 212-214, doi:10.1038/nature04291 (2006).20Linder, H. P. et al. The partitioning of Africa: statistically defined biogeographical regions in sub-Saharan Africa. Journal of Biogeography 39, 1189-1205, doi:10.1111/j.1365-2699.2012.02728.x (2012).21Olivero, J., Márquez, A. L. & Real, R. Integrating fuzzy logic and statistics to improve the reliable delimitation of biogeographic regions and transition zones. Systematic biology 62, 1-21 (2013).22Graham, C. H., Moritz, C. & Williams, S. E. Habitat history improves prediction of biodiversity in rainforest fauna. Proceedings of the National Academy of Sciences of the United States of America 103, 632-636, doi:10.1073/pnas.0505754103 (2006).23Vences, M., Wollenberg, K. C., Vieites, D. R. & Lees, D. C. Madagascar as a model region of species diversification. Trends in Ecology & Evolution 24, 456-465, doi:10.1016/j.tree.2009.03.011 (2009).24Goodman, S. M. & Benstead, J. P. The natural history of Madagascar. (University of Chicago Press Chicago, 2003).25Yoder, A. D. & Nowak, M. D. Has vicariance or dispersal been the predominant biogeographic force in Madagascar? Only time will tell. Annual Review of Ecology, Evolution, and Systematics, 405-431 (2006).26Crottini, A. et al. Vertebrate time-tree elucidates the biogeographic pattern of a major biotic change around the K-T boundary in Madagascar. Proceedings of the National Academy of Sciences of the United States of America 109, 5358-5363, doi:10.1073/pnas.1112487109 (2012).27Samonds, K. E. et al. Spatial and temporal arrival patterns of Madagascar's vertebrate fauna explained by distance, ocean currents, and ancestor type. Proceedings of the National Academy of Sciences of the United States of America 109, 5352-5357, doi:10.1073/pnas.1113993109 (2012).28Yoder, A. D. et al. A multidimensional approach for detecting species patterns in Malagasy vertebrates. Proceedings of the National Academy of Sciences of the United States of America 102, 6587-6594, doi:10.1073/pnas.0502092102 (2005).29Pastorini, J., Thalmann, U. & Martin, R. D. A molecular approach to comparative phylogeography of extant Malagasy lemurs. Proceedings of the National Academy of Sciences of the United States of America 100, 5879-5884, doi:10.1073/pnas.1031673100 (2003).30Goodman, S. M. & Ganzhorn, J. U. Biogeography of lemurs in the humid forests of Madagascar: the role of elevational distribution and rivers. Journal of Biogeography 31, 47-55, doi:10.1111/j.1365-2699.2004.00953.x (2004).31Yoder, A. D. & Heckman, K. L. Mouse lemur phylogeography revises a model of ecogeographic constraint in Madagascar. (2006).32Dewar, R. E. & Richard, A. F. Evolution in the hypervariable environment of Madagascar. Proceedings of the National Academy of Sciences of the United States of America 104, 13723-13727, doi:10.1073/pnas.0704346104 (2007).33Wilme, L., Goodman, S. M. & Ganzhorn, J. U. Biogeographic evolution of Madagascar's microendemic biota. Science 312, 1063-1065, doi:10.1126/science.1122806 (2006).34Wollenberg, K. C., Vieites, D. R., Glaw, F. & Vences, M. Speciation in little: the role of range and body size in the diversification of Malagasy mantellid frogs. Bmc Evolutionary Biology 11, doi:10.1186/1471-2148-11-217 (2011).35Wollenberg, K. C. et al. Patterns of endemism and species richness in Malagasy cophyline frogs support a key role of mountainous areas for speciation. Evolution; international journal of organic evolution 62, 1890-1907, doi:10.1111/j.1558-5646.2008.00420.x (2008).36Pabijan, M., Wollenberg, K. C. & Vences, M. Small body size increases the regional differentiation of populations of tropical mantellid frogs (Anura: Mantellidae). Journal of evolutionary biology 25, 2310-2324, doi:10.1111/j.1420-9101.2012.02613.x (2012).37Pearson, R. G. & Raxworthy, C. J. The evolution of local endemism in madagascar: watershed versus climatic gradient hypotheses evaluated by null biogeographic models. Evolution; international journal of organic evolution 63, 959-967, doi:10.1111/j.1558-5646.2008.00596.x (2009).38Ferrier, S., Manion, G., Elith, J. & Richardson, K. Using generalized dissimilarity modelling to analyse and predict patterns of beta diversity in regional biodiversity assessment. Diversity and Distributions 13, 252-264, doi:10.1111/j.1472-4642.2007.00341.x (2007).39Allnutt, T. F. et al. A method for quantifying biodiversity loss and its application to a 50-year record of deforestation across Madagascar. Conservation Letters 1, 173-181, doi:10.1111/j.1755-263X.2008.00027.x (2008).40Dutilleul, P., Clifford, P., Richardson, S. & Hemon, D. Modifying the t test for assessing the correlation between two spatial processes. Biometrics, 305-314 (1993).41Townsend, T. M., Vieites, D. R., Glaw, F. & Vences, M. Testing Species-Level Diversification Hypotheses in Madagascar: The Case of Microendemic Brookesia Leaf Chameleons. Systematic Biology 58, 641-656, doi:10.1093/sysbio/syp073 (2009).42Kreft, H. & Jetz, W. Global patterns and determinants of vascular plant diversity. Proceedings of the National Academy of Sciences of the United States of America 104, 5925-5930, doi:10.1073/pnas.0608361104 (2007).43Hoeting, J. A. The importance of accounting for spatial and temporal correlation in analyses of ecological data. Ecological Applications 19, 574-577, doi:10.1890/08-0836.1 (2009).44Ohlemuller, R., Walker, S. & Wilson, J. B. Local vs regional factors as determinants of the invasibility of indigenous forest fragments by alien plant species. Oikos 112, 493-501, doi:10.1111/j.0030-1299.2006.13887.x (2006).45Bacaro, G. & Ricotta, C. A spatially explicit measure of beta diversity. Community Ecology 8, 41-46 (2007).46Bacaro, G. et al. Geostatistical modelling of regional bird species richness: exploring environmental proxies for conservation purpose. Biodiversity and Conservation 20, 1677-1694 (2011).47Diggle, P. J. & Ribeiro, P. J. J. Model-based Geostatistics. (Springer, 2007).48Colwell, R. K. & Lees, D. C. The mid-domain effect: geometric constraints on the geography of species richness. Trends in Ecology & Evolution 15, 70-76, doi:10.1016/s0169-5347(99)01767-x (2000).49Raxworthy, C. J. & Nussbaum, R. A. Systematics, speciation and biogeography of the dwarf chameleons (Brookesia; Reptilia, Squamata, Chamaeleontidae) of northern Madagascar. Journal of Zoology 235, 525-558 (1995).50Angel, F. Les Lézards de Madagascar. (Academie Malgache, 1942).51Humbert, H. Les territoires phytogéographiques de Madagascar. Année Biologique 31, 439–448 (1955).52Glaw, F. & Vences, M. Amphibians and Reptiles of Madagascar. (Vences, M. and Glaw Verlags, F. GbR., 1994).53Schatz, G. E. in Diversity and Endemism in Madagascar (eds W.R. Louren?o & S.M. Goodman) 1–9 (Société de Biogéographie, MNHN, ORSTOM, 2000).54Glaw, F. & Vences, M. Field Guide to the Amphibians and Reptiles of Madagascar. Third Edition edn, (Vences and Glaw Verlag, 2007).55Bush, M. B. Amazonian speciation: a necessarily complex model. Journal of Biogeography 21, 5-17, doi:10.2307/2845600 (1994).56Oneal, E., Otte, D. & Knowles, L. L. Testing for biogeographic mechanisms promoting divergence in Caribbean crickets (genus Amphiacusta). Journal of Biogeography 37, 530-540, doi:10.1111/j.1365-2699.2009.02231.x (2010).57Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecological Modelling 190, 231-259, doi:10.1016/j.ecolmodel.2005.03.026 (2006).58Phillips, S. J. et al. Sample selection bias and presence-only distribution models: implications for background and pseudo-absence data. Ecological Applications 19, 181-197, doi:10.1890/07-2153.1 (2009).59Elith, J. et al. A statistical explanation of MaxEnt for ecologists. Diversity and Distributions 17, 43-57, doi:10.1111/j.1472-4642.2010.00725.x (2011).60Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25, 1965-1978, doi:10.1002/joc.1276 (2005).61Moat, J. & Du Puy, D. (ed Kew Royal Botanic Gardens) (1997).62Jarvis, A., Reuter, H. I., Nelson, A. & Guevara, E. (CGIAR-CSI SRTM 90m Database, 2008).63Williams, P. H. Some properties of rarity scores for site-quality assessment. British Journal of Entomology and Natural History 13, 73-86 (2000).64IBM SPSS Statistics for Windows v. 19.0 (IBM Corporation, Armonk, NY, 2010).65Rangel, T. F., Diniz-Filho, J. A. F. & Bini, L. M. SAM: a comprehensive application for Spatial Analysis in Macroecology. Ecography 33, 46-50, doi:10.1111/j.1600-0587.2009.06299.x (2010).66Legendre, P. & Legendre, L. Numerical ecology. Vol. 2nd (Elsevier, 1998).67Griffith, D. A. in Practical handbook of spatial statistics (ed S. L. Arlinghaus) 65-82 (CRC Press, 1996).68Bini, L. M. et al. Coefficient shifts in geographical ecology: an empirical evaluation of spatial and non-spatial regression. Ecography 32, 193-204, doi:10.1111/j.1600-0587.2009.05717.x (2009).Figure 1. Overview of work protocol and dataflow. Three types of original data were input into the analyses: (1) biogeography hypotheses, (2) geography and climate data and (3) species locality data. These data were used to predict distribution of species, and the distribution models used to calculate biodiversity patterns (species richness, corrected weighted endemism, turnover). We then tested for correlation of these biodiversity patterns with spatial predictions derived from biogeography hypotheses, and used a multivariate model to simultaneously test the influences of these hypotheses on the biodiversity patterns. *The response variables constituted standardized principal components of the raw biogeography hypotheses ** The CAR models were iterated until only response variables that contributed significantly the model were included. Figure 2. Observed Biodiversity Data. Reptile and amphibian species richness (A & E) measures the number of species present. Endemism (B & F), based on a corrected weighted calculation, reflects the proportion of unique species present within certain areas. The generalized dissimiliarity model (GDM) analyzes compositional turnover of communities (here jointly for amphibians and reptiles) and predicts dissimilarity throughout the landscape based on an interpolation based on variation in climate and geographic data. The continuous GDM (G) can then be classified into 4 major and 15 minor areas of endemism (H & C).Figure 3. Explanatory contribution of continuous biogeography hypotheses to a conditional autoregressive spatial model of each observed biodiversity measurements. Only hypotheses contributing >5% are shown; see Supplementary Table S4 for complete and detailed data). Mid-domain: I. latitude, II. longitude, III. distance. Climate-Gradient: I. PC1, II. PC2, III. PC3. Climate-Stability: I. Precipitation Stability, II. Climate Stability (temperature and precipitation). Topography: I. Topographic Heterogeneity, II. Disturbance-vicariance, III. Montane Species Pump. An asterisk marks hypotheses that contributed negatively to the mixed CAR model.Figure 4. Contribution of continuous biogeography hypotheses to a conditional autoregressive spatial model of species richness and endemism for four focal groups. Only hypotheses contributing >5% are shown; see Supplementary Table S4 for complete and detailed data). Mid-domain: I. latitude, II. longitude, III. distance. Climate-Gradient: I. PC1, II. PC2, III. PC3. Climate-Stability: I. Precipitation Stability, II. Climate Stability (temperature and precipitation). Topography: I. Topographic Heterogeneity, II. Disturbance-vicariance, III. Montane Species Pump. An asterisk marks hypotheses that contributed negatively to the mixed CAR model. (1) Brookesia chameleons (number of species = 27, number of original distribution points = 178). (2) Boophis treefrogs (n of spp.= 77, n of pts.=460) (3) Phelsuma day geckos (n of spp.= 28, n of pts.= 304) (4) oplurid iguanas (Oplurus plus the monotypic Chalarodon; n of spp.= 7, n of pts.= 147). Subgroups and colors of pie charts as in Fig. 3. An asterisk marks hypotheses that contributed negatively CAR. For all hypotheses (with exception of the climate-gradient variables) a positive correlation was expected between biodiversity metrics.Table 1. Correlations of nominal biodiversity hypotheses to Generalized Dissimilarity Models (upper: 15-class; lower: 4-class transformation of the original model). The left three columns show calculations based on the percentage of overlapping cells between boundaries. High mean values depict high levels of shared boundaries among GDM and AOE (derived from the respective hypothesis). R-values reflect non-spatial Pearson product-moment correlation coefficients. To assess significance of raster data, we used an unbiased correlation following the method of Dutilleul (1993) that reduces the degrees of freedom according to the level of spatial autocorrelation between the two variables. HypothesisPercent overlapping cells (10km buffer)Correlation to Generalized Dissimilarity Model GDM 15 classesHypothesisMeanrF-statdf p Riverine- Major77.11%35.31%56.21%0.42713.98462.537<.001Riverine- Minor72.43%49.41%60.92%0.50328.59984.415<.001Gradient74.63%67.51%71.07%0.40324.974128.641<.001Watershed 60.14%25.92%43.03%0.2295.887106.8240.017GDM -4100.00%38.71%69.35%0.55126.25760.171<.001Riverine – Refuge71.00%20.69%45.85%0.44011.45047.6930.001GDM- 4 classesHypothesisMeanPearson's rF-statdf p Riverine- Major41.6%40.3%40.9%0.55612.51928.0420.001Riverine- Minor39.4%58.1%48.7%0.5116.34546.550<.001Gradient39.6%69.0%54.3%0.37813.01277.926<.001Watershed 33.2%33.3%33.2%0.2133.77579.7010.056GDM -1552.1%100.0%76.1%0.55126.25760.171<.001Riverine – Refuge30.3%22.1%26.2%0.83752.35522.433<.001SUPPLEMENTARY MATERIALSHypotheses Climate Stability Hypothesis (Fig S2.J)Climate stability is thought to create greater climatic stratification across environmental gradients (Dynesius and Jansson 2000, Jansson and Dynesius 2002). In stable climates, orbitally forced species’ range dynamics (ORD) are low, allowing localized populations to persist, and thus become highly specialized and differentiated. Like the Gradient Hypothesis (following), this model also focuses on bioclimatic disparities, but additionally incorporates climate stability. This hypothesis states that areas of climate stability, particularly those with climatic stratification, should possess higher species richness and endemism. To estimate this model for Madagascar, coliniarity was measured for all BIOCLIM layers (Bio1–19) using a Pearson Coefficient. If R2 values exceeded 0.5, one of the layers was excluded. We preferentially selected layers based on raw data (e.g. selecting mean annual precipitation over seasonality). The following layers were excluded: Bio3, Bio7, Bio9, Bio13–18. For each remaining BIOCLIM layer we calculated the standard deviation of each cell throughout the four time periods for which climate data were available (0 kya, 6kya, 21 kya, 120 kya). The resulting standard deviation of each BIOCLIM layer was standardized to 1 to account for different units in raw data. All standardized stability layers were summed to create the final climate stability layer; with lower values representing higher climate stability through time.Disturbance-Vicariance Hypothesis (Fig S2.I)Under this model, the major factor contributing to diversification was temperature fluctuations (Colinvaux 1993, Bush 1994, Haffer 1997), rather than fluctuations in precipitation and forest fragmentation (as in the preceding Refuge and River hypotheses). This hypothesis states cyclic fluctuations of temperature during the Quaternary caused reoccurring displacement of taxa towards lower and higher altitudes (during cool and warm periods, respectively). Range retractions of taxa into the highlands occasionally resulted in allopatric divergence into new species. The gradual displacement of temperature specialized taxa would cause reoccurring invasions and counter-invasions of heterogeneous landscapes by both montane and lowland taxa. This hypothesis predicts species richness and endemism would be highest in areas of topographic heterogeneity and temperature instability. This hypothesis was generated by measuring colinearity between all BIOCLIM layers corresponding to temperature (Bio1– Bio11, see Climate Stability above for details). The following layers were excluded: Bio3, Bio7 and Bio11. For each remaining BIOCLIM layer we calculated the standard deviation of each cell throughout the four time periods for which climate data were available (0 kya, 6kya, 21 kya, 120 kya). This layer was standardized from 0 to 1 to account for different units between layers. All standardized stability layers were summed to create the final temperature stability layer with lower values representing higher temperature stability. This layer was inverted and multiplied by a standardized version of the final topographic heterogeneity layer (see above). Higher values represented areas with high temperature instability through time and high topographic heterogeneity.Gradient Hypothesis (Fig S1.E)According to the Gradient Hypothesis, diversification of Malagasy taxa was driven by bioclimatic disparities throughout the island (i.e. between the east and west), causing parapatry of populations along environmental gradients. This hypothesis was first formulated by Endler (1982), however more recently it was adapted and formulated in detail for Madagascar by Vences et al. (2010). Vences et al. focused on the climatic stratification longitudinally between the dry west and humid east of Madagascar, terming this species case the Ecogeographic hypothesis. Under the Gradient hypothesis populations adapt to local ecotones, diverging from a generalist ancestor (or one of broader ecological tolerance). Due to local specialization, gene flow within ecological similar sites is higher than those distributed at ecologically different sites across a gradient. The subdivision of populations create a scenario where drift or selection can override gene flow among ecogeographic subpopulations (Fisher 1930) and daughter species occupy separate, adjacent niches. The exact mechanism of speciation is controversial (e.g. prezygotic isolation, behavioral isolation or reproductive barriers) and beyond the focus of this study. This hypothesis invokes no barriers or mechanism of allopatry and predicts species richness and endemism to be highest in areas of high bioclimatic stratification. This GIS prediction was obtained from Pearson & Raxworthy (2009). In our continuous CAR-OBTC analyses, this hypothesis was represented by the first 3 PCs from a PCA on the 19 current BIOCLIM data for Madagascar (Hijmans et al. 2005). Mid-domain Effect Hypothesis (Fig S2. A-C)Initially described to explain latitudinal trends in species richness, this mathematical hypothesis demonstrates that if species’ ranges are distributed randomly between northern and southern geographic limits, the highest overlap of species ranges would be in the middle (Lees 1996, Lees and Colwell 2007). For Madagascar, this hypothesis (in two dimensions) results in increased overlap of species toward the center of country, over the Ankaratra highlands, resulting from the sum of random overlapping species ranges. We explore four variants of this hypothesis: 1 dimension (the mid-domain of latitudinal, altitude or longitudinal gradients) and 2 dimensions, as described above (the mid-domain of both latitudinal and longitudinal gradients). Note the mid-domain of altitude is the same GIS calculation of the Museum hypothesis. Thus, throughout the manuscript this hypothesis is referred to as the Museum hypothesis rather than the mid-domain altitude hypothesis. In one dimension, the latitude hypothesis predicts that species richness would be highest around 18° S, or in two dimensions, centered around 18° S and 46.5° E. The mid-domain hypotheses are included as a null hypothesis for spatial variation in species richness; these hypotheses invoke no barriers or ecological/ habitat heterogeneity and rely solely on the random distribution of species in a defined geographic space. Montane Species Pump Hypothesis (Fig S2.M)This hypothesis predicts that montane regions have higher species richness because of their topographic complexity and climatic zonation - both increase opportunities for allopatric and parapatric speciation (e.g., Moritz et al. 2000; Rahbek and Graves 2001; Hall 2005; Fjeldsa°and Rahbek 2006; Kozak and Wiens 2007). This hypothesis predicts that speciation should be highest in areas of high topographic and climatic heterogeneity. Within those habitats, rates of speciation should be highest in mid-elevations. This hypothesis predicts species richness and endemism would be highest in areas of topographic and climatic heterogeneity.To create a spatially explicit model of this hypothesis we calculated the mean standard deviation of the first three climate PCs (based on Bioclim current data) at ca. 10 km2 square neighborhood of each cell. Each was summed together and then the product was standardized from 0-1. The resulting layer was then multiplied by a standardized (0-1) topographic variation hypothesis. High values depict areas of high topographic and climatic heterogeneity.Museum Hypothesis (Fig S2.D)According to this hypothesis speciation occurred in montane habitats. In the Montane Museum hypothesis, more species exist at intermediate elevation because these elevations were simply occupied the longest, because of this, there has been more time for speciation and the accumulation of species in these habitats when compared to habitats at lower and higher elevations (Stebbins 1974; Stephens and Wiens 2003). This hypothesis predicts levels of endemism and richness will be highest in the middle elevations. Note that in execution, the prediction for this hypothesis is identical to a Mid-domain hypothesis of altitude. The GIS representation of this hypothesis for Madagascar represents the median elevation (378m), where the overlap of species should peak. This elevation was given a value of one and from this elevation, values linearly transitioned to zero at the maximum and minimum elevations.Paleogeographic HypothesisThis hypothesis states that vicariate differentiation of Malagasy lineages is associated with formation of geologic barriers to dispersal. Each hypothesis is specific to the focal paleogeographic event. There are two major classes of geological events that have occurred since the separation from India (ca. 65 MYA). The first, directly a result from separation from India, is the orogeny of eastern escarpment. This hypothesis states that deep lineages, pre-65Mya, should exist between the east and western species. A second, more local barrier is the volcanisms of several regions: Tsaratanana, Manongarivo, Ampasindava (ca. 50 Mya), Ankaratra (phase 1 ca. 28 Mya, phase 2 ca.15 Mya, phase 3 ca. 2 Mya) and Ambre (ca. 2 Mya, Krause 2007). Clades should exhibit breaks around volcanic activity, though given localization of these barriers; biota in most cases should have been able to dispersal around, though perhaps experiencing reduced gene flow. All paleogeographic hypotheses are difficult to test because more strongly than other hypotheses, they are dependent on the location of ancestral populations and the timing of geological events relative to a clade's diversification. Given the variation of ages of origins in Madagascar's vertebrates, it is likely that some clades were affected by most of the major paleogeographical events while others were only affected by some. Because of these factors, it is unlikely that species exhibit congruent biogeographic patterns. Thus in this paper, we were unable to test this hypothesis.Refuge Hypothesis -(Fig S2.D) This hypothesis holds that episodic fragmentation of forests resulted in isolated patches of wet forest and this caused vicariant differentiation between adjacent patches. These transitions were driven by periodic changes (every 20-100 Ky) in insolation associated with Milankovitch cycles (aberrations of the orbit of the earth around the sun due to the slight asymmetrical shape of the earth). Recurrent changes in insolation caused various dry periods followed by humid periods, particularly pronounced at tropical latitudes. The evolutionary consequences of paleoecological changes in climate likely depend on the regional topography, predominant weather patterns and the impact on the ecosystem (for example, a slight reduction in rain may have different biological consequences in a spiny forest versus rainforest). In Amazonia during the late Tertiary and Quaternary during dry climatic periods, it has been argued that extensive humid forests survived due to subtle topographic variation that facilitated rainfall gradients adjacent to the Andes, Guianan highlands, Rondonia and hilly areas east of Pará (Haffer 1969; Vanzolinii1970, 1973; Brown et al., 1974; Prance, 1982, 1996). In addition to changes in insolation associated with Milankovitch cycles, the gradual drifting of Madagascar northward towards the equator likely led to habitat changes, presenting another source of refugial isolation. Thus, it is plausible that refugia persisted and species with narrow ecological niches became isolated and diverged into separate species. To create a continuous spatial representation of this for Madagascar, first colinearity was measured for each BIOCLIM precipitation layer (Bio12 – Bio19) using a Pearson Correlation. If R2 values exceeded 0.5, one of the layers was excluded. This resulted in the exclusion of Bio13, Bio15, Bio16 and Bio17. We preferentially selected layers based on raw data (e.g. selecting mean precipitation over seasonality). For each remaining BIOCLIM layer, we calculated the standard deviation of each cell throughout the four time periods for which climate data were available (0 kya, 6kya, 21 kya, 120 kya). This layer was standardized from 0 to 1 to account for different units/decimal places in raw data between layers. All standardized stability layers were summed to create the final precipitation stability layer with lower values representing higher precipitation stability. Riverine Barrier Hypothesis (Fig S1. A,B). Malagasy rivers are thought to have acted as barriers separating populations, resulting in intra-riverine species and subspecies. As the geology of Madagascar has remained relatively stable since absolute isolation major rivers should have persisted (at least seasonally). Under this hypothesis, we expect vicariate differentiation of Malagasy lineages associated with large tributaries. There have been several criticisms of this hypothesis, such that rivers frequently change course, causing land and its inhabitants to passively transfer across the barrier, rivers cease to act as barriers due to the lack geographic separation at headwaters (Wallace 1852) or temporal fluctuations of climate causing rivers to change in size (e.g. the sizes of any rivers were dramatically reduced during the Pleistocene). To create a spatial prediction for this hypothesis, we selected all major permanent rivers that have headwaters above 1000m and created polygons from the lowland areas between major rivers and 1000m contour line. A second calculation focused on major riverine units composed of areas between rivers with headwaters above 2000m and created biogeographic units from lowland areas between rivers and 1000m contour line.River-Refuge Hypothesis (FigS1.C)The River-Refuge hypothesis, initially described by Haffer (1992, 1993) for the Neotropics, was more recently proposed as a model of Malagasy diversification (Craul et al. 2007). This hypothesis combines aspects of the Riverine Barrier hypothesis and the Refuge hypothesis under which it states that lowland vicariant speciation occurs in refugia separated by broad lowland rivers and by considerable unsuitable terrain in the headwaters. To estimate this model, we combined the Riverine and a binary refuge hypothesis. The continuous refuge layer was converted to a binary model by converting the top quartile to 1 and all other values to 0. To account for differences between precipitation stability in arid areas (versus wet), we excluded areas with less than 50cm in any of the time periods. Areas above 1000m were also excluded. Regions of the Riverine layer and binary refuge layer were then combined into smaller river-refuge subunits.Sanctuary Hypothesis (Fig S2.L)Past climate changes greatly altered the distributions of organisms through time; causing local extinctions, bottlenecks, isolation, range expansion and contraction of populations. Sanctuaries represent specific areas of habitat stability that have remained present through time, differing from refugia (which do not invoke geospatial consistency) and species track suitable habitat across geography (Recuero & García-París 2011). We estimated sanctuaries in Madagascar by calculating SDMs for 453 species (a subset of the GDM dataset, using species with three or more unique occurrence localities). The SDM was projected into three historic time periods: LGM, 120KYA, 6 KYA. All SDMs were converted to binary models using the maximum training sensitivity plus specificity threshold. The maximum training sensitivity plus specificity threshold: 0.080 (SD +-0.047), area: 0.316 (SD +-0.196), training omission: 0.005 (SD +- 0.017), number of training samples (mean: 12.321, max 137, min 3, SD 14.414). For each species, all four binary SDMs were summed. The resulting layer was reclassified so that values of 3 and below were converted to zero and values of 4 were converted to 1. Under this classification, areas where the species was present for all four time periods were considered ‘sanctuaries’. This was repeated for all species and all sanctuaries were summed to estimate areas of higher species richness and ographic Heterogeneity (Fig S2.E)In several studies, the level of topographic variation has been observed to be positively correlated to species richness patterns and centers of endemism (Kerr & Packer 1997; Rahbek and Graves 20001; Jetz & Rahbek 2002; Jetz et al. 2004). To characterize this hypothesis for Madagascar we measured the standard deviation of elevation at ca. 10 km2 of each pixel. Watershed Hypothesis (Fig S1.D)One of the more recent diversification hypotheses is the Watershed hypothesis (Wilmé et al. 2006). According to this model, climatic changes caused retraction of forests to the surrounding major rivers. If the headwaters of adjacent rivers were at lower elevations, the intervening areas between rivers (the watersheds) become arid and forests populations became isolated, serving as areas of speciation. By contrast, if the headwaters of rivers were higher elevations, the watershed served as areas of retreat and forest refugia remained connected among rivers. These watersheds are expected to contain proportionally much lower diversity and endemism. This GIS prediction was obtained from Wilmé et al. (2006). Additional references.Brown Jr., K.S., Sheppard, P.M., Turner, J.R.G. 1974. Quaternary refugia in tropical America: evidence from race formation in Heliconius butterflies. Proc. R. Soc. Lond. B. 187: 369-378.Bush, M.B. 1994. Amazonian speciation: a necessarily complex model. Journal of Biogeography 21::5–17.Colinvaux, P.A. 1993. Pleistocene biogeography and diversity in tropical forests of South America P. Goldblatt (Ed.), Biological Relationships between Africa and South America, Yale University Press, New Haven, CT.Craul, M., Zimmermann, E., Rasoloharijaona, S., Randrianambinina, B., Radespiel, U. 2007. Unexpected species diversity of Malagasy primates (Lepilemur spp.) in the same biogeographical zone: a morphological and molecular approach with the description of two new species. BMC Evolutionary Biology 7:83.Dynesius, M., Jansson, R. 2000. Evolutionary consequences of changes in species_ geographical distributions driven by Milankovitch climate oscillations. Proc. Natl Acad. Sci. U.S.A. 97:9115–9120.Endler, J. 1982. Pleistocene forest refuges: fact or fancy? In Prance, G.T. (Ed.). Biological Diversification in the Tropics. New York: Columbia University Press, p. 179-200.Fisher, R.A. 1930. The Genetical Theory of Natural Selection. Clarendon Press. Goodman, S. M. & Benstead, J. P. The natural history of Madagascar. (University of Chicago Press Chicago, 2003).Fjeldsa°, J., Rahbek, C. 2006. Diversification of tanagers, a species-rich bird group, from the lowlands to montane regions of South America. Integr. Comp. Biol. 46:72–81. (doi:10.1093/icb/icj009)Haffer, J. 1969. Speciation in Amazonian forest birds. Science 165: 131-137.Haffer, J. 1997.Alternative models of vertebrate speciation in Amazonia: an overview Biodiversity and Conservation, 6:451–476.Haffer,, J. 1992. On the “river effect” in some forest birds of southern Amazonia. Bol. Mus. Para. Emilio Goeldi, sér. Zool. 8:217-245.Haffer, J. 1993. Time’s cycle and time’s arrow in the history of Amazonia. Biogeographica 69:15-45.Hall, J. P. 2005. Montane speciation patterns in Ithomiola butterflies (Lepidoptera: Rhiodinidae): are they consistently moving up in the world? Proc. R. Soc. B 272:2457–2466. (doi:10.1098/rspb.2005.3254)Jansson, R., Dynesius, M. 2002. The fate of clades in a world of recurrent climatic change: Milankovitch oscillations and evolution. Annu. Rev. Ecol. Syst. 33:741–777.Jetz, W., Rahbek, C. 2002. Geographic range size and determinants of avian species richness. Science 297:1548–1551.Jetz, W., Rahbek, C., Colwell, R.C. 2004. The coincidence of rarity and richness and the potential signature of history in centers of endemism. Ecol. Lett. 7:1180–1191.Kerr, J.T. Packer, L. 1997. Habitat heterogeneity determines mammalian species richness in high energy environments. Nature. 385:252-254..Kozak, K.H., Wiens, J.J. 2007. Climatic zonation drives latitudinal variation in speciation mechanisms. Proc. R. Soc. B 274:2995-3003. doi: 10.1098/rspb.2007.1106Krause, D. W. 2003. Late Cretaceous vertebrates of Madagascar: A window into Gondwanan biogeography at the end of the Age of Dinosaurs. Pp. 40-47 in S. M. Goodman and J. P. Benstead (eds.), The Natural History of Madagascar. University of Chicago Press, Chicago.Lees, D. C. 1996. The Périnet effect? Diversity gradients in an adaptive radiation of butterflies in Madagascar (Satyrinae: Mycalesina) compared with other rainforest taxa, Pages 479-490 in W. R. Louren?o, ed. Biogéographie de Madagascar. Paris, Editions de l'ORSTOM. Lees, D. C., Colwell R.K. 2007. A strong Madagascan rainforest MDE and no equatorward increase in species richness: Re-analysis of 'The missing Madagascan mid-domain effect', by Kerr J.T., Perring M. & Currie D.J (Ecology Letters 9:149-159, 2006). Ecology Letters 10:E4-E8.Moritz, C., Patton, J. L., Schneider, C. J., Smith, T. B. 2000. Diversification of rainforest faunas: an integrated molecular approach. Annu. Rev. Ecol. Syst. 31:533–563. (doi:10. 1146/annurev.ecolsys.31.1.533)Pearson, R.G., Raxworthy C.J. 2009. The evolution of local endemism in Madagascar: watershed versus climatic gradient hypotheses evaluated by null biogeographic models. Evolution 63:959–967.Prance, G.T. 1982. Biological diversification in the tropics. New York: Columbia University.Prance, G.T. 1996. Islands in Amazonia. Phil. Trans. R. Soc. Lond. B 351: 823-833.Rahbek, C. 1997. The relationship among area, elevation, and regional species richness in Neotropical birds. Am. Nat. 149:875–902.Rahbek, C., Graves, G. R. 2001. Multiscale assessment of patterns of avian species richness. Proc. Natl Acad. Sci. USA 98:4534–4539. (doi:10.1073/pnas.071034898)Recuero, E., García-París, M. 2011. Evolutionary history of Lissotriton helveticus: Multilocus assessment of ancestral vs. recent colonization of the Iberian Peninsula. Molecular Phylogenetics and Evolution 60: 170-182.Stebbins, G. L. 1974. Flowering plants: evolution above the species level. Harvard University Press, Cambridge, Mass.Stephens, P. R., Wiens, J.J. 2003. Explaining species richness from continents to communities: the time-for-speciation effect in emydid turtles. American Naturalist 161:112–128.Vanzolini, PE. 1970. Zoología sistemática, geografía e a origem das espécies. S?o Paulo: Instituto Geográfico de S?o Paulo. 56 pVanzolini, P.E. 1973. Paleoclimates, relief, and species multiplication in equatorial forests. In Meggers, B.J., Ayensu E.S.. Duckworth, W.D. (Eds.). Tropical forest ecosystems in Africa and South America: A comparative review. Washington: Smithsonian Institution. p. 255-258.Wallace, A.R. 1852. On the monkeys of the Amazon. London. Proc. Zool. Soc., 1852:107-110.Wilmé, L., Goodman, S.M., Ganzhorn, J.U. 2006. Biogeographic evolution of Madagascars microendemic biota. Science 312:1063– 1065.Supplementary Figure S1. Nominal Biogeography hypotheses. These hypotheses are comprised of non-order categories from which relationships among contained data are not known or non-linear. Four hypotheses fell into this category: The Riverine (major and minor), River-Refuge, Watershed and Gradient. See table S1 for summary of each hypotheses. Supplementary Figure S2. Continuous Biogeography hypotheses. Nine hypotheses fell into this category: Mid-domain (longitude, latitude and distance), Museum, Topographic Heterogeneity, Gradient* (PC1-PC3), Disturbance-vicariance, Climate Stability, Precipitation Stability, Sanctuary and Montane Species Pump (see table S1 for summary of each hypotheses). Inlayed tables represent the percent contribution of each corresponding hypothesis in the CAR model with the lowest AICc of each observed biodiversity measurements. *The values of the three climate principal components are not necessary assumed to reflect a positive correlation to endemism and species richness, however, we are assuming each reflects a prediction of a linear correlation (either positive or negative). The inclusion of the three climate principal components is the result of the power CAR models and the ability to include multiple explanatory variables. Due to the statistical limitations associated with nominal hypotheses, if a hypothesis could be depicted by continuous data (even if it required several variables) they were converted to this format and incorporated into the CAR. For example, if nominal data represented classified continuous data, we include the continuous data (such as the 3 PCs of climate data). Supplementary Table S1. Major Biogeographic Predictions Relevant to Madagascar. HypothesisDescriptionKey Factors EffectsPredictions for Reptiles and AmphibiansGIS PredictionTemporal ScopeKey CitationsClimate Stability (Fig S2.J)Climate stability creates greater climatic stratification across environmental gradientsStable climate; both seasonally and through geologic time; no barrier is necessaryIn stable climates, orbitally forced species’ range dynamics (ORD) are low, allowing localized populations to persist, and thus become highly specialized and differentiated. Higher levels of endemism in areas of climatic stabilityUse GIS and spatiotemporal explicit climate data to estimate climate stability; stable areas should harbor higher species richness and endemism. NoneDynesius & Jansson, 2000; 2002Disturbance-vicariance (Fig S2.L)Allopatry results from altitudinal range retractions caused by temperature fluctuations. Temperature fluctuations, changes in CO2 and habitat heterogeneity (usually associated with changes in altitude)Decreased temperatures allow cool adapted species to disperse south. Cyclic fluctuations in temperature cause populations to habitat track attitudinally, when temperatures are at their highest, populations become isolated on sky islands Diversity with monophyletic lineages are associated with a single region. Most common ancestor of sister clades date to Pleistocene.Estimate areas of high temperate fluctuations adjacent areas of slope; higher values reflect higher species richnessQuaternaryColinvaux 1993, Bush 1994, Haffer 1997; Raxworthy Nussbaum 1995. Gradient (Fig S1.E)Parapatry of populations due to environmental gradientsDivergent selection and an environmental gradient; no barrier is necessaryParapatric speciation across climate spaceSister taxa are found in different habitats along an environmental gradientCluster analyses of all current climate data to estimate areas of endemism.NoneEndler 1982Mid-domain Effect (Fig S2. A-C)Species’ ranges are distributed randomly between northern and southern geographic limits, the highest overlap of species ranges would be in the middle.Geographic spaceNo mechanism invokedSpecies richness should be highest in mid-domainsRichness is highest in the mid-domain of latitude, longitude and elevation.NoneLees 1996, Lees and Colwell 2007Montane Species Pump (Fig S2. M)Topographic complexity and climatic zonation of mountains increase opportunities for allopatric and parapatric speciationTopographic and climatic heterogeneityAllopatric and parapatric speciation across elevations Sister taxa share common ancestry with montane ancestor. Extant montane species display higher levels of intraspecific genetic variation. Estimate areas of topographic and climatic heterogeneity- high values reflect centers of high endemism and species richnessNoneMoritz et al. 2000; Rahbek and Graves 2001; Hall 2005; Fjeldsa° and Rahbek 2006; Kozak and Wiens 2007, Roy et al 1997, Fjeldsa et al 1999 Museum (Fig S2.D)More species occur at intermediate elevations simply because these elevations were occupied the longest and there has been more time for speciation and the accumulation of species in these habitats relative to those at lower and higher elevationsExtended time occupying in mid-elevationsIncreased differentiation at mid-elevationsMore species occur at intermediate elevations because these elevations were occupied the longest Use GIS to calculate the median elevation of Madagascar which should possess the highest species richness and endemismNoneStephens and Wiens 2003PaleogeographicalVicariant differentiation of Malagasy lineages is associated with formation of geologic barriers to dispersal. Each hypothesis is specific to the focal paleogeographic event.Geological changes resulting in vicariant eventsVicariant differentiation across barriersDistinct east and west lineages associated with the central mountains, and between the southern/central/northern massifs, tsingys. Not CalculatedSpecific to each geological eventGoodman & Benstead 2003Refuge (Fig S2. K)Allopatry due to retraction of wet habitatsRepeated cycles of drastic fluctuation in precipitationEpisodic fragmentation of forests resulting in isolated patches of wet forest causing vicariant differentiation between adjacent patchesEvolutionary lineages associated with refugia (areas of continued precipitation relative to regional mosaic of habitats)Use GIS and spatiotemporal explicit climate data to estimate stable wet habitats, these areas reflect centers of endemismCenozoic (Tertiary and Quaternary)Haffer 1969m 1990, 1999, Endler (1982), Brown (1987) Nores (1999)Riverine (Fig S1. A, B)Allopatry due to rivers acting as barriers.Permanent large riversVicariant differentiation of Malagasy lineages associated with large tributariesReciprocal monophyly of clades on opposite sides of riverMeasured inter-riverine areas which are areas of endemism NoneWallace 1853, Capparella 1991, Patton et al. 1994, Goodman & Ganzhorn, 2004River-Refuge(Fig S1.C)Allopatry due the restriction of wet habitats to lower elevations; higher elevation habitats and intervening rivers act as barriersReduced precipitation, maintenance of permanent riversSimilar to Riverine Hypothesis; fragmental faunal distributions into intra-riverine corridors, isolation is associated with increased aridity adversely affecting habitat suitability at headwater regionsSister taxa are found in adjacent intra-riverine corridorsCombine the Riverine Hypothesis subunits and a binary precipitation stability /low elevation layer. Resulting areas depict areas of high predicted endemism.Late tertiary (Post-Miocene)Haffer 1992; 1993, Craul et al 2007Sanctuary (Fig S2.L)Extinction occurs more often in instable habitats; thus stable areas accumulate species.Climate fluctuations through time across heterogeneous landscapes Areas of niche stability accumulate species through time. Areas of niche stability (specific aspects of climate vs. overall climate in Climate stability) provide sanctuary for species though time. Use GIS and SDM to estimate stable areas in each species distribution through time; areas of highest stability should harbor higher species richness and endemismNoneRecuero & García-Paris 2011 Topographic Heterogeneity(Fig S1. D)The level of topographic variation has been observed to be positively correlated to species richness patterns and centers of endemismTopographyNo mechanism invokedSpecies richness should be highest in areas of high topographic heterogenetyAreas of high topographic heterogeneity harbor higher species richnessNoneKerr & Packer 1997; Rahbek and Graves 20001; Jetz & Rahbek 2002; Jetz et al. 2004Watershed (Fig S1.D)Allopatry results from altitudinal range retractions caused by simultaneous decreases in temperature and precipitation. Lower elevation rivers act as barriers.Repeated cycles of drastic simultaneous increases of both temperature and precipitation. Large permanent rivers and mountains adjacent to lowlands. Dispersal during warm-humid periods allows lowland species to disperse attitudinally, across headwater habitat (previously too arid to occupy). Allopatry occurs as climate cools and the species depends into lowlands and lowland rivers prevent gene flow between populations, now occurring on both sides of river.Sister taxa are found in adjacent intra-riverine corridors. Most common ancestor of sister clades date to Pleistocene.See Wilmé et al. 2006.QuaternaryWilmé et al 2006Supplementary Table S3. Correlations of biodiversity hypotheses to observed biodiversity patterns. R-values reflect non-spatial Pearson product-moment correlation coefficients. To assess significance of raster data, we used an unbiased correlation following the method of Dutilleul (1993). This method reduced the degrees of freedom according to the level of spatial autocorrelation between the two variables. HypothesisReptile Amphibian Correlation to Observed EndemismRF-statdfprF-statdfpMid-domain: Distance-0.1480.53924.0370.470-0.0260.01826.7530.894Topographic Heterogeneity0.3435.42540.7380.025*0.66221.66427.724<.001*Refuge 0.0360.0432.3280.8480.1540.55222.7220.465Montane Species Pump0.3032.63948.4880.1070.61313.85222.9900.001*Disturbance-vicariance 0.3794.10122.4130.0550.61615.75822.829<.001*Climate stability 0.2410.6214.5800.4440.3562.03315.1240.174Sanctuary 0.2962.43825.3130.1310.6067.61113.0800.016*Museum0.2854.97156.4290.030*0.33517.70949.8360.015*River-Refuge (binary)0.2073.8786.8690.0520.0660.954216.9590.330Correlation to Observed Richness RF-statdfp rF-statdfp Mid-domain: Distance-0.48010.26534.3530.003*-0.2041.07224.6980.310Topographic Heterogeneity 0.1402.398119.8520.1240.3076.76964.9520.011*Refuge -0.1010.33231.9480.598-0.0930.21624.6050.646Montane Species Pump0.0560.507160.5760.4770.2965.50657.1960.022*Disturbance-vicariance 0.0192.29762.2510.1350.3035.28641.5540.027*Climate stability 0.2331.50626.1910.2310.2100.72315.6720.408Sanctuary 0.41910.07947.2670.003*0.81834.06916.885<.001*Museum0.2344.03769.4720.048*0.2504.48166.9890.038*River-Refuge (binary)0.1082.378201.1870.1250.2344.9485.0220.029*Supplementary Table S4. Mixed CAR spatial models of observed biodiversity data. A principal component analyses was performed on the standardized biogeography hypotheses. All the resulting principal components (PCs) were extracted and then loaded as explanatory variables. The CAR analyses were run iteratively, starting with all PCs as response variables and then excluding each PC that did not contribute significantly to the model (α = 0.05) until the final model included only PCs that contributed significantly to the model. The standardized beta coefficients (β) were then used to calculate contributions of each biogeography hypothesis (see methods on OTBCs) in the final CAR analysis. To compare the contributions of each biogeography hypothesis among models of observed biodiversity patterns (richness, endemism, GDM), β coefficents from each OTBC/CAR analyses were converted to the percentage of contribution. *The mean of the 3 MDS vectors loadings were calculated and contributed as a single value to the total mean. Percent Contribution to CAREndemismRichnessGDMMean contribution to all observed biodiversity models*AmphibianReptileAmphibianReptileMDS-D1MDS-D2MDS-D3Mean*Mid-domain- Latitude0.0%27.7%3.5%3.6%5.3%20.7%1.6%9.2%8.8%Mid-domain- Longitude8.1%8.0%6.7%9.2%10.9%10.2%8.1%9.7%8.4%Mid-domain- Distance***15.1%9.7%7.7%20.0%14.4%5.7%15.8%11.9%12.9%Climate- PC115.4%0.1%11.4%14.5%15.1%4.5%13.8%11.1%10.5%Climate- PC210.1%12.7%8.5%11.0%10.1%11.7%7.4%9.7%10.4%Climate- PC32.2%12.8%4.6%1.8%4.4%11.9%3.9%6.7%5.6%Refuge 1.4%4.7%6.9%0.0%3.8%10.5%0.0%4.8%3.5%Climate Stability***4.7%4.6%7.4%3.0%0.0%1.0%3.8%1.6%4.2%Topographic Heterogeneity6.5%1.7%7.1%3.7%3.9%0.5%8.0%4.2%4.6%Disturbance-vicariance5.9%4.8%8.1%3.1%3.4%2.2%6.8%4.1%5.2%Montane Species Pump5.0%0.0%7.1%2.3%2.9%0.0%7.2%3.4%3.6%Sanctuary10.9%0.3%13.7%12.6%11.7%3.1%4.7%6.5%8.8%Museum14.8%13.0%7.1%15.1%14.3%18.1%19.0%17.1%13.4%CAR Model SummaryExplained by Predictor Variables: r2 (AICc)0.482(-372.3)0.303(-468.5)0.624 (7861.9)0.309(21849.9)0.869(-4037.8)0.435(-1084.2)0.659(-3327.7)Total Explained (Predictor and Space): r2 (AICc)0.646(-426.0)0.626(-556.4)0.849 (6349.3)0.745(19364.2)0.954(-6659.7)0.942(-6760.4)0.868(-5700.9)Model significance: n, F, p-val141, 42.5, <0.001141, 9.7, <0.0012501,303.5<0.0012501,278.1,<0.0012501, 1265.9,<0.0012501,147.2,<0.0012501, 396.8,<0.001NASupplementary Table S5. Mixed CAR spatial models of focal subgroups. A principal component analyses was performed on the standardized biogeography hypotheses. All the resulting principal components (PCs) were extracted and then loaded as explanatory variables. The CAR analyses were run iteratively, starting with all PCs as response variables and then excluding each PC that did not contribute significantly to the model (α = 0.05) until the final model included only PCs that contributed significantly to the model. The standardized beta coefficients (β) were then used to calculate contributions of each biogeography hypothesis (see methods on OTBCs) in the final CAR analysis. To compare the contributions of each biogeography hypothesis among models of observed biodiversity patterns (richness, endemism, GDM), β coefficents from each OTBC/CAR analyses were converted to the percentage of contribution. *The mean of the 3 MDS vectors loadings were calculated and contributed as a single value to the total mean. Percent Contribution to CAREndemismRichnessBoophisBrookesiaOplurus*PhelsumaBoophisBrookesiaOplurus*PhelsumaMid-domain- Latitude3.0%4.0%2.5%17.0%0.0%5.1%2.3%4.2%Mid-domain- Longitude8.4%9.9%10.6%11.8%6.1%8.3%6.3%10.2%Mid-domain- Distance***16.0%9.9%6.3%6.4%10.6%12.0%11.0%20.4%Climate- PC112.2%12.2%13.5%5.8%14.4%11.7%15.9%13.1%Climate- PC26.0%14.1%13.2%7.0%13.0%11.2%8.9%9.7%Climate- PC35.2%4.3%2.8%18.3%1.6%7.9%0.0%3.9%Refuge 0.0%10.5%11.3%2.3%9.9%4.5%3.3%0.0%Climate Stability***3.6%8.8%11.2%5.9%8.9%3.6%5.8%1.8%Topographic Heterogeneity9.0%2.2%1.0%5.1%2.8%2.1%6.5%4.1%Disturbance-vicariance7.0%4.7%4.1%7.2%5.8%2.5%6.8%2.7%Montane Species Pump8.4%0.6%0.0%4.3%2.7%0.0%4.5%2.7%Sanctuary0.1%18.9%22.6%0.0%20.3%17.2%23.6%7.9%Museum21.1%0.0%0.8%8.8%3.8%13.9%5.2%19.3%CAR Model SummaryExplained by Predictor Variables: r2 (AICc)0.251(-252.2)0.303(-176.1)0.432(-317.9)0.209(-253.4)0.569(9710.5)0.444(5392.1)0.178(9789.1)0.559(6731.4)Total Explained (Predictor and Space): r2 (AICc)0.524(-316.0)0.685(-235.3)0.756 (-436.8)0.759(-354.6)0.863(6851.0)0.812(2680.8)0.504(8530.6)0.794(4837.3)Model significance: n, F, p-val141, 46.6, <0.001141, 49.7, <0.001141, 20.5, <0.001141, 20.1, <0.0012501, 364.7,<0.0012501, 220.6, <0.0012501, 550.1,<0.0012501, 632.4,<0.001 ................
................

In order to avoid copyright disputes, this page is only a partial summary.

Google Online Preview   Download